EP1077357B1 - Cooling element - Google Patents

Cooling element Download PDF

Info

Publication number
EP1077357B1
EP1077357B1 EP00117005A EP00117005A EP1077357B1 EP 1077357 B1 EP1077357 B1 EP 1077357B1 EP 00117005 A EP00117005 A EP 00117005A EP 00117005 A EP00117005 A EP 00117005A EP 1077357 B1 EP1077357 B1 EP 1077357B1
Authority
EP
European Patent Office
Prior art keywords
cooling element
coolant
radius
coolant channels
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP00117005A
Other languages
German (de)
French (fr)
Other versions
EP1077357A1 (en
Inventor
Heinz Driemeier
Thomas Dipl.-Ing Rolf
Christof Dipl.-Ing. Dratner
Franz Dipl.-Ing. Kelser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KM Europa Metal AG
Original Assignee
KM Europa Metal AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7918634&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1077357(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by KM Europa Metal AG filed Critical KM Europa Metal AG
Publication of EP1077357A1 publication Critical patent/EP1077357A1/en
Application granted granted Critical
Publication of EP1077357B1 publication Critical patent/EP1077357B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/10Cooling; Devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/24Cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/24Cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/12Casings; Linings; Walls; Roofs incorporating cooling arrangements

Definitions

  • the invention relates to a cooling element for melting furnaces, which is penetrated by coolant channels introduced by mechanical deep drilling.
  • Such cooling elements are interchangeable components of an inner cladding of a melting furnace. Since the temperature prevailing in the melting furnaces is above the melting temperature of the cooling elements, cooling is necessary in order to prevent the cooling elements from softening.
  • the cooling elements are often made of gray cast iron or steel.
  • cast cooling pipes in cast iron cooling elements It is state of the art to cast cooling pipes in cast iron cooling elements. This has the disadvantage that an oxide layer surrounding the cooling tubes or an air gap complicates the heat transfer to the coolant. In addition, cast iron cooling elements have a relatively low thermal conductivity.
  • DE 29 07 511 C1 discloses a cooling element for shaft furnaces, which consists of copper or a low-alloy copper alloy and is made from a forged or rolled ingot.
  • coolant channels generated by mechanical deep drilling in the interior of the cooling element, which run vertically in the position of use.
  • the blind holes drilled in the cooling element are sealed by soldering or welding in threaded plugs.
  • inlet bores to the coolant channels into which the connections required for the coolant supply or coolant discharge are welded or soldered.
  • the blind bores are usually introduced into the cooling element at an angle of 90 ° to one another. If a transverse bore penetrates several longitudinal bores, plugs must be inserted between two crossing areas of the bores for the controlled diversion of the coolant flow. These areas of intersection are fluidically unfavorable.
  • the increased flow resistance within deep-drilled cooling elements can mean that a pump system, which is sufficient when using cooling elements with cast-in coils, must be replaced by a more powerful pump system when installing deep-drilled cooling elements.
  • the invention is based on the object of providing a cooling element for melting furnaces which is improved with regard to the flow resistance within the coolant channels.
  • the invention solves the problem by the features specified in the characterizing part of claim 1.
  • the plugs have deflection surfaces of certain configurations facing the coolant channels. These are designed so that the cross-sectional change in the penetration area of two coolant channels is reduced. A concave deflection surface gently redirects the flow. This prevents an abrupt braking of the coolant flow and reduces friction losses in the penetration area.
  • Deflection surfaces designed in the form of spherical sections are particularly advantageous, since the coolant channels introduced by mechanical deep drilling have a circular cross section.
  • a constant cross section of the channel line is obtained in particular when the radius of the deflection surfaces in the penetration area of two coolant channels corresponds to the diameter of the coolant channels (claim 3).
  • the deflection surfaces are arranged between two transition openings offset by 90 ° to one another.
  • the transition openings preferably have the same diameter as the adjacent coolant channels in order to avoid changing the cross section of the channel line.
  • the plug having an angular transition channel is therefore somewhat larger in outside diameter than the inside diameter of the coolant channels.
  • the features of claim 4 in particular to wear whereby a ball mill can be inserted into the stopper through the transition openings, which forms the deflection surface.
  • the radius of the deflection surface is thus determined by the radius of the ball mill, which in turn is dependent on the diameter of the transfer openings or the coolant channels.
  • transition openings are not offset by 90 ° to one another, but are at any acute or obtuse angle to one another.
  • two opposite end faces of a stopper are formed by deflecting surfaces.
  • a plug is used in the interior of a cooling element in which the coolant channels are arranged, for example, in a meandering manner. Due to the manufacturing process, mutually penetrating coolant channels are introduced into the cooling element. To form the meandering shape, individual coolant channels must be closed in sections by plugs. The length of the stopper is predetermined by the distance between the intersections of the coolant channels.
  • two deflecting surfaces form the ends of an elongated trough formed in a stopper.
  • This embodiment is used when the coolant channels introduced by deep drilling are to be connected to one another in the region of an end face of the cooling element.
  • a recess adapted to the stopper is made in the cooling element and a recess between the coolant channels which, together with the trough of the stopper, forms a transfer channel for the coolant.
  • This transfer channel preferably has the same cross section as the coolant channels.
  • the elongated trough between its ends is shaped like a cylinder section.
  • the radius of the cylindrical central section preferably corresponds to the radius of the coolant channels and the radius of the recess. manufacturing technology the recess can be produced particularly easily with a ball milling cutter which at the same time forms the deflecting surfaces at the ends and forms the cylindrical central section of the stopper between the ends by a linear method.
  • the plugs are tightly fitted into the coolant channels according to the features of claim 8.
  • they can be clamped in the coolant channels by external influences (material compression).
  • the plugs are welded, soldered and / or screwed into the coolant channels.
  • the additional integral connection of the plugs fitted into the coolant channels secures them against falling out even under rough operating conditions and enables fluid-tight fixing without additional sealing elements.
  • the cooling element consists of copper or a low-alloy copper alloy.
  • the cooling element is preferably forged or rolled from a raw block of copper or a low-alloy copper alloy. Cooling elements produced in this way have a denser and more homogeneous structure than cast copper elements and have a higher strength and thermal conductivity.
  • the present invention makes it possible to use pump systems with a lower output, as a result of which the installation outlay when changing from cooling elements made of steel or cast iron to copper cooling elements can be considerably reduced.
  • FIG. 1 shows a corner region of a cooling element 1 in section with a coolant channel 2 running in the longitudinal direction of the cooling element 1.
  • the cooling element 1 is traversed by a plurality of coolant channels 2, not shown in detail, which form a continuous channel line in the cooling element 1.
  • the coolant channel 2 is introduced into the cooling element 1 by mechanical deep drilling from the end 3 thereof.
  • the cooling element 1 is provided with a coolant inlet 5 on its side 4 facing away from the interior of a melting furnace (not shown in detail).
  • the coolant channel 2 has an inlet bore 6 which is introduced from the side 4 and into which a pipe socket 7 is firmly inserted.
  • the pipe socket 7 can be welded or soldered into the inlet bore 6.
  • the stopper 8 has a first transition opening 9 facing the coolant channel 2 and a second transition opening 10 which faces the pipe socket 7 of the coolant inlet 5 offset by 90 °. Coolant can thus flow through the coolant inlet 5 and through the plug 8 into the coolant channel 2.
  • the plug 8 is welded from the end 3 of the cooling element 1 to the wall 11 of the coolant channel 2.
  • the plug 8 has a deflection surface 12 facing the coolant channel 2 and the coolant inlet 5. It is clear from FIG. 2 that the deflection surface 12 is designed in the form of a spherical segment.
  • the radius R U of the deflection surface 12 corresponds to the radius R K of the coolant channel 2.
  • the radius R D of the transfer openings 9, 10 corresponds to the radius R K of the coolant channel 2 and the coolant inlet 5.
  • the plug 8 and the pipe socket 7 have the same outside diameter D A , which is matched to the diameter D Z of the inlet bore 6.
  • a plug 13 is arranged in a horizontal coolant channel 14 in the interior of the cooling element 1.
  • a first and a second vertically extending coolant channel 15, 16 open into the horizontal coolant channel 14 at a parallel distance from one another.
  • the longitudinal axes of the vertical coolant channels 15, 16 intersect at a first intersection point SP 1 and a second intersection point SP 2 with the longitudinal axis of the horizontal coolant channel 14th
  • the plug 13 extends between these intersections SP 1 and SP 2 in the horizontal coolant channel 14.
  • its end faces facing away from one another are designed as deflecting surfaces 17 in the form of spherical sections.
  • the radius R U of the deflection surfaces 17 corresponds to the radius R K of the coolant channels 14, 15, 16.
  • a coolant as indicated by the arrows PF, is directed from the horizontal coolant duct 14 into the vertical coolant duct 15 and from the vertical one Coolant channel 16 again in the horizontal coolant channel 14.
  • the two coolant channels 15, 16 can also be connected at the other end, as shown in FIG. 3, or they can be connected to one another in accordance with FIG. 4 (explained in more detail below).
  • the plug 13 is fixed locally by an annular fastening element 18 arranged in its central longitudinal section.
  • the fastening element 18 clamps the plug 13 to the wall 19 of the horizontal coolant channel 14.
  • a securing ring held in a groove in the plug 13, for example, is suitable as the fastening element 18.
  • two coolant channels 21, 22 which run parallel to one another are connected to one another in a fluid-conducting manner by a plug 20.
  • the plug 20 extends between the coolant channels 21, 22 and is inserted into a groove from the end face 21 of the cooling element 1. It is designed in the manner of a feather key and rounded at the end, its side facing the coolant channels 21, 22 being designed as an elongated trough 24 with a cylindrically recessed central section 26 and end-side concave deflection surfaces 25 (FIG. 6).
  • the radius R U of the deflecting surfaces 25 in turn corresponds to the radius R K of the coolant channels 21, 22.
  • an overflow channel 28 of the same cross section is formed between the coolant channels 21, 22.

Abstract

Cooling element has cooling channels (2) into which stoppers (8) are slid to form a channel string with an inlet (5) and an outlet. The stoppers have concave deviating surfaces (12) facing the cooling channels. Preferred Features: The deviating surfaces have a spherical section shape. The radius (RU) of the deviating surfaces are twice as large as the radius (RK) of the cooling channels. The cooling element is made of copper or a low-alloyed copper alloy.

Description

Die Erfindung betrifft ein Kühlelement für Schmelzöfen, das von durch mechanisches Tiefbohren eingebrachten Kühlmittelkanälen durchzogen ist.The invention relates to a cooling element for melting furnaces, which is penetrated by coolant channels introduced by mechanical deep drilling.

Derartige Kühlelemente sind austauschbare Bestandteile einer inneren Verkleidung eines Schmelzofens. Da die in den Schmelzöfen herrschende Temperatur oberhalb der Schmelztemperatur der Kühlelemente liegt, ist eine Kühlung erforderlich, um ein Erweichen der Kühlelemente zu verhindern. Die Kühlelemente bestehen häufig aus Grauguß oder Stahl.Such cooling elements are interchangeable components of an inner cladding of a melting furnace. Since the temperature prevailing in the melting furnaces is above the melting temperature of the cooling elements, cooling is necessary in order to prevent the cooling elements from softening. The cooling elements are often made of gray cast iron or steel.

Es zählt zum Stand der Technik, Kühlrohre in gußeiserne Kühlelemente einzugießen. Hiermit ist der Nachteil verbunden, daß eine die Kühlrohre umgebende Oxidschicht oder ein Luftspalt den Wärmeübergang auf das Kühlmittel erschwert. Zudem besitzen gußeiserne Kühlelemente eine relativ geringe Wärmeleitfähigkeit.It is state of the art to cast cooling pipes in cast iron cooling elements. This has the disadvantage that an oxide layer surrounding the cooling tubes or an air gap complicates the heat transfer to the coolant. In addition, cast iron cooling elements have a relatively low thermal conductivity.

Wesentlich bessere Wärmeleitfähigkeiten als Grauguß besitzen Kupfer und Kupferlegierungen. In diesem Zusammenhang offenbart die DE 29 07 511 C1 ein Kühlelement für Schachtöfen, das aus Kupfer oder einer niedrig legierten Kupferlegierung besteht und aus einem geschmiedeten oder gewalzten Rohblock gefertigt ist. Bei dieser Bauart befinden sich durch mechanisches Tiefbohren erzeugte Kühlmittelkanäle im Inneren des Kühlelements, die in der Gebrauchslage vertikal verlaufen. Die in das Kühlelement eingebrachten Sackbohrungen werden durch Einlöten oder Einschweißen von Gewindestopfen abgedichtet. Auf der Rückseite des Kühlelements befinden sich Zulaufbohrungen zu den Kühlmittelkanälen, in die für die Kühlmittelzufuhr bzw. Kühlmittelabfuhr erforderliche Stutzen geschweißt bzw. gelötet sind.Copper and copper alloys have significantly better thermal conductivities than gray cast iron. In this context, DE 29 07 511 C1 discloses a cooling element for shaft furnaces, which consists of copper or a low-alloy copper alloy and is made from a forged or rolled ingot. In this type of construction there are coolant channels generated by mechanical deep drilling in the interior of the cooling element, which run vertically in the position of use. The blind holes drilled in the cooling element are sealed by soldering or welding in threaded plugs. On the back of the cooling element there are inlet bores to the coolant channels, into which the connections required for the coolant supply or coolant discharge are welded or soldered.

Um die Kühlflüssigkeit innerhalb des Kühlelements umleiten zu können, werden die Sackbohrungen zumeist in einem Winkel von 90° zueinander in das Kühlelement eingebracht. Durchdringt hierbei eine Querbohrung mehrere Längsbohrungen, sind zur kontrollierten Umleitung des Kühlmittelstroms Stopfen zwischen jeweils zwei Kreuzungsbereiche der Bohrungen einzusetzen. Diese Kreuzungsbereiche sind strömungstechnisch ungünstig.In order to be able to divert the cooling liquid within the cooling element, the blind bores are usually introduced into the cooling element at an angle of 90 ° to one another. If a transverse bore penetrates several longitudinal bores, plugs must be inserted between two crossing areas of the bores for the controlled diversion of the coolant flow. These areas of intersection are fluidically unfavorable.

In dem das Kühlelement durchsetzenden Kühlmittelstrang treten infolge von Schubspannungen im Kühlmittel Energieverluste längs des Stromfadens auf. Bei laminarer Strömung bewegen sich die Teilchen des Kühlmittels in parallelen Bahnen, während bei turbulenter Strömung zusätzliche Geschwindigkeiten in X-, Y- und Z-Richtung die Hauptströmung überlagern, was zu Wirbelbildungen führt. Während der Druckverlust bei laminarer Strömung linear mit der Geschwindigkeit zunimmt, nimmt dieser bei turbulenter Strömung quadratisch mit der Geschwindigkeit zu. Hierbei treten Verwirbelungen besonders an unstetigen Querschnittserweiterungen auf, z.B. in Kreuzungsbereichen der Kühlmittelkanäle. Mit zunehmender Strömungsgeschwindigkeit sind daher wesentlich leistungsfähigere Pumpen erforderlich.In the coolant line passing through the cooling element, energy losses along the current filament occur due to shear stresses in the coolant. In the case of laminar flow, the particles of the coolant move in parallel paths, while in the case of turbulent flow, additional velocities in the X, Y and Z directions overlap the main flow, which leads to eddy formation. While the pressure loss increases linearly with speed in laminar flow, it increases quadratically with speed in turbulent flow. Turbulence occurs especially on discontinuous cross-sectional enlargements, e.g. in intersection areas of the coolant channels. As the flow rate increases, much more powerful pumps are required.

Der erhöhte Strömungswiderstand innerhalb tiefgebohrter Kühlelemente kann dazu führen, daß eine Pumpenanlage, die beim Einsatz von Kühlelementen mit eingegossenen Rohrschlangen ausreicht, bei der Installation von tiefgebohrten Kühlelementen gegen eine leistungsfähigere Pumpenanlage ausgetauscht werden muß.The increased flow resistance within deep-drilled cooling elements can mean that a pump system, which is sufficient when using cooling elements with cast-in coils, must be replaced by a more powerful pump system when installing deep-drilled cooling elements.

Der Erfindung liegt ausgehend vom Stand der Technik die Aufgabe zugrunde, ein kühlelement für Schmelzöfen bereitzustellen, das hinsichtlich des Strömungswiderstands innerhalb der Kühlmittelkanäle verbessert ist.Starting from the prior art, the invention is based on the object of providing a cooling element for melting furnaces which is improved with regard to the flow resistance within the coolant channels.

Die Erfindung löst die Aufgabe durch die im kennzeichnenden.Teil des Anspruchs 1 angegebenen Merkmale.The invention solves the problem by the features specified in the characterizing part of claim 1.

Bei dem erfindungsgemäßen Kühlelement besitzen die Stopfen den Kühlmittelkanälen zugewandte Umlenkflächen bestimmter Konfigurationen. Diese sind so gestaltet, daß die Querschnittsveränderung in dem Durchdringungsbereich zweier Kühlmittelkanäle verringert ist. Eine konkav ausgestaltete Umlenkfläche leitet die Strömung sanft um. Hierdurch wird eine abrupte Abbremsung des Kühlmittelstroms verhindert und es werden Reibungsverluste im Durchdringungsbereich vermindert.In the cooling element according to the invention, the plugs have deflection surfaces of certain configurations facing the coolant channels. These are designed so that the cross-sectional change in the penetration area of two coolant channels is reduced. A concave deflection surface gently redirects the flow. This prevents an abrupt braking of the coolant flow and reduces friction losses in the penetration area.

Besonders vorteilhaft sind kugelabschnittsförmig ausgebildete Umlenkflächen (Anspruch 2), da die durch mechanisches Tiefbohren eingebrachten Kühlmittelkanäle einen kreisförmigen Querschnitt besitzen.Deflection surfaces designed in the form of spherical sections are particularly advantageous, since the coolant channels introduced by mechanical deep drilling have a circular cross section.

Ein konstanter Querschnitt des Kanalstrangs ergibt sich insbesondere dann, wenn im Durchdringungsbereich zweier Kühlmittelkanäle der Radius der Umlenkflächen dem Durchmesser der Kühlmittelkanäle entspricht (Anspruch 3).A constant cross section of the channel line is obtained in particular when the radius of the deflection surfaces in the penetration area of two coolant channels corresponds to the diameter of the coolant channels (claim 3).

Die Vorteile der Erfindung sind gleichermaßen dann gegeben, wenn der Radius der Umlenkflächen dem Radius der Kühlmittelkanäle entspricht (Anspruch 4). Diese Ausführungsform hat fertigungstechnische Vorteile, da die Umlenkflächen besonders einfach mit einem geeigneten Kugelfräser hergestellt werden können.The advantages of the invention are equally given when the radius of the deflection surfaces corresponds to the radius of the coolant channels (claim 4). This embodiment has advantages in terms of production technology, since the deflecting surfaces can be produced particularly easily with a suitable ball milling cutter.

Im Rahmen der Ausführungsform des Anspruchs 5 sind die Umlenkflächen zwischen zwei um 90° zueinander versetzten Übertrittsöffnungen angeordnet. Die Übertrittsöffnungen besitzen vorzugsweise den gleichen Durchmesser wie die angrenzenden Kühlmittelkanäle, um eine Veränderung des Querschnitts des Kanalstrangs zu vermeiden.In the context of the embodiment of claim 5, the deflection surfaces are arranged between two transition openings offset by 90 ° to one another. The transition openings preferably have the same diameter as the adjacent coolant channels in order to avoid changing the cross section of the channel line.

Der einen winkelförmigen Übertrittskanal aufweisende Stopfen ist im Außendurchmesser demzufolge etwas größer als der Innendurchmesser der Kühlmittelkanäle. Bei dieser Ausführungsform kommen insbesondere die Merkmale des Anspruchs 4 zum Tragen, wobei durch die Übertrittsöffnungen ein Kugelfräser in den Stopfen eingeführt werden kann, der die Umlenkfläche formt. Der Radius der Umlenkfläche ist somit durch den Radius des Kugelfräsers bestimmt, der wiederum von dem Durchmesser der Übertrittsöffnungen bzw. der Kühlmittelkanäle abhängig ist.The plug having an angular transition channel is therefore somewhat larger in outside diameter than the inside diameter of the coolant channels. In this embodiment, the features of claim 4 in particular to wear, whereby a ball mill can be inserted into the stopper through the transition openings, which forms the deflection surface. The radius of the deflection surface is thus determined by the radius of the ball mill, which in turn is dependent on the diameter of the transfer openings or the coolant channels.

Selbstverständlich sind im Rahmen der Erfindung auch Konfigurationen denkbar, bei denen die Übertrittsöffnungen nicht um 90° zueinander versetzt sind, sondern in einem beliebigen spitzeren oder stumpferen Winkel zueinander stehen.Of course, within the scope of the invention, configurations are also conceivable in which the transition openings are not offset by 90 ° to one another, but are at any acute or obtuse angle to one another.

Nach Anspruch 6 sind zwei einander abgewandte Stirnseiten eines Stopfens von Umlenkflächen gebildet. Ein derartiger Stopfen kommt im Inneren eines Kühlelements zum Einsatz, bei der die Kühlmittelkanäle beispielsweise mäanderförmig angeordnet sind. Fertigungsbedingt werden hierzu sich gegenseitig durchdringende Kühlmittelkanäle in das Kühlelement eingebracht. Zur Ausbildung der Mäanderform müssen einzelne Kühlmittelkanäle abschnittsweise durch Stopfen verschlossen werden. Die Länge der Stopfen ist hierbei durch den Abstand der Kreuzungspunkte der Kühlmittelkanäle vorgegeben.According to claim 6, two opposite end faces of a stopper are formed by deflecting surfaces. Such a plug is used in the interior of a cooling element in which the coolant channels are arranged, for example, in a meandering manner. Due to the manufacturing process, mutually penetrating coolant channels are introduced into the cooling element. To form the meandering shape, individual coolant channels must be closed in sections by plugs. The length of the stopper is predetermined by the distance between the intersections of the coolant channels.

Nach den Merkmalen des Anspruchs 7 bilden zwei Umlenkflächen die Enden einer in einem Stopfen ausgeformten länglichen Mulde. Diese Ausführungsform kommt dann zum Einsatz, wenn die durch Tiefbohren eingebrachten Kühlmittelkanäle im Bereich einer Stirnseite des Kühlelements miteinander verbunden werden sollen. Hierzu wird in das Kühlelement eine an den Stopfen angepaßte Ausnehmung eingebracht sowie eine Aussparung zwischen den Kühlmittelkanälen, die zusammen mit der Mulde des Stopfens einen Überleitkanal für das Kühlmittel ausbildet. Dieser Überleitkanal besitzt vorzugsweise den gleichen Querschnitt wie die Kühlmittelkanäle. Hierzu ist die längliche Mulde zwischen ihren Enden.zylinderabschnittsförmig gestaltet. Der Radius des zylindrischen Mittelabschnitts entspricht vorzugsweise dem Radius der - Kühlmittelkanäle und dem Radius der Ausnehmung. Fertigungstechnisch kann die Ausnehmung besonders einfach mit einem Kugelfräser hergestellt werden, der gleichzeitig die Umlenkflächen an den Enden ausbildet und durch lineares Verfahren zwischen den Enden den zylindrischen Mittelabschnitt des Stopfens formt.According to the features of claim 7, two deflecting surfaces form the ends of an elongated trough formed in a stopper. This embodiment is used when the coolant channels introduced by deep drilling are to be connected to one another in the region of an end face of the cooling element. For this purpose, a recess adapted to the stopper is made in the cooling element and a recess between the coolant channels which, together with the trough of the stopper, forms a transfer channel for the coolant. This transfer channel preferably has the same cross section as the coolant channels. For this purpose, the elongated trough between its ends is shaped like a cylinder section. The radius of the cylindrical central section preferably corresponds to the radius of the coolant channels and the radius of the recess. manufacturing technology the recess can be produced particularly easily with a ball milling cutter which at the same time forms the deflecting surfaces at the ends and forms the cylindrical central section of the stopper between the ends by a linear method.

Die Stopfen sind nach den Merkmalen des Anspruchs 8 festsitzend in die Kühlmittelkanäle eingepaßt. Sie können beispielsweise durch äußere Einwirkung (Materialverpressung) in den Kühlmittelkanälen festgeklemmt werden. Es bieten sich auch Sicherungsringe an, die in einer außenseitigen Nut im Stopfen gehalten sind und federnd gegen die Wände der Kühlmittelkanäle drücken.The plugs are tightly fitted into the coolant channels according to the features of claim 8. For example, they can be clamped in the coolant channels by external influences (material compression). There are also locking rings that are held in an outside groove in the stopper and press resiliently against the walls of the coolant channels.

Nach Anspruch 9 sind die Stopfen in die Kühlmittelkanäle geschweißt, gelötet und/oder geschraubt. Die zusätzliche stoffschlüssige Verbindung der festsitzend in die Kühlmittelkanäle eingepaßten Stopfen sichert diese auch bei groben Betriebsbedingungen gegen Herausfallen und ermöglicht eine fluiddichte Festlegung ohne zusätzliche Dichtelemente.According to claim 9, the plugs are welded, soldered and / or screwed into the coolant channels. The additional integral connection of the plugs fitted into the coolant channels secures them against falling out even under rough operating conditions and enables fluid-tight fixing without additional sealing elements.

Nach den Merkmalen des Anspruchs 10 besteht das Kühlelement aus Kupfer oder einer niedriglegierten Kupferlegierung. Vorzugsweise ist das Kühlelement aus einem Rohblock aus Kupfer oder einer niedriglegierten Kupferlegierung geschmiedet oder gewalzt. Derartig hergestellte Kühlelemente weisen ein dichteres und homogeneres Gefüge auf als gegossene Kupferelemente und besitzen eine höhere Festigkeit und Wärmeleitfähigkeit.According to the features of claim 10, the cooling element consists of copper or a low-alloy copper alloy. The cooling element is preferably forged or rolled from a raw block of copper or a low-alloy copper alloy. Cooling elements produced in this way have a denser and more homogeneous structure than cast copper elements and have a higher strength and thermal conductivity.

Durch die vorliegende Erfindung ist es möglich, Pumpenanlagen mit geringerer Leistung einzusetzen, wodurch der Installationsaufwand bei einem Wechsel von Kühlelementen aus Stahl oder Grauguß auf kupferne Kühlelemente erheblich reduziert werden kann.The present invention makes it possible to use pump systems with a lower output, as a result of which the installation outlay when changing from cooling elements made of steel or cast iron to copper cooling elements can be considerably reduced.

Die Erfindung ist nachfolgend anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:

Figur 1
einen Ausschnitt eines mit einem Stopfen versehenen Kühlmittelkanals eines Kühlelements im Querschnitt im Bereich eines Stutzens;
Figur 2
in vergrößertem Maßstab eine perspektivische Darstellung des Stopfens der Figur 1;
Figur 3
eine weitere Ausführungsform eines einen Kanalstrang abschnittsweise verschließenden Stopfens im Querschnitt;
Figur 4
ebenfalls im Querschnitt eine dritte Ausführungsform eines Stopfens im Verlauf eines Kanalstrangs;
Figur 5
eine Schnittdarstellung entlang der Linie V-V in Figur 4 und
Figur 6
in der Vergrößerung eine perspektivische Darstellung des Stopfens gemäß Figur 4.
The invention is explained in more detail below on the basis of exemplary embodiments schematically illustrated in the drawings. Show it:
Figure 1
a detail of a coolant channel provided with a plug of a cooling element in cross section in the region of a nozzle;
Figure 2
on an enlarged scale a perspective view of the plug of Figure 1;
Figure 3
a further embodiment of a plug closing a channel strand in sections in cross section;
Figure 4
likewise in cross-section a third embodiment of a plug in the course of a channel line;
Figure 5
a sectional view taken along the line VV in Figure 4 and
Figure 6
4 shows an enlarged perspective view of the stopper according to FIG. 4.

Figur 1 zeigt einen Eckbereich eines Kühlelements 1 im Schnitt mit einem in Längsrichtung des Kühlelements 1 verlaufenden Kühlmittelkanal 2. Das Kühlelement 1 ist von mehreren im einzelnen nicht dargestellten Kühlmittelkanälen 2 durchzogen, die einen durchgehenden Kanalstrang in dem Kühlelement 1 bilden.FIG. 1 shows a corner region of a cooling element 1 in section with a coolant channel 2 running in the longitudinal direction of the cooling element 1. The cooling element 1 is traversed by a plurality of coolant channels 2, not shown in detail, which form a continuous channel line in the cooling element 1.

Der Kühlmittelkanal 2 ist durch mechanisches Tiefbohren vom Ende 3 des Kühlelements 1 her in dieses eingebracht. Zur Speisung des Kanalstrangs mit einem Kühlmittel ist das Kühlelement 1 auf seiner dem Inneren eines Schmelzofens (nicht näher dargestellt) abgewandten Seite 4 mit einem Kühlmittelzulauf 5 versehen. Hierzu besitzt der Kühlmittelkanal 2 eine von der Seite 4 her eingebrachte Zulaufbohrung 6, in die ein Rohrstutzen 7 fest eingesetzt ist. Der Rohrstutzen 7 kann in die Zulaufbohrung 6 geschweißt oder gelötet sein. Durch die Zulaufbohrung 6 ist in den Kühlmittelkanal 2 ein Stopfen 8 eingesetzt. Der Stopfen 8 besitzt eine dem Kühlmittelkanal 2 zugewandte erste Übertrittsöffnung 9 und eine zweite Übertrittsöffnung 10, die um 90° versetzt dem Rohrstutzen 7 des Kühlmittelzulaufs 5 zugewandt ist. Kühlmittel kann somit über den Kühlmittelzulauf 5 und durch den Stopfen 8 in den Kühlmittelkanal 2 fließen. Der Stopfen 8 ist von dem Ende 3 des Kühlelements 1 her mit der Wand 11 des Kühlmittelkanals 2 verschweißt.The coolant channel 2 is introduced into the cooling element 1 by mechanical deep drilling from the end 3 thereof. To supply the channel line with a coolant, the cooling element 1 is provided with a coolant inlet 5 on its side 4 facing away from the interior of a melting furnace (not shown in detail). For this purpose, the coolant channel 2 has an inlet bore 6 which is introduced from the side 4 and into which a pipe socket 7 is firmly inserted. The pipe socket 7 can be welded or soldered into the inlet bore 6. Through the inlet hole 6 is in the coolant channel 2 a plug 8 inserted. The stopper 8 has a first transition opening 9 facing the coolant channel 2 and a second transition opening 10 which faces the pipe socket 7 of the coolant inlet 5 offset by 90 °. Coolant can thus flow through the coolant inlet 5 and through the plug 8 into the coolant channel 2. The plug 8 is welded from the end 3 of the cooling element 1 to the wall 11 of the coolant channel 2.

Zwischen den zueinander versetzten Übertrittsöffnungen 9, 10 besitzt der Stopfen 8 eine dem Kühlmittelkanal 2 und dem Kühlmittelzulauf 5 zugewandte Umlenkfläche 12. Aus Figur 2 wird deutlich, daß die Umlenkfläche 12 kugelabschnittsförmig ausgebildet ist. Der Radius RU der Umlenkfläche 12 entspricht dem Radius RK des Kühlmittelkanals 2. Der Radius RD der Übertrittsöffnungen 9, 10 entspricht dem Radius RK des Kühlmittelkanals 2 sowie des Kühlmittelzulaufs 5. Stopfen 8 und Rohrstutzen 7 besitzen den gleichen Außendurchmesser DA, der auf den Durchmesser DZ der Zulaufbohrung 6 abgestimmt ist.Between the staggered transfer openings 9, 10, the plug 8 has a deflection surface 12 facing the coolant channel 2 and the coolant inlet 5. It is clear from FIG. 2 that the deflection surface 12 is designed in the form of a spherical segment. The radius R U of the deflection surface 12 corresponds to the radius R K of the coolant channel 2. The radius R D of the transfer openings 9, 10 corresponds to the radius R K of the coolant channel 2 and the coolant inlet 5. The plug 8 and the pipe socket 7 have the same outside diameter D A , which is matched to the diameter D Z of the inlet bore 6.

In der Ausführungsform nach Anspruch 3 ist ein Stopfen 13 in einem horizontalen Kühlmittelkanal 14 im Innern des Kühlelements 1 angeordnet. Ein erster und ein zweiter vertikal verlaufender Kühlmittelkanal 15, 16 münden im parallelen Abstand zueinander in den horizontalen Kühlmittelkanal 14. Die Längsachsen der vertikalen Kühlmittelkanäle 15, 16 kreuzen sich in einem ersten Schnittpunkt SP1 und einem zweiten Schnittpunkt SP2 mit der Längsachse des horizontalen Kühlmittelkanals 14.In the embodiment according to claim 3, a plug 13 is arranged in a horizontal coolant channel 14 in the interior of the cooling element 1. A first and a second vertically extending coolant channel 15, 16 open into the horizontal coolant channel 14 at a parallel distance from one another. The longitudinal axes of the vertical coolant channels 15, 16 intersect at a first intersection point SP 1 and a second intersection point SP 2 with the longitudinal axis of the horizontal coolant channel 14th

Der Stopfen 13 erstreckt sich zwischen diesen Schnittpunkten SP1 und SP2 im horizontalen Kühlmittelkanal 14. Hierbei sind seine einander abgewandten Stirnseiten als kugelabschnittsförmige Umlenkflächen 17 gestaltet. Der Radius RU der Umlenkflächen 17 entspricht dem Radius RK der Kühlmittelkanäle 14, 15, 16. Durch die Umlenkflächen 17 wird ein Kühlmittel, wie von den Pfeilen PF angedeutet, von dem horizontalen Kühlmittelkanal 14 in den vertikalen Kühlmittelkanal 15 geleitet und von dem vertikalen Kühlmittelkanal 16 wieder in den horizontalen Kühlmittelkanal 14.The plug 13 extends between these intersections SP 1 and SP 2 in the horizontal coolant channel 14. In this case, its end faces facing away from one another are designed as deflecting surfaces 17 in the form of spherical sections. The radius R U of the deflection surfaces 17 corresponds to the radius R K of the coolant channels 14, 15, 16. Through the deflection surfaces 17, a coolant, as indicated by the arrows PF, is directed from the horizontal coolant duct 14 into the vertical coolant duct 15 and from the vertical one Coolant channel 16 again in the horizontal coolant channel 14.

Die beiden Kühlmittelkanäle 15, 16 können am anderen Ende ebenfalls, wie anhand der Figur 3 dargelegt, verbunden sein oder sie können gemäß Figur 4 miteinander verbunden werden (nachfolgend noch näher erläutert).The two coolant channels 15, 16 can also be connected at the other end, as shown in FIG. 3, or they can be connected to one another in accordance with FIG. 4 (explained in more detail below).

Der Stopfen 13 ist durch ein in seinem mittleren Längenabschnitt angeordnetes ringförmiges Befestigungselement 18 örtlich fixiert. Das Befestigungselement 18 verklemmt den Stopfen 13 mit der Wand 19 des horizontalen Kühlmittelkanals 14. Als Befestigungselement 18 eignet sich beispielsweise ein in einer Nut im Stopfen 13 gehaltener Sicherungsring.The plug 13 is fixed locally by an annular fastening element 18 arranged in its central longitudinal section. The fastening element 18 clamps the plug 13 to the wall 19 of the horizontal coolant channel 14. A securing ring held in a groove in the plug 13, for example, is suitable as the fastening element 18.

Im Rahmen der Ausführungsform der Figuren 4 bis 6 sind durch einen Stopfen 20 zwei parallel zueinander verlaufende Kühlmittelkanäle 21, 22 fluidleitend miteinander verbunden. Der Stopfen 20 erstreckt sich zwischen den Kühlmittelkanälen 21, 22 und ist von der Stirnseite 21 des Kühlelements 1 her in eine Nut eingesetzt. Er ist paßfederartig gestaltet und endseitig abgerundet, wobei seine den Kühlmittelkanälen 21, 22 zugewandte Seite als längliche Mulde 24 ausgebildet ist mit einem zylindrisch ausgenommenen Mittelabschnitt 26 und endseitigen konkaven kugelabschnittsförmigen Umlenkflächen 25 (Figur 6). Der Radius RU der Umlenkflächen 25 entspricht wiederum dem Radius RK der Kühlmittelkanäle 21, 22. Gleiches gilt für den Radius RM des zylindrischen Mittelabschnitts 26 der Mulde 24. Um eine Querschnittsverengung im Bereich des zylindrischen Mittelabschnitts 26 zu vermeiden, ist eine mit diesem korrespondierende zylindrische Ausnehmung 27 in dem Kühlelement 1 angeordnet. Zwischen den Kühlmittelkanälen 21, 22 ist hierdurch ein Überströmkanal 28 gleichen Querschnitts gebildet.In the context of the embodiment in FIGS. 4 to 6, two coolant channels 21, 22 which run parallel to one another are connected to one another in a fluid-conducting manner by a plug 20. The plug 20 extends between the coolant channels 21, 22 and is inserted into a groove from the end face 21 of the cooling element 1. It is designed in the manner of a feather key and rounded at the end, its side facing the coolant channels 21, 22 being designed as an elongated trough 24 with a cylindrically recessed central section 26 and end-side concave deflection surfaces 25 (FIG. 6). The radius R U of the deflecting surfaces 25 in turn corresponds to the radius R K of the coolant channels 21, 22. The same applies to the radius R M of the cylindrical central section 26 of the trough 24. To avoid a cross-sectional constriction in the region of the cylindrical central section 26, one with the latter corresponding cylindrical recess 27 arranged in the cooling element 1. As a result, an overflow channel 28 of the same cross section is formed between the coolant channels 21, 22.

BezugszeichenaufstellungREFERENCE NUMBERS

1 -1 -
Kühlelementcooling element
2 -2 -
KühlmittelkanalCoolant channel
3 -3 -
Ende v. 1End of v. 1
4 -4 -
Seite v. 1Page v. 1
5 -5 -
KühlmittelzulaufCoolant inlet
6 -6 -
Zulaufbohrunginlet bore
7 -7 -
Rohrstutzenpipe socket
8 -8th -
StopfenPlug
9 -9 -
Übertrittsöffnung v. 8Transfer opening v. 8th
10 -10 -
Übertrittsöffnung v. 8Transfer opening v. 8th
11 -11 -
Wand v. 2Wall v. 2
12 -12 -
Umlenkflächedeflection
13 -13 -
StopfenPlug
14 -14 -
horizontaler Kühlmittelkanalhorizontal coolant channel
15 -15 -
vertikaler Kühlmittelkanalvertical coolant channel
16 -16 -
vertikaler Kühlmittelkanalvertical coolant channel
17 -17 -
Umlenkfläche v. 13Deflecting surface v. 13
18 -18 -
Befestigungselement v. 13Fastening element v. 13
19 -19 -
Wand v. 14Wall v. 14
20 -20 -
StopfenPlug
21 -21 -
KühlmittelkanalCoolant channel
22 -22 -
KühlmittelkanalCoolant channel
23 -23 -
Stirnseite v. 1Front of v. 1
24 -24 -
Mulde v. 20Mulde v. 20
25 -25 -
Umlenkfläche v. 20Deflecting surface v. 20
26 -26 -
Mittelabschnitt v. 20Middle section v. 20
27 -27 -
Ausnehmung in 1Recess in 1
28 -28 -
Überströmkanaloverflow
DA -D A -
Außendurchmesser v. 7, 8Outer diameter of 7, 8
DZ -D Z -
Innendurchmesser v. 6Inner diameter of 6
PF -PF -
Pfeilarrow
RD -R D -
Radius v. 9, 10Radius of 9, 10
RK -R K -
Radius v. 2, 14, 15, 16, 21, 22Radius of 2, 14, 15, 16, 21, 22
RU -R U -
Radius v. 12, 17, 25Radius of 12, 17, 25
RM -R M -
Radius v. 26Radius of 26
SP1-SP1
Schnittpunktintersection
SP2-SP2
Schnittpunktintersection

Claims (10)

  1. Cooling element for smelting furnaces which is traversed by coolant channels (2, 14, 15, 16; 21, 22) introduced by mechanical deep drilling, into which stoppers (8; 13, 20) are incorporated in sections to form a continuous channel line with at least one coolant inlet (5) and at least one coolant outlet, characterised in that the stoppers (8; 13, 20) have concave deflection faces (12; 17; 25) facing the coolant channels (2; 14, 15, 16; 21, 22).
  2. Cooling element according to claim 1, characterised in that the deflection faces (12; 17; 25) are spherical segment-shaped in design.
  3. Cooling element according to claim 1 or 2, characterised in that the radius (RU) of the deflection faces (12; 17; 25) is twice as large as the radius (RK) of the coolant channels (2; 14, 15, 16; 21, 22).
  4. Cooling element according to claim 1 or 2, characterised in that the radius (RU) of the deflection faces (12; 17; 25) corresponds to the radius (RK) of the coolant channels (2; 14, 15, 16; 21, 22).
  5. Cooling element according to any one of claims 1 to 4, characterised in that the deflection faces (12) are arranges between two overflow apertures (9, 10) offset by 90° with respect to one another.
  6. Cooling element according to any one of claims 1 to 4, characterised in that the deflection faces (17) form two end faces of a stopper (13) remote from one another.
  7. Cooling element according to any one of claims 1 to 4, characterised in that two deflection faces (25) form the ends of an elongated trough (24) recessed in a stopper (20).
  8. Cooling element according to any one of claims 1 to 7, characterised in that the stoppers (8; 13; 20) are fitted tightly into the coolant channels (2; 14; 21, 22).
  9. Cooling element according to any one of claims 1 to 8, characterised in that the stoppers (8; 13; 20) are welded, soldered and/or screwed into the coolant channels (2; 14; 21, 22).
  10. Cooling element according to any one of claims 1 to 9, characterised in that it consists of copper or any low-alloy copper alloy.
EP00117005A 1999-08-17 2000-08-08 Cooling element Revoked EP1077357B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19938917A DE19938917A1 (en) 1999-08-17 1999-08-17 Cooling plate
DE19938917 1999-08-17

Publications (2)

Publication Number Publication Date
EP1077357A1 EP1077357A1 (en) 2001-02-21
EP1077357B1 true EP1077357B1 (en) 2004-04-28

Family

ID=7918634

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00117005A Revoked EP1077357B1 (en) 1999-08-17 2000-08-08 Cooling element

Country Status (3)

Country Link
EP (1) EP1077357B1 (en)
AT (1) ATE265662T1 (en)
DE (2) DE19938917A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019105507A1 (en) * 2019-03-05 2020-09-10 Volkswagen Aktiengesellschaft Closing elements (plugs) for fluid channels, especially in gear and motor housings, optimized for pressure loss in terms of flow

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678248B2 (en) * 2006-08-09 2010-03-16 Atomic Energy Council Circulated cooled target

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3405870C2 (en) * 1984-02-18 1994-03-03 Mannesmann Ag Cooling device for wall structures and / or lid structures of industrial furnaces
DE8519778U1 (en) * 1985-07-09 1985-08-22 Kuhlmann, Herbert, 4630 Bochum Cooling element for industrial furnaces, in particular for electric arc furnaces
SE9103412L (en) * 1990-11-20 1992-05-21 Mitsubishi Materials Corp STORAGE WATER-COOLED COAT FOR OVEN
US5197080A (en) * 1991-07-22 1993-03-23 J. T. Cullen Co., Inc. End cap for cooling coils for an arc furnace
DE19545984B4 (en) * 1995-12-09 2005-02-10 Sms Demag Ag Cooling plate for melting furnaces
US5740196A (en) * 1996-03-25 1998-04-14 J.T. Cullen Co., Inc. End caps and elbows for cooling coils for an electric arc furnance
DE29611704U1 (en) * 1996-07-05 1996-10-17 Gutehoffnungshuette Man Cooling plate for metallurgical furnaces
AU709347B2 (en) * 1996-07-09 1999-08-26 Nippon Steel Corporation Stave for cooling blast furnace wall and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019105507A1 (en) * 2019-03-05 2020-09-10 Volkswagen Aktiengesellschaft Closing elements (plugs) for fluid channels, especially in gear and motor housings, optimized for pressure loss in terms of flow

Also Published As

Publication number Publication date
DE50006224D1 (en) 2004-06-03
EP1077357A1 (en) 2001-02-21
ATE265662T1 (en) 2004-05-15
DE19938917A1 (en) 2001-02-22

Similar Documents

Publication Publication Date Title
DE4002494C2 (en)
WO2000036154A1 (en) Cooling panel for a furnace for producing iron or steel
EP1619461B1 (en) Cooling plate
EP1668236A1 (en) Combustion chamber comprising a cooling unit and method for producing said combustion chamber
EP1559953B1 (en) Device for introducing hot gas into a heating tube of a waste heat boiler
EP1077357B1 (en) Cooling element
EP1249285B1 (en) Method for the manufacture of a fitting for a heating radiator
EP2304305B1 (en) Pipe reduction piece made from plastic material
EP2407268B1 (en) Gas welding burner with a gas supply comprising an internal tube and insulation and openings in the internal tube
EP1322790B1 (en) Cooling element for shaft furnaces
DE19938917A9 (en) Cooling plate
DE4203964A1 (en) RING COAT FOR A ROLLER FOR CONTINUOUS CASTING
DE2756752A1 (en) Cooling or heating a screw-extruder barrel with interior recess - contg. a wearing inset, using a heat-exchanger coil for conveying tempering medium, and packing remaining space with low-melting metal alloy
DE10035737A1 (en) Continuous casting mold with copper plates enclosing the casting cross section
DE10221387C1 (en) Stud welding process with rotary arc uses offset coil to generate uniform magnetic field in welding location
DE19832627B4 (en) Device for injecting secondary air into the exhaust gas region of an internal combustion engine
EP3591268B1 (en) Fluid line connector with fixed insert for throttling
EP1826518A1 (en) Plaque de refroidissement pour fours à cuve
DE102006043801B4 (en) Component for crossing pipes through which a medium can flow
EP3985290B1 (en) Hydraulic connecting device for connecting two hydraulic functional elements and method for manufacturing such a hydraulic connecting device
DE102005024590B3 (en) Connecting system for metal valve and plastic pipe comprises plastic sleeve which fits over pipe, between it and connection on valve, snap-ring with C-shaped cross-section fitting over flange on end of connection and shoulder on sleeve
EP3831570B1 (en) Method for producing a plastic profile
WO2018028909A1 (en) Flange connection by means of a screw
DE2910529A1 (en) Heating system distributor assembly - comprises union distribution and closing pieces of heat resistant plastics screwed and bolted together
EP3511634B1 (en) Connection set

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010726

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040428

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040428

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040428

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040428

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040428

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040428

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040428

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50006224

Country of ref document: DE

Date of ref document: 20040603

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040728

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040728

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040808

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040808

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20040428

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE4

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

BERE Be: lapsed

Owner name: KM EUROPA METAL A.G.

Effective date: 20040831

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: PAUL WURTH S.A.

Effective date: 20050128

EN Fr: translation not filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050804

Year of fee payment: 6

PLAS Information related to reply of patent proprietor to notice(s) of opposition deleted

Free format text: ORIGINAL CODE: EPIDOSDOBS3

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20050725

BERE Be: lapsed

Owner name: *KM EUROPA METAL A.G.

Effective date: 20040831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040928