EP1821584B1 - Verfahren zur Abscheidung einer Wärmesperrschicht mittels eines Plasmabrenners - Google Patents

Verfahren zur Abscheidung einer Wärmesperrschicht mittels eines Plasmabrenners Download PDF

Info

Publication number
EP1821584B1
EP1821584B1 EP20070290212 EP07290212A EP1821584B1 EP 1821584 B1 EP1821584 B1 EP 1821584B1 EP 20070290212 EP20070290212 EP 20070290212 EP 07290212 A EP07290212 A EP 07290212A EP 1821584 B1 EP1821584 B1 EP 1821584B1
Authority
EP
European Patent Office
Prior art keywords
plasma
torch
jet
substrate
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20070290212
Other languages
English (en)
French (fr)
Other versions
EP1821584A1 (de
Inventor
Frédéric Braillard
Justine Menuey
Elise Nogues
Aurélien Tricoire
Michel Vardelle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1821584A1 publication Critical patent/EP1821584A1/de
Application granted granted Critical
Publication of EP1821584B1 publication Critical patent/EP1821584B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/44Plasma torches using an arc using more than one torch
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]

Definitions

  • the present invention relates to a method of depositing on a substrate a material acting as a thermal barrier, this material being, before deposition, in the form of a powder.
  • the substrate is for example a superalloy, in particular a superalloy intended to constitute turbomachine parts.
  • the two technologies used industrially for the deposition on a substrate of a material, typically a ceramic, acting as a thermal barrier, are plasma spraying, and vapor phase deposition.
  • Plasma spraying consists of injecting the material to be deposited, in powder form, into the plasma jet of a plasma torch.
  • the plasma jet is generated by the creation of an electric arc between the anode and the cathode of a plasma torch, which then ionizes the gaseous mixture blown through this arc by the plasma torch.
  • the size of the powder particles injected into the jet typically varies between 1 ⁇ m and 50 ⁇ m.
  • the plasma jet which reaches a temperature of 20 000 K and a speed of the order of 400 to 1000 m / s, causes and melts the powder particles. These strike the substrate in the form of droplets that solidify on impact in crushed form.
  • Vapor deposition generally uses an electron beam to vaporize the material to be deposited.
  • the most common technique is EBPVD (Electron Beam Physical Vapor Deposition).
  • the material once vaporized by the electron beam, condenses on the substrate. Because of the use of an electron beam, a secondary vacuum must be maintained in the enclosure enclosing the electron beam, the material to be deposited, and the substrate.
  • Electron Beam Directed Vapor Deposition is based on the EBPVD principle.
  • TPPVD Thermal Plasma Physical Vapor Deposition
  • the torch is coupled to a radio frequency source for increased efficiency.
  • the technical obstacle posed by this method is to maintain in the plasma the powder of material to be deposited long enough for it to vaporize.
  • the deposit resulting from the plasma projection has a lamellar morphology, the superimposed lamellae being parallel to the surface of the substrate.
  • the deposit has microcracks, which are due to the quenching that the droplets undergo upon impact on the substrate, and is porous.
  • the deposit therefore has the advantage, because of its structure and porosity, of having a low thermal conductivity.
  • the substrate is therefore better thermally protected.
  • this type of deposit has a limited life because the thermal expansions of the substrate tend to fracture the deposit and to delaminate it.
  • the deposit resulting from the electron beam vapor phase techniques has a columnar morphology, the columns being arranged next to each other and perpendicular to the surface of the substrate.
  • This deposit therefore has a good life, firstly because its structure accommodates many thermal expansions of the substrate, and secondly because its resistance to erosion is higher than that of a plasma deposit .
  • this deposit has a higher thermal conductivity than that of a deposit obtained by plasma spraying, which is undesirable because the deposit then constitutes a less effective thermal barrier.
  • the deposition rate and the yield are low. The low yield is due to the fact that this process creates a "cloud" of vapor, which therefore condenses indiscriminately, including on the walls.
  • electron beam deposition is a costly and delicate technique because it requires high electrical power for the supply of electron guns and obtaining a secondary vacuum pushed into large volume speakers.
  • the present invention aims to remedy these drawbacks, or at least to mitigate them.
  • the aim of the invention is to propose a method which makes it possible, on the one hand, to obtain a deposit combining the technical advantages of a lamellar deposition and of a columnar deposit, namely a low thermal conductivity, a good lifetime, a good resistance erosion, a high deposition rate and efficiency, on the other hand having a lower implementation cost than that of the vapor deposition process.
  • This object is achieved by virtue of the fact that the powder is introduced into the plasma jet of a first plasma torch and into the plasma jet of at least a second plasma torch, the first plasma torch and at least the second plasma torch being disposed in an enclosure and oriented so that their plasma jets intersect to create a resulting plasma jet in which the powder is vaporized, the substrate being placed in the axis of the resulting plasma jet.
  • the amount of energy received by the powder particles is increased, which promotes the evaporation of these particles.
  • the larger powder particles, which have not vaporized continue their trajectory in the axis of the respective jets, whereas the vaporized powder is driven by the flow of the gases.
  • the plasma jet resulting from the combination of the plasma jets of each of the torches There is therefore a separation between the non-vaporized powder particles and the material vapor.
  • the substrate is placed in the axis of the resulting plasma jet, it is impacted by the vapor phase material, which promotes a deposit of the material on the substrate in columnar form.
  • the deposition rate and yield are higher than using the electron beam vapor deposition technique.
  • a hybrid structure deposit can be obtained by the present method, combining simultaneously columnar and lamellar deposits.
  • This hybrid deposit has a low thermal conductivity, good life, good resistance to erosion, thus combining the advantages of columnar and lamellar structures.
  • the plasma is less dense, which allows the fine particles of the material powder to penetrate more easily into the plasma jet and thus to be better heated.
  • the reduction in pressure also makes it possible to reduce the saturation vapor pressure of the material, and thus to promote its evaporation.
  • the axes of the torches are the generatrices of a cone of central axis z, the axis of each of the torches forming with the central axis z of the cone an angle ⁇ of between 20 ° and 60 °, the central axis z of the cone being directed towards the surface of the substrate intended to receive the material to be deposited.
  • the plasma jets all intersect at the same point, and the orientation of the torches relative to each other is optimized to obtain a plasma jet where the powder particles are vaporized. Indeed, if the angles between the axes of the torches and the central axis z of the cone are too small, the largest non-vaporized particles are driven by the jet. If the angles between the axes of the torches and the central axis z of the cone are too high, the resulting plasma jet generated is insufficient.
  • the distance D between each of the torches and the substrate is between 50 mm and 500 mm.
  • the material is a ceramic.
  • the ceramic is selected from a group comprising yttria zirconia, zirconia that can be stabilized with at least one of the oxides selected from the following list: CaO; MgO, CeO 2 , and rare earth oxides.
  • the substrate may comprise on the surface a bonding sub-layer on which the material acting as a thermal barrier is deposited according to the process according to the invention.
  • the underlayer may also contribute to acting as a thermal barrier in conjunction with the deposited material.
  • the material introduced in powder form into each of the torches is different from one torch to the other.
  • the invention also relates to an installation for the deposition on a substrate of a material acting as a thermal barrier, the material being, before deposition, in the form of powder.
  • the installation comprises an enclosure in which the substrate is disposed, a first plasma torch and at least a second plasma torch disposed in said enclosure so that when the powder is introduced into the plasma jet of the first plasma torch and in the plasma jet of the second plasma torch, the plasma jet of said first plasma torch and the plasma jet of the second plasma torch intersect whereby a resulting plasma jet is created in which the powder is vaporized, the substrate being placed in the axis of the resulting plasma jet.
  • the installation further comprises a support adapted to receive the substrate, and supports for receiving each of the plasma torches, the supports being adjustable so as to allow any orientation of the torches.
  • the internal diameter of each of the torches is greater than 6 mm.
  • the invention also relates to a thermomechanical part obtained by depositing on a substrate a material acting as a thermal barrier according to the process according to the invention presented above.
  • an enclosure 2 comprises a first plasma torch 10, a second plasma torch 20, and a substrate 40.
  • the first plasma torch and the second plasma torch each form an angle ⁇ with an axis z directed towards the surface of the substrate intended to receive the plasma. deposit (in the illustrated example, the z axis is perpendicular to the surface of the substrate 40).
  • the angle ⁇ is identical for the first and the second plasma torches 10, 20. However, this angle ⁇ could be different for each torch.
  • the angle ⁇ is between 20 ° and 60 °.
  • the end of each torch from which the plasma jet leaves is located at a distance D from the surface 42 of the substrate 40 intended to receive the deposit, the distance D being measured parallel to the axis z.
  • the distance D is identical for the first and the second plasma torches 10, 20. However, this distance could be different for each torch. Ideally, the distance D between each of the torches 10, 20 and the substrate 40 is between 50 mm and 500 mm.
  • the figure 2 illustrates more precisely the deposition process according to the invention.
  • the first plasma torch 10 and the second plasma torch 20 operate in a conventional manner, without induction. This operation will not be described in detail, only the main principles are recalled below.
  • a gaseous mixture is expelled from each plasma torch 10, 20 through an electric arc between the anode and the cathode of each plasma torch. This gaseous mixture is thus ionized and ejected at high speed (typically between 500 and 2000 m / s) and high temperature (typically greater than 10,000 K), and forms a plasma jet 12, 22.
  • the material intended to be deposited on the substrate is introduced into each of the plasma jets in powder form at the end of the plasma torch from which the plasma jet is ejected.
  • the size of the particles constituting the powder typically varies between 1 ⁇ m and 100 ⁇ m.
  • the powder particles introduced into the plasma jet 12 of the first plasma torch 10, and those introduced into the plasma jet 22 of the second plasma torch 20, are heated by each of the jets as soon as they are discharged. introduction into the streams. They are driven to the crossing zone 32 where the first plasma jet 12 and the second plasma jet 22 intersect. At this crossing zone 32, the amount of energy received by the powder particles is increased, which favors the evaporation of these particles.
  • the largest powder particles of the first plasma jet, and the largest powder particles of the first plasma jet, which have not vaporized, continue their trajectory in the axis of the respective jets (axes of the torches), while the vaporized powder is driven by the gas flow in the resulting plasma jet formed by the combination of the first plasma jet 12 and the second plasma jet 22. There is therefore a separation between the non-vaporized powder particles and the material vapor.
  • the vapor of material transported by the resulting plasma jet 30 forms a deposit 50 of substantially columnar morphology.
  • a plasma torch typically operates at ambient pressure, it is not necessary to establish the vacuum in the chamber 2 containing the plasma torches 10, 20 and the substrate 40.
  • the cost of implementing the present method which allows the deposition of the vapor phase material on a substrate, is therefore lower than that of current vapor deposition technologies.
  • To improve the deposition it is possible, however, to establish a primary vacuum in the chamber 2. But unlike current vapor deposition technologies, it is not necessary to establish in the chamber a secondary vacuum, and the cost of implementing the present method is therefore less.
  • the diameter of a plasma torch is 6 mm. In order to improve the evaporation process, it is possible to use higher torch diameters.
  • the material to be deposited on the substrate 40 is typically a ceramic, because the thermal barriers having the best properties are obtained with ceramics.
  • the ceramics used are yttriated zirconia, in particular an yttria-containing zirconia comprising a mass content of yttrium oxide between 4% and 20%.
  • Ceramics can be used, such as, for example, zirconia which can be stabilized with at least one of the oxides selected from the following list: CaO, MgO, CeO 2 , and rare earth oxides, namely the oxides of scandium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium.
  • the substrate 40 may comprise on the surface a bonding sub-layer on which the material acting as a thermal barrier is deposited to form the deposit 50.
  • This sub-layer allows better bonding between the substrate 40 and the deposited material forming the deposit 50, and also plays the role of an additional thermal barrier.
  • the underlayer may be an oxidation-corrosion resistant alumino-forming alloy such as an alloy capable of forming a layer of protective alumina by oxidation, a MCrAlY type alloy, M being a metal chosen from nickel, chromium, iron or cobalt.
  • each of the plasma torches 10, 20 It is also possible to introduce into each of the plasma torches 10, 20 a different material, so as to obtain on the substrate 40 a deposit 50 whose composition is different from that of each of the materials introduced into the plasma torches 10, 20.
  • the flow of powder introduced into each torch 10, 20 may be the same or different from one torch to another.
  • the powder flow introduced into each torch 10, 20 may be constant in time or variable in time.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Vapour Deposition (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Claims (11)

  1. Verfahren zum Abscheiden eines als Wärmebarriere fungierenden Materials auf einem Substrat (40), wobei das Material vor dem Abscheiden in Pulverform vorliegt, mit einem ersten Plasmabrenner (10) und wenigstens einem zweiten Plasmabrenner (20), die in einem Raum (2) angeordnet und derart ausgerichtet sind, daß ihre Plasmastrahlen (12, 22) sich kreuzen, so daß ein resultierender Plasmastrahl (30) erzeugt wird, in dem das Pulver verdampft wird, wobei das Substrat (40) in der Achse des resultierenden Plasmastrahls (30) angeordnet ist, dadurch gekennzeichnet, daß das Pulver in den Plasmastrahl (12) des ersten Plasmabrenners (10) im Bereich des Endes des Brenners (10) eingebracht wird, an dem der Strahl (12) ausgestoßen wird, und in den Plasmastrahl (22) wenigstens eines zweiten Plasmabrenners (20) im Bereich des Endes des Brenners (20) eingebracht wird, an dem der Strahl (22) ausgestoßen wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß nur zwei der Plasmabrenner (10, 20) verwendet werden.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in dem Raum (2) ein Unterdruck herrscht.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Achsen der Brenner (10, 20) die Mantellinien eines Kegels mit der Mittelachse (z) sind, wobei die Achse jedes Brenners (10, 20) mit der Mittelachse (z) des Kegels einen Winkel (α) zwischen 20° und 60° einschließt, wobei die Mittelachse (z) des Kegels zur Oberfläche (42) des Substrats (40) gerichtet ist, die dazu bestimmt ist, das abzuscheidende Material aufzunehmen.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Abstand D zwischen jedem der Brenner (10, 20) und dem Substrat (40) zwischen 50 mm und 500 mm beträgt.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Material eine Keramik ist.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Keramik aus einer Gruppe umfassend yttriumstabilisiertes Zirkonoxid, Zirkonoxid, das mit wenigstens einem der aus folgender Liste ausgewählten Oxide, nämlich CaO, MgO, CeO2, und den Oxiden seltener Erden stabilisiert werden kann, ausgewählt ist.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Substrat (40) an der Oberfläche (42) eine Verbindungsunterschicht aufweisen kann, auf die das als Wärmebarriere fungierende Material abgeschieden wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das in Pulverform in jeden der Brenner (10, 20) eingebrachte Material von einem Brenner zum anderen unterschiedlich ist.
  10. Anlage, die für das Abscheiden eines als Wärmebarriere fungierenden Materials auf einem Substrat (40) bestimmt ist, wobei das Material vor dem Abscheiden in Pulverform vorliegt, dadurch gekennzeichnet, daß sie folgendes umfaßt, nämlich einen Raum (2), in dem das Substrat angeordnet ist, einen ersten Plasmabrenner (10) und wenigstens einen zweiten Plasmabrenner (20), die in dem Raum (2) angeordnet sind, Mittel zum Einbringen von Pulver in den Plasmastrahl (12) des ersten Plasmabrenners (10) im Bereich des Endes dieses Brenners, an dem dieser Strahl ausgestoßen wird, sowie Mittel zum Einbringen von Pulver in den Plasmastrahl (22) des wenigstens zweiten Plasmabrenners (20) im Bereich des Endes dieses Brenners, an dem dieser Strahl ausgestoßen wird, so daß dann, wenn das Pulver in den Plasmastrahl (12) des ersten Plasmabrenners (10) und in den Plasmastrahl (22) des wenigstens zweiten Plasmabrenners (20) eingebracht wird, der Plasmastrahl (12) des ersten Plasmabrenners (10) und der Plasmastrahl (22) des zweiten Plasmabrenners (20) sich kreuzen, wodurch ein resultierender Plasmastrahl (30) erzeugt wird, in dem das Pulver verdampft wird, wobei das Substrat (40) in der Achse des resultierenden Plasmastrahls (30) angeordnet ist.
  11. Anlage nach Anspruch 10, dadurch gekennzeichnet, daß der Innendurchmesser jedes Brenners (10, 20) größer als 6 mm ist.
EP20070290212 2006-02-20 2007-02-20 Verfahren zur Abscheidung einer Wärmesperrschicht mittels eines Plasmabrenners Active EP1821584B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0650590A FR2897748B1 (fr) 2006-02-20 2006-02-20 Procede de depot de barriere thermique par torche plasma

Publications (2)

Publication Number Publication Date
EP1821584A1 EP1821584A1 (de) 2007-08-22
EP1821584B1 true EP1821584B1 (de) 2009-12-23

Family

ID=37030405

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070290212 Active EP1821584B1 (de) 2006-02-20 2007-02-20 Verfahren zur Abscheidung einer Wärmesperrschicht mittels eines Plasmabrenners

Country Status (7)

Country Link
US (2) US7763328B2 (de)
EP (1) EP1821584B1 (de)
JP (1) JP5498649B2 (de)
CA (1) CA2577898C (de)
DE (1) DE602007003869D1 (de)
FR (1) FR2897748B1 (de)
RU (1) RU2453627C2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2959244B1 (fr) 2010-04-23 2012-06-29 Commissariat Energie Atomique Procede de preparation d'un revetement multicouche sur une surface d'un substrat par projection thermique.
US10862073B2 (en) * 2012-09-25 2020-12-08 The Trustees Of Princeton University Barrier film for electronic devices and substrates
DE102014221735A1 (de) * 2014-10-24 2016-04-28 Mahle Lnternational Gmbh Thermisches Spritzverfahren und Vorrichtung dafür

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1600278A (de) * 1968-12-31 1970-07-20 Anvar
FR2224991A5 (de) * 1973-04-05 1974-10-31 France Etat
US3997468A (en) * 1974-02-27 1976-12-14 Pavel Petrovich Maljushevsky Method of creating high and superhigh pressure and an arrangement for dispersing non-metalliferous materials
US3912235A (en) * 1974-12-19 1975-10-14 United Technologies Corp Multiblend powder mixing apparatus
US4818837A (en) * 1984-09-27 1989-04-04 Regents Of The University Of Minnesota Multiple arc plasma device with continuous gas jet
US4683148A (en) * 1986-05-05 1987-07-28 General Electric Company Method of producing high quality plasma spray deposits of complex geometry
US4681772A (en) * 1986-05-05 1987-07-21 General Electric Company Method of producing extended area high quality plasma spray deposits
US5144110A (en) * 1988-11-04 1992-09-01 Marantz Daniel Richard Plasma spray gun and method of use
US4943345A (en) * 1989-03-23 1990-07-24 Board Of Trustees Operating Michigan State University Plasma reactor apparatus and method for treating a substrate
US5047612A (en) * 1990-02-05 1991-09-10 General Electric Company Apparatus and method for controlling powder deposition in a plasma spray process
JPH04362094A (ja) * 1991-06-07 1992-12-15 Fujitsu Ltd ダイヤモンドの気相合成方法
US5679167A (en) * 1994-08-18 1997-10-21 Sulzer Metco Ag Plasma gun apparatus for forming dense, uniform coatings on large substrates
GB9419328D0 (en) * 1994-09-24 1994-11-09 Sprayform Tools & Dies Ltd Method for controlling the internal stresses in spray deposited articles
US5837959A (en) * 1995-09-28 1998-11-17 Sulzer Metco (Us) Inc. Single cathode plasma gun with powder feed along central axis of exit barrel
EP0861576B1 (de) * 1995-11-13 2000-09-06 IST Instant Surface Technology S.A. Plasmalichtbogenstrom-erzeugungsvorrichtung mit geschlossener konfiguration
JP3307242B2 (ja) * 1996-10-04 2002-07-24 株式会社日立製作所 セラミック被覆耐熱部材とその用途及びガスタービン
EP1029101B1 (de) * 1997-11-03 2001-09-12 Siemens Aktiengesellschaft Erzeugnis, insbesondere bauteil einer gasturbine, mit keramischer wärmedämmschicht, und verfahren zu dessen herstellung
US6322856B1 (en) * 1999-02-27 2001-11-27 Gary A. Hislop Power injection for plasma thermal spraying
US6492613B2 (en) * 2000-05-15 2002-12-10 Jetek, Inc. System for precision control of the position of an atmospheric plasma
RU2200208C2 (ru) * 2001-04-23 2003-03-10 Институт физики прочности и материаловедения СО РАН Способ нанесения плазменного покрытия
US7557324B2 (en) * 2002-09-18 2009-07-07 Volvo Aero Corporation Backstream-preventing thermal spraying device
RU2247792C2 (ru) * 2003-01-27 2005-03-10 Балдаев Лев Христофорович Способ напыления теплозащитных покрытий
CA2460296C (en) * 2003-05-23 2012-02-14 Sulzer Metco Ag A hybrid method for the coating of a substrate by a thermal application of the coating
US7032808B2 (en) * 2003-10-06 2006-04-25 Outokumu Oyj Thermal spray application of brazing material for manufacture of heat transfer devices
RU2260071C1 (ru) * 2004-09-30 2005-09-10 Балдаев Лев Христофорович Способ нанесения теплозащитного эрозионно стойкого покрытия

Also Published As

Publication number Publication date
FR2897748B1 (fr) 2008-05-16
RU2453627C2 (ru) 2012-06-20
EP1821584A1 (de) 2007-08-22
FR2897748A1 (fr) 2007-08-24
JP2007254883A (ja) 2007-10-04
US20100252539A1 (en) 2010-10-07
US20070196662A1 (en) 2007-08-23
CA2577898C (fr) 2014-04-01
DE602007003869D1 (de) 2010-02-04
CA2577898A1 (fr) 2007-08-20
JP5498649B2 (ja) 2014-05-21
US7763328B2 (en) 2010-07-27
US8449677B2 (en) 2013-05-28
RU2007106192A (ru) 2008-08-27

Similar Documents

Publication Publication Date Title
EP2401232B1 (de) Koaxiale hohlkathodenplasma unterstützte gerichtete aufdampfung und zugehöriges verfahren
US10260143B2 (en) Method and apparatus for application of metallic alloy coatings
US20120160166A1 (en) Reliant Thermal Barrier Coating System and Related Apparatus and Methods of Making the Same
WO2013085625A2 (en) Impact and erosion resistant thermal and environmental barrier coatings
EP2513351A1 (de) Verfahren für lasergestützte plasmabeschichtung bei atmosphärendruck und superlegierungssubstrate mit auf diese weise hergestellten beschichtungen
EP0962545B1 (de) Beschichtung auf Keramikbasis mit niedriger Wärmeleitfähigkeit
FR2860790A1 (fr) Cible destinee a etre evaporee sous faisceau d'electrons, son procede de fabrication, barriere thermique et revetement obtenus a partir d'une cible, et piece mecanique comportant un tel revetement
EP1821584B1 (de) Verfahren zur Abscheidung einer Wärmesperrschicht mittels eines Plasmabrenners
WO2003093528A1 (en) Method to make nanolaminate thermal barrier coatings
Kuppusami et al. Status of pulsed laser deposition: challenges and opportunities
KR101136907B1 (ko) 금속이온 주입법을 이용한 열차폐 코팅층 및 이의 제조방법
US20110146576A1 (en) Systems for applying a thermal barrier coating to a superalloy substrate
EP2850220B1 (de) Keramische beschichtungsablagerung
Mishra Advanced techniques for surface engineering of industrial materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070302

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TRICOIRE, AURELIEN

Inventor name: NOGUES, ELISE

Inventor name: VARDELLE, MICHEL

Inventor name: BRAILLARD, FREDERIC

Inventor name: MENUEY, JUSTINE

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20080414

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SNECMA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602007003869

Country of ref document: DE

Date of ref document: 20100204

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100924

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230119

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240123

Year of fee payment: 18

Ref country code: GB

Payment date: 20240123

Year of fee payment: 18