EP1818305B1 - Linear motion drive system for Rucksack type elevator - Google Patents

Linear motion drive system for Rucksack type elevator Download PDF

Info

Publication number
EP1818305B1
EP1818305B1 EP07101651A EP07101651A EP1818305B1 EP 1818305 B1 EP1818305 B1 EP 1818305B1 EP 07101651 A EP07101651 A EP 07101651A EP 07101651 A EP07101651 A EP 07101651A EP 1818305 B1 EP1818305 B1 EP 1818305B1
Authority
EP
European Patent Office
Prior art keywords
lift
drive system
lift cage
stationary part
interaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07101651A
Other languages
German (de)
French (fr)
Other versions
EP1818305A1 (en
Inventor
Hans Kocher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to EP07101651A priority Critical patent/EP1818305B1/en
Publication of EP1818305A1 publication Critical patent/EP1818305A1/en
Application granted granted Critical
Publication of EP1818305B1 publication Critical patent/EP1818305B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • B66B11/0407Driving gear ; Details thereof, e.g. seals actuated by an electrical linear motor

Definitions

  • the invention relates to an elevator installation with a linear drive system according to the preamble of claim 1 and a linear drive system for an elevator installation according to the preamble of claim 14.
  • FIGS. 1A, 1B and 2A, 2B various basic configurations of elevator systems with permanent magnet linear drive systems.
  • FIG. 1A and 1B a configuration is shown in which an elevator car 13 by means of a permanent magnet linear drive system 10, 11 is moved along a lift shaft in the y direction.
  • a permanent magnet linear drive system comprises a stationary part 10 fixed in the shaft and a movable part 11 fixed to the elevator car 13. From the top view in Fig. 1B It can be seen that in such a configuration no guidance takes place in the yz plane, so that additional guide shoes are to be provided on the elevator car 13, which guide the elevator car 13 along guide rails 12 arranged to the right and left of the elevator car 13.
  • a comparable elevator installation is the patent application EP 0 785 162 A1 refer to.
  • the permanent magnet linear drive system comprises a stationary part 10 and two movable parts 12. This achieves guidance in the yz plane.
  • guide rails are also required, or the elevator car 13 would be supported by further support means, such as a cable 12 'mounted centrally on the elevator car.
  • an elevator has become known with an elevator car which can be moved in an elevator shaft and two counterweights which are connected to the elevator car by means of carrying cables guided by deflection rollers.
  • the elevator car and the counterweights are driven by means of linear motors arranged at the rear shaft corners and cabin corners.
  • the known solutions are not or only partially suitable for elevator system in backpack configuration, which require only one wall of the elevator shaft for drive, suspension and guidance for structural or aesthetic reasons.
  • FIG. 3 Now the backpack principle is transmitted to an elevator system with permanent magnet linear drive system, which is a highly schematic representation.
  • the elevator car 14 sits on an L-shaped cabin frame on the upright leg of the movable part 11 of the permanent magnet linear drive system is fixed. Perpendicular in the elevator shaft, the stationary part 10 of the drive is attached (analogous to the in Fig. 1A shown arrangement). There are strong attractive forces between the moving part 11 and the stationary part 10, which are directed in the normal direction and designated F N.
  • the elevator car 14 can be moved up or down, as represented by the force vectors F on and F ab .
  • a backpack configuration of the type shown now comes - caused by the weight F K of the loaded or unloaded elevator car 14 - a torque D added to the permanent magnet linear drive system acts as indicated by a double arrow.
  • FIG. 4A is a schematic perspective view of a portion of a shaft rear wall 26 with the parts 20, 21 of the direct drive permanent magnet linear drive system shown.
  • the stationary part 20 (also called support column) of the drive system is attached to the shaft rear wall 26 and has a longitudinal axis L y , which extends parallel to the y-direction.
  • at least two inclined interaction surfaces a1, a2 arranged on the stationary part 20 are provided.
  • the drive system has at least two movable parts 21 (also called units), wherein each one of the movable parts 21 is associated with one of the interaction surfaces a1, a2.
  • Each interaction surface a1, a2 is associated with an interaction length b oriented in the y direction.
  • the interaction length b is the length between a terminal guide point and the center of a movable 21. While repulsive forces occur at the terminal guide point, take place in the center of the movable member 21 attractive forces.
  • the interaction length b is thus the effective length which prevents a tilting movement of the elevator car 24 in the xy plane.
  • the interaction length b extends over a portion of the elevator car 24, it is less than or equal to the height of the elevator car 24. If the drive system is controlled in a suitable manner, the elevator car 24 can be moved up or down, as by the force vectors F on and F ab are shown.
  • the ratio of attraction F N divided by force vectors F on and F ab is referred to as force ratio K.
  • the force ratio K is typically in the range of 2 to 20, preferably in the range of 3 to 10.
  • Fig. 4B It can be seen by way of indication that the elevator car 24 is arranged in a backpack configuration.
  • the axes of rotation D x , D y and D z engaging in the cabin center of gravity are in Fig. 4B shown.
  • F N The distance between the car's center of gravity and the interaction surfaces a1, a2 is referred to as the line of action L x .
  • the center connecting end of the interaction surfaces a1, a2 extending in the z direction is used as a reference.
  • the line of action L x is therefore the shortest distance between the car's center of gravity and this center connecting.
  • the parts 20, 21 by a small air gap from each other spaced.
  • the air gap is for example 1mm wide.
  • the air gap has the advantage that it allows non-contact guiding of each of the movable parts 21 on the corresponding stationary part 20. The vertical movement of the elevator car 24 is thus guided via the permanent magnet linear drive system via the moving parts 21 without contact on the stationary part.
  • the term permanent magnet linear drive system is used to describe a direct drive system that includes a permanent magnet excited synchronous linear motor.
  • the corresponding surfaces of the stationary part of the permanent magnet linear drive system are referred to as interaction surfaces, since there is an interaction between these surfaces and the movable units of the drive system.
  • a linear drive system with at least one permanent magnet it is also possible to use a linear drive system with at least one layer structure with at least one coil.
  • the movable part may be designed as a layered structure made by applying various layers to a substrate.
  • the layers can be applied one after the other and optionally structured appropriately. In this way, three-dimensional structures of materials with different properties can be applied to the substrate.
  • Individual layers may consist of an electrically insulating material or comprise regions of an electrically insulating material.
  • the conductor track can be composed of conductor track sections which are each formed in different layers of the layer structure. Individual sections of the conductor track may, for example, cross over in different planes and be separated by an electrically insulating layer in the region of the crossing. Furthermore, it is possible to arrange individual sections of the conductor track in different layers separated by an intermediate layer and to provide an electrically conductive region in the intermediate layer, which establishes an electrical connection between these sections of the conductor track.
  • Layers of the type mentioned can also be applied on both sides of the substrate and optionally structured. For example, it is provided that a first part of the conductor track on a first surface of the substrate and a second part of the conductor track on a second surface of the substrate Substrate is formed, wherein an electrical connection between the first and the second part is made. This makes it possible to give the track a particularly complex geometric structure.
  • At least a portion of the conductor track may have the form of a coil, wherein each coil comprises one or more windings.
  • the coil may be disposed on one side of the substrate, but it may also be composed of various portions of the trace disposed on different sides of the substrate and electrically connected together.
  • a plurality of serially arranged sections of the conductor track can each have the shape of a coil, the coils being designed such that adjacent coils generate magnetic fields with different polarity in the case of a current flow through the conductor track.
  • the track may be arranged such that upon supplying the track with a DC current to a surface of the movable member, a static magnetic field is generated whose polarity is a periodic reversal of polarity along the direction in which the movable member is movable relative to the static member is, has. In this way, a movable part can be formed to provide a large number of magnetic poles.
  • the area available on the substrate can be used efficiently. This is relevant for optimizing the efficiency of the linear drive system and the accuracy with which the Movement of the movable part relative to the static part during operation of the linear drive system can be controlled.
  • the two inclined interaction surfaces a1, a2 extend parallel to the longitudinal axis L y and lie in planes which enclose an angle W greater than 0 ° and less than 180 ° (ie 0 ° ⁇ W ⁇ 180 °).
  • the surface normals of the interaction surfaces a1, a2 are directed toward the elevator car 24.
  • the angle W is between 20 ° and 160 °.
  • the angle W for an eccentricity of 0.7 and a force ratio K of 4 is about 120 °.
  • the movable part comprises at least two units 21, which are arranged together on a rear side 27 of the elevator car 24 and positively connected to the elevator car 24 that when driving each of the two units 21 an upward or downward movement along one of the interaction surfaces a1, a2 causes. Thereby, the elevator car 24 can be moved up or down. Due to the oblique arrangement of the two interaction surfaces a1 and a2, the attractive forces F N of the drive system at least partially compensate each other. This helps to avoid the disadvantage of the very high attractive forces and associated friction losses of previous drive systems with permanent magnet linear drive.
  • FIG. 4B Next is in Fig. 4B to recognize that the elevator car 24 on the rear side 27 a cabin frame 25, or an equal acting means, on the one hand, the two units 21 are positively mounted, and on the other hand designed for eccentric carrying the elevator car 24.
  • the elevator installation is located in an elevator shaft, whereby according to the invention only one type of shaft rear wall 26 is required to accommodate the mechanical / technical elements of the elevator installation.
  • FIGs. 5A and 5B two plan views of parts of two other embodiments of elevator systems 1 according to the invention are shown.
  • a rear shaft wall 26 is shown.
  • the stationary part 20 of the drive system is arranged.
  • the stationary part 20 has at least two inclined interaction surfaces a1 and a2. While the interaction surfaces a1 and a2 in the embodiment according to Fig. 5A are inclined away from each other, they are in the embodiment according to Fig. 5B inclined towards each other.
  • the angle W is about 120 °.
  • the attractive forces F N of the drive system can be broken down into the force components F Q (transverse forces) and F H (holding forces).
  • the two transverse forces of the two units 21 compensate each other, since they are both directed parallel to the z-direction, but pointing in opposite directions. Effectively we carried the elevator car 24 by the holding forces F H. By this partial compensation of the forces, the otherwise existing friction between the stationary part 20 and the moving parts 21 is significantly reduced.
  • the stationary part 20 is according to the invention in cross-section perpendicular to the longitudinal axis L y preferably polygonal and the surface normals of the two interaction surfaces a1, a2 tend away from each other or tend towards each other. Both times they point to the elevator car 24.
  • the attractive forces of the permanent magnets of the permanent magnet linear drive system serve for stabilizing the eccentrically arranged elevator car 24 and for spatial stabilization and guidance.
  • the reaction forces are reduced to support the leadership of the drive system and thereby reduces the frictional forces.
  • the compensation of the transverse forces F Q , as well as the stabilization in the axis of rotation D z can be defined in the design of an elevator installation or a corresponding permanent magnet linear drive system.
  • the stationary part 20 of the permanent magnet linear drive system is thus used for the spatial guidance of the backpack elevator car 24.
  • the stationary part 20 has a niche or tray a3 in an upper area. As in Fig. 4A 7A and 7B, the tray a3 is located on the upper end of the stationary part 20. It is at least partially enclosed by the interaction surfaces a1, a2 and can be used for mounting manhole components. Thus, shaft components such as a position sensor, a brake partner of a holding brake or even a form-fitting retaining bolt can be attached here.
  • Embodiments in which the movable parts 21 of the drive system are fastened in the upper region of the rear of the cabin 27 are particularly advantageous.
  • the embodiments can be realized with or without further support means for supporting the elevator car 24.
  • Such support means are, for example, steel or aramid ropes or belts which connect the elevator car 24 with a counterweight.
  • FIG. 7A shows an elevator system 1, each with two in the y direction superimposed moving parts 21 per interaction surface a, b. Accordingly, the interaction length b extends from the terminal guide point of a first movable part 21 to the center of the second movable part 21 of the same interaction area a1, a2.
  • Fig. 7B shows an elevator system 1 with a main guide in moving parts 21 and an auxiliary guide in at least one guide shoe 22. While each of the movable parts 21 is guided on one of the two obliquely inclined interaction surfaces a, b, the guide shoe 22 laterally adjacent to the stationary part 20th guided on a guide rail. According to Fig.
  • interaction length b extends from the terminal guide point in the guide shoe 22 to the center of the movable part 21 of an interaction surface a1, a2.
  • the primary part of the drive system can be integrated either in the stationary part 20 or in the moving parts 21.
  • the secondary part of the drive system is then in the other part.
  • the coils S of the electromagnets (such as in Fig. 8 can be seen) of the primary part of Drive system in the stationary part 20 while the permanent magnets of the secondary parts 21 in the moving part of the drive system.
  • the permanent magnets of the secondary parts 21 in the moving part of the drive system can also be chosen the reverse arrangement.
  • the primary part comprises both coils and permanent magnets.
  • Fig. 8 an emergency guide 29 according to the invention is shown, which sits in the example shown at the top of the cabin frame 25.
  • the emergency guide 29 engages at least partially around or behind the stationary part 20, to prevent tilting (about the D z axis of rotation) of the elevator car 24, if the permanent magnet linear drive system should fail (for example, in the event of a power failure), or by the permanent magnet Linear drive system induced attractions should subside.
  • the emergency guide 29 is designed so that it runs without contact along the stationary part 20 in normal operation. It comes only in case of emergency for mechanical intervention.
  • 24 emergency guides 29 are provided at the two upper corners of the elevator cars.
  • the inventive permanent magnet linear drive systems and the corresponding elevator systems are space-saving in the shaft projection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Types And Forms Of Lifts (AREA)
  • Linear Motors (AREA)
  • Vehicle Body Suspensions (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)

Abstract

The passenger cabin (24) is equipped with two linear elevations positioned vertically at its rear surface. Each of the elevations has a triangular cross section and is provided with flat magnetic elements (21) joined to the inwards pointing surfaces of the triangles. A column (20) with two inclined front areas is located at the rear wall of the shaft (26). When magnetic forces are activated at the column (20) the lift (24) is moved by the complementary forces (FN) transmitted from the magnetic elements (21). An independent claim is given for the linear drive.

Description

Gegenstand der Erfindung betrifft eine Aufzugsanlage mit einem Linearantriebssystem nach dem Oberbegriff des Anspruchs 1 und ein Linearantriebssystem für eine Aufzugsanlage nach dem Oberbegriff des Anspruchs 14.The invention relates to an elevator installation with a linear drive system according to the preamble of claim 1 and a linear drive system for an elevator installation according to the preamble of claim 14.

Es sind verschiedene Aufzugskonfigurationen mit Linearmotor-Antriebssystemen bekannt. Bei derartigen Aufzugskonfigurationen treten jedoch verschiedenste Probleme auf, die bisher nur teilweise gelöst werden konnten. Das liegt unter anderem daran, dass ein Teil der Probleme sich diametral gegenüberstehen und die isolierte Lösung eines der Probleme häufig Probleme auf anderen Gebieten mit sich bringt.Various elevator configurations with linear motor drive systems are known. In such elevator configurations, however, a variety of problems occur that could only be partially solved so far. This is partly because some of the problems are diametrically opposed and the isolated solution to one of the problems often causes problems in other areas.

Dieser Konflikt ist im Folgenden anhand eines Beispiels erläutert. Die Linearmotor-Antriebssysteme, insbesondere diejenigen, die mit Permanentmagneten arbeiten, weisen sehr grosse Anziehungskräfte zwischen einem primären - oder stationären Teil und einem sekundären - oder beweglichen Teil auf. Setzt man einen solchen Permanentmagnet-Linearmotor nun sowohl als Direktantriebssystem als auch als Tragmittel der Aufzugskabine ein, so muss eine genaue und sichere Führung der Aufzugskabine gewährleistet werden. Diesbezüglich zeigen die Figuren 1A, 1B, und 2A, 2B verschiedene grundlegende Konfigurationen von Aufzugsanlagen mit Permanentmagnet-Linearantriebssystemen.This conflict is explained below using an example. The linear motor drive systems, especially those working with permanent magnets, have very large attractive forces between a primary or stationary part and a secondary or moving part. If one uses such a permanent magnet linear motor now both as a direct drive system and as a suspension means of the elevator car, so an accurate and secure guidance of the elevator car must be ensured. In this regard, the show FIGS. 1A, 1B and 2A, 2B various basic configurations of elevator systems with permanent magnet linear drive systems.

In den Figuren 1A und 1B ist eine Konfiguration gezeigt, bei der eine Aufzugskabine 13 mittels eines Permanentmagnet-Linearantriebssystems 10, 11 entlang eines Aufzugsschachts in y-Richtung bewegt wird. Typischerweise umfasst ein solches Permanentmagnet-Linearantriebssystem einen stationären Teil 10, der im Schacht befestigt ist, und einen beweglichen Teil 11, der an der Aufzugskabine 13 befestigt ist. Aus der Draufsicht in Fig. 1B ist zu erkennen, dass bei einer solchen Konfiguration keine Führung in der y-z-Ebene erfolgt, so dass an der Aufzugskabine 13 zusätzliche Führungsschuhe vorzusehen sind, welche die Aufzugskabine 13 entlang von rechts und links neben der Aufzugskabine 13 angeordneten Führungsschienen 12 führen. Eine vergleichbare Aufzugsanlage ist der Patentanmeldung EP 0 785 162 A1 zu entnehmen.In the Figures 1A and 1B a configuration is shown in which an elevator car 13 by means of a permanent magnet linear drive system 10, 11 is moved along a lift shaft in the y direction. Typically, such a permanent magnet linear drive system comprises a stationary part 10 fixed in the shaft and a movable part 11 fixed to the elevator car 13. From the top view in Fig. 1B It can be seen that in such a configuration no guidance takes place in the yz plane, so that additional guide shoes are to be provided on the elevator car 13, which guide the elevator car 13 along guide rails 12 arranged to the right and left of the elevator car 13. A comparable elevator installation is the patent application EP 0 785 162 A1 refer to.

In den Figuren 2A und 2B ist eine andere grundlegende Konfiguration gezeigt. Wie in der Draufsicht in Fig. 2B zu erkennen, umfasst das Permanentmagnet-Linearantriebssystem einen stationären Teil 10 und zwei bewegliche Teile 12. Dadurch wird eine Führung in der y-z-Ebene erreicht. Um aber ein Kippen in der x-y-Ebene zu vermeiden, sind ebenfalls Führungsschienen nötig, oder die Aufzugskabine 13 würde durch weitere Tragmittel, wie ein mittig an der Aufzugskabine angebrachtes Seil 12' getragen werden.In the FIGS. 2A and 2B another basic configuration is shown. As in the plan view in Fig. 2B As can be seen, the permanent magnet linear drive system comprises a stationary part 10 and two movable parts 12. This achieves guidance in the yz plane. However, in order to avoid tilting in the xy plane, guide rails are also required, or the elevator car 13 would be supported by further support means, such as a cable 12 'mounted centrally on the elevator car.

Aus der Patentschrift US 5 668 421 ist eine Aufzugsanlage bekannt geworden, bei der eine Aufzugskabine mittels induktiven Linearmotoren entlang von rohrförmigen Führungen verfahrbar ist. Je Führung sind zwei um die Führung angeordnete Linearmotoren vorgesehen, wobei je Motor ein konkaver Spulenkopf mittels Wanderfeld in der rohrförmigen Führung Ströme induziert, wodurch eine Schubkraft zustande kommt.From the patent US 5,668,421 An elevator system has become known in which an elevator car can be moved by means of inductive linear motors along tubular guides. Per guide two arranged around the guide linear motors are provided, each motor induces a concave coil head by means of traveling field in the tubular guide currents, whereby a thrust comes about.

Aus der Schrift JP 04089787 ist ein Aufzug bekannt geworden mit einer in einem Aufzugsschacht bewegbaren Aufzugskabine und zwei Gegengewichten, die mittels über Umlenkrollen geführten Tragseilen mit der Aufzugskabine verbunden sind. Angetrieben wird die Aufzugskabine und die Gegengewichte mittels an den hinteren Schachtecken und Kabinenecken angeordneten Linearmotoren.From the Scriptures JP 04089787 For example, an elevator has become known with an elevator car which can be moved in an elevator shaft and two counterweights which are connected to the elevator car by means of carrying cables guided by deflection rollers. The elevator car and the counterweights are driven by means of linear motors arranged at the rear shaft corners and cabin corners.

Die bisher bekannten Ansätze sind daher technisch aufwändig, sie benötigen viel Material und Platz im Aufzugsschacht und sind somit kostenintensiv.The previously known approaches are therefore technically complex, they require a lot of material and space in the elevator shaft and are therefore costly.

Auch eignen sich die bekannten Lösungen nicht oder nur bedingt für Aufzugsanlage in Rucksackkonfiguration, die aus baulichen oder ästhetischen Gründen nur eine Wand des Aufzugsschachts für Antrieb, Tragmittel und Führung benötigen.Also, the known solutions are not or only partially suitable for elevator system in backpack configuration, which require only one wall of the elevator shaft for drive, suspension and guidance for structural or aesthetic reasons.

Es stellt sich daher die Aufgabe eine Aufzugsanlage vorzuschlagen, die bei Verwendung eines Linearmotor-Antriebssystems wenig Platz im Aufzugsschacht beansprucht.It is therefore the task to propose an elevator installation which requires little space in the elevator shaft when using a linear motor drive system.

Es wird als eine weitere Aufgabe angesehen, ein Linearmotor-Antriebssystems für eine Aufzugsanlage in Rucksackkonfiguration bereit zustellen.It is considered another object to provide a linear motor drive system for a lift system in backpack configuration.

Die Lösung dieser Aufgaben erfolgt für die Aufzugsanlage durch die kennzeichnenden Merkmale des Anspruchs 1 und für ein Linearantriebssystem durch die kennzeichnenden Merkmale des Anspruchs 14.The solution of these objects is carried out for the elevator installation by the characterizing features of claim 1 and for a linear drive system by the characterizing features of claim 14.

Besonders vorteilhafte Merkmale sind den abhängigen Ansprüchen zu entnehmen.Particularly advantageous features can be found in the dependent claims.

Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen und mit Bezug auf die Zeichnungen ausführlich beschrieben. Es zeigen:

Fig. 1A
eine schematische Seitenansicht eines Teils einer ersten Aufzugsanlage mit einem Linearantriebssystem;
Fig. 1B
eine schematische Draufsicht der ersten Aufzugsanlage gemäss Fig. 1A;
Fig. 2A
eine schematische Seitenansicht eines Teils einer zweiten Aufzugsanlage mit einem Linearantriebssystem;
Fig. 2B
eine schematische Draufsicht der zweiten Aufzugsanlage gemäss Fig. 2A;
Fig. 3
eine schematische Seitenansicht eines Teils einer dritten Aufzugsanlage mit einem Linearantriebssystem, wobei es sich um eine Aufzugsanlage in Rucksackkonfiguration handelt;
Fig. 4A
eine schematische Perspektivansicht eines Teils einer ersten erfindungsgemässen Aufzugsanlage mit zwei beweglichen Teilen;
Fig. 4B
eine schematische Draufsicht der ersten erfindungsgemässen Aufzugsanlage gemäss Fig. 4A;
Fig. 5A
eine schematische Draufsicht eines Teils einer zweiten erfindungsgemässen Aufzugsanlage;
Fig. 5B
eine schematische Draufsicht eines Teils einer dritten erfindungsgemässen Aufzugsanlage;
Fig. 6A
ein weiteres Beispiel eines stationären Teils eines erfindungsgemässen Linearantriebssystems in schematischer Schnittdarstellung;
Fig. 6B
ein weiteres Beispiel eines stationären Teils eines erfindungsgemässen Linearantriebssystems in schematischer Schnittdarstellung;
Fig. 7A
eine schematische Draufsicht eines Teils einer vierten erfindungsgemässen Aufzugsanlage mit vier beweglichen Teilen;
Fig. 7B
eine schematische Draufsicht eines Teils einer fünften erfindungsgemässen Aufzugsanlage mit Hilfsführung;
Fig. 8
ein Teilansicht einer sechsten erfindungsgemässen Aufzugsanlage mit Notführung.
In the following the invention will be described in detail by means of exemplary embodiments and with reference to the drawings. Show it:
Fig. 1A
a schematic side view of a portion of a first elevator installation with a linear drive system;
Fig. 1B
a schematic plan view of the first elevator system according to Fig. 1A ;
Fig. 2A
a schematic side view of a portion of a second elevator installation with a linear drive system;
Fig. 2B
a schematic plan view of the second elevator installation according to Fig. 2A ;
Fig. 3
a schematic side view of a portion of a third elevator installation with a Linear drive system, which is an elevator system in backpack configuration;
Fig. 4A
a schematic perspective view of a portion of a first inventive elevator system with two moving parts;
Fig. 4B
a schematic plan view of the first inventive elevator system according to Fig. 4A ;
Fig. 5A
a schematic plan view of part of a second elevator system according to the invention;
Fig. 5B
a schematic plan view of part of a third elevator system according to the invention;
Fig. 6A
a further example of a stationary part of an inventive linear drive system in a schematic sectional view;
Fig. 6B
a further example of a stationary part of an inventive linear drive system in a schematic sectional view;
Fig. 7A
a schematic plan view of part of a fourth inventive elevator system with four moving parts;
Fig. 7B
a schematic plan view of part of a fifth elevator system according to the invention with auxiliary guide;
Fig. 8
a partial view of a sixth elevator system according to the invention with emergency guidance.

Es ist eine Konfiguration einer Aufzugsanlage bekannt, bei der die technischen/mechanischen Bauteile typischerweise an nur einer Schachtwand angebracht sind. Eine solche Konfiguration wird auch als Rucksack-Konfiguration bezeichnet, da die Aufzugskabine wie ein Rucksack asymmetrisch auf einem Kabinenrahmen sitzt, der mit Tragmittel versehen einseitig im Aufzugsschacht aufgehängt und geführt wird. Dadurch, dass nur eine Schachtwand belegt wird, sind die drei weiteren Wände der Aufzugskabine als Zugänge frei bestimmbar und können dementsprechend bis zu drei Kabinentüren aufweisen. Die mindestens eine Kabinentür kann an die für die technischen/mechanischen Bauteile vorgesehene Rückwand der Aufzugskabine angrenzen, man spricht dann von einer Seitenrucksack-Konfiguration, oder sie kann an der dieser Rückwand entgegen gesetzten Vorderwand der Aufzugskabine angebracht sein, was als normale Rucksack-Konfiguration bezeichnet wird. Der Fachmann hat diesbezüglich vielfältige Möglichkeiten der Realisierung.There is known a configuration of an elevator installation in which the technical / mechanical components are typically mounted on only one shaft wall. Such a configuration is also referred to as a backpack configuration, since the elevator car sits like a backpack asymmetrically on a cabin frame, which is provided with support means on one side in the Lift shaft is suspended and guided. The fact that only one shaft wall is occupied, the three other walls of the elevator car as accesses are freely determinable and can accordingly have up to three car doors. The at least one car door can adjoin the rear wall of the elevator car provided for the technical / mechanical components, one then speaks of a side backpack configuration, or it can be attached to the rear wall of the elevator car opposite this rear wall, which is referred to as a normal backpack configuration becomes. The expert has many possibilities of realization in this regard.

In Fig. 3 wird nun das Rucksack-Prinzip auf eine Aufzugsanlage mit Permanentmagnet-Linearantriebssystem übertragen, wobei es sich um eine stark schematisierte Darstellung handelt. Wie in Fig. 3 angedeutet, sitzt die Aufzugskabine 14 auf einem L-förmigen Kabinenrahmen an dessen aufrechtem Schenkel der bewegliche Teil 11 des Permanentmagnet-Linearantriebssystems befestigt ist. Senkrecht im Aufzugsschacht ist der stationäre Teil 10 des Antriebs befestigt (analog zur der in Fig. 1A gezeigten Anordnung). Zwischen dem beweglichen Teil 11 und dem stationären Teil 10 gibt es starke Anziehungskräfte, die in Normalenrichtung gerichtet und mit FN bezeichnet sind. Wird das Antriebssystem in geeigneter Art und Weise angesteuert, so kann die Aufzugskabine 14 nach oben oder unten bewegt werden, wie durch die Kraftvektoren Fauf und Fab dargestellt. Bei einer Rucksack-Konfiguration der gezeigten Bauart kommt nun - verursacht durch das Gewicht FK der beladenen oder unbeladenen Aufzugskabine 14 - ein Drehmoment D hinzu, das auf das Permanentmagnet-Linearantriebssystem einwirkt, wie durch einen Doppelpfeil angedeutet.In Fig. 3 Now the backpack principle is transmitted to an elevator system with permanent magnet linear drive system, which is a highly schematic representation. As in Fig. 3 indicated, the elevator car 14 sits on an L-shaped cabin frame on the upright leg of the movable part 11 of the permanent magnet linear drive system is fixed. Perpendicular in the elevator shaft, the stationary part 10 of the drive is attached (analogous to the in Fig. 1A shown arrangement). There are strong attractive forces between the moving part 11 and the stationary part 10, which are directed in the normal direction and designated F N. If the drive system is controlled in a suitable manner, the elevator car 14 can be moved up or down, as represented by the force vectors F on and F ab . In a backpack configuration of the type shown now comes - caused by the weight F K of the loaded or unloaded elevator car 14 - a torque D added to the permanent magnet linear drive system acts as indicated by a double arrow.

Offensichtlich sind spezielle Massnahmen nötig, um für diese Rucksack-Konfiguration eine genaue und sichere Führung der Aufzugskabine 14 zu gewährleisten. Solche Führungen würden aber, wenn man den bekannten Ansätzen folgt, weitere mechanische Führungselemente entweder neben der Aufzugskabine 14 (zum Beispiel seitliche Führungsschienen 12 wie in Fig. 1B) und/oder oberhalb der Aufzugskabine 14 (zum Beispiel ein Führungsseil 12' wie in Fig. 2A) erforderlich machen.Obviously, special measures are necessary to ensure accurate and secure guidance of the elevator car 14 for this backpack configuration. However, such guides would, if following the known approaches, provide further mechanical guide elements either adjacent to the elevator car 14 (for example, lateral guide rails 12 as in FIG Fig. 1B ) and / or above the elevator car 14 (for example, a guide cable 12 'as in FIG Fig. 2A ).

Gemäss Erfindung wird ein komplett anderer Weg beschritten, wie im Folgenden anhand der schematischen Figuren 4A und 4B beschrieben wird.According to the invention, a completely different approach is taken, as described below with reference to the schematic FIGS. 4A and 4B is described.

In Fig. 4A ist eine schematische Perspektivansicht eines Teils einer Schachtrückwand 26 mit den Teilen 20, 21 des als Direktantrieb dienenden Permanentmagnet-Linearantriebssystems gezeigt. Der stationäre Teil 20 (auch Tragsäule genannt) des Antriebssystems ist an der Schachtrückwand 26 befestigt und weist eine Längsachse Ly auf, die sich parallel zur y-Richtung erstreckt. Anders als bei den bisher bekannten stationären Teilen sind mindestens zwei schräge zueinander angeordnete Interaktionsflächen a1, a2 am stationären Teil 20 vorgesehen. Ausserdem weist das Antriebssystem mindestens zwei bewegliche Teile 21 (auch Einheiten genannt) auf, wobei je eines der beweglichen Teile 21 einer der Interaktionsflächen a1, a2 zugeordnet ist. Jeder Interaktionsfläche a1, a2 ist eine in y-Richtung orientierte Interaktionslänge b zugeordnet. Die Interaktionslänge b ist die Länge zwischen einem endständigen Führungspunkt und der Mitte eines beweglichen Teils 21. Während am endständigen Führungspunkt abstossende Kräfte auftreten, erfolgen im Mittelpunkt des beweglichen Teils 21 anziehende Kräfte. Die Interaktionslänge b ist somit die effektive Länge die eine Kippbewegung der Aufzugskabine 24 in der x-y-Ebene verhindert. Die Interaktionslänge b erstreckt sich über einen Teilbereich der Aufzugskabine 24, sie ist kleiner gleich der Höhe der Aufzugskabine 24. Wird das Antriebssystem in geeigneter Art und Weise angesteuert, so kann die Aufzugskabine 24 nach oben oder unten bewegt werden, wie durch die Kraftvektoren Fauf und Fab dargestellt. Das Verhältnis von Anziehungskraft FN geteilt durch Kraftvektoren Fauf bzw. Fab wird als Kraftverhältnis K bezeichnet. Das Kraftverhältnis K liegt typischerweise im Bereich von 2 bis 20, vorzugsweise im Bereich von 3 bis 10.In Fig. 4A is a schematic perspective view of a portion of a shaft rear wall 26 with the parts 20, 21 of the direct drive permanent magnet linear drive system shown. The stationary part 20 (also called support column) of the drive system is attached to the shaft rear wall 26 and has a longitudinal axis L y , which extends parallel to the y-direction. In contrast to the previously known stationary parts, at least two inclined interaction surfaces a1, a2 arranged on the stationary part 20 are provided. In addition, the drive system has at least two movable parts 21 (also called units), wherein each one of the movable parts 21 is associated with one of the interaction surfaces a1, a2. Each interaction surface a1, a2 is associated with an interaction length b oriented in the y direction. The interaction length b is the length between a terminal guide point and the center of a movable 21. While repulsive forces occur at the terminal guide point, take place in the center of the movable member 21 attractive forces. The interaction length b is thus the effective length which prevents a tilting movement of the elevator car 24 in the xy plane. The interaction length b extends over a portion of the elevator car 24, it is less than or equal to the height of the elevator car 24. If the drive system is controlled in a suitable manner, the elevator car 24 can be moved up or down, as by the force vectors F on and F ab are shown. The ratio of attraction F N divided by force vectors F on and F ab is referred to as force ratio K. The force ratio K is typically in the range of 2 to 20, preferably in the range of 3 to 10.

In Fig. 4B ist andeutungsweise zu erkennen, dass die Aufzugskabine 24 in einer Rucksack-Konfiguration angeordnet ist. Um die Aufzugskabine 24 charakterisieren zu können, sind die im Kabinenschwerpunkt angreifenden Drehachsen Dx, Dy und Dz in Fig. 4B dargestellt. Zwischen den beweglichen Teilen 21 und den Interaktionsflächen a1, a2 des stationären Teils 20 gibt es starke Anziehungskräfte, die in Normalenrichtung gerichtet und wiederum mit FN bezeichnet sind. Der Abstand zwischen dem Kabinenschwerpunkt und den Interaktionsflächen a1, a2 wird als Wirkungslinie Lx bezeichnet. Zur Abstandsermittlung wird gemäss Fig. 4B die sich in z-Richtung erstreckende Mittenverbindende der Interaktionsflächen a1, a2 als Referenz verwendet. Die Wirkungslinie Lx ist demnach der kürzeste Abstand zwischen dem Kabinenschwerpunkt und dieser Mittenverbindenden. Zur Optimierung des Wirkungsgrades des Permanentmagnet-Linearantriebssystems sind die Teile 20, 21 durch einen möglichst kleinen Luftspalt voneinander beabstandet. Der Luftspalt ist beispielsweise 1mm breit. Konstruktiv hat der Luftspalt den Vorteil, dass er ein berührungsloses Führen jedes der beweglichen Teile 21 auf dem korrespondierenden stationären Teil 20 ermöglicht. Die vertikale Bewegung der Aufzugskabine 24 ist somit über das Permanentmagnet-Linearantriebssystem über die beweglichen Teile 21 berührungslos auf dem stationären Teil geführt.In Fig. 4B It can be seen by way of indication that the elevator car 24 is arranged in a backpack configuration. In order to be able to characterize the elevator car 24, the axes of rotation D x , D y and D z engaging in the cabin center of gravity are in Fig. 4B shown. Between the movable parts 21 and the interaction surfaces a1, a2 of the stationary part 20 there are strong attractive forces, which are directed in the normal direction and again denoted by F N. The distance between the car's center of gravity and the interaction surfaces a1, a2 is referred to as the line of action L x . For distance determination is in accordance with Fig. 4B the center connecting end of the interaction surfaces a1, a2 extending in the z direction is used as a reference. The line of action L x is therefore the shortest distance between the car's center of gravity and this center connecting. To optimize the efficiency of the permanent magnet linear drive system, the parts 20, 21 by a small air gap from each other spaced. The air gap is for example 1mm wide. Structurally, the air gap has the advantage that it allows non-contact guiding of each of the movable parts 21 on the corresponding stationary part 20. The vertical movement of the elevator car 24 is thus guided via the permanent magnet linear drive system via the moving parts 21 without contact on the stationary part.

Aufgrund der schrägen Ausrichtung der Interaktionsflächen a1, a2 zueinander, ergibt sich gemäss Erfindung eine räumliche - d.h. eine 3-dimensional wirkende Führung. So wird ein Verdrehen oder Kippen der Aufzugskabine 24 um die Drehachsen Dx, Dy und Dz verhindert. Durch diese neuartige Konstellation werden besonders die durch die Rucksackkonstellation verursachten Drehmomente (Drehmoment D in Fig. 3) aufgefangen. Mit anderen Worten ausgedrückt, wird durch die spezielle Ausgestaltung des Permanentmagnet-Linearantriebssystems der Nachteil der exzentrischen Aufhängung der Aufzugskabinen 24 kompensiert. Das Verhältnis von Wirkungslinie Lx geteilt durch die Interaktionslänge b wird als Exzentrizität Lx / b bezeichnet. Die Exzentrizität beträgt typischerweise 0.1 bis 1.6, vorzugsweise 0.2 bis 0.8.Due to the oblique orientation of the interaction surfaces a1, a2 to each other, according to the invention results in a spatial - ie a 3-dimensional acting guide. Thus, a twisting or tilting of the elevator car 24 about the axes of rotation D x , D y and D z is prevented. Due to this novel constellation, the torques caused by the backpack constellation (torque D in Fig. 3 ). In other words, the disadvantage of the eccentric suspension of the elevator cars 24 is compensated by the special design of the permanent magnet linear drive system. The ratio of line of action L x divided by the interaction length b is referred to as eccentricity L x / b. The eccentricity is typically 0.1 to 1.6, preferably 0.2 to 0.8.

Der Begriff Permanentmagnet-Linearantriebssystem wird im vorliegenden Zusammenhang verwendet, um ein Direktantriebssystem zu umschreiben, das einen durch Permanentmagnete angeregten Synchronlinearmotor umfasst. Die entsprechenden Flächen des stationären Teils des Permanentmagnet-Linearantriebssystem werden als Interaktionsflächen bezeichnet, da es zwischen diesen Flächen und den beweglichen Einheiten des Antriebssystems zu einer Wechselwirkung kommt. An Stelle eines Linearantriebssystems mit mindestens einem Permanentmagneten ist es auch möglich, ein Linearantriebssystem mit mindestens einer Schichtstruktur mit mindestens einer Spule zu verwenden.As used herein, the term permanent magnet linear drive system is used to describe a direct drive system that includes a permanent magnet excited synchronous linear motor. The corresponding surfaces of the stationary part of the permanent magnet linear drive system are referred to as interaction surfaces, since there is an interaction between these surfaces and the movable units of the drive system. Instead of a linear drive system with at least one permanent magnet, it is also possible to use a linear drive system with at least one layer structure with at least one coil.

Der bewegliche Teil kann als eine Schichtstruktur, hergestellt durch Aufbringen verschiedener Schichten auf ein Substrat, konzipiert sein. Die Schichten können nacheinander aufgebracht werden und gegebenenfalls geeignet strukturiert werden. Auf diese Weise können auf dem Substrat dreidimensionale Strukturen aus Materialien mit unterschiedlichen Eigenschaften aufgebracht werden. Einzelne Schichten können aus einem elektrisch isolierenden Material bestehen oder Bereiche aus einem elektrisch isolierenden Material umfassen. Die Leiterbahn kann aus Leiterbahnabschnitten, die jeweils in verschiedenen Schichten der Schichtstruktur ausgebildet sind, zusammengesetzt sein. Einzelne Abschnitte der Leiterbahn können sich beispielsweise in verschiedenen Ebenen überkreuzen und im Bereich der Überkreuzung durch eine elektrisch isolierende Schicht getrennt sein. Weiterhin besteht die Möglichkeit, einzelne Abschnitte der Leiterbahn in verschiedenen durch eine Zwischenschicht getrennte Schichten anzuordnen und in der Zwischenschicht einen elektrisch leitfähigen Bereich vorzusehen, der eine elektrische Verbindung zwischen diesen Abschnitten der Leiterbahn herstellt.The movable part may be designed as a layered structure made by applying various layers to a substrate. The layers can be applied one after the other and optionally structured appropriately. In this way, three-dimensional structures of materials with different properties can be applied to the substrate. Individual layers may consist of an electrically insulating material or comprise regions of an electrically insulating material. The conductor track can be composed of conductor track sections which are each formed in different layers of the layer structure. Individual sections of the conductor track may, for example, cross over in different planes and be separated by an electrically insulating layer in the region of the crossing. Furthermore, it is possible to arrange individual sections of the conductor track in different layers separated by an intermediate layer and to provide an electrically conductive region in the intermediate layer, which establishes an electrical connection between these sections of the conductor track.

Schichten der genannten Art können auch auf beiden Seiten des Substrats aufgebracht und gegebenenfalls strukturiert werden. Es ist beispielsweise vorgesehen, dass ein erster Teil der Leiterbahn an einer ersten Oberfläche des Substrats und ein zweiter Teil der Leiterbahn an einer zweiten Oberfläche des Substrats ausgebildet ist, wobei eine elektrische Verbindung zwischen dem ersten und dem zweiten Teil hergestellt ist. Dies ermöglicht es, der Leiterbahn eine besonders komplexe geometrische Struktur zu verleihen.Layers of the type mentioned can also be applied on both sides of the substrate and optionally structured. For example, it is provided that a first part of the conductor track on a first surface of the substrate and a second part of the conductor track on a second surface of the substrate Substrate is formed, wherein an electrical connection between the first and the second part is made. This makes it possible to give the track a particularly complex geometric structure.

Bei einer Variante des beweglichen Teils kann beispielsweise mindestens ein Abschnitt der Leiterbahn die Form einer Spule aufweisen, wobei jede Spule eine oder mehrere Windungen umfasst. Die Spule kann auf einer Seite des Substrats angeordnet sein, sie kann aber auch aus verschiedenen Abschnitten der Leiterbahn zusammengesetzt sein, die auf verschiedenen Seiten des Substrats angeordnet sind und elektrisch miteinander verbunden sind.In a variant of the movable part, for example, at least a portion of the conductor track may have the form of a coil, wherein each coil comprises one or more windings. The coil may be disposed on one side of the substrate, but it may also be composed of various portions of the trace disposed on different sides of the substrate and electrically connected together.

In einer weiteren Variante des beweglichen Teils können mehrere seriell angeordnete Abschnitte der Leiterbahn jeweils die Form einer Spule haben, wobei die Spulen derart ausgebildet sind, dass bei einem Stromfluss durch die Leiterbahn benachbarte Spulen jeweils Magnetfelder mit unterschiedlicher Polarität erzeugen. Beispielsweise kann die Leiterbahn derart angeordnet sein, dass bei einer Versorgung der Leiterbahn mit einem Gleichstrom an einer Oberfläche des beweglichen Teils ein statisches Magnetfeld erzeugt wird, dessen Polarität eine periodische Umkehr der Polarität längs der Richtung, in der der bewegliche Teil relativ zum statischen Teil bewegbar ist, aufweist. Auf diese Weise kann ein beweglicher Teil zur Bereitstellung einer grossen Zahl magnetischer Pole ausgebildet werden. Bei einer geeigneten Anordnung der Leiterbahn kann die auf dem Substrat zur Verfügung stehende Fläche effizient genutzt werden. Dies ist relevant für die Optimierung der Effizienz des Linearantriebssystems und die Genauigkeit, mit der die Bewegung des beweglichen Teils relativ zum statischen Teil während des Betriebs des Linearantriebssystems kontrolliert werden kann.In a further variant of the movable part, a plurality of serially arranged sections of the conductor track can each have the shape of a coil, the coils being designed such that adjacent coils generate magnetic fields with different polarity in the case of a current flow through the conductor track. For example, the track may be arranged such that upon supplying the track with a DC current to a surface of the movable member, a static magnetic field is generated whose polarity is a periodic reversal of polarity along the direction in which the movable member is movable relative to the static member is, has. In this way, a movable part can be formed to provide a large number of magnetic poles. With a suitable arrangement of the conductor track, the area available on the substrate can be used efficiently. This is relevant for optimizing the efficiency of the linear drive system and the accuracy with which the Movement of the movable part relative to the static part during operation of the linear drive system can be controlled.

Im Folgenden werden weitere Details der Erfindung erläutert.In the following, further details of the invention are explained.

Die beiden geneigten Interaktionsflächen a1, a2 erstrecken sich parallel zu der Längsachse Ly und liegen in Ebenen, welche einen Winkel W grösser 0° und kleiner 180° einschliessen (d.h. 0° < W < 180°). Die Flächennormalen der Interaktionsflächen a1, a2 sind zu der Aufzugskabine 24 hin gerichtet.The two inclined interaction surfaces a1, a2 extend parallel to the longitudinal axis L y and lie in planes which enclose an angle W greater than 0 ° and less than 180 ° (ie 0 ° <W <180 °). The surface normals of the interaction surfaces a1, a2 are directed toward the elevator car 24.

Die Grösse des Winkels W ist eine Funktion des Kraftverhältnisses K und der Exzentrizität Lx / b. Unter Berücksichtigung der willkürlich gewählten Sicherheitsbedingung, dass nur 20% der Anziehungskraft genügen soll den exzentrisch beladenen Rucksackaufzug zu stabilisieren, ergibt sich folgende Abhängigkeit: sin W/2 = 5 * (Lx / b) / K. Vorzugsweise liegt der Winkel W zwischen 20° und 160°. Beispielsweise beträgt der Winkel W für eine Exzentrizität von 0.7 und ein Kraftverhältniss K von 4 rund 120°.The magnitude of the angle W is a function of the force ratio K and the eccentricity L x / b. Taking into account the arbitrarily chosen security condition that only 20% of the attraction is sufficient to stabilize the eccentrically loaded backpack lift, the following dependence results: sin W / 2 = 5 * (L x / b) / K. Preferably, the angle W is between 20 ° and 160 °. For example, the angle W for an eccentricity of 0.7 and a force ratio K of 4 is about 120 °.

Der bewegbare Teil umfasst mindestens zwei Einheiten 21, die gemeinsam auf einer Rückseite 27 der Aufzugskabine 24 so angeordnet und mit der Aufzugskabine 24 formschlüssig verbunden sind, dass bei der Ansteuerung jede der beiden Einheiten 21 eine Aufwärts- oder Abwärtsbewegung entlang einer der Interaktionsflächen a1, a2 hervorruft. Dadurch kann die Aufzugskabine 24 nach oben oder unten bewegt werden. Durch die schräge Anordnung der beiden Interaktionsflächen a1 und a2 kompensieren sich die Anziehungskräfte FN des Antriebssystems mindestens teilweise. Dies hilft den Nachteil der sehr hohen Anziehungskräfte und damit verbundener Reibungsverluste bisheriger Antriebssysteme mit Permanentmagnet-Linearantrieb zu vermeiden.The movable part comprises at least two units 21, which are arranged together on a rear side 27 of the elevator car 24 and positively connected to the elevator car 24 that when driving each of the two units 21 an upward or downward movement along one of the interaction surfaces a1, a2 causes. Thereby, the elevator car 24 can be moved up or down. Due to the oblique arrangement of the two interaction surfaces a1 and a2, the attractive forces F N of the drive system at least partially compensate each other. This helps to avoid the disadvantage of the very high attractive forces and associated friction losses of previous drive systems with permanent magnet linear drive.

Weiter ist in Fig. 4B zu erkennen, dass die Aufzugskabine 24 an der rückwärtigen Seite 27 einen Kabinenrahmen 25, oder ein gleich wirkendes Mittel aufweist, an dem einerseits die beiden Einheiten 21 formschlüssig montiert sind, und der andererseits zum exzentrischen Tragen der Aufzugskabine 24 ausgelegt ist.Next is in Fig. 4B to recognize that the elevator car 24 on the rear side 27 a cabin frame 25, or an equal acting means, on the one hand, the two units 21 are positively mounted, and on the other hand designed for eccentric carrying the elevator car 24.

Im gezeigten Ausführungsbeispiel befindet sich die Aufzugsanlage in einem Aufzugsschacht, wobei gemäss Erfindung nur eine Art Schachtrückwand 26 erforderlich ist, um die mechanischen/technischen Elemente der Aufzugsanlage aufzunehmen.In the exemplary embodiment shown, the elevator installation is located in an elevator shaft, whereby according to the invention only one type of shaft rear wall 26 is required to accommodate the mechanical / technical elements of the elevator installation.

In Fig. 5A und 5b sind zwei Draufsichten von Teilen zweier weiterer Ausführungsbeispiele von Aufzugsanlagen 1 gemäss Erfindung gezeigt. Es ist eine rückwärtige Schachtwand 26 gezeigt. An oder vor dieser Schachtwand 26 ist der stationäre Teil 20 des Antriebssystems angeordnet. Der stationäre Teil 20 weist mindestens zwei schräge Interaktionsflächen a1 und a2 auf. Während die Interaktionsflächen a1 und a2 im Ausführungsbeispiel gemäss Fig. 5A voneinander weg geneigt sind, sind sie im Ausführungsbeispiel gemäss Fig. 5B zueinander hin geneigt. Der Winkel W beträgt ca. 120°.In Figs. 5A and 5B two plan views of parts of two other embodiments of elevator systems 1 according to the invention are shown. A rear shaft wall 26 is shown. At or in front of this shaft wall 26, the stationary part 20 of the drive system is arranged. The stationary part 20 has at least two inclined interaction surfaces a1 and a2. While the interaction surfaces a1 and a2 in the embodiment according to Fig. 5A are inclined away from each other, they are in the embodiment according to Fig. 5B inclined towards each other. The angle W is about 120 °.

Die Anziehungskräfte FN des Antriebssystems lassen sich in die Kraftkomponenten FQ (Querkräfte) und FH (Haltekräfte) zerlegen. Die beiden Querkräfte der beiden Einheiten 21 kompensieren sich gegenseitig, da sie beide parallel zur z-Richtung gerichtet sind, aber in entgegen gesetzte Richtungen weisen. Effektiv getragen wir die Aufzugskabine 24 durch die Haltekräfte FH. Durch diese teilweise Kompensation der Kräfte wird die ansonsten bestehende Reibung zwischen dem stationären Teil 20 und den beweglichen Teilen 21 deutlich reduziert.The attractive forces F N of the drive system can be broken down into the force components F Q (transverse forces) and F H (holding forces). The two transverse forces of the two units 21 compensate each other, since they are both directed parallel to the z-direction, but pointing in opposite directions. Effectively we carried the elevator car 24 by the holding forces F H. By this partial compensation of the forces, the otherwise existing friction between the stationary part 20 and the moving parts 21 is significantly reduced.

Der stationäre Teil 20 ist gemäss Erfindung im Querschnitt senkrecht zur Längsachse Ly vorzugsweise polygonförmig und die Flächennormalen der beiden Interaktionsflächen a1, a2 neigen voneinander weg bzw. neigen zueinander hin. Beide Male weisen sie auf die Aufzugskabine 24 hin.The stationary part 20 is according to the invention in cross-section perpendicular to the longitudinal axis L y preferably polygonal and the surface normals of the two interaction surfaces a1, a2 tend away from each other or tend towards each other. Both times they point to the elevator car 24.

Durch die geneigte Anordnung der Interaktionsflächen a1, a2 werden insbesondere Drehmomente Dz kompensiert, die sich aus der durch die Rucksack-Konfiguration resultierenden exzentrischen Aufhängung der Aufzugskabine 24 ergeben.Due to the inclined arrangement of the interaction surfaces a1, a2, in particular torques D z are compensated which result from the eccentric suspension of the elevator car 24 resulting from the backpack configuration.

Es wird durch die entsprechenden Anziehungskräfte FN der der jeweiligen Interaktionsfläche a1, a2 gegenüberliegenden Einheit 21 sowohl eine Verdrehstabilisierung der Aufzugskabine 24 um die Drehachse Dx bewirkt, die senkrecht zu der Längsachse Ly und senkrecht zu der Rückseite der Aufzugskabine 24 verläuft, als auch eine Verdrehstabilisierung der Aufzugskabine 24 um eine Drehachse Dz bewirkt, die senkrecht zu der Längsachse Ly und parallel zu der Rückseite der Aufzugskabine 24 verläuft. Durch den seitlichen Abstand der Einheiten 21 voneinander wird auch ein Verdrehen um die y-Drehachse Dy verhindert.It is caused by the respective attractive forces F N of the respective interaction surface a1, a2 unit 21 both a Verdrehstabilisierung the elevator car 24 about the axis of rotation D x , which is perpendicular to the longitudinal axis L y and perpendicular to the back of the elevator car 24, as well a Verdrehstabilisierung the elevator car 24 causes about a rotational axis D z , which is perpendicular to the longitudinal axis L y and parallel to the back of the elevator car 24. By the lateral spacing of the units 21 from each other, a rotation about the y-axis D y is prevented.

Gemäss Erfindung dienen also die Anziehungskräfte der Permanentmagnete des Permanentmagnet-Linearantriebssystems zur Stabilisierung der exzentrisch angeordneten Aufzugskabine 24 und zur räumlichen Stabilisierung sowie Führung. Durch die exzentrisch angreifende Gewichtskraft FK werden die Reaktionskräfte zur Abstützung der Führung des Antriebssystems reduziert und dadurch die Reibungskräfte vermindert.According to the invention, therefore, the attractive forces of the permanent magnets of the permanent magnet linear drive system serve for stabilizing the eccentrically arranged elevator car 24 and for spatial stabilization and guidance. By the eccentrically acting weight force F K , the reaction forces are reduced to support the leadership of the drive system and thereby reduces the frictional forces.

Durch eine Variation des Winkels W kann beim Entwurf einer Aufzugsanlage, bzw. eines entsprechenden Permanentmagnet-Linearantriebssystems, die Kompensation der Querkräfte FQ, sowie die Stabilisierung in der Drehachse Dz festgelegt werden. Der stationäre Teil 20 des Permanentmagnet-Linearantriebssystems wird also zur räumlichen Führung der Rucksack-Aufzugskabine 24 eingesetzt.By a variation of the angle W, the compensation of the transverse forces F Q , as well as the stabilization in the axis of rotation D z can be defined in the design of an elevator installation or a corresponding permanent magnet linear drive system. The stationary part 20 of the permanent magnet linear drive system is thus used for the spatial guidance of the backpack elevator car 24.

Der stationäre Teil 20 weist in einem oberen Bereich eine Nische oder Ablage a3 auf. Wie in Fig. 4A sowie 7A und 7B gezeigt, befindet sich die Ablage a3 auf dem oberen Ende des stationären Teils 20. Sie wird von den Interaktionsflächen a1, a2 zumindestens teilweise eingeschlossen und kann zum Anbringen von Schachtbauteilen verwendet werden. So lassen sich hier Schachtbauteile wie ein Positionsgeber, ein Bremspartner einer Haltebremse oder auch ein formschlüssiger Halteriegel anbringen.The stationary part 20 has a niche or tray a3 in an upper area. As in Fig. 4A 7A and 7B, the tray a3 is located on the upper end of the stationary part 20. It is at least partially enclosed by the interaction surfaces a1, a2 and can be used for mounting manhole components. Thus, shaft components such as a position sensor, a brake partner of a holding brake or even a form-fitting retaining bolt can be attached here.

Besonders vorteilhaft sind Ausführungsformen bei denen die beweglichen Teile 21 des Antriebssystems im oberen Bereich der Kabinenrückseite 27 befestigt sind.Embodiments in which the movable parts 21 of the drive system are fastened in the upper region of the rear of the cabin 27 are particularly advantageous.

Die Ausführungsformen lassen mit oder ohne weiterer Tragmittel zum Tragen der Aufzugskabine 24 realisieren. Solche Tragmittel sind beispielsweise Stahl- oder Aramidseile bzw. Riemen, welche die Aufzugskabine 24 mit einem Gegengewicht verbinden.The embodiments can be realized with or without further support means for supporting the elevator car 24. Such support means are, for example, steel or aramid ropes or belts which connect the elevator car 24 with a counterweight.

Weitere vorteilhafte Ausführungsformen sind in den Fig. 7A und 7B gezeigt. Fig. 7A zeigt eine Aufzugsanlage 1 mit jeweils zwei in y-Richtung übereinander angeordneten beweglichen Teilen 21 pro Interaktionsfläche a, b. Dementsprechend erstreckt sich die Interaktionslänge b vom endständigen Führungspunkt eines ersten beweglichen Teils 21 bis zur Mitte des zweiten beweglichen Teils 21 derselben Interaktionsfläche a1, a2. Fig. 7B zeigt eine Aufzugsanlage 1 mit einer Hauptführung in beweglichen Teilen 21 und einer Hilfsführung in mindestens einem Führungsschuh 22. Während jedes der beweglichen Teile 21 auf einer der beiden schräg zueinander geneigten Interaktionsflächen a, b geführt wird, wird der Führungsschuh 22 seitlich neben dem stationären Teil 20 auf einer Führungsschiene geführt. Gemäss Fig. 7B ist links und rechts vom stationären Teil 20 pro Interaktionsfläche a, b je ein Führungsschuh 22 dargestellt. Dementsprechend erstreckt sich die Interaktionslänge b vom endständigen Führungspunkt im Führungsschuh 22 bis zur Mitte des beweglichen Teils 21 einer Interaktionsfläche a1, a2.Further advantageous embodiments are in the Figs. 7A and 7B shown. Fig. 7A shows an elevator system 1, each with two in the y direction superimposed moving parts 21 per interaction surface a, b. Accordingly, the interaction length b extends from the terminal guide point of a first movable part 21 to the center of the second movable part 21 of the same interaction area a1, a2. Fig. 7B shows an elevator system 1 with a main guide in moving parts 21 and an auxiliary guide in at least one guide shoe 22. While each of the movable parts 21 is guided on one of the two obliquely inclined interaction surfaces a, b, the guide shoe 22 laterally adjacent to the stationary part 20th guided on a guide rail. According to Fig. 7B is shown on the left and right of the stationary part 20 per interaction surface a, b each guide shoe 22. Accordingly, the interaction length b extends from the terminal guide point in the guide shoe 22 to the center of the movable part 21 of an interaction surface a1, a2.

Gemäss Erfindung kann der Primärteil des Antriebssystems entweder in den stationären Teil 20 oder in die beweglichen Teile 21 integriert sein. Der sekundäre Teil des Antriebssystems befindet sich dann im jeweils anderen Teil.According to the invention, the primary part of the drive system can be integrated either in the stationary part 20 or in the moving parts 21. The secondary part of the drive system is then in the other part.

Vorzugsweise sitzen die Spulen S der Elektromagnete (wie zum Beispiel in Fig. 8 zu erkennen ist) des Primärteils des Antriebssystems im stationären Teil 20 während die Permanentmagnete der Sekundärteile 21 im beweglichen Teil des Antriebssystems sind. Es kann aber auch die umgekehrte Anordnung gewählt werden.Preferably, the coils S of the electromagnets (such as in Fig. 8 can be seen) of the primary part of Drive system in the stationary part 20 while the permanent magnets of the secondary parts 21 in the moving part of the drive system. But it can also be chosen the reverse arrangement.

Es können aber auch Antriebssysteme eingesetzt werden, bei denen der Primärteil sowohl Spulen als auch Permanentmagnete umfasst.But it can also drive systems are used, in which the primary part comprises both coils and permanent magnets.

In den Figuren 6A und 6B sind weitere Beispiele von stationären Teilen 20 eines erfindungsgemässen Permanentmagnet-Linearantriebssystems in Schnittdarstellung gezeigt.In the Figures 6A and 6B Further examples of stationary parts 20 of a permanent magnet linear drive system according to the invention are shown in sectional view.

In Fig. 8 ist eine erfindungsgemässe Notführung 29 gezeigt, die im gezeigten Beispiel oben am Kabinenrahmen 25 sitzt.In Fig. 8 an emergency guide 29 according to the invention is shown, which sits in the example shown at the top of the cabin frame 25.

Die Notführung 29 greift mindestens teilweise um oder hinter den stationären Teil 20, um ein Wegkippen (um die Dz Drehachse) der Aufzugskabine 24 zu verhindern, falls das Permanentmagnet-Linearantriebssystem ausfallen sollte (zum Beispiel bei einem Stromausfall), oder die vom Permanentmagnet-Linearantriebssystem hervorgerufenen Anziehungskräfte nachlassen sollten. Die Notführung 29 ist so ausgeführt, dass sie im Normalbetrieb berührungsfrei entlang des stationären Teils 20 verläuft. Sie kommt nur im Notfall zum mechanischen Eingriff. Vorzugsweise sind an den beiden oberen Ecken der Aufzugskabinen 24 Notführungen 29 vorgesehen.The emergency guide 29 engages at least partially around or behind the stationary part 20, to prevent tilting (about the D z axis of rotation) of the elevator car 24, if the permanent magnet linear drive system should fail (for example, in the event of a power failure), or by the permanent magnet Linear drive system induced attractions should subside. The emergency guide 29 is designed so that it runs without contact along the stationary part 20 in normal operation. It comes only in case of emergency for mechanical intervention. Preferably, 24 emergency guides 29 are provided at the two upper corners of the elevator cars.

Es wird als ein Vorteil der gezeigten Rucksackanordnung mit Antriebssystem am Kabinenrahmen 25 angesehen, dass die eigentliche Aufzugskabine 24 gegenüber dem Rahmen 25 (schall-) isoliert werden kann.It is regarded as an advantage of the illustrated backpack arrangement with drive system on the cabin frame 25 that the actual elevator car 24 can be isolated from the frame 25 (sound).

Die erfindungsgemässen Permanentmagnet-Linearantriebssysteme und die entsprechenden Aufzugsanlagen sind Platz sparender in der Schachtprojektion.The inventive permanent magnet linear drive systems and the corresponding elevator systems are space-saving in the shaft projection.

Es ist ein weiterer Vorteil, dass die Motoranziehungskräfte zum Teil durch das durch das Kabinengewicht FK hervorgerufenen Drehmoment kompensiert werden und dass durch die berührungsfreie Führung über den Luftspalt keine Reibungsverluste wie bei konventionellen Anordnungen entstehen.It is a further advantage that the engine attractive forces are in part compensated by the torque caused by the cabin weight F K and that the frictionless contact over the air gap results in no friction losses as in conventional arrangements.

Vorteilhaft ist auch, dass durch den Einsatz von mindestens zwei beweglichen Teilen 21 eine Redundanz beim Antrieb gegeben ist.It is also advantageous that the use of at least two movable parts 21 provides redundancy in the drive.

Die einzelnen Elemente und Aspekte der verschiedenen Ausführungsformen können beliebig miteinander kombiniert werden.The individual elements and aspects of the various embodiments can be combined as desired.

Claims (13)

  1. Lift installation (1) with a lift cage (24) and a linear drive system with a stationary part (20), the longitudinal axis (Ly) of which is arranged vertically along a shaft wall (26) of the lift installation (1), and with a movable part which moves along the stationary part (20) when the linear drive system is controlled in drive, and wherein the lift cage (24) is arranged in a rucksack configuration and is movable by the linear drive system along the stationary part (20), characterised in that
    - the stationary part (20) has at least two inclined interaction surfaces (a1, a2) which extend parallel to the longitudinal axis (Ly) and which lie in a plane, which includes an angle (W) between 0° and 180° and the surface normals of which are oriented towards the lift cage (24), and
    - the movable part comprises at least two units (21) which are so arranged in common on a rear side (27) of the lift cage (24) and mechanically positively connected with the lift cage (24) that when drive control is carried out each of the two units (21) produces a movement along one of the interaction surfaces (a1, a2) in order to thereby move the lift cage (24).
  2. Lift installation (1) according to claim 1, characterised in that the stationary part (20) is polygonal in cross-section perpendicular to the longitudinal axis (Ly) and the surface normals of the two interaction surfaces (a1, a2) are inclined away from or towards one another.
  3. Lift installation (1) according to claim 1 or 2, characterised in that between a first one (a1) of the two interaction surfaces and a first one of the two units (21) there is a first traction force (FN) substantially parallel to the surface normal of this interaction surface (a1) and that between the second one (a2) of the two interaction surfaces and the second one of the two units (21) there is a second attraction force (FN) substantially parallel to the surface normal of this interaction surface (a2).
  4. Lift installation (1) according to claim 3, characterised in that the first and the second attraction force (FN) act at least partly opposite one another and the effective holding forces (FH) acting between each of the units (21) and the associated interaction surface (a1, a2) therefore reduce.
  5. Lift installation (1) according to claim 1 or 2, characterised in that the inclined arrangement of the interaction surfaces (a1, a2) compensate for torques (Dx, Dy Dz) resulting from the eccentric suspension of the lift cage (24) due to the rucksack configuration.
  6. Lift installation (1) according to claim 1 or 2, characterised in that the two units (21) are arranged at the same height, but at a spacing from one another, on the rear side (27) of the lift cage (24) so as to produce a rotational stabilisation of the lift cage (24) about an axis (Dy) extending parallel to the longitudinal axis (Ly).
  7. Lift installation (1) according to claim 1 or 2, characterised in that due to the inclined arrangement of the interaction surfaces (a1, a2) and the corresponding attraction forces of the unit (21) opposite the respective interaction surface (a1, a2) there is produced not only a rotational stabilisation of the lift cage (24) about an axis (Dx) extending perpendicularly to the longitudinal axis (Ly) and perpendicularly to the rear side of the lift cage (24), but also a rotational stabilisation of the lift cage (24) about an axis (Dz) extending perpendicularly to the longitudinal axis (Ly) and parallel to the rear side of the lift cage (24).
  8. Lift installation (1) according to one of the preceding claims, characterised in that due to the inclined arrangement of the interaction surfaces (a1, a2) the stationary part (20) serves as a three-dimensional guide element for a vertical movement of the lift cage (24) along the shaft wall (26).
  9. Lift installation (1) according to one of the preceding claims, characterised in that the units (21) are separated from the stationary part (20) by way of an air gap and contactlessly guide the vertical movement of the lift cage (24) along the shaft wall (26).
  10. Lift installation (1) according to one of the preceding claims, characterised in that a guide shoe (22) guides the vertical movement of the lift cage (24) on a guide rail.
  11. Lift installation (1) according to one of the preceding claims, characterised in that provided in an upper region of the lift cage (24) is an emergency guide (29) which engages at least partly around or behind the stationary part (20) in order to prevent tipping away of the lift cage (24) in case the linear drive system should fail or the attraction forces produced by the linear drive system should drop away.
  12. Lift installation (1) according to one of the preceding claims, characterised in that an upper region of the stationary part (20) has a rest (a3) which can be used for mounting shaft components such as a position transmitter and/or a brake partner of a holding brake and/or a mechanically positively acting holding lock.
  13. Lift installation (1) according to one of the preceding claims, characterised in that the linear drive system comprises at least one permanent magnet or at least one layer structure with at least one coil.
EP07101651A 2006-02-08 2007-02-02 Linear motion drive system for Rucksack type elevator Active EP1818305B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07101651A EP1818305B1 (en) 2006-02-08 2007-02-02 Linear motion drive system for Rucksack type elevator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06101413 2006-02-08
EP07101651A EP1818305B1 (en) 2006-02-08 2007-02-02 Linear motion drive system for Rucksack type elevator

Publications (2)

Publication Number Publication Date
EP1818305A1 EP1818305A1 (en) 2007-08-15
EP1818305B1 true EP1818305B1 (en) 2012-04-11

Family

ID=36603646

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07101651A Active EP1818305B1 (en) 2006-02-08 2007-02-02 Linear motion drive system for Rucksack type elevator

Country Status (14)

Country Link
US (1) US7628251B2 (en)
EP (1) EP1818305B1 (en)
JP (1) JP2007217188A (en)
KR (1) KR101340258B1 (en)
CN (1) CN101016135B (en)
AT (1) ATE553056T1 (en)
AU (1) AU2007200533B2 (en)
CA (1) CA2577358A1 (en)
HK (1) HK1110292A1 (en)
NZ (1) NZ552308A (en)
RU (1) RU2007104732A (en)
SG (1) SG135105A1 (en)
TW (1) TWI370098B (en)
ZA (1) ZA200700936B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014219862A1 (en) * 2014-09-30 2016-03-31 Thyssenkrupp Ag elevator system
WO2021099263A1 (en) 2019-11-19 2021-05-27 Inventio Ag Lift system with air-bearing linear motor

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613027B2 (en) * 2003-04-14 2011-01-12 インベンテイオ・アクテイエンゲゼルシヤフト Drive device with linear motor, elevator with drive device, and method of operating the drive device
SG109535A1 (en) * 2003-08-14 2005-03-30 Inventio Ag Electric motor, lift with a cage movable by an electric motor, and lift with a cage and with an electric motor for movement of a guide element relative to the cage
ATE557464T1 (en) * 2010-01-15 2012-05-15 Maxon Motor Ag LINEAR ACTUATOR
US9136749B1 (en) * 2012-09-28 2015-09-15 John M. Callier Elevator electrical power system
CN105189326B (en) * 2013-05-06 2018-08-24 奥的斯电梯公司 Stator of linear motor iron core for self-propelled elevator
ES2711459T3 (en) 2013-12-05 2019-05-03 Otis Elevator Co Linear propulsion system
US10532911B2 (en) 2013-12-05 2020-01-14 Otis Elevator Company Motor drive having dual inverter system connected to first and second stator sections
CN106132864B (en) * 2014-03-14 2019-09-10 奥的斯电梯公司 System and method for determining the magnetic field orientating of magnetic part in cordless elevator system
DE102014104458A1 (en) * 2014-03-28 2015-10-01 Thyssenkrupp Elevator Ag elevator system
DE102014017357A1 (en) 2014-11-25 2016-05-25 Thyssenkrupp Ag elevator system
WO2016106140A1 (en) * 2014-12-22 2016-06-30 Otis Elevator Company Mounting assembly for elevator linear propulsion system
AU2015400257B2 (en) * 2015-06-26 2021-04-01 Kone Corporation Elevator with linear motor
CN106335835B (en) * 2015-07-09 2020-10-02 奥的斯电梯公司 Vibration damper for elevator linear propulsion system
DE102015218025B4 (en) * 2015-09-18 2019-12-12 Thyssenkrupp Ag elevator system
US10532908B2 (en) 2015-12-04 2020-01-14 Otis Elevator Company Thrust and moment control system for controlling linear motor alignment in an elevator system
DE102016205463A1 (en) 2016-04-01 2017-10-05 Thyssenkrupp Ag Guide arrangement for an elevator installation
DE102016118028A1 (en) 2016-09-23 2018-03-29 Thyssenkrupp Ag Transport device with a safety device for limiting delays
EP3526153A1 (en) 2016-10-14 2019-08-21 Inventio AG A linear drive system for an elevator installation
KR101935669B1 (en) * 2017-05-18 2019-01-04 세메스 주식회사 Tower lift
CN108341321A (en) * 2018-04-26 2018-07-31 西南石油大学 It is a kind of with gyroscope without guide rail electromagnetic type elevator
EP3632831A1 (en) * 2018-10-03 2020-04-08 KONE Corporation Movable maintenance robot system, method for providing maintenance to an elevator car of an elevator and elevator

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489787A (en) * 1990-08-01 1992-03-23 Mitsubishi Electric Corp Elevator driving device
JP2529771B2 (en) * 1990-11-06 1996-09-04 三菱電機株式会社 Low Press Linear Motor Elevator
JPH0537847U (en) * 1991-03-25 1993-05-21 オーチス エレベータ カンパニー Linear motor elevator
US5203432A (en) * 1991-11-15 1993-04-20 Otis Elevator Company Flat linear motor driven elevator
US5235226A (en) * 1992-01-13 1993-08-10 Otis Elevator Company Highly conductive layer arrangement for a linear motor secondary
JP2902867B2 (en) * 1992-09-07 1999-06-07 株式会社東芝 Self-propelled elevator
KR0137949Y1 (en) * 1993-01-21 1999-04-01 이희종 Linear Drive Elevator
US5808381A (en) * 1994-08-09 1998-09-15 Hitachi Metals, Ltd. Linear motor
US5801462A (en) * 1995-03-31 1998-09-01 Minolta Co., Ltd. Linear motor and image reading apparatus
US5668421A (en) * 1995-04-06 1997-09-16 E. B. Eddy Forest Products Ltd. Pressurized air-gap guided active linear motor suspension system
US5751076A (en) * 1996-01-19 1998-05-12 Inventio Ag Drive system for lifts
EP0858965B1 (en) * 1997-02-17 2000-04-26 Thyssen Aufzugswerke GmbH Linear motor for driving an elevator car
AU740265B2 (en) * 1997-03-06 2001-11-01 Inventio Ag Elevator car
FI108025B (en) * 1997-06-19 2001-11-15 Kone Corp Elevator
MY133384A (en) 2000-07-17 2007-11-30 Inventio Ag Secondary part of a linear motor, method for the production thereof, linear motor with secondary part and use of the linear motor
WO2003064310A1 (en) * 2002-01-31 2003-08-07 Inventio Ag Elevator, particularly for transporting passengers
JP2006519742A (en) 2003-03-06 2006-08-31 インベンテイオ・アクテイエンゲゼルシヤフト elevator
JP4613027B2 (en) * 2003-04-14 2011-01-12 インベンテイオ・アクテイエンゲゼルシヤフト Drive device with linear motor, elevator with drive device, and method of operating the drive device
SG109535A1 (en) * 2003-08-14 2005-03-30 Inventio Ag Electric motor, lift with a cage movable by an electric motor, and lift with a cage and with an electric motor for movement of a guide element relative to the cage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014219862A1 (en) * 2014-09-30 2016-03-31 Thyssenkrupp Ag elevator system
WO2021099263A1 (en) 2019-11-19 2021-05-27 Inventio Ag Lift system with air-bearing linear motor

Also Published As

Publication number Publication date
AU2007200533B2 (en) 2011-10-06
TW200806562A (en) 2008-02-01
CN101016135A (en) 2007-08-15
CN101016135B (en) 2010-11-03
ZA200700936B (en) 2007-11-28
EP1818305A1 (en) 2007-08-15
KR20070080838A (en) 2007-08-13
JP2007217188A (en) 2007-08-30
AU2007200533A1 (en) 2007-08-23
US7628251B2 (en) 2009-12-08
KR101340258B1 (en) 2013-12-10
RU2007104732A (en) 2008-08-20
SG135105A1 (en) 2007-09-28
CA2577358A1 (en) 2007-08-08
US20070199770A1 (en) 2007-08-30
TWI370098B (en) 2012-08-11
HK1110292A1 (en) 2008-07-11
NZ552308A (en) 2008-11-28
ATE553056T1 (en) 2012-04-15

Similar Documents

Publication Publication Date Title
EP1818305B1 (en) Linear motion drive system for Rucksack type elevator
EP0858965B1 (en) Linear motor for driving an elevator car
EP0234543B1 (en) Magnetic force system for low-friction transportation of loads
DE1580909C3 (en) Transport system with a track-bound hovercraft with linear motor drive
DE4115728C2 (en) Elevator with linear motor drive
DE3905582A1 (en) FLOATING, DRIVE AND GUIDE DEVICE FOR A MAGNETIC FLOATING RAIL WITH INDUCTIVE REPELLATION
EP3201117A1 (en) Elevator system
DE202020100256U1 (en) Tracked vehicle powered by a linear motor
WO2002022956A1 (en) Support for a track-guided high-speed vehicle
DE112005003475T5 (en) Elevator car with an angled beam stranding arrangement
DE2556076A1 (en) MAGNETIC LIFTING VEHICLE
EP3253637B1 (en) Transportation device for rail vehicles
DE2626440C3 (en) Magnet arrangement for a magnetic levitation vehicle
WO2017076685A1 (en) Frame for an elevator system
DE2318756A1 (en) ELECTROMAGNETIC GUIDANCE FOR A VEHICLE OR DGL
DE102008012854A1 (en) Sliding door arrangement for e.g. van, has guidance magnetic unit attached to guide and carrier elements, so that sliding door is magnetically guided between enclosed and opening positions by magnetic interaction of levitation magnetic unit
DE102006039938A1 (en) Permanent magnetic levitation bogie device
DE10249334A1 (en) Positioning system for moving a bogie truck in overhead gantry robot systems has an electromagnetic linear drive mechanism with active and passive units for moving the bogie truck
DE2900053A1 (en) High speed track magnetic rail joints - have spacers and clamps, elastomer fillings, and fish plate with slots allowing movement
DE19803952A1 (en) Direct drive with air bearing for linear, planar and rotary movement, operating on hybrid stepper motor principle
EP3676208B1 (en) Lift system with vibration damping
EP1332939B1 (en) Cable carrier
DE10133337A1 (en) Concrete support structure esp. for travel way for magnetically levitated train, has additional boom arranged at each end of support webs
DE19931396A1 (en) Cable lift system
DE102004050334B4 (en) Sliding door with a magnetic support with a non-tilting guide element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20071122

17Q First examination report despatched

Effective date: 20080207

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1110292

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 553056

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007009662

Country of ref document: DE

Effective date: 20120606

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120411

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120411

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1110292

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120712

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120722

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007009662

Country of ref document: DE

Effective date: 20130114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

BERE Be: lapsed

Owner name: INVENTIO A.G.

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130202

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 553056

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130202

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070202

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180216

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180227

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210223

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210223

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502007009662

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 18