EP1815033B1 - Use of a copper-zinc alloy - Google Patents

Use of a copper-zinc alloy Download PDF

Info

Publication number
EP1815033B1
EP1815033B1 EP05813327.3A EP05813327A EP1815033B1 EP 1815033 B1 EP1815033 B1 EP 1815033B1 EP 05813327 A EP05813327 A EP 05813327A EP 1815033 B1 EP1815033 B1 EP 1815033B1
Authority
EP
European Patent Office
Prior art keywords
weight
alloy
copper
zinc
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05813327.3A
Other languages
German (de)
French (fr)
Other versions
EP1815033A1 (en
EP1815033B2 (en
Inventor
Norbert Gaag
Alexander Dehnelt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Metall Stiftung and Co KG
Original Assignee
Diehl Metall Stiftung and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35618774&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1815033(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Diehl Metall Stiftung and Co KG filed Critical Diehl Metall Stiftung and Co KG
Publication of EP1815033A1 publication Critical patent/EP1815033A1/en
Application granted granted Critical
Publication of EP1815033B1 publication Critical patent/EP1815033B1/en
Publication of EP1815033B2 publication Critical patent/EP1815033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/08Valves guides; Sealing of valve stem, e.g. sealing by lubricant

Definitions

  • the invention relates to a use of a copper-zinc alloy according to claim 1.
  • a valve guide in an internal combustion engine copper-zinc alloys or sintered steel alloys are used.
  • a copper-zinc alloy is known.
  • the properties of the Cu-Zn alloys no longer meet the requirements that are placed on such a valve guide to be used in the new FSI engines.
  • the working temperature of the valve guides can reach and exceed 300 ° C.
  • the currently used copper-zinc alloys soften at these temperatures.
  • a comparable, detrimental effect is also observed in sintered steel alloys.
  • Sintered steel alloys also soften at temperatures above 300 ° C, in addition, the hardness varies widely. Incidentally, the production cost of sintered steel alloys is high due to the powder metallurgical manufacturing process.
  • the present invention is therefore the problem of providing a copper-zinc alloy for use as a valve guide, the copper-zinc alloy meets the requirements of materials for valve guides, especially at elevated temperatures and easy to manufacture.
  • the object is achieved by the use of a copper-zinc alloy for a valve guide according to claim 1.
  • the specified copper-zinc alloy has a surprisingly high thermal stability, which in combination with their good wear resistance allows use as a valve guide in the first place.
  • This surprising combination of material properties offers the possibility to use the known alloy in a new way as a valve guide.
  • the use as a valve guide in modern engines requires the combination of high temperature resistance above 300 ° C with good wear resistance, which is necessary as a result of acting on the valve tappet lateral forces. Due to these other outstanding properties, the high friction coefficient is negligible.
  • the invention is over a hitherto prevalent in the professional world prejudice.
  • valve guides in rod shape by semi-or fully continuous continuous casting, extrusion and drawing, ie by hot and cold forming, can be produced.
  • the alloy has a structure including an ⁇ -mixed crystal portion and a ⁇ -mixed crystal portion.
  • the copper-zinc alloy for use as a valve guide comprises 70 to 73% copper, 6 to 8% manganese, 4 to 6% aluminum, 1 to 4% silicon, 1 to 3% iron, 0.5 to 1.5% lead, 0 to 0.2% nickel, 0 to 0.2% tin, balance zinc and unavoidable impurities.
  • the structure of the further educated and according to the DE 29 19 478 C2 The alloy produced consists of an alpha and ⁇ mixed crystal matrix with up to 60 to 85% ⁇ -phase, with the cubic body-centered ⁇ -phase being the basic matrix in which the cubic face-centered ⁇ -phase is predominantly finely dispersed.
  • the structure may also contain hard intermetallic compounds, for example iron-manganese silicides.
  • the alpha phase determines the durability of the alloy.
  • Valve guides of this alloy have a surprisingly high wear resistance, which is even significantly higher than that of sintered steel.
  • the dry friction wear in valve guides made of said alloy allows use in engines that require "cleaner" fuels, ie those that are lead-free or sulfur-free, as an additional wear-reducing effect is eliminated as a result of the absence of these additives. This is particularly advantageous at temperatures around 300 ° C, the operating temperature of the valve guides in FSI engines.
  • Another advantage in the use of this alloy as a valve guide is that in the desired working range above 300 ° C, a stable level of hardness is achieved, since a softening of the alloy occurs only above 430 ° C, whereas the softening of previously used copper-zinc Alloys starting at 150 ° C begins.
  • the associated hardening waste occurs from 150 ° C as well as the hardness drop in sintered steel alloys from 300 ° C.
  • the use of a copper-zinc alloy is claimed, wherein the alloy is 69.5 to 71.5% copper, 6.5 to 8% manganese, 4.5 to 6% aluminum, 1 to 2.5% Silicon, 1 to 2.5% iron, 0.5 to 1% lead, 0 to 0.2% nickel, 0 to 0.2% tin, balance zinc and unavoidable impurities.
  • the structure of the conventionally produced alloy has an ⁇ and ⁇ mixed crystal matrix with up to 80% of finely dispersed alpha phase. About that In addition, hard intermetallic compounds, such as Fe-Mn silicides may be included.
  • valve guide is particularly advantageous because it has a hot tensile strength twice as high as conventional copper-zinc alloys heretofore used as a valve guide. Further advantageous properties are a high softening temperature, high strength and high wear resistance.
  • a copper-zinc alloy is used for valve guides, wherein the alloy 60 to 61.5% copper, 3 to 4% manganese, 2 to 3% aluminum, 0.3 to 1% silicon, 0.2 to 1% iron , 0 to 0.5% lead, 0.3 to 1% nickel, 0 to 0.2% tin, balance zinc and unavoidable impurities.
  • the structure of said alloy and correspondingly produced has a matrix of ⁇ -mixed crystals, in which needle and band-shaped ⁇ -precipitates are embedded.
  • the microstructure may also be contained randomly disperse manganese iron silicides.
  • Valve guides made of this alloy have a high wear resistance, which is even significantly higher than that of sintered steel.
  • the dry friction wear in valve guides made of said alloy allows use in engines that require "cleaner" fuels, ie those that are lead-free or sulfur-free, as an additional wear-reducing effect is eliminated as a result of the absence of these additives. This is particularly advantageous at temperatures around 300 ° C, the operating temperature of the valve guides in FSI engines.
  • a copper-zinc alloy is used for valve guides, which additionally has at least one of the following elements comprising a concentration ⁇ 0.05% chromium, ⁇ 0.05% titanium, ⁇ 0.05% zirconium.
  • sintered steel and copper-zinc alloys with approximately the following composition are used as the material for valve guides with little temperature stress: 56 to 60% copper, 0.3 to 1% lead, 0.2 to 1.2% iron, 0 to 0.2 % Tin, 0.7 to 2% aluminum, 1 to 2.5% manganese, 0.4 to 1% silicon and the remainder zinc plus unavoidable impurities.
  • a standard alloy such an alloy is referred to as a standard alloy.
  • Alloy 1 and Alloy 2 are examples of the alloy of the invention.
  • alloy 1 shows a significant increase in hardness from 224 to 280 HV50 with increasing temperature up to 350 ° C.
  • alloy 1 has a hardness higher by 140 HV50 than sintered steel. Alloy 1 thus has its maximum hardness at the temperatures that correspond to the working temperature of valve guides in FS1 engines.
  • the higher hardness of Alloys 1 and 2 in comparison to the conventionally used materials is due on the one hand to the higher initial hardness and on the other hand to hardening effects.
  • the electrical conductivity can be used as a measure of the thermal conductivity, with a high value for good thermal conductivity.
  • the electrical conductivity of the standard alloy is 11 m / ⁇ mm 2 .
  • Alloy 2 has a good electrical conductivity of 7.5 m / ⁇ mm 2 , which is only about a quarter less than the standard alloy.
  • the electrical conductivity of alloy 1 is 4.6 m / ⁇ mm 2 . Compared to sintered steel (3.1 m / ⁇ mm 2 ) this means an approximately 48% higher electrical conductivity or heat dissipation. Thus, the heat dissipation of alloys 1 and 2 is significantly improved compared to sintered steel.
  • alloys 1 and 2 have clear advantages over sintered steel and the standard alloy.
  • Sintered steel has a wear of 312 km / g, which corresponds approximately to the wear behavior of the standard alloy with 357 km / g.
  • the dry wear behavior of Alloy 2 at 417 km / g is significantly better than that of standard alloy and sintered steel. In other words, the wear is significantly lower.
  • Alloy 1 even has twice the wear resistance compared to sintered steel.
  • the low dry friction wear makes the alloys 1 and 2 particularly interesting, since the motor-related increasing purity of the fuels, ie their lead or sulfur, the wear-reducing effect of the so-called “blow by", the lubrication by the fuel itself, in the additive Future will be less present, omitted.
  • the hot tensile strength was determined by tensile tests at 350 ° C.
  • the hot tensile strength of the standard alloy is 180 N / mm 2 .
  • Alloy 1 is twice as high (384 N / mm 2 ).
  • Alloy 2 has an approximately 35% higher hot tensile strength, which is 243 N / mm 2 .
  • Alloy 1 and Alloy 2 can preferably be produced by semi-continuous or fully continuous continuous casting, extrusion, drawing and straightening.
  • Alloy 2 and in particular Alloy 1 have clear advantages over the previous standard alloy used as a valve guide alloy as well as compared to sintered steel. These advantages include hot tensile strength, softening temperature, strength and wear resistance. In addition, the conductivity is sufficient, so that the alloys 1 and 2 in terms of use as a valve guide represent a significant improvement, since these alloys meet the requirements of the material at the increased operating temperatures in the new engines.
  • Table 1 shows the material properties of a Cu-Zn standard alloy, a sintered steel alloy, Alloy 1 and Alloy 2 in comparison. property standard alloy Alloy 1 Alloy 2 elec.
  • Conductivity m / ⁇ mm 2 ) 11 4.6 7.5 Hardness (HV50) cold formed (10%) 197 224 224 Dry wear (km / g) 357 625 417 Wear lubricated (km / g) 126 1470 94
  • Softening temperature 10% cold formed (° C) 310 480 430 Hot tensile strength at 350 ° C (N / mm 2 ) 173 350 232

Description

Die Erfindung betrifft eine Verwendung einer Kupfer-Zink-Legierung gemäß Anspruch 1.The invention relates to a use of a copper-zinc alloy according to claim 1.

Für eine Ventilführung in einem Verbrennungsmotor werden Kupfer-Zink-Legierungen oder Sinterstahl-Legierungen verwendet. Beispielsweise aus der DD 270 931 A1 ist eine solche Kupfer-Zink-Legierung bekannt. Die Eigenschaften der Cu-Zn-Legierungen genügen jedoch nicht mehr den Anforderungen, die an eine solche Ventilführung gestellt werden, die in den neuen FSI-Motoren eingesetzt werden soll. In diesen Motoren kann die Arbeitstemperatur der Ventilführungen 300°C erreichen und überschreiten. Die derzeit verwendeten Kupfer-Zink-Legierungen erweichen jedoch bei diesen Temperaturen. Ein vergleichbarer, nachteiliger Effekt wird auch bei Sinterstahllegierungen beobachtet. Sinterstahl-legierungen erweichen ebenfalls bei Temperaturen oberhalb 300°C, wobei außerdem die Härte stark variiert. Im Übrigen ist der Herstellungsaufwand für Sinterstahllegierungen in Folge des pulvermetallurgischen Herstellungsverfahrens hoch.For a valve guide in an internal combustion engine, copper-zinc alloys or sintered steel alloys are used. For example, from the DD 270 931 A1 Such a copper-zinc alloy is known. The properties of the Cu-Zn alloys, however, no longer meet the requirements that are placed on such a valve guide to be used in the new FSI engines. In these motors, the working temperature of the valve guides can reach and exceed 300 ° C. However, the currently used copper-zinc alloys soften at these temperatures. A comparable, detrimental effect is also observed in sintered steel alloys. Sintered steel alloys also soften at temperatures above 300 ° C, in addition, the hardness varies widely. Incidentally, the production cost of sintered steel alloys is high due to the powder metallurgical manufacturing process.

In Erkenntnis dieser Gegebenheiten liegt vorliegender Erfindung deshalb die Problemstellung zugrunde, eine Kupfer-Zink-Legierung für eine Verwendung als Ventilführung bereitzustellen, wobei die Kupfer-Zink-Legierung den Anforderungen an Materialien für Ventilführungen genügt, insbesondere bei erhöhten Temperaturen und einfach herzustellen ist.In recognition of these circumstances, the present invention is therefore the problem of providing a copper-zinc alloy for use as a valve guide, the copper-zinc alloy meets the requirements of materials for valve guides, especially at elevated temperatures and easy to manufacture.

Die Aufgabe wird erfindungsgemäß gelöst durch die Verwendung einer Kupfer-Zink-Legierung für eine Ventilführung gemäß Anspruch 1.The object is achieved by the use of a copper-zinc alloy for a valve guide according to claim 1.

Damit wird also eine neue Verwendung für eine Kupfer-Zink-Legierung angegeben. Eine ähnliche Legierung gemäß der DE 29 19 478 C2 wird als Synchronring-Legierung eingesetzt und weist einen hohen Reibungsbeiwert bzw. - koeffizient auf. Bislang wurde ein hoher Reibungsbeiwert als Hinderungsgrund für die Verwendung eines Materials als Ventilführung angesehen, da hierfür die Reibbeanspruchung möglichst gering sein soll.This indicates a new use for a copper-zinc alloy. A similar alloy according to the DE 29 19 478 C2 is used as a synchronizer ring alloy and has a high coefficient of friction or coefficient. So far, a high coefficient of friction was regarded as a hindrance to the use of a material as a valve guide, since this is the friction stress should be as low as possible.

Neben einer guten Temperaturbeständigkeit hat sich gezeigt, dass die angegebene Kupfer-Zink-Legierung eine überraschend hohe Warmfestigkeit aufweist, die in Kombination mit ihrem guten Verschleißwiderstand eine Verwendung als Ventilführung überhaupt erst ermöglicht. Diese überraschende Kombination von Materialeigenschaften bietet die Möglichkeit, die bekannte Legierung in neuer Art und Weise als Ventilführung zu verwenden. Die Verwendung als Ventilführung in modernen Motoren erfordert die Kombination von hoher Temperaturbeständigkeit oberhalb 300°C mit gutem Verschleißwiderstand, der in Folge von auf die Ventilstößel wirkenden Querkräften notwendig ist. In Folge dieser übrigen überragenden Eigenschaften ist der hohe Reibungskoeffizient vernachlässigbar. Damit setzt sich die Erfindung über ein bislang in der Fachwelt verbreitetes Vorurteil hinweg.In addition to a good temperature resistance has been shown that the specified copper-zinc alloy has a surprisingly high thermal stability, which in combination with their good wear resistance allows use as a valve guide in the first place. This surprising combination of material properties offers the possibility to use the known alloy in a new way as a valve guide. The use as a valve guide in modern engines requires the combination of high temperature resistance above 300 ° C with good wear resistance, which is necessary as a result of acting on the valve tappet lateral forces. Due to these other outstanding properties, the high friction coefficient is negligible. Thus, the invention is over a hitherto prevalent in the professional world prejudice.

Dem Erfordernis der guten und einfachen Herstellbarkeit wird dadurch Rechnung getragen, dass die Ventilführungen in Stangenform durch halb- oder vollkontinuierlichen Strangguss, Strangpressen und Ziehen, also durch Warm- und Kaltverformung, herstellbar sind.The requirement of good and easy manufacturability is taken into account that the valve guides in rod shape by semi-or fully continuous continuous casting, extrusion and drawing, ie by hot and cold forming, can be produced.

Die Legierung weist ein Gefüge auf, das einen α-Mischkristall-Anteil und einen β-Mischkristall-Anteil beinhaltet.The alloy has a structure including an α-mixed crystal portion and a β-mixed crystal portion.

In einer vorteilhaften Weiterbildung umfasst die Kupfer-Zink-Legierung für die Verwendung als Ventilführung 70 bis 73 % Kupfer, 6 bis 8 % Mangan, 4 bis 6 % Aluminium, 1 bis 4 % Silizium, 1 bis 3 % Eisen, 0,5 bis 1,5 % Blei, 0 bis 0,2 % Nickel, 0 bis 0,2 % Zinn, Rest Zink sowie unvermeidbare Verunreinigungen.In an advantageous development, the copper-zinc alloy for use as a valve guide comprises 70 to 73% copper, 6 to 8% manganese, 4 to 6% aluminum, 1 to 4% silicon, 1 to 3% iron, 0.5 to 1.5% lead, 0 to 0.2% nickel, 0 to 0.2% tin, balance zinc and unavoidable impurities.

Das Gefüge der weitergebildeten und gemäß der DE 29 19 478 C2 hergestellten Legierung besteht aus einer Alpha- und β-Mischkristallmatrix mit bis zu 60 bis 85 % α-Phase, wobei die kubisch-raumzentrierte β-Phase die Grundmatrix darstellt, in der die kubisch-flächenzentrierte α-Phase überwiegend feindispers verteilt ist. Im Gefüge können auch harte intermetallische Verbindungen beispielsweise Eisen-Mangan-Silizide enthalten sein. Die Alphaphase bestimmt die Beständigkeit der Legierung.The structure of the further educated and according to the DE 29 19 478 C2 The alloy produced consists of an alpha and β mixed crystal matrix with up to 60 to 85% α-phase, with the cubic body-centered β-phase being the basic matrix in which the cubic face-centered α-phase is predominantly finely dispersed. The structure may also contain hard intermetallic compounds, for example iron-manganese silicides. The alpha phase determines the durability of the alloy.

Ventilführungen aus dieser Legierung weisen einen überraschend hohen Verschleißwiderstand auf, der sogar deutlich höher ist, als der von Sinterstahl. Besonders der Trockenreibverschleiß bei Ventilführungen aus besagter Legierung ermöglicht den Einsatz in Motoren, die "reinere" Kraftstoffe benötigen, also solche die blei- oder schwefelfrei sind, da in Folge des Nichtvorhandenseins dieser Additive eine zusätzliche verschleißmindernde Wirkung entfällt. Die ist insbesondere bei Temperaturen um 300°C, der Arbeitstemperatur der Ventilführungen in FSI-Motoren, besonders vorteilhaft.Valve guides of this alloy have a surprisingly high wear resistance, which is even significantly higher than that of sintered steel. In particular, the dry friction wear in valve guides made of said alloy allows use in engines that require "cleaner" fuels, ie those that are lead-free or sulfur-free, as an additional wear-reducing effect is eliminated as a result of the absence of these additives. This is particularly advantageous at temperatures around 300 ° C, the operating temperature of the valve guides in FSI engines.

Ein weiterer Vorteil in der Verwendung dieser Legierung als Ventilführung besteht darin, dass im angestrebten Arbeitsbereich oberhalb 300°C, ein stabiles Härteniveau erreicht wird, da eine Erweichung der Legierung erst oberhalb von 430°C eintritt, wogegen die Erweichung von bislang verwendeten Kupfer-Zink-Legierungen schon ab 150°C beginnt. Der damit einhergehende Härteabfall tritt ab 150°C ebenso auf, wie der Härteabfall bei Sinterstahl-Legierungen ab 300°C.Another advantage in the use of this alloy as a valve guide is that in the desired working range above 300 ° C, a stable level of hardness is achieved, since a softening of the alloy occurs only above 430 ° C, whereas the softening of previously used copper-zinc Alloys starting at 150 ° C begins. The associated hardening waste occurs from 150 ° C as well as the hardness drop in sintered steel alloys from 300 ° C.

In einer bevorzugten Alternative wird die Verwendung einer Kupfer-Zink-Legierung beansprucht, wobei die Legierung 69,5 bis 71,5 % Kupfer, 6,5 bis 8 % Mangan, 4,5 bis 6 % Aluminium, 1 bis 2,5 % Silizium, 1 bis 2,5 % Eisen, 0,5 bis 1 % Blei, 0 bis 0,2 % Nickel, 0 bis 0,2 % Zinn, Rest Zink sowie unvermeidbare Verunreinigungen umfasst.In a preferred alternative, the use of a copper-zinc alloy is claimed, wherein the alloy is 69.5 to 71.5% copper, 6.5 to 8% manganese, 4.5 to 6% aluminum, 1 to 2.5% Silicon, 1 to 2.5% iron, 0.5 to 1% lead, 0 to 0.2% nickel, 0 to 0.2% tin, balance zinc and unavoidable impurities.

Das Gefüge der in üblicher Weise hergestellten Legierung weist eine α- und β-Mischkristallmatrix mit bis zu 80 % feindispers verteilter Alphaphase auf. Darüber hinaus können harte intermetallische Verbindungen, beispielsweise Fe-Mn-Silizide enthalten sein.The structure of the conventionally produced alloy has an α and β mixed crystal matrix with up to 80% of finely dispersed alpha phase. About that In addition, hard intermetallic compounds, such as Fe-Mn silicides may be included.

Die Verwendung der besagten Legierung als Ventilführung ist besonders vorteilhaft, da sie eine Warmzugfestigkeit aufweist, die einen doppelt so hohen Betrag hat, wie sie herkömmliche Kupfer-Zink-Legierungen, die bislang als Ventilführung eingesetzt wurden, besitzen. Weitere vorteilhafte Eigenschaften sind eine hohe Erweichungstemperatur, eine hohe Festigkeit und eine hohe Verschleißbeständigkeit.The use of said alloy as a valve guide is particularly advantageous because it has a hot tensile strength twice as high as conventional copper-zinc alloys heretofore used as a valve guide. Further advantageous properties are a high softening temperature, high strength and high wear resistance.

Vorteilhafterweise wird für Ventilführungen eine Kupfer-Zink-Legierung verwendet, wobei die Legierung 60 bis 61,5 % Kupfer, 3 bis 4 % Mangan, 2 bis 3 % Aluminium, 0,3 bis 1 % Silizium, 0,2 bis 1 % Eisen, 0 bis 0,5 % Blei, 0,3 bis 1 % Nickel, 0 bis 0,2 % Zinn, Rest Zink sowie unvermeidbare Verunreinigungen umfasst.Advantageously, a copper-zinc alloy is used for valve guides, wherein the alloy 60 to 61.5% copper, 3 to 4% manganese, 2 to 3% aluminum, 0.3 to 1% silicon, 0.2 to 1% iron , 0 to 0.5% lead, 0.3 to 1% nickel, 0 to 0.2% tin, balance zinc and unavoidable impurities.

Das Gefüge besagter und entsprechend hergestellter Legierung weist eine Grundmasse von β-Mischkristallen auf, in die nadel- und bandförmige α-Ausscheidungen, eingebettet sind. In dem Gefüge können ebenfalls regellos disperse Mangan-Eisen-Silizide enthalten sein.The structure of said alloy and correspondingly produced has a matrix of β-mixed crystals, in which needle and band-shaped α-precipitates are embedded. In the microstructure may also be contained randomly disperse manganese iron silicides.

Ventilführungen aus dieser Legierung weisen einen hohen Verschleißwiderstand auf, der sogar deutlich höher ist, als der von Sinterstahl. Besonders der Trockenreibverschleiß bei Ventilführungen aus besagter Legierung ermöglicht den Einsatz in Motoren, die "reinere" Kraftstoffe benötigen, also solche die blei- oder schwefelfrei sind, da in Folge des Nichtvorhandenseins dieser Additive eine zusätzliche verschleißmindernde Wirkung entfällt. Die ist insbesondere bei Temperaturen um 300°C, der Arbeitstemperatur der Ventilführungen in FSI-Motoren, besonders vorteilhaft.Valve guides made of this alloy have a high wear resistance, which is even significantly higher than that of sintered steel. In particular, the dry friction wear in valve guides made of said alloy allows use in engines that require "cleaner" fuels, ie those that are lead-free or sulfur-free, as an additional wear-reducing effect is eliminated as a result of the absence of these additives. This is particularly advantageous at temperatures around 300 ° C, the operating temperature of the valve guides in FSI engines.

Weitere, für die Verwendung als Ventilführung vorteilhafte Eigenschaften der besagten Legierung sind eine hohe Erweichungstemperatur und eine hohe Warmzugfestigkeit.Further advantageous properties of said alloy for use as a valve guide are a high softening temperature and a high hot tensile strength.

In einer vorteilhaften Weiterbildung wird für Ventilführungen eine Kupfer-Zink-Legierung verwendet, die zusätzlich wenigstens eines der folgenden Elemente mit einer Konzentration ≤ 0,05 % Chrom, ≤ 0,05 % Titan, ≤ 0,05 % Zirkon umfasst.In an advantageous development, a copper-zinc alloy is used for valve guides, which additionally has at least one of the following elements comprising a concentration ≤ 0.05% chromium, ≤ 0.05% titanium, ≤ 0.05% zirconium.

Mehrere Ausführungsbeispiele werden anhand der nachstehenden Beschreibung und anhand Tabelle 1 näher erläutert.Several embodiments will be explained in more detail with reference to the following description and Table 1.

Derzeit wird als Material für wenig temperaturbeanspruchte Ventilführungen Sinterstahl und Kupfer-Zink-Legierungen mit etwa folgender Zusammensetzung eingesetzt: 56 bis 60 % Kupfer, 0,3 bis 1 % Blei, 0,2 bis 1,2 % Eisen, 0 bis 0,2 % Zinn, 0,7 bis 2 % Aluminium, 1 bis 2,5 % Mangan, 0,4 bis 1 % Silizium sowie Rest Zink nebst unvermeidlichen Verunreinigungen. Im Folgenden wird eine derartige Legierung als Standard-Legierung bezeichnet. Legierung 1 und Legierung 2 sind Beispiele der erfindungsgemäßen Legierung.At present, sintered steel and copper-zinc alloys with approximately the following composition are used as the material for valve guides with little temperature stress: 56 to 60% copper, 0.3 to 1% lead, 0.2 to 1.2% iron, 0 to 0.2 % Tin, 0.7 to 2% aluminum, 1 to 2.5% manganese, 0.4 to 1% silicon and the remainder zinc plus unavoidable impurities. Hereinafter, such an alloy is referred to as a standard alloy. Alloy 1 and Alloy 2 are examples of the alloy of the invention.

Das Erweichungsverhalten der verschiedenen Werkstoffe ist bis zu einer Temperatur von 500°C untersucht worden. Dabei hat sich gezeigt, dass die Standardlegierung für Ventilführungen bereits ab einer Temperatur von 100°C einen deutlichen und kontinuierlichen Rückgang ihrer Härte von 195 HV50 auf nur 150 HV50 aufweist. Bei Sinterstahl kommt es im relevanten Temperaturbereich ab 300°C zu einer drastischen Härteabnahme von 195 auf niedrige 130 HV50, wobei die Härte mit zunehmender Temperatur unstetig auf- und abschwankt. Im Gegensatz dazu zeigt Legierung 2 eine um etwa 10 % höhere Härte (224 HV50), die erst ab 350°C auf etwa 170 HV50 abnimmt. Erst ab 450°C werden die Härtewerte von Sinterstahl bei Raumtemperatur erreicht. Im Vergleich zur Standardlegierung liegen die Härtewerte der Legierung 2 stets deutlich über denen der Standardlegierung. Legierung 1 dagegen zeigt einen deutlichen Härtezuwachs von 224 auf 280 HV50 mit steigender Temperatur bis 350°C. Im Vergleich zum Sinterstahl hat Legierung 1 eine um 140 HV50 höhere Härte als Sinterstahl. Legierung 1 hat somit ihr Härtemaximum bei den Temperaturen, die der Arbeitstemperatur von Ventilführungen in FS1-Motoren entsprechen. Die höhere Härte von Legierung 1 und 2 im Vergleich zu den herkömmlich verwendeten Materialien ist einerseits auf die höhere Ausgangshärte zurückzuführen und andererseits auf Aushärteeffekte.The softening behavior of the different materials has been investigated up to a temperature of 500 ° C. It has been shown that the Standard alloy for valve guides already from a temperature of 100 ° C has a significant and continuous decrease in their hardness from 195 HV50 to only 150 HV50. For sintered steel in the relevant temperature range from 300 ° C to a drastic reduction in hardness from 195 to low 130 HV50, the hardness with increasing temperature unsteadily fluctuates up and down. In contrast, Alloy 2 shows about 10% higher hardness (224 HV50), which only decreases from 350 ° C to about 170 HV50. Only from 450 ° C the hardness values of sintered steel at room temperature are reached. Compared to the standard alloy, the hardness values of alloy 2 are always significantly higher than those of the standard alloy. In contrast, Alloy 1 shows a significant increase in hardness from 224 to 280 HV50 with increasing temperature up to 350 ° C. Compared to sintered steel, alloy 1 has a hardness higher by 140 HV50 than sintered steel. Alloy 1 thus has its maximum hardness at the temperatures that correspond to the working temperature of valve guides in FS1 engines. The higher hardness of Alloys 1 and 2 in comparison to the conventionally used materials is due on the one hand to the higher initial hardness and on the other hand to hardening effects.

Die elektrische Leitfähigkeit kann als Maß für die Wärmeleitfähigkeit herangezogen werden, wobei ein hoher Wert für eine gute Wärmeleitfähigkeit steht. Die elektrische Leitfähigkeit der Standardlegierung beträgt 11 m/Ωmm2. Legierung 2 hat gute eine elektrische Leitfähigkeit von 7,5 m/Ωmm2, was lediglich etwa ein Viertel geringer ist, als bei der Standardlegierung. Die elektrische Leitfähigkeit der Legierung 1 beträgt 4,6 m/Ωmm2. Im Vergleich zu Sinterstahl (3,1 m/Ωmm2) bedeutet dies eine um etwa 48 % höhere elektrische Leitfähigkeit bzw. Wärmeabfuhr. Somit ist im Vergleich zu Sinterstahl die Wärmeabfuhr der Legierungen 1 und 2 deutlich verbessert.The electrical conductivity can be used as a measure of the thermal conductivity, with a high value for good thermal conductivity. The electrical conductivity of the standard alloy is 11 m / Ωmm 2 . Alloy 2 has a good electrical conductivity of 7.5 m / Ωmm 2 , which is only about a quarter less than the standard alloy. The electrical conductivity of alloy 1 is 4.6 m / Ωmm 2 . Compared to sintered steel (3.1 m / Ωmm 2 ) this means an approximately 48% higher electrical conductivity or heat dissipation. Thus, the heat dissipation of alloys 1 and 2 is significantly improved compared to sintered steel.

Das Verschleißverhalten wurde mit und ohne Schmierstoff untersucht. Mit Schmierstoff hat Sinterstahl die höchste Verschleißbeständigkeit (2500 km/g). Legierung 1 hat eine ebenfalls hervorragende Verschleißbeständigkeit von 1470 km/g, die um mehr als einen Faktor 10 höher ist, als die Verschleißbeständigkeit der Standardlegierung mit 126 km/g. In dieser Größenordnung liegt die Verschleißbeständigkeit der Legierung 2 mit Schmiermittel (94 km/g).The wear behavior was investigated with and without lubricant. With lubricant, sintered steel has the highest wear resistance (2500 km / g). Alloy 1 also has excellent wear resistance of 1470 km / g, which is more than a factor of 10 higher than the standard alloy's wear resistance of 126 km / g. In this Magnitude is the wear resistance of the alloy 2 with lubricant (94 km / g).

Beim Verschleißverhalten ohne Schmierstoff hat sich jedoch gezeigt, dass die Legierungen 1 und 2 deutliche Vorteile gegenüber Sinterstahl und der Standardlegierung haben. Sinterstahl hat einen Verschleiß von 312 km/g, was etwa dem Verschleißverhalten der Standardlegierung mit 357 km/g entspricht. Das trockene Verschleißverhalten der Legierung 2 ist mit 417 km/g deutlich besser als das von Standardlegierung und Sinterstahl. In anderen Worten, der Verschleiß ist deutlich geringer. Legierung 1 weist mit 625 km/g sogar einen im Vergleich zu Sinterstahl doppelt so hohen Verschleißwiderstand auf. Der geringe Trockenreibverschleiß macht die Legierungen 1 und 2 besonders interessant, da durch die motorbedingte zunehmende Reinheit der Kraftstoffe, also ihre Blei- oder Schwefelfreiheit, die verschleißmindernde Wirkung des so genannten "blow by", dem Schmieren durch den Kraftstoff selbst, in dem Additive in Zukunft weniger vorhanden sein werden, unterbleibt.In the case of wear behavior without lubricant, however, it has been found that alloys 1 and 2 have clear advantages over sintered steel and the standard alloy. Sintered steel has a wear of 312 km / g, which corresponds approximately to the wear behavior of the standard alloy with 357 km / g. The dry wear behavior of Alloy 2 at 417 km / g is significantly better than that of standard alloy and sintered steel. In other words, the wear is significantly lower. At 625 km / g, Alloy 1 even has twice the wear resistance compared to sintered steel. The low dry friction wear makes the alloys 1 and 2 particularly interesting, since the motor-related increasing purity of the fuels, ie their lead or sulfur, the wear-reducing effect of the so-called "blow by", the lubrication by the fuel itself, in the additive Future will be less present, omitted.

Die Warmzugfestigkeit wurde mit Zugversuchen bei 350°C bestimmt. Die Warmzugfähigkeit der Standardlegierung beträgt 180 N/mm2. Im Vergleich dazu weist Legierung 1 einen doppelt so hohen Betrag auf (384 N/mm2). Im Vergleich zur Standardlegierung weist Legierung 2 eine um ca. 35 % höhere Warmzugfestigkeit auf, dies sind 243 N/mm2.The hot tensile strength was determined by tensile tests at 350 ° C. The hot tensile strength of the standard alloy is 180 N / mm 2 . In comparison, Alloy 1 is twice as high (384 N / mm 2 ). Compared to the standard alloy, Alloy 2 has an approximately 35% higher hot tensile strength, which is 243 N / mm 2 .

Legierung 1 und Legierung 2 lassen sich bevorzugt herstellen durch halb- oder vollkontinuierlichem Strangguss, Strangpressen, Ziehen und Richten.Alloy 1 and Alloy 2 can preferably be produced by semi-continuous or fully continuous continuous casting, extrusion, drawing and straightening.

Legierung 2 und insbesondere Legierung 1 haben gegenüber der bisherigen, als Ventilführungslegierung verwendeten Standardlegierung, sowie im Vergleich zu Sinterstahl, deutliche Vorteile. Diese Vorteile betreffen die Warmzugfestigkeit, die Erweichungstemperatur, die Festigkeit und die Verschleißbeständigkeit. Darüber hinaus ist auch die Leitfähigkeit ausreichend, weshalb die Legierungen 1 und 2 in Bezug auf eine Verwendung als Ventilführung eine erhebliche Verbesserung darstellen, da diese Legierungen den Anforderungen an den Werkstoff bei den erhöhten Betriebstemperaturen in den neuen Motoren entsprechen.Alloy 2 and in particular Alloy 1 have clear advantages over the previous standard alloy used as a valve guide alloy as well as compared to sintered steel. These advantages include hot tensile strength, softening temperature, strength and wear resistance. In addition, the conductivity is sufficient, so that the alloys 1 and 2 in terms of use as a valve guide represent a significant improvement, since these alloys meet the requirements of the material at the increased operating temperatures in the new engines.

Tabelle 1 zeigt die Materialeigenschaften einer Cu-Zn-Standardlegierung, einer Sinterstahllegierung, Legierung 1 und Legierung 2 im Vergleich. Eigenschaft Standardlegierung Legierung 1 Legierung 2 elektr. Leitfähigkeit (m/Ωmm2) 11 4,6 7,5 Härte (HV50) kaltverformt (10%) 197 224 224 Verschleiß trocken (km/g) 357 625 417 Verschleiß geschmiert (km/g) 126 1470 94 Erweichungstemperatur 10% kaltverformt (°C) 310 480 430 Warmzugfestigkeit bei 350°C (N/mm2) 173 350 232 Table 1 shows the material properties of a Cu-Zn standard alloy, a sintered steel alloy, Alloy 1 and Alloy 2 in comparison. property standard alloy Alloy 1 Alloy 2 elec. Conductivity (m / Ωmm 2 ) 11 4.6 7.5 Hardness (HV50) cold formed (10%) 197 224 224 Dry wear (km / g) 357 625 417 Wear lubricated (km / g) 126 1470 94 Softening temperature 10% cold formed (° C) 310 480 430 Hot tensile strength at 350 ° C (N / mm 2 ) 173 350 232

Claims (4)

  1. Use of a copper-zinc alloy for a valve guide, wherein the alloy comprises 59 to 73% by weight copper, 2.7 to 8.3% by weight manganese, 1.5 to 6% by weight aluminum, 0.2 to 4% by weight silicon, 0.2 to 3% by weight iron, 0 to 2% by weight lead, 0 to 2% by weight nickel, 0 to 0.2% by weight tin, optionally in addition at least one of the elements vanadium in an amount up to 0.1% by weight, chromium, titanium or zirconium in an amount up to 0.05% by weight, ≤ 0.0005% by weight boron, ≤ 0.03% by weight antimony, ≤ 0.03% by weight phosphorus, ≤ 0.03% by weight cadmium or ≤ 0.05% by weight cobalt, remainder zinc and inevitable impurities.
  2. Use of a copper-zinc alloy according to Claim 1, wherein the alloy comprises 70 to 73% by weight copper, 6 to 8% by weight manganese, 4 to 6% by weight aluminum, 1 to 4% by weight silicon, 1 to 3% by weight iron, 0.5 to 1.5% by weight lead, 0 to 0.2% by weight nickel, 0 to 0.2% by weight tin, remainder zinc and inevitable impurities.
  3. Use of a copper-zinc alloy according to Claim 2, wherein the alloy comprises 69.5 to 71.5% by weight copper, 6.5 to 8% by weight manganese, 4.5 to 6% by weight aluminum, 1 to 2.5% by weight silicon, 1 to 2.5% by weight iron, 0.5 to 1.5% by weight lead, 0 to 0.2% by weight nickel, 0 to 0.2% by weight tin, remainder zinc and inevitable impurities.
  4. Use of a copper-zinc alloy according to Claim 1, wherein the alloy comprises 60 to 61.5% by weight copper, 3 to 4% by weight manganese, 2 to 3% by weight aluminum, 0.3 to 1% by weight silicon, 0.2 to 1% by weight iron, 0 to 0.5% by weight lead, 0.3 to 1% by weight nickel, 0 to 0.2% by weight tin, remainder zinc and inevitable impurities.
EP05813327.3A 2004-12-02 2005-12-01 Use of a copper-zinc alloy Active EP1815033B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004058318A DE102004058318B4 (en) 2004-12-02 2004-12-02 Use of a copper-zinc alloy
PCT/EP2005/012824 WO2006058744A1 (en) 2004-12-02 2005-12-01 Use of a copper-zinc alloy

Publications (3)

Publication Number Publication Date
EP1815033A1 EP1815033A1 (en) 2007-08-08
EP1815033B1 true EP1815033B1 (en) 2015-06-17
EP1815033B2 EP1815033B2 (en) 2020-11-04

Family

ID=35618774

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05813327.3A Active EP1815033B2 (en) 2004-12-02 2005-12-01 Use of a copper-zinc alloy

Country Status (9)

Country Link
US (1) US8435361B2 (en)
EP (1) EP1815033B2 (en)
JP (1) JP5225683B2 (en)
KR (1) KR101138778B1 (en)
CN (1) CN100510133C (en)
BR (1) BRPI0518695B1 (en)
DE (1) DE102004058318B4 (en)
MX (1) MX2007006352A (en)
WO (1) WO2006058744A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2806044T3 (en) 2007-06-28 2018-03-30 Wieland-Werke Ag Copper-zinc alloy, method for its manufacture and use
DE102007029991B4 (en) * 2007-06-28 2013-08-01 Wieland-Werke Ag Copper-zinc alloy, method of manufacture and use
US20100061884A1 (en) * 2008-09-10 2010-03-11 Pmx Industries Inc. White-colored copper alloy with reduced nickel content
CN101451204B (en) * 2008-12-15 2010-10-13 无锡吉泉五金机械有限公司 Guide ball for automobile air conditioner and preparation method thereof
JP5342882B2 (en) * 2009-01-06 2013-11-13 オイレス工業株式会社 High strength brass alloy for sliding member and sliding member
CN101782111B (en) * 2010-03-11 2011-07-27 潍坊金富通机械设备有限公司 High-hardness abrasion-resistant bush
US8950941B2 (en) * 2010-05-21 2015-02-10 Oiles Corporation High-strength brass alloy for sliding member, and sliding member
CN101928848B (en) * 2010-09-01 2012-05-23 武汉泛洲中越合金有限公司 Method for smelting copper alloy by Fe-containing intermediate alloy
CN101974703A (en) * 2010-10-29 2011-02-16 广州唯科得复合金属科技有限公司 Copper alloy and copper alloy product
KR101340487B1 (en) * 2011-09-30 2013-12-12 주식회사 풍산 Leadless Free Cutting Copper Alloy and Process of Production Same
CN102337421B (en) * 2011-10-26 2013-05-29 宁波正元铜合金有限公司 Complicated brass and preparation method and application thereof
JP2014095127A (en) * 2012-11-09 2014-05-22 Taiho Kogyo Co Ltd Copper alloy
DE102013004383B4 (en) 2013-03-12 2015-06-03 Diehl Metall Stiftung & Co. Kg Use of a copper-zinc alloy
US10287653B2 (en) 2013-03-15 2019-05-14 Garrett Transportation I Inc. Brass alloys for use in turbocharger bearing applications
CN103480987B (en) * 2013-09-26 2015-08-19 郑州机械研究所 A kind of preparation method of high fragility copper zinc welding rod/weld tabs
US20160348215A1 (en) 2014-02-04 2016-12-01 Otto Fuchs Kommanditgesellschaft Lubricant-Compatible Copper Alloy
DE102014106933A1 (en) * 2014-05-16 2015-11-19 Otto Fuchs Kg Special brass alloy and alloy product
DE102015003687A1 (en) * 2015-03-24 2016-09-29 Diehl Metall Stiftung & Co. Kg Copper-zinc alloy and its use
KR102381852B1 (en) * 2015-06-09 2022-04-05 한국재료연구원 Wear Resistance High Strength Brass Alloy and Method for Manufacturing the Same
DE102015013201B4 (en) * 2015-10-09 2018-03-29 Diehl Metall Stiftung & Co. Kg Use of a nickel-free white CuZn alloy
DE102016001994A1 (en) * 2016-02-19 2017-08-24 Wieland-Werke Ag Sliding element made of a copper-zinc alloy
DE202016102693U1 (en) 2016-05-20 2017-08-29 Otto Fuchs - Kommanditgesellschaft - Special brass alloy as well as special brass alloy product
DE202016102696U1 (en) 2016-05-20 2017-08-29 Otto Fuchs - Kommanditgesellschaft - Special brass alloy as well as special brass alloy product
WO2018033360A1 (en) 2016-08-19 2018-02-22 Otto Fuchs - Kommanditgesellschaft Special brass alloy product and use thereof
DE202016104552U1 (en) 2016-08-19 2017-11-21 Otto Fuchs - Kommanditgesellschaft - Special brass alloy product and use thereof
WO2018076161A1 (en) * 2016-10-25 2018-05-03 广东伟强铜业科技有限公司 Brass alloy and manufacturing method therefor
DE102018007045A1 (en) * 2018-09-06 2020-03-12 Diehl Metall Stiftung & Co. Kg Use of a brass alloy for the manufacture of components for heating construction
US10781769B2 (en) * 2018-12-10 2020-09-22 GM Global Technology Operations LLC Method of manufacturing an engine block
CN111455213A (en) * 2020-05-27 2020-07-28 苏州撼力合金股份有限公司 High-strength wear-resistant special brass alloy
CN115198139B (en) * 2022-08-31 2023-06-09 宁波金田铜业(集团)股份有限公司 Wear-resistant brass alloy bar and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE759865C (en) 1942-06-18 1951-04-16 Wieland Werke Ag Use of cold-rolled brass alloys for machine parts that must have good sliding properties
DE764372C (en) 1940-04-07 1952-09-29 Eugen Dr Vaders Copper-zinc alloy
DE2145710A1 (en) 1970-12-28 1972-07-27 Toyota Motor Co Ltd Wear-resistant copper-based alloy at high temperatures
DE2919478A1 (en) 1979-05-15 1980-11-27 Diehl Gmbh & Co COPPER-ZINC ALLOY AND THEIR USE
EP0621346A1 (en) 1993-04-23 1994-10-26 Wieland-Werke Ag Use of a copper-zinc alloy for making nickel-free consumer articles

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1558470A1 (en) * 1967-02-02 1970-03-19 Dies Dr Ing Kurt Extruded part
SE7812591L (en) * 1977-12-16 1979-06-17 Diehl Gmbh & Co COPPER-ZINC ALLOY AND PROCEDURES FOR THE MANUFACTURE OF THE SAME
JPS56127741A (en) 1980-03-06 1981-10-06 Honda Motor Co Ltd Abrasion resistant copper alloy
JPS60114545A (en) * 1983-11-25 1985-06-21 Kobe Steel Ltd Wear resistant copper alloy
JPS60250138A (en) * 1984-05-24 1985-12-10 アイシン精機株式会社 Human pubic region cleaning apparatus
DE3427740A1 (en) * 1984-07-27 1986-02-06 Diehl GmbH & Co, 8500 Nürnberg BRASS ALLOY, MANUFACTURING METHOD AND USE
KR900006104B1 (en) * 1987-04-10 1990-08-22 풍산금속공업 주식회사 Cu-alloy having a property of high strength and wear-proof
DD270931B1 (en) 1988-02-29 1992-06-04 Hettstedt Walzwerk WEAR-RESISTANT BRASS ALLOY
JP2606335B2 (en) * 1988-11-11 1997-04-30 三菱マテリアル株式会社 High-strength, high-toughness Cu-based sintered alloy with excellent wear resistance
JPH05230566A (en) * 1992-02-25 1993-09-07 Mitsubishi Materials Corp Heat resistant copper alloy
CN1031761C (en) * 1994-01-29 1996-05-08 东南大学 High-strength wear-resistant complex brass alloy and its heat treatment process
CN1224726C (en) * 2001-08-31 2005-10-26 贝尔肯霍夫有限公司 Alloy, especially wire-rod used for glasses frame
CN1260463C (en) * 2003-06-27 2006-06-21 绵阳新晨动力机械有限公司 Gasoline engine valve guide tube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE764372C (en) 1940-04-07 1952-09-29 Eugen Dr Vaders Copper-zinc alloy
DE759865C (en) 1942-06-18 1951-04-16 Wieland Werke Ag Use of cold-rolled brass alloys for machine parts that must have good sliding properties
DE2145710A1 (en) 1970-12-28 1972-07-27 Toyota Motor Co Ltd Wear-resistant copper-based alloy at high temperatures
DE2919478A1 (en) 1979-05-15 1980-11-27 Diehl Gmbh & Co COPPER-ZINC ALLOY AND THEIR USE
EP0621346A1 (en) 1993-04-23 1994-10-26 Wieland-Werke Ag Use of a copper-zinc alloy for making nickel-free consumer articles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Kupfer-Zink- Legierungen (Messing und Sondermessing)", DEUTSCHES KUPFERINSTITUT, March 2007 (2007-03-01), pages 1 - 30, XP055179371

Also Published As

Publication number Publication date
MX2007006352A (en) 2007-10-17
KR20070084467A (en) 2007-08-24
JP5225683B2 (en) 2013-07-03
US20070227631A1 (en) 2007-10-04
EP1815033A1 (en) 2007-08-08
CN101068941A (en) 2007-11-07
WO2006058744A1 (en) 2006-06-08
EP1815033B2 (en) 2020-11-04
BRPI0518695B1 (en) 2017-07-18
DE102004058318A1 (en) 2006-06-08
BRPI0518695A2 (en) 2008-12-02
KR101138778B1 (en) 2012-04-24
CN100510133C (en) 2009-07-08
US8435361B2 (en) 2013-05-07
JP2008522034A (en) 2008-06-26
DE102004058318B4 (en) 2006-09-28

Similar Documents

Publication Publication Date Title
EP1815033B1 (en) Use of a copper-zinc alloy
EP1866451B1 (en) Use of a copper zinc alloy
DE102007029991B4 (en) Copper-zinc alloy, method of manufacture and use
EP2009122B1 (en) Copper-zinc alloy, method for its manufacture and use
DE3147461C2 (en) Wear-resistant cast iron alloy of high strength with spherulitic graphite precipitation, its manufacturing process and its use
EP3024958B1 (en) High temperature strength aluminium casting alloy and casting for combustion engines cast from said alloy
EP2155920A1 (en) Use of an al-mn alloy for high temperature resistant products
WO2005093244A1 (en) Piston for an internal combustion engine, method for producing said piston and use of a copper alloy in the production of a piston
EP3004413B1 (en) Refill for a ball-point pen and use thereof
DE2919478C2 (en)
EP2003375B1 (en) Motor component and application of a cast iron alloy for a motor component
DE60300728T2 (en) Iron-based sintered alloy for use as a valve seat
DE19539498B4 (en) Wear-resistant synchronizer ring made of a copper alloy
DE102006027844B4 (en) Copper alloy based on copper and tin
EP3366793B1 (en) Sliding element made of a copper alloy
EP2052096B1 (en) Steel piston ring
DE3000772C2 (en) Tin-containing aluminum bearing alloy
DE10054229B4 (en) High temperature alloy
AT505290B1 (en) SLIDING BEARING MATERIAL FROM COPPER BASED ALLOY
DE3000774C2 (en) Tin-containing aluminum bearing alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070526

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20081230

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150303

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 731988

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005014823

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150917

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150918

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151017

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150617

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151019

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502005014823

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: OTTO FUCHS KG

Effective date: 20160314

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 731988

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20051201

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

REG Reference to a national code

Ref country code: CH

Ref legal event code: AELC

27A Patent maintained in amended form

Effective date: 20201104

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502005014823

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20221213

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231220

Year of fee payment: 19

Ref country code: NL

Payment date: 20231220

Year of fee payment: 19

Ref country code: FR

Payment date: 20231221

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240214

Year of fee payment: 19

Ref country code: CH

Payment date: 20240101

Year of fee payment: 19