EP1814653B1 - Wasserstoffgeneratorkartusche - Google Patents

Wasserstoffgeneratorkartusche Download PDF

Info

Publication number
EP1814653B1
EP1814653B1 EP05848152A EP05848152A EP1814653B1 EP 1814653 B1 EP1814653 B1 EP 1814653B1 EP 05848152 A EP05848152 A EP 05848152A EP 05848152 A EP05848152 A EP 05848152A EP 1814653 B1 EP1814653 B1 EP 1814653B1
Authority
EP
European Patent Office
Prior art keywords
cartridge
liquid
generation system
hydrogen generation
reactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05848152A
Other languages
English (en)
French (fr)
Other versions
EP1814653A4 (de
EP1814653A1 (de
Inventor
James Kevin Shurtleff
Eric J. Ladd
Chris A. Brydon
John M. Patton
Howard Anderson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trulite Inc
Original Assignee
Trulite Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trulite Inc filed Critical Trulite Inc
Publication of EP1814653A1 publication Critical patent/EP1814653A1/de
Publication of EP1814653A4 publication Critical patent/EP1814653A4/de
Application granted granted Critical
Publication of EP1814653B1 publication Critical patent/EP1814653B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • B01J7/02Apparatus for generating gases by wet methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to apparatuses and methods for producing hydrogen.
  • the embodiments described herein relate to apparatuses and methods for releasing hydrogen from chemical hydrides.
  • US 5,514,353 describes a demand responsive hydrogen generator based on a hybride water reaction.
  • the hydrogen generator is provided with a hydride cartridge comprising a corrugated perforated sheet metal support structure.
  • US 2003/0228252 describes an apparatus for the generation of hydrogen through a controlled chemical reaction between water and a chemical hybride.
  • the present invention provides a hydrogen generation system (1) comprising:
  • the present invention also provides a fuel cartridge (10) for a hydrogen generating system, said cartridge comprising:
  • FIG 1A illustrates one embodiment of a hydrogen fuel cartridge which may be employed in the hydrogen generation system of the present invention.
  • Fuel cartridge 10 may include a tubular body or housing 11, which in this embodiment ranges from 2.5 to 7.6 cm (1 to 3 inches) in diameter and 10.2 to 20.3 cm (4 to 8 inches) in length.
  • housing 11 is not limited to any particular cross-sectional shape or any particular dimensions.
  • housing 11 is formed of a material such as aluminum which has sufficient strength, is comparatively light, and has good heat transfer characteristics.
  • Figure lA's embodiment also illustrates a rear end cap 12 having a handle 13 allowing fuel cartridge 10 to be easily positioned and locked into place with other components of the overall hydrogen generation system as will be described below.
  • front end cap 15 The other end of housing 11 opposite rear end cap 12 will comprise a front end cap 15 which is more clearly seen in Figures 2 and 3 .
  • This embodiment of front end cap 15 will include a plurality of liquid reactant (e.g., water) inlet ports 21a-21d, a hydrogen gas outlet port 20, alignment structures 24 and a threaded center aperture 23.
  • the liquid reactant may be water or another aqueous reactant (e.g., a water based acid solution).
  • liquid reactant inlet ports 21 may be referred to as water inlet ports 21 when describing certain embodiments.
  • alignment structures 24 are circular apertures which engage a cartridge receiver or in one embodiment, the receiver plate 40 as seen in Figure 8 (discussed below).
  • alignment structures 24 are non-symmetrically positioned around center aperture 23 to ensure end cap 15 can only engage receiver plate 40 in one orientation.
  • other embodiments could include different numbers of water inlet ports 21 and hydrogen outlet ports 20, along with different types of alignment structures.
  • front end cap 15 will include a groove 25, which will allow end cap 15 to engage and be locked into housing 11 by way of the front end of housing 11 being crimped into the groove 25 (or by any other method forming a substantially gas tight seal).
  • the rear side of front end cap 15 will include a support assemblage 17 formed of structural elements having tube connectors 26 which secure liquid reactant injection tubes 30 (see Figure 1A ) to front end cap 15 and provide continuous passages between injection tubes 30 and ports 21.
  • injection tubes 30 are fixed to end cap 15 in a manner which substantially prevents tubes 30 from moving relative to end cap 15 along an axis parallel to the length of cartridge housing 11.
  • Another support assemblage 17 will provide space for a check valve cavity 22a (the rear side of hydrogen outlet port 20) to hold an integrated check valve 22 allowing gas flow only in the outward direction, i.e., from the interior to the exterior of cartridge 10.
  • the end cap is made of molded plastic, e.g., Delrin ® , but one skilled in the art will see that end cap 15 could be made from a variety of materials, including aluminum, steel, stainless steel, copper, other plastics or composite materials.
  • the check valve may be a silicone duckbill type valve manufactured by Vernay Laboratories, Inc. of Yellow Springs, OH.
  • fluid injection tubes 30 will extend into the interior of cartridge housing 11 which holds a solid reactant (as explained in more detail below).
  • injection tubes 30 may extend into housing 11 at least half housing 11's length, although in other embodiments the injection tubes 30 may extend less than half the housing's length.
  • water injection tubes 30 will have an inside diameter ranging from about 0.5 to 5.0 mm with the inside diameter more preferably being about 1 mm.
  • the injection tubes may be made of aluminum, brass, or other metal, PTFE, Nylon ® , Delrin ® , or other high temperature polymers.
  • a series of liquid distribution apertures 32 will be formed along the length of water injection tubes 30.
  • the liquid distribution apertures 32 will have a diameter which is no greater than about 1/5 the inside diameter of water injection tubes 30, and more preferably no greater than about 1/10 such inside diameter (e.g., on the order of about 50 to 1000 microns).
  • Liquid distribution apertures 32 may be spaced in any manner to promote uniform liquid distribution, such as for example, every 1.3 cm (half inch) on opposing sides of injection tubes 30.
  • liquid distribution apertures may be spaced more closely along the length of tubes 30 as the tubes extend away from front end cap 15 in order to compensate for head loss in the fluid as it travels down the length of injection tube 30.
  • the aperture size could be increased as the apertures become further from front end cap 15 in order to compensate for head loss.
  • a further embodiment seen in Figure 1B would eliminate the multiple apertures 32 along the length of the tubes and have only one injection aperture 32 at the open end of the tubes (although this single aperture could be elsewhere along the length of the tubes).
  • the length of the different tubes 30 could vary from the endcap 15 in order to distribute liquid reactant throughout the housing.
  • the above described alternative embodiments along with other unspecified alternative embodiments may be employed to distribute liquid reactant at different locations within housing 11.
  • a chemical hydride may be considered a reducing compound containing a metal and hydrogen that generates hydrogen gas when it reacts with water or other oxidizing agents.
  • Various examples of chemical hydrides are disclosed in US application serial no. 10/459,991 filed June 11, 2003 ( US 2003 228252 ).
  • Nonlimiting examples of chemical hydrides may include sodium borohydride, lithium borohydride, lithium aluminum hydride, lithium hydride, sodium hydride, and calcium hydride.
  • the chemical hydride reactant will be enclosed within a fabric pouch 31.
  • fabric includes not only textile materials, but also includes paper based porous materials typically used for filtration purposes.
  • One embodiment of the fabric will be a porous material which can maintain structural integrity at temperatures ranging from about -20 °C to about 200 °C, a pH ranging from about 4 to about 14, and which exhibits at least some wicking potential.
  • Preferred fabrics may include woven Nylon, Rayon polyester blend (for example Pellon 30 manufactured by Pellon Consumer Products of Tucker, GA) or porous filter paper such as Paper 602 provided by National Filter Media Corporation, Salt Lake City, UT.
  • the wicking potential may be measured in distance water wicks divided by time.
  • Illustrative examples include paper 603 - 6" in 60 min., Pellon 30 - 1.8" in 60 min., Nylon - 1.2" in 60 min., coffee filter paper - 2.3" in 60 min.
  • a wicking potential of between 0.3 cm and 25.4 cm (0.1 and 10 inches) a minute may be employed; other embodiments could be between 1.3 cm and 7.6 cm (0.5 and 3 inches) a minute.
  • the thickness of the fabric or paper could be from about 3 mil to 12 mil, while the pore size of the fabric or paper could be between at least 1 micron and about 50 microns.
  • the present invention may include wicking potentials, fabric thicknesses, and pore sizes different from those listed above.
  • the fabric pouch 31 is comparatively thin having a substantially greater area than thickness.
  • Pouch 31 may be formed in any conventional manner.
  • viewing Figure 6 it can be seen how two rectangular sheets of fabric material 33a and 33b may be sealed along three edges (for example by stitching 34) and segmented into 2.5 to 5.1 cm (1 to 2 inch) sections 36 (also by stitching) to leave open ends 35.
  • the series of sections 36 thus formed are filled with a fine grain chemical hydride (described below) and sealed along the fourth edge by stitching closed open ends 35.
  • An illustrative thickness of such a pouch 31 (i.e., the thickness of sections 36 when unrolled and charged with a chemical hydride) may be approximately 0.6 cm (1 ⁇ 4 of an inch) in one embodiment and its unrolled dimensions could be approximately 14.6 cm by 50.8 cm (5.75 inches by 20 inches). Then the pouch 31 is rolled to a diameter sufficiently small to be inserted into tubular housing 11 as suggested in Figure 5 (the front end cap 15 has been removed for purposes of clarity). The water injection tubes 30 are then carefully inserted between overlapping layers of the rolled pouch 31.
  • Figures 1 and 3A illustrate how in one embodiment, water ports 21 (and thus injection tubes 30) may be arranged in a nonuniform configuration such as a spiral pattern.
  • water port 21a in Figure 3A is closest to the center point of end cap 15. Then water port 21b is radially spaced further from the center point, with water port 21c spaced even further and water port 21d spaced still further.
  • water injection tubes 30 may follow the spiral pattern of rolled pouch 31.
  • other embodiments could utilize different orientations of pouch 31 or could use a series of smaller pouches 31 as opposed to the continuous pouch 31 seen in Figure 6 and could use any arrangement of injection tubes 30.
  • the components within cartridge 10 will have a temperature stability between at least about -20 °C to at least about 200 °C and a corrosion stability/resistance at pHs ranging from about 4 to about 14.
  • FIG. 7 An alternate embodiment of cartridge 10 is seen in Figure 7 .
  • the chemical hydride material 38 is not positioned within a pouch, but is placed directly within the interior space of cartridge housing 11 (seen with end cap 15 removed) and water injection tubes 30 will extend into the bed of chemical hydride material 38.
  • water injection tubes 30 will be covered with a thin sleeve 37 of fabric such as a woven refractory material which in one embodiment is a 10 mil thick fabric sold under the tradename Silex ® manufactured by Mid Mountain Materials of Mercer Island, WA.
  • Naturally end cap 15 seen in Figures 1-3 would be modified to have two liquid injection ports 21 to match the two injection tubes 30 seen in Figure 7 .
  • FIG 14 A still further embodiment of cartridge 10 is seen in Figure 14 .
  • the end cap 15 is similar to that described above.
  • a single injection tube 30 extends into housing 11 toward the bottom of a bed of chemical hydride material.
  • the injection tube 30 will have an aperture at the end of the tube.
  • the cartridge 10 may be oriented vertically such that water injected into the hydride bed will react first with the hydride material at the bottom of the bed. As additional water is injected, the water will rise and activate hydride material along the length of cartridge 10.
  • the cartridge 10 may be in non-vertical orientations.
  • bed of chemical hydride material may mean a mass of loose hydride material placed directly in the cartridge 10 (e.g., Figure 7 ) or the hydride material being in a pouch (e.g., Figure 5 ) which is inserted in cartridge 10 or any other manner of (or container for) positioning the hydride material in cartridge 10.
  • Receiver plate 40 will include a receiver body 41 which has various structures formed thereon and within for mating with end cap 15 of cartridge 10. Within the receiver body 41 are alignment structures or guide pins 45 which will mate with alignment structures 24 on end cap 15. Additionally, receiver plate 40 includes a plurality of port connectors 44 which will mate with hydrogen and water ports 20 and 21 on end cap 15. Indentions 49 around port connectors 44 will accommodate sealing devices such as O-rings or gaskets. A port connector 44 will communicate with each hydrogen passage 42 and water passages 43 which is formed through receiver body 41.
  • FIG. 10 illustrates how external water and hydrogen lines (see schematic in Figure 10 ) will connect (directly or indirectly depending on the embodiment) to hydrogen passage 42 and water passages 43 and thereby provide fluid communication through receiver plate 40 to the hydrogen port 20 and water ports 21 of cartridge 10.
  • Figure 8 illustrates how one embodiment of receiver plate 40 will include internal water passages 46 and various inlets and outlets 54 for passages 46.
  • Figure 9 illustrates how the openings in water passages 46 will communicate with electronic control valves 77 and hose fittings 53.
  • hose fittings 53 are 90 degree, 0.3 cm (1/8 inch) I.D.
  • control valves 77 are x-valves available from Parker Hannifan Corporation located in Cleveland HO.
  • a plurality of hoses will connect the plurality of water passages 46 (via hose fittings 53) in the receiver plate 40 to water passages 43, likewise equipped with hose fittings.
  • the passages 46 may connect directly to passages 43 through the internal volume of receiver plate 40, but forming long internal passages within receiver plate 40 adds substantial manufacturing complexity.
  • a fluid pump 78 will direct fluid toward a series of three control valves 77a, 77b, and 77c through hose 50.
  • Control valves 77 will have two orientations, an unactivated or normal open (NO) position and an activated or normal closed position (NC).
  • control valves 77a, 77b, and 77c are connected in series by fluid pathway 58 (which would be the combination of hoses and passages if embodied in the receiver plate 40 of Figures 8 and 9 ).
  • Control valves 77a and 77b will direct fluid to pathway 58 in the NO position and to their respective fluid injection tubes 30 when energized to the NC position by the associated control circuitry.
  • Control valve 77c is connected somewhat differently since in the NO position, fluid is directed to injection tube 30d and in the NC position fluid is directed to injection tube 30c. The operation of control valves 77a to 77c in selectively directing fluid to different injection tubes will be readily apparent.
  • valves 77a to 77c are left in the NO position; for injection tube 30c, valve 77c is moved to the NC position; for injection tube 30b, valve 77a will be in the NO position and valve 77b in the NC position; and for injection tube 30a, valve 77a will be in the NC position. In this manner, the path of fluid flow will pass through control valves 77 and allow these valves to control fluid delivered to injection tubes 30.
  • the receiver plate 40 seen in Figure 8 will connect to end cap 15 (see Figure 3A ) by way of a holding assembly, one example of which is a bolt or other threaded member passing through aperture 48 in receiver plate 40 and engaging the threaded inner surface of center aperture 23 on end cap 15 in order to pull end cap 15 firmly against receiver plate 40 and form seals between hydrogen/water ports 20/21 and port connectors 44.
  • Figure 9 shows the complete receiver assembly 28 including support plate 56 and connecting rods 51 engaging rod apertures 50 in receiver plate 40. In the embodiment shown, one rod aperture 50 will be elongated and the others round to assist in orienting the rods 51 for insertion into receiver plate 40.
  • cartridge 10 slides through the opening in support plate 56 and in between the connecting rods 51 and seals against the receiver plate 40 as described previously with the threaded end of knob 52 extending through aperture 48.
  • a mounting arm 57 will extend from support plate 56 and rest against cartridge 10.
  • a cartridge temperature sensor described herein will be attached to mounting arm 57.
  • the electronic valves 77 are shown connected to the receiver plate 40. Slot 47 in the receiver plate 40 shown in Figure 8 firmly holds the cartridge sense switch 82 as shown in Figure 9 .
  • cartridge sense switch 82 is ZM series microswitch with lever manufactured by Honeywell International, Inc. of Morristown, NJ and will detect when cartridge 10 is in direct or near contact with sense switch 82.
  • the chemical hydride reactant utilized in the fuel cartridge may be a dry, powdered form of sodium borohydride (NaBH 4 ) mixed with an activating agent.
  • NaBH 4 sodium borohydride
  • the NaBH 4 is particularly suitable for use in the pouch 31 seen in Figure 5 and in one embodiment; the NaBH 4 will have a grain size ranging from about mesh 10 to about mesh 1000.
  • the activating agent be a powdered solid when mixed with NaBH 4 , since solids tend to react very slowly with each other.
  • the activating agent could also be mixed into an organic/oil solvent.
  • the activating agent in certain embodiments is preferably water soluble to increase its effectiveness, since the greater its solubility, the greater its potential to activate the water/NaBH 4 reaction.
  • magnesium chloride MgCl 2
  • Other potential activating agents are other salts of Group IIA (alkaline earth metals) or Group VIIB (halides), such as BeF 2 , BeCl 2 , BeBr 2 , BeI 2 , MgF 2 , MgBr 2 , Mg 2 I, CaF 2 , CaCl 2 , CaBr 2 , and CaI 2 .
  • the fluorides and chlorides are preferred because they have a lower molecular weight. However, some of these salts may be less preferred depending on their degree of solubility in water or if they are considered toxic (e.g., beryllium compounds).
  • Activating agents may also include other water soluble salts such as Group IA (alkali metals) salts including LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, and KI.
  • Group IA and Group IIA hydroxides may be less preferred, since they make basic solutions in water and thus reduce the reaction rate.
  • Group IA and Group IIA oxides may also be less preferred since they tend to be more stable and thus not as reactive.
  • Group IA and Group IIA sulfides and selenides, such as Li 2 S, Li 2 Se may be better activating agents if they are sufficiently water soluble.
  • the activating agents will be from the group of MgCl 2 , BeCl 2 , CuCl 2 , LiCl, NaCl, or KCl. However, any of the above activating agents (or others not listed) could possibly be employed given the proper design and use conditions. In certain embodiments, the activating agent will have a grain size ranging from about mesh 10 to about mesh 1000.
  • the quantity of activating agent mixed with the chemical hydride will be from about 25 to about 65 weight percent and more preferably about 50 to about 60 weight percent. In one embodiment, the quantity of activating agent is 55 weight percent. In the embodiment where the solid reactant is 55 weight percent MgCl 2 , approximately 0.8 gm of water will be required to fully react each gm of solid reactant.
  • One consideration in optimizing the amount of activating agent is determining the minimum amount of the material which gives the desired hydrogen generation rate and results in complete reaction/utilization of the NaBH 4 . For a 55 weight% MgCl 2 /NaBH 4 mixture, the energy density is 3116 Whr/kg. For comparison, the energy density of a 20 weight% NaBH 4 /H 2 O mixture (i.e., NaBH 4 dissolved in water) is 1066 Whr/kg, while the energy density for pure NaBH 4 is 7101 Whr/kg.
  • anhydrous or powdered acids such as boric acid (H 3 BO 3 ), oxalic acid, tartaric acid, etc.
  • anhydrous acids can be mixed with the NaBH 4 without reaction, but when water is added, the anhydrous acid dissolves and thus causes a reaction.
  • Weak or relatively insoluble anhydrous acids such as boric acid when mixed with NaBH 4 produce hydrogen in the presence of water at a relatively low rate, and thus are less preferred.
  • Strong acids such as oxalic acid are very soluble in water and generate substantial hydrogen when mixed with NaBH 4 . However, this mixture is difficult to controllable and is also less preferred.
  • intermediate strength acids such as tartaric acid or benzoic acid are more favorable.
  • the strength (Ka) of the dry acid will range from about 1x10 -4 to about 1x10 -11 .
  • the powdered acid will have a grain size ranging from about mesh 10 to about mesh 1000.
  • the quantity of tartaric acid mixed with NaBH 4 will be from about 5 to about 50 weight percent and more preferably about 8 to about 12 weight percent. In this embodiment, approximately 0.8 gm of water will be required to fully react each gm of solid reactant.
  • an inexpensive, water-insoluble catalyst may be mixed with the NaBH 4 .
  • the catalyst can act to accelerate the water/NaBH 4 reaction as water is injected.
  • metal catalyst could include Co, Ni, Cu, Pt, Pd, Fe, Ru, Mn, and Cr.
  • the metal catalyst will be in a powder form (e.g., particles less than 25 um) and will be added to the chemical hydride in an amount of about 25 weight percent to about 65 weight percent. In this embodiment, approximately 0.8 gm of water will be required to fully react each gram of solid reactant.
  • anhydrous activating agent may be to mix the water soluble activating agent in with the water before it is injected into the cartridge containing a bed of anhydrous NaBH 4 or other metal hydride.
  • an aqueous substance such as hydrochloric acid (HCl) may be used.
  • the activating material is held in separate container or reservoir 60 such as seen in Figure 2 .
  • This container may be attached to the cartridge housing 11 but could be detached in other embodiments.
  • Figure 2 illustrates reservoir 60 connected to housing 11 by way of strap 61.
  • strap 61 will be formed of aluminum, stainless steel, or composite polymer material in order to hold reservoir 60 in rigid orientation with housing 11.
  • reservoir 60 includes a plunger 62 positioned therein. Plunger 62 will move toward port 64 as fluid is removed from reservoir 60. Vent hole 63 prevents a vacuum from forming behind plunger 62 and resisting its movement toward port 64. The plunger is moved forward by pump 78 (see Figure 13 ) applying suction to port 64.
  • concentrated HCl acid 38 weight% could be mixed into the water to give a concentration of 28 weight%.
  • this solution is controllably injected into the NaBH 4 , it reacts readily to generate hydrogen.
  • this acid concentration 28 weight%), approximately 0.4 gm of acid solution will be required to fully react each gm of NaBH 4 .
  • It is possible to control the reaction rate by controlling the concentration of acid in the water in addition to the acid solution injection rate.
  • water soluble salts such as MgCl 2 into the water and then inject the mixture into the bed of NaBH 4 .
  • the acid containing liquid necessarily limited to aqueous solutions.
  • the aqueous solution injected into the bed of NaBH 4 will have a pH ranging from about 1 to about 6 and more preferably a pH of about 2.
  • suitable acids could include (but are not limited to) nitric acid, sulfuric acid, acetic acid, hydrofluoric acid, hydrobromic acid, carbonic acid, etc., or mixtures thereof.
  • alternative chemical hydrides may include (but are not limited to) lithium borohydride, lithium aluminum hydride, lithium hydride, sodium hydride, and calcium hydride.
  • these latter chemical hydrides need not be combined with a powdered activating agent as described above and may be activated with water alone.
  • these latter chemical hydrides will be utilized in a cartridge such as seen in Figure 7 .
  • Fuel cartridges such as those described above will typically be employed in a hydrogen generation system.
  • This hydrogen generation system 1 will generally comprise a fuel cartridge 10 connected to receiver plate 40 with a liquid reactant (e.g., water) line 79 supplying water to fuel cartridge 10.
  • a water pump 78 controlled by control system 75 will provide a carefully metered amount of water to fuel cartridge 10.
  • control system 75 consists of a micro-processor and related control circuitry such as a PIC microcontroller 16F877A.
  • Control system 75 will also operate cooling fans 81, switching valves 77, and transfer valve 84.
  • control system 75 will receive data on system parameters from temperature sensor 80, cartridge sensor 82, and hydrogen pressure sensor 89.
  • temperature sensor 80 is mounted against the external skin of aluminum housing 11.
  • a check valve 87 is incorporated into the hydrogen line between the receiver plate and the hydrogen trap 83.
  • Hydrogen gas exiting cartridge 10 will flow through a check valve 87 and a hydrogen filter/water trap 83 before being directed to a fuel cell or other device to which hydrogen is to be supplied.
  • Filter/water trap 83 serves the dual purpose of filtering particulate out of the hydrogen and also removing excess moisture from the hydrogen gas.
  • a water condenser/reservoir 85 will collect water from any moist air returned from the fuel cell or other hydrogen consuming device and will also store water collected from water trap 83 and transferred via transfer valve 84.
  • control system 75 will determine the volume of water to pump into fuel cartridge 10 based upon monitoring parameters such as the temperature of the chemical hydride (as indicated by temperature sensor 80) and the hydrogen pressure within the system as measured by pressure sensor 89. As hydrogen pressure drops below a predetermined level in system 1, water pump 78 will be activated to deliver water to fuel cartridge 10, thereby causing the chemical hydride in cartridge 10 to release addition hydrogen gas. In one preferred embodiment, switching valves 77 will be individually controlled by control system 75 as described above. This allows pump 78 to deliver water through only one water injection tube 30 at a time and to sequentially deliver water to each injection tube 30.
  • This sequential method of delivering water may in some instances provide a more uniform distribution of water than if all water injection tubes were simply manifolded together without individual control of water flow to each injection tube 30.
  • the temperature sensor 80 monitoring the temperature of the chemical hydride will allow control system 75 to make decisions regarding whether fans 81 should be turned on to cool cartridge 10 or whether water should be limited to slow down the reaction rate of the chemical hydride.
  • Hydrogen generation system 1 may also include the cartridge sensor 82 which will signal control system 75 as to whether a fuel cartridge 10 is presently installed in the system and will also provide control system 75 with information concerning when a spent cartridge has been removed and a new, fully charged cartridge installed.
  • filter/water trap 83 As hydrogen gas flows through filter/water trap 83, excess moisture in the hydrogen gas will be removed and when a sufficient amount of water has accumulated, will be transferred via transfer valve 84 to water condenser/reservoir 85. Hydrogen gas exiting filter/water trap 83 will be directed through line 90 to the particular hydrogen consuming device, which for illustrative purposes will be considered a fuel cell in the present description. Typically, a regulator 88 will be positioned in line 90 to assure the fuel cell is supplied with hydrogen at a constant pressure. If the hydrogen consuming device produces water vapor as a by-product (as do fuel cells), the moist air will be directed via line 86 back to condenser 85 and the water recovered from the air. Likewise, water vapor in the hydrogen passing through purge line 91 (another characteristic feature of fuel cells) will be recovered in condenser 85.
  • a portion of the schematic seen in Figure 10 may be modified as suggested in Figure 13 .
  • a metering valve 95 will be positioned between pump 78 and acid reservoir 60 while a metering valve 94 is positioned between pump 78 and water reservoir 85.
  • metering valves 94 and 95 may be stainless steel adjustable needle-type valves such as provided by Swagelock Company of Solon, OH. Using these types of valves, the amount of acid and water drawn upon each activation of pump 78 is preset.
  • the injection switching valves 77 seen in Figure 10 can be replaced with a manifold 95 (illustrated in the alternative with dashed lines in Figure 13 ).
  • fluid from the injection pump 78 is split equally between the multiple injection tubes 30 which are connected in parallel.
  • Parallel injection tubes are preferably very uniform with tight tolerances so that the pressure drop along the length of each injection tube is the same.
  • FIG 11 is a state diagram 100 illustrating the controller logic which could be utilized in one embodiment of the present invention.
  • control system 75 monitors the cartridge temperature, the cartridge in/out status, the hydrogen demand status (e.g., does the fuel cell currently require hydrogen), and the pump/valves status. Presuming the use of a bi-color LED indicator (e.g., red/green), the idle state could be indicated by all LED illumination being off.
  • the system will enter state 1 (block 102).
  • Control system 75 will signal pump 78 to inject a predetermined amount or "pulse" of water (e.g., one cycle of pump 78) toward switching valves 78.
  • Control system 75 will determine which injection tube 30 received the last water pulse and then open or shut the appropriate valves 77 to ensure the current water pulse is directed to the desired injection tube 30. As alluded to above, the water pulses will typically be directed in sequence to the various injection tubes 30 to evenly distribute water throughout the hydride bed. Additionally, control system 75 will monitor the total number of pulses (i.e., total volume of water) injected into cartridge 10. Since the cartridge has a known amount of chemical hydride, the volume of water needed to completely react with that weight of chemical hydride may be calculated. By tracking the volume of water injected into cartridge 10, control system 75 may accurately estimate when all the chemical hydride in cartridge 10 has been reacted with water and thus when cartridge 10 should be considered exhausted or spent. An LED response (e.g., flashing red/green) may then indicate when the amount of unreacted chemical hydride in cartridge 10 is becoming low and the current cartridge 10 should be replaced.
  • an LED response e.g., flashing red/green
  • State 2 (block 103) will monitor the increased pressure of hydrogen due to the injection of a water pulse. If the current hydrogen pressure is less than the desired hydrogen pressure (or the hydrogen pressure appears to be falling), the control system will return to state 1 and signal that pump 78 is to injection another pulse of water. If the cartridge temperature exceeds a predetermined value, the system will activate fans 81. If the temperature continues to increase above a higher predetermined value, then the system will enter state 3 (indicated by a red LED) which will cease injection of further water until the cartridge temperature returns to the specified operating range. State 7 (block 104) will monitor when water should be transferred from filter/trap 83 to reservoir 85 and accordingly activate transfer valve 84.
  • state 6 (block 106) will be entered indicating with a flashing red LED that cartridge 10 is exhausted and needs to be replaced. While the spent cartridge is removed, state 4 (block 108) will indicate with a red LED that no cartridge is present in the system.
  • state 5 (block 107) resets the cartridge life counter such that state 1 may once again begin counting pulses of water injected into the new cartridge 10 in order to monitor the remaining life of the new cartridge once the system resumes generation of hydrogen.
  • the state diagram of Figure 10 is simply one version of control system 75's operation and many alternate sequences of operation may be employed in other embodiments of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Claims (41)

  1. Wasserstofferzeugungssystem (1), welches umfasst:
    a. mindestens eine Kartusche (10), welche mindestens eine Flüssigkeitseintrittsöffnung (21) und mindestens eine Gasaustrittsöffnung (20) umfasst, und welche einen im Wesentlichen wasserfreien Hydridreaktant, gemischt mit einem Aktivierungsmittel, umfassend ein Salz eines Erdalkalimetalls oder ein Salz eines Alkalimetalls, enthält;
    b. mindestens eine Flüssigkeitsrohrleitung (30), welche sich in besagte Kartusche (10) erstreckt, wobei besagte Flüssigkeitsrohrleitung (30) mindestens eine daran gebildete Flüssigkeitsverteilungsöffnung (32) hat;
    c. einen Kartuschenempfänger, welcher entfernbar in Kartusche (10) einklinkt, wobei besagter Kartuschenempfänger Durchlässe (42 und 43) entsprechend besagter Gasaustrittsöffnung (20) und besagter Flüssigkeitseintrittsöffnung (21) an besagter Kartusche (10) umfasst; und
    d. ein Injektionskontrollsystem des flüssigen Reaktanten (75), welches operativ mit besagtem Kartuschenempfänger verbunden ist, wobei besagtes Kontrollsystem (75) mindestens einen Umsetzungsparameter abliest und eine Menge an flüssigem Reaktant, injiziert von besagter Verteilungsöffnung (32), basierend auf besagtem mindestens einen Umsetzungsparameter, anpasst.
  2. Wasserstofferzeugungssystem gemäß Anspruch 1, welches ferner eine Vielzahl an Verteilungsöffnungen (32), gebildet entlang besagter Flüssigkeitsrohrleitung, umfasst, wobei besagte Flüssigkeitsverteilungsöffnungen einen Durchmesser zwischen etwa 50 und etwa 1000 Mikron haben.
  3. Wasserstofferzeugungssystem gemäß Anspruch 1, wobei besagter Hydridreaktant ein Bett bildet und sich besagte Flüssigkeitsrohrleitung entlang von mindestens der Hälfte einer Länge von besagtem Bett erstreckt.
  4. Wasserstofferzeugungssystem gemäß Anspruch 1, wobei besagter Umsetzungsparameter einen Wasserstoffdruck innerhalb der besagten Kartusche umfasst.
  5. Wasserstofferzeugungssystem gemäß Anspruch 1, wobei besagter flüssiger Reaktant ein wässeriger Reaktant ist.
  6. Wasserstofferzeugungssystem gemäß Anspruch 5, wobei jede der besagten Flüssigkeitsrohrleitungen ein getrenntes Steuerventil (77) hat.
  7. Wasserstofferzeugungssystem gemäß Anspruch 1, wobei besagter Umsetzungsparameter eine Temperatur von besagter Kartusche (10) umfasst und besagtes Kontrollsystem (75) ein Kühlsystem, basierend auf besagter Temperatur, aktiviert.
  8. Wasserstofferzeugungssystem gemäß Anspruch 7, wobei besagtes Kühlsystem mindestens einen Lüfter (81) umfasst, welcher einen Luftstrom durch besagte Kartusche (10) erzeugt.
  9. Wasserstofferzeugungssystem gemäß Anspruch 1, wobei besagtes Hydrid in einer Stofftasche (31) mit einer im Wesentlichen größeren Fläche als Dicke eingeschlossen ist.
  10. Wasserstofferzeugungssystem gemäß Anspruch 9, worin besagte Stofftasche (31) innerhalb besagter Kartusche (10) gerollt ist und sich besagte Rohrleitung von flüssigem Reaktant zwischen Falten von besagter Stofftasche erstreckt.
  11. Wasserstofferzeugungssystem gemäß Anspruch 1, worin besagte Stofftasche (31) mindestens eines umfasst, ausgewählt aus Gewebtem, Pellon 30, Nylonbahn oder porösem Papier.
  12. Wasserstofferzeugungssystem gemäß Anspruch 11, wobei besagter Stoff eine strukturelle Unversehrtheit bei Temperaturen im Bereich von etwa -20°C bis etwa 200°C, einem pH im Bereich von etwa 4 bis etwa 14 beibehält, und welcher mindestens etwas Dochtwirkungspotential aufweist.
  13. Wasserstofferzeugungssystem gemäß Anspruch 1, worin besagter Hydridreaktant Lithiumaluminiumhydrid ist und die Menge an flüssigem Reaktant, welche eine Verteilungsöffnung verlässt, etwa 50 µl pro Injektionszyklus nicht überschreitet und die Kartuschentemperatur 80°C nicht überschreitet.
  14. Wasserstofferzeugungssystem gemäß Anspruch 1, welches ferner einen wässerigen Reaktant mit einem pH zwischen etwa 1 und etwa 6 umfasst.
  15. Wasserstofferzeugungssystem gemäß Anspruch 1, worin besagter flüssiger Reaktant eine wässerige Säurelösung ist.
  16. Wasserstofferzeugungssystem gemäß Anspruch 1, welches ferner einen Säurespeicher (60) und einen Wasserspeicher (85) einschließt, worin Säure und Wasser gemischt werden, bevor sie aus besagten Verteilungsöffnungen (32) injiziert werden.
  17. Wasserstofferzeugungssystem gemäß Anspruch 1, worin besagter Kartuschenempfänger eine Empfängerplatte (40) mit Wasserstoff - und Flüssigkeitseintrittsöffnungen (44) ist, welche sich mit besagten Öffnungen von besagter Kartusche verbinden.
  18. Wasserstofferzeugungssystem gemäß Anspruch 16, worin eine Abdichtungsvorrichtung zwischen besagten Öffnungen der besagten Kartusche und besagten Empfängerplatte positioniert ist; und ein Haltesystem besagte Kartusche und besagte Empfängerplatte mit ausreichend Kraft zusammen bringt, um eine wirksame Abdichtung zu bilden.
  19. Wasserstofferzeugungssystem gemäß Anspruch 17, worin besagtes Empfängersystem eine Trägerplatte (56) umfasst, welche durch mindestens zwei Trägerstangen (51) an besagter Empfängerplatte gebunden ist.
  20. Wasserstofferzeugungssystem gemäß Anspruch 17, worin besagte Empfängerplatte (40) mindestens einen Durchlass (46) mit einem daran gebundenen Steuerventil (77) einschließt und besagter Durchlass (46) mit besagter Flüssigkeitseintrittsöffnung (21) kommuniziert.
  21. Wasserstofferzeugungssystem nach Anspruch 1, worin der im Wesentlichen wasserfreie Hydridreaktant Natriumborhydrid ist.
  22. Brennstoffkartusche (10) für ein Wasserstofferzeugungssystem, wobei besagte Kartusche umfasst:
    a. ein Gehäuse (11), welches eine Endkappe (15) umfasst und im Wesentlichen wasserfreien Hydridreaktant, gemischt mit einem Aktivierungsmittel enthält, welches ein Salz von einem Erdalkalimetall oder ein Salz von einem Alkalimetall umfasst;
    b. mindestens eine Flüssigkeitsrohrleitung (30), welche an besagter Endkappe (15) befestigt ist und sich in besagten im Wesentlichen wasserfreien Hydridreaktant erstreckt, wobei besagte Flüssigkeitsrohrleitung (30) mindestens eine daran gebildete Flüssigkeitsverteilungsöffnung (32) hat, sodass flüssiger Reaktant in flüssiger Form in besagten im Wesentlichen wasserfreien Hydridreaktant passieren kann;
    c. wobei besagte Endkappe eine Flüssigkeitseintrittsöffnung (21), welche mit besagter Flüssigkeitsrohrleitung (30) kommuniziert, und eine Gasaustrittsöffnung (20) umfasst, wobei sowohl besagte Flüssigkeitseintrittsöffnung (21), als auch besagte Gasaustrittsöffnung (20) angepasst sind, um mit einem Kartuschenempfänger abzudichten.
  23. Brennstoffkartusche gemäß Anspruch 22, worin besagter Hydridreaktant Natriumborhydrid umfasst und das Aktivierungsmittel wasserfrei ist.
  24. Brennstoffkartusche gemäß Anspruch 23, worin besagter Hydridreaktant etwa 20 Gew.-% bis etwa 60 Gew.-% Aktivierungsmittel umfasst.
  25. Brennstoffkartusche gemäß Anspruch 24, worin besagtes Aktivierungsmittel wasserlöslich ist.
  26. Brennstoffkartusche gemäß Anspruch 22, worin besagtes Aktivierungsmittel mindestens eines, ausgewählt aus BeF2, BeCl2, Be-Br2, BeI2, MgF2, MgBr2, MgCl2, MgI2, CaF2, CaCl2, CaBr2, CaI2, LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, Li2S oder Li2Se ist.
  27. Brennstoffkartusche gemäß Anspruch 24, worin besagtes Aktivierungsmittel ausgewählt ist aus mindestens einem von MgCl2, Be-Cl2, CuCl2, LiCl, NaCl oder KCl.
  28. Brennstoffkartusche gemäß Anspruch 22, worin sich eine Vielzahl an Flüssigkeitsrohrleitungen (30) in besagtes Gehäuse (11) erstrecken.
  29. Brennstoffkartusche gemäß Anspruch 22, worin besagtes Hydrid in einer Stofftasche (31) mit einer im Wesentlichen größeren Fläche als Dicke eingeschlossen ist.
  30. Brennstoffkartusche gemäß Anspruch 29, worin besagte Stofftasche (31) innerhalb besagter Kartusche gerollt ist und sich besagte Wasserrohrleitung (30) zwischen Falten von besagter Stofftasche erstreckt.
  31. Brennstoffkartusche gemäß Anspruch 29, worin besagte Stofftasche (31) ein gewebtes Nylonmaterial umfasst.
  32. Brennstoffkartusche gemäß Anspruch 22, worin besagtes Hydrid Lithiumaluminiumhydrid umfasst und besagte Flüssigkeitsrohrleitung durch eine Stoffmanschette umgeben ist.
  33. Brennstoffkartusche gemäß Anspruch 28, worin besagte Vielzahl an Flüssigkeitsrohrleitungen (30) radial von einem Mittelpunkt der Endkappe (15) in einer ungleichmäßigen Konfiguration verteilt sind.
  34. Brennstoffkartusche gemäß Anspruch 33, worin besagte ungleichmäßige Konfiguration ein Spiralmuster hat.
  35. Brennstoffkartusche gemäß Anspruch 22, worin ein flüssige Säure enthaltender Speicher (60) an besagte Kartusche (10) gebunden ist.
  36. Brennstoffkartusche gemäß Anspruch 22, welche ferner mindestens eine Öffnung umfasst, welche die Freisetzung von Gas aus besagter Kartusche ermöglicht.
  37. Brennstoffkartusche gemäß Anspruch 22, welche ferner eine Vielzahl an Flüssigkeitsrohrleitungen (30) umfasst, wobei mindestens zwei der besagten Rohrleitungen verschiedene Längen haben.
  38. Brennstoffkartusche nach Anspruch 22, wobei besagte Flüssigkeitsrohrleitung ferner eine Vielzahl an Flüssigkeitsverteilungs-öffnungen (32) umfasst.
  39. Brennstoffkartusche nach Anspruch 22, welche ferner eine Vielzahl an Flüssigkeitsrohrleitungen (30) umfasst, wobei sich besagte Flüssigkeitsverteilungsöffnung (32) an einer Flüssigkeitsrohrleitung an einem anderen Ort befindet als besagte Flüssigkeitsverteilungsöffnung an mindestens einer anderen Rohrleitung.
  40. Brennstoffkartusche nach Anspruch 39, wobei besagte Verteilungsöffnung (32) durch ein offenes Ende von besagter Rohrleitung gebildet wird.
  41. Brennstoffkartusche nach Anspruch 22, welche eine Vielzahl an Verteilungsöffnungen (32) umfasst, welche entlang besagter Flüssigkeitsrohrleitung (30) gebildet sind, wobei besagte Flüssigkeitsverteilungsöffnungen (32) einen Durchmesser zwischen etwa 50 und etwa 1000 Mikron haben.
EP05848152A 2004-11-12 2005-11-12 Wasserstoffgeneratorkartusche Not-in-force EP1814653B1 (de)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US62725704P 2004-11-12 2004-11-12
US63246004P 2004-12-02 2004-12-02
US65537305P 2005-02-23 2005-02-23
US68302405P 2005-05-20 2005-05-20
US68845605P 2005-06-08 2005-06-08
PCT/US2005/040975 WO2006053236A1 (en) 2004-11-12 2005-11-12 Hydrogen generator cartridge
US11/270,947 US7438732B2 (en) 2003-06-11 2005-11-12 Hydrogen generator cartridge

Publications (3)

Publication Number Publication Date
EP1814653A1 EP1814653A1 (de) 2007-08-08
EP1814653A4 EP1814653A4 (de) 2008-11-05
EP1814653B1 true EP1814653B1 (de) 2012-07-18

Family

ID=36336843

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05848152A Not-in-force EP1814653B1 (de) 2004-11-12 2005-11-12 Wasserstoffgeneratorkartusche

Country Status (4)

Country Link
US (2) US7438732B2 (de)
EP (1) EP1814653B1 (de)
AU (1) AU2005304304B2 (de)
WO (1) WO2006053236A1 (de)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7556660B2 (en) * 2003-06-11 2009-07-07 James Kevin Shurtleff Apparatus and system for promoting a substantially complete reaction of an anhydrous hydride reactant
US8002853B2 (en) * 2003-07-29 2011-08-23 Societe Bic Hydrogen-generating fuel cell cartridges
US7810669B2 (en) * 2004-03-05 2010-10-12 Airbus Deutschland Gmbh Replaceable cartridge for liquid hydrogen
AU2005254551A1 (en) 2004-06-14 2005-12-29 Michigan State University Silicide compositions containing alkali metals and methods of making the same
WO2006053236A1 (en) * 2004-11-12 2006-05-18 Trulite, Inc. Hydrogen generator cartridge
US7727293B2 (en) * 2005-02-25 2010-06-01 SOCIéTé BIC Hydrogen generating fuel cell cartridges
US20070148508A1 (en) * 2005-11-10 2007-06-28 Peter Rezac Reactor purge system and method
US20080020260A1 (en) * 2005-11-12 2008-01-24 Brydon Chris A Apparatus, system, and method for manifolded integration of a humidification chamber for input gas for a proton exchange membrane fuel cell
US7976971B2 (en) * 2006-05-11 2011-07-12 Honeywell International Inc. Power generator with a pneumatic slide valve
JP5063935B2 (ja) * 2006-06-02 2012-10-31 東洋製罐株式会社 燃料電池カートリッジ用ポリエステル製容器
US7651542B2 (en) * 2006-07-27 2010-01-26 Thulite, Inc System for generating hydrogen from a chemical hydride
US7648786B2 (en) 2006-07-27 2010-01-19 Trulite, Inc System for generating electricity from a chemical hydride
US20080044696A1 (en) * 2006-08-18 2008-02-21 Knight Steven R Hydrogen generation cartridge
JP5013399B2 (ja) * 2006-09-22 2012-08-29 独立行政法人産業技術総合研究所 大気浄化用光触媒材料の自動性能評価装置
US8357214B2 (en) 2007-04-26 2013-01-22 Trulite, Inc. Apparatus, system, and method for generating a gas from solid reactant pouches
DE102007026085B4 (de) 2007-06-04 2011-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Gaserzeuger, seine Verwendung und Verfahren zum Herstellen von Gasen
AU2008279076A1 (en) * 2007-07-25 2009-01-29 Trulite, Inc. Apparatus, system, and method for securing a cartridge
EP2181477A4 (de) 2007-07-25 2011-08-03 Trulite Inc Vorrichtung, system und verfahren zur verwaltung der erzeugung und verwendung von elektrischer hybridenergie
US20090029227A1 (en) * 2007-07-25 2009-01-29 John Patton Apparatus, system, and method for securing a cartridge
CA2731803A1 (en) * 2007-07-25 2009-01-29 John Patton Apparatus, system, and method for processing hydrogen gas
JP5207441B2 (ja) * 2007-08-13 2013-06-12 セイコーインスツル株式会社 水素発生装置及び燃料電池システム
JP5135581B2 (ja) * 2007-08-16 2013-02-06 セイコーインスツル株式会社 水素発生装置及び燃料電池システム
JP5117827B2 (ja) * 2007-11-21 2013-01-16 セイコーインスツル株式会社 水素発生装置及び燃料電池システム
US9034531B2 (en) * 2008-01-29 2015-05-19 Ardica Technologies, Inc. Controller for fuel cell operation
CN101971402A (zh) * 2008-01-29 2011-02-09 阿尔迪卡技术公司 用于从燃料电池阳极排出非燃料材料的系统
US20100064584A1 (en) * 2008-09-12 2010-03-18 In Tae Bae Hydrogen generator
JP4807639B2 (ja) * 2009-03-18 2011-11-02 株式会社豊田中央研究所 水素化物複合体及び水素ガスの製造方法
EP3047903A1 (de) * 2009-03-30 2016-07-27 Intelligent Energy Limited Wasserstofferzeugungssysteme und -verfahren mit natriumsilicid und natrium-silicium-gelmaterialien
US9102528B2 (en) * 2009-03-30 2015-08-11 Intelligent Energy Limited Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials
US8741004B2 (en) * 2009-07-23 2014-06-03 Intelligent Energy Limited Cartridge for controlled production of hydrogen
US8808410B2 (en) 2009-07-23 2014-08-19 Intelligent Energy Limited Hydrogen generator and product conditioning method
US20110020215A1 (en) * 2009-07-23 2011-01-27 Ryu Wonhyoung Chemical hydride formulation and system design for controlled generation of hydrogen
US20110027668A1 (en) * 2009-07-29 2011-02-03 Honeywell International Inc. Hydrogen generation from chemical hydrides
US8895204B2 (en) 2010-11-08 2014-11-25 Intelligent Energy Limited Water reactive hydrogen fuel cell power system
CN101935018A (zh) * 2010-08-25 2011-01-05 应宁 硼氢化物产氢方法和便携式氢气发生器
US8940458B2 (en) 2010-10-20 2015-01-27 Intelligent Energy Limited Fuel supply for a fuel cell
WO2012058687A2 (en) 2010-10-29 2012-05-03 Ardica Technologies Pump assembly for a fuel cell system
WO2012064749A1 (en) 2010-11-08 2012-05-18 Signa Chemistry, Inc. Water reactive hydrogen fuel cell power system
US8919356B2 (en) 2010-12-14 2014-12-30 Whirlpool Corporation Ozone generation module
CN104040769B (zh) * 2011-07-11 2017-02-15 智能能源公司 具有结合的气体流动阀和减压孔的气体发生器
US8951312B2 (en) * 2011-11-09 2015-02-10 Alvin Gabriel Stern Compact, safe and portable hydrogen generation apparatus for hydrogen on-demand applications
US9169976B2 (en) 2011-11-21 2015-10-27 Ardica Technologies, Inc. Method of manufacture of a metal hydride fuel supply
CN103373707B (zh) * 2012-04-18 2015-05-20 扬光绿能股份有限公司 氢气纯化装置
AU2013374887B2 (en) * 2013-01-24 2016-12-15 Worgas Bruciatori S.R.L. Apparatus for the production of gas
GB2511566B (en) * 2013-03-08 2018-09-26 Intelligent Energy Ltd Gas supply cartridge
GB2534132A (en) * 2015-01-08 2016-07-20 Intelligent Energy Ltd Pressure sensing switch
JP6640729B2 (ja) * 2015-07-06 2020-02-05 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Uavの燃料電池に関するシステム及び方法
WO2017195045A2 (en) 2016-04-14 2017-11-16 Intelligent Energy Limited Pem fuel cell power systems with efficient hydrogen generation
US10074862B2 (en) 2016-04-19 2018-09-11 Intelligent Energy Limited Hydrogen-generating compositions for a fuel cell
WO2019037893A1 (de) * 2017-08-22 2019-02-28 Linde Aktiengesellschaft Verfahren zur notversorgung eines wasserstoffbetriebenen systems und wasserstoffbetriebenes system mit notversorgung
WO2019050959A1 (en) 2017-09-05 2019-03-14 Intelligent Energy Inc. COMPACT AND EFFICIENT HYDROGEN REACTOR
US20210155476A1 (en) * 2018-04-17 2021-05-27 Electriq-Global Energy Solutions Ltd. Batch systems and methods for hydrogen gas extraction from a liquid hydrogen carrier
US11888188B2 (en) * 2019-03-14 2024-01-30 Honeywell International Inc. Fuel cartridge having fuel beds with space for coolant fluid
US11011765B2 (en) 2019-03-14 2021-05-18 Honeywell International Inc. Fuel cell based power generator
CN113851681B (zh) * 2021-11-03 2023-04-07 倍有云端科技(广东)有限公司 便携式新能源汽车用的车载制氢器

Family Cites Families (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2542746A (en) * 1949-11-14 1951-02-20 Metal Hydrides Inc Method of purifying borohydrides of the alkali metals
US3133837A (en) * 1959-12-31 1964-05-19 Electric Storage Battery Co Fuel cell system
NL293400A (de) * 1963-05-30 1900-01-01
US3313598A (en) * 1965-06-07 1967-04-11 Ethyl Corp Method of controlled hydrogen generation
US3511710A (en) * 1965-07-28 1970-05-12 Varta Ag Method of directly converting the chemical energy of complex hydrides into electrical energy
US3649360A (en) * 1970-01-16 1972-03-14 United Aircraft Corp Combined water removal and hydrogen generation fuel cell powerplant
US3734863A (en) * 1971-06-11 1973-05-22 Us Navy Hydrogen generating compositions
US3940474A (en) * 1974-08-06 1976-02-24 The United States Of America As Represented By The Secretary Of The Army Generation of hydrogen
US3977990A (en) 1974-10-30 1976-08-31 The United States Of America As Represented By The Secretary Of The Navy Controlled generation of cool hydrogen from solid mixtures
US4000003A (en) 1976-01-02 1976-12-28 The United States Of America As Represented By The Secretary Of The Army Fuel cell-secondary cell combination
US4155712A (en) * 1976-04-12 1979-05-22 Taschek Walter G Miniature hydrogen generator
US4261955A (en) * 1978-09-01 1981-04-14 The United States Of America As Represented By The Secretary Of The Army Vertical type porous membrane hydrogen generator
US4261956A (en) * 1979-06-13 1981-04-14 Engelhard Minerals & Chemicals Corporation Cartridge for gas generator
US4486276A (en) 1981-02-06 1984-12-04 Engelhard Corporation Method for suppressing hydrogen formation in an electrolytic cell
US4433633A (en) * 1982-04-16 1984-02-28 The United States Of America As Represented By The Secretary Of The Navy Controlled gas generator system
US4513065A (en) * 1982-07-16 1985-04-23 Engelhard Corporation Hydrogen generator
US4436793A (en) * 1982-09-29 1984-03-13 Engelhard Corporation Control system for hydrogen generators
US4463066A (en) * 1982-09-30 1984-07-31 Engelhard Corporation Fuel cell and system for supplying electrolyte thereto
US4463068A (en) * 1982-09-30 1984-07-31 Engelhard Corporation Fuel cell and system for supplying electrolyte thereto with wick feed
JPS5978901A (ja) * 1982-10-21 1984-05-08 Sekisui Chem Co Ltd 水素供給装置
US4962462A (en) 1983-09-29 1990-10-09 Engelhard Corporation Fuel cell/battery hybrid system
US4543246A (en) 1984-10-04 1985-09-24 Houser Clifford F Hydrogen generator
US4740504A (en) * 1985-10-08 1988-04-26 United States Borax & Chemical Corp. Antihyperlipidemic amine boranes
US4628010A (en) 1985-12-13 1986-12-09 The United States Of America As Represented By The Secretary Of The Navy Fuel cell with storable gas generator
US4782096A (en) 1986-02-10 1988-11-01 Foster Wheeler Usa Corporation Process for the production of synthesis gas
US4968393A (en) 1988-04-18 1990-11-06 A. L. Sandpiper Corporation Membrane divided aqueous-nonaqueous system for electrochemical cells
US5047301A (en) 1989-03-31 1991-09-10 Ergenics Power Systems, Inc. High temperature battery and system utilizing same
US5108849A (en) * 1989-08-30 1992-04-28 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Fuel cell fluid flow field plate
US4988583A (en) * 1989-08-30 1991-01-29 Her Majesty The Queen As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Novel fuel cell fluid flow field plate
US4978451A (en) 1989-09-05 1990-12-18 Separation Dynamics, Inc. Supported hydrophilic membrane
US4973530A (en) 1989-12-21 1990-11-27 The United States Of America As Represented By The United States Department Of Energy Fuel cell water transport
US5229222A (en) 1990-11-14 1993-07-20 Sanyo Electric Co., Ltd. Fuel cell system
US5200278A (en) * 1991-03-15 1993-04-06 Ballard Power Systems, Inc. Integrated fuel cell power generation system
US5264299A (en) 1991-12-26 1993-11-23 International Fuel Cells Corporation Proton exchange membrane fuel cell support plate and an assembly including the same
US5205841A (en) * 1992-04-03 1993-04-27 Tpc Technologies, Inc. Apparatus and method for extracting hydrogen
US5314762A (en) * 1992-05-12 1994-05-24 Sanyo Electric Co., Ltd. Portable power source
US5747189A (en) * 1992-07-22 1998-05-05 Valence Technology, Inc. Smart battery
US5292600A (en) * 1992-08-13 1994-03-08 H-Power Corp. Hydrogen power cell
US5382478A (en) * 1992-11-03 1995-01-17 Ballard Power Systems Inc. Electrochemical fuel cell stack with humidification section located upstream from the electrochemically active section
US5372617A (en) 1993-05-28 1994-12-13 The Charles Stark Draper Laboratory, Inc. Hydrogen generation by hydrolysis of hydrides for undersea vehicle fuel cell energy systems
US5996976A (en) 1993-07-13 1999-12-07 Lynntech, Inc. Gas humidification system using water permeable membranes
US5634341A (en) * 1994-01-31 1997-06-03 The Penn State Research Foundation System for generating hydrogen
US5557188A (en) 1994-02-01 1996-09-17 Sun Microsystems, Inc. Smart battery system and interface
US5688611A (en) 1994-06-27 1997-11-18 Ergenics, Inc. Segmented hydride battery including an improved hydrogen storage means
US5514353A (en) * 1994-06-28 1996-05-07 Af Sammer Corporation Demand responsive hydrogen generator based on hydride water reaction
KR0124985B1 (ko) * 1994-08-17 1997-12-15 심상철 알칼리형 연료 전지
RU2174728C2 (ru) 1994-10-12 2001-10-10 Х Пауэр Корпорейшн Топливный элемент, использующий интегральную технологию пластин для распределения жидкости
US5863671A (en) * 1994-10-12 1999-01-26 H Power Corporation Plastic platelet fuel cells employing integrated fluid management
JPH08229759A (ja) * 1995-02-24 1996-09-10 Canon Inc 位置決め装置並びにデバイス製造装置及び方法
US6051128A (en) * 1995-06-06 2000-04-18 Chevron Chemical Company Split-feed two-stage parallel aromatization for maximum para-xylene yield
US5593640A (en) 1995-06-07 1997-01-14 Ball Corporation Portable hydrogen generator
DE19535212C2 (de) 1995-09-22 1997-08-14 Dornier Gmbh Vorrichtung zur Elektrolyse sowie deren Verwendung
US5804329A (en) 1995-12-28 1998-09-08 National Patent Development Corporation Electroconversion cell
US5728464A (en) * 1996-01-02 1998-03-17 Checketts; Jed H. Hydrogen generation pelletized fuel
US5883934A (en) * 1996-01-16 1999-03-16 Yuugengaisya Youzen Method and apparatus for controlling ions
KR100446814B1 (ko) 1996-01-22 2004-12-17 마츠시타 덴끼 산교 가부시키가이샤 연료전지시스템
US6090312A (en) * 1996-01-31 2000-07-18 Ziaka; Zoe D. Reactor-membrane permeator process for hydrocarbon reforming and water gas-shift reactions
US6106965A (en) 1996-03-29 2000-08-22 Mazda Motor Corporation Polymer electrolyte fuel cell
JPH09323425A (ja) 1996-06-05 1997-12-16 Brother Ind Ltd ノズルプレート及びその製造方法
EP0813264A3 (de) 1996-06-14 2004-02-25 Matsushita Electric Industrial Co., Ltd. Brennstoffzellensystem, Brennstoffversorgungssystem für Brennstoffzelle und tragbares elektrisches Gerät
DE19640808C1 (de) 1996-10-02 1997-11-27 Siemens Ag Verfahren zum Betreiben einer PEM-Brennstoffzellenanlage
US5955039A (en) 1996-12-19 1999-09-21 Siemens Westinghouse Power Corporation Coal gasification and hydrogen production system and method
US6468694B1 (en) 1997-03-27 2002-10-22 Millennium Cell, Inc. High energy density boride batteries
US5948558A (en) 1997-03-27 1999-09-07 National Patent Development Corporation High energy density boride batteries
DE19713250C2 (de) 1997-03-29 2002-04-18 Ballard Power Systems Elektrochemischer Energiewandler mit Polymerelektrolytmembran
US5932365A (en) 1997-06-09 1999-08-03 Industrial Technology Research Institute Hydrogen canister fuel cell battery
US6416895B1 (en) * 2000-03-09 2002-07-09 Ballard Power Systems Inc. Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream
DE69804829T2 (de) * 1997-07-16 2002-11-07 Ballard Power Systems Inc., Burnaby Elastische dichtung für eine membranelektrodenanordnung in einer elektrochemischen brennstoffzelle und herstellungsverfahren dafür
US6156450A (en) 1997-07-24 2000-12-05 Eveready Battery Company, Inc. Battery tester having printed electronic components
KR100254776B1 (ko) 1997-08-25 2000-05-01 윤종용 스마트 배터리를 갖는 전자기기의 충전 및 방전 방법
US6558829B1 (en) * 1997-10-06 2003-05-06 Reveo, Inc. Appliance with refuelable and rechargeable metal-air fuel cell battery power supply unit integrated therein
US6228519B1 (en) * 1997-10-06 2001-05-08 Reveo, Inc. Metal-air fuel cell battery systems having mechanism for extending the path length of metal-fuel tape during discharging and recharging modes of operation
DE19746251C2 (de) 1997-10-20 1999-09-09 Dbb Fuel Cell Engines Gmbh Anlage zur Wasserdampfreformierung eines Kohlenwasserstoffs und Betriebsverfahren hierfür
US6282902B1 (en) * 1997-10-28 2001-09-04 Hitachi, Ltd. Waste processing system and fuel reformer used in the waste processing system
JP3918265B2 (ja) * 1997-11-21 2007-05-23 トヨタ自動車株式会社 燃料電池の製造方法
JP4543440B2 (ja) * 1997-12-22 2010-09-15 株式会社エクォス・リサーチ 水直噴型燃料電池システム
US6072299A (en) * 1998-01-26 2000-06-06 Medtronic Physio-Control Manufacturing Corp. Smart battery with maintenance and testing functions
US6106968A (en) 1998-03-06 2000-08-22 Lucent Technologies Inc. Smart valve regulated lead acid battery with embedded electronic monitoring and fluid fill system
US6337120B1 (en) * 1998-06-26 2002-01-08 Nok Corporation Gasket for layer-built fuel cells and method for making the same
GB9814123D0 (en) * 1998-07-01 1998-08-26 British Gas Plc Electrochemical fuel cell
CA2243219A1 (en) * 1998-07-14 2000-01-14 A.T.S. Electro-Lube Holdings Ltd. Electrolytic generation of nitrogen
US6274093B1 (en) 1998-08-06 2001-08-14 Ball Aerospace & Technologies Corp. Self-regulating hydrogen generator
US6108968A (en) 1998-09-30 2000-08-29 Peng; Hai-Sung Device for exterminating garden pests
US6387557B1 (en) * 1998-10-21 2002-05-14 Utc Fuel Cells, Llc Bonded fuel cell stack assemblies
US6395405B1 (en) * 1998-11-09 2002-05-28 Robert E. Buxbaum Hydrogen permeable membrane and hydride battery composition
DE19857638A1 (de) 1998-12-14 2000-06-15 Varta Geraetebatterie Gmbh Elektrischer Akkumulator in Form einer Knopfzelle
US6399234B2 (en) * 1998-12-23 2002-06-04 Utc Fuel Cells, Llc Fuel cell stack assembly with edge seal
US6602631B1 (en) * 1999-01-26 2003-08-05 Lynntech Power Systems, Ltd. Bonding electrochemical cell components
US6268077B1 (en) * 1999-03-01 2001-07-31 Motorola, Inc. Portable fuel cell power supply
US6459231B1 (en) * 1999-05-03 2002-10-01 Takeo Kagatani Power device
US6231825B1 (en) * 1999-07-29 2001-05-15 Rohm And Haas Company Production of sodium borohydride from sodium borohydride dihydrate in a fluidized bed dryer
US6236326B1 (en) * 1999-10-29 2001-05-22 Vtech Telecommunications, Ltd. Method and apparatus for intelligently signaling a battery charge condition in a wireless telephone
US6312846B1 (en) * 1999-11-24 2001-11-06 Integrated Fuel Cell Technologies, Inc. Fuel cell and power chip technology
US6534033B1 (en) * 2000-01-07 2003-03-18 Millennium Cell, Inc. System for hydrogen generation
US6296958B1 (en) * 2000-03-08 2001-10-02 Metallic Power, Inc. Refuelable electrochemical power source capable of being maintained in a substantially constant full condition and method of using the same
US6544400B2 (en) * 2000-03-30 2003-04-08 Manhattan Scientifics, Inc. Portable chemical hydrogen hydride system
US6503649B1 (en) * 2000-04-03 2003-01-07 Convergence, Llc Variable fuel cell power system for generating electrical power
US6428918B1 (en) 2000-04-07 2002-08-06 Avista Laboratories, Inc. Fuel cell power systems, direct current voltage converters, fuel cell power generation methods, power conditioning methods and direct current power conditioning methods
US6544679B1 (en) * 2000-04-19 2003-04-08 Millennium Cell, Inc. Electrochemical cell and assembly for same
US6250078B1 (en) * 2000-04-27 2001-06-26 Millennium Cell, L.L.P. Engine cycle and fuels for same
US6468682B1 (en) 2000-05-17 2002-10-22 Avista Laboratories, Inc. Ion exchange membrane fuel cell
US6387228B1 (en) * 2000-08-03 2002-05-14 Henri J. R. Maget Electrochemical generation of carbon dioxide and hydrogen from organic acids
US20020022170A1 (en) * 2000-08-18 2002-02-21 Franklin Jerrold E. Integrated and modular BSP/MEA/manifold plates for fuel cells
US6433129B1 (en) * 2000-11-08 2002-08-13 Millennium Cell, Inc. Compositions and processes for synthesizing borohydride compounds
US6524542B2 (en) * 2001-04-12 2003-02-25 Millennium Cell, Inc. Processes for synthesizing borohydride compounds
US6670444B2 (en) * 2000-11-08 2003-12-30 Millennium Cell, Inc. Processes for synthesizing borohydride compounds
US6500577B2 (en) 2000-12-26 2002-12-31 Ronald B. Foster Modular polymer electrolyte membrane unit fuel cell assembly and fuel cell stack
US6531630B2 (en) * 2000-12-29 2003-03-11 Kenneth Ebenes Vidalin Bimodal acetic acid manufacture
DE10065269C1 (de) * 2000-12-29 2002-10-02 Novars Ges Fuer Neue Technolog Brennstoffzellenanordnung und Verfahren zu ihrem Betrieb
US20020088178A1 (en) * 2001-01-10 2002-07-11 Davis David Wayne Hydrogen storage and generation system
KR100395131B1 (ko) 2001-02-16 2003-08-21 삼성전자주식회사 스마트 배터리의 실제 잔류 용량을 표시하기 위한 장치 및방법
WO2002066368A1 (fr) * 2001-02-22 2002-08-29 Yoshirou Tanaka Procede de production d'hydrogene
FR2823203B1 (fr) * 2001-04-10 2004-04-09 Poudres & Explosifs Ste Nale Compositions solides generatrices d'hydrogene par combustion comprenant un borohydrure alcalin et un sel d'ammonium
US6599653B1 (en) * 2001-05-15 2003-07-29 Dana Corporation Molded fuel cell plates with seals
US6497974B2 (en) 2001-05-23 2002-12-24 Avista Laboratories, Inc. Fuel cell power system, method of distributing power, and method of operating a fuel cell power system
US20040043274A1 (en) * 2001-06-01 2004-03-04 Scartozzi John P. Fuel cell power system
US20030001299A1 (en) * 2001-06-29 2003-01-02 Nachappa Gopalsami Method and apparatus for ultrasonic temperature monitoring
JP2003081603A (ja) * 2001-07-04 2003-03-19 Hitachi Ltd 水素製造装置及びそれを用いた発電システム
US6932847B2 (en) * 2001-07-06 2005-08-23 Millennium Cell, Inc. Portable hydrogen generator
US6869717B2 (en) * 2001-07-09 2005-03-22 Hydrogenics Corporation Manifold for a fuel cell system
US7316718B2 (en) * 2001-07-11 2008-01-08 Millennium Cell, Inc. Differential pressure-driven borohydride based generator
US6834623B2 (en) * 2001-08-07 2004-12-28 Christopher T. Cheng Portable hydrogen generation using metal emulsions
US6693253B2 (en) * 2001-10-05 2004-02-17 Universite De Sherbrooke Multi-coil induction plasma torch for solid state power supply
JP4153690B2 (ja) * 2001-10-25 2008-09-24 本田技研工業株式会社 水素スタンド充填管理装置
US7074509B2 (en) * 2001-11-13 2006-07-11 Eldat Communication Ltd. Hydrogen generators for fuel cells
US6858335B2 (en) * 2001-11-14 2005-02-22 Relion, Inc. Fuel cell power systems and methods of operating fuel cell power systems
US6703722B2 (en) * 2001-12-14 2004-03-09 Avista Laboratories, Inc. Reconfigurable plural DC power source power system responsive to changes in the load or the plural DC power sources
US6586563B1 (en) * 2001-12-18 2003-07-01 Millennium Cell, Inc. Processes for synthesizing alkali metal borohydride compounds
US6685570B2 (en) * 2002-01-22 2004-02-03 Kop-Flex Plate adapter for flexible half couplings
US7108777B2 (en) * 2002-03-15 2006-09-19 Millennium Cell, Inc. Hydrogen-assisted electrolysis processes
US7282073B2 (en) * 2002-04-02 2007-10-16 Millennium Cell, Inc. Method and system for generating hydrogen by dispensing solid and liquid fuel components
US7691527B2 (en) * 2002-04-24 2010-04-06 Petillo Phillip J Method and apparatus for generating hydrogen
US7393369B2 (en) 2002-06-11 2008-07-01 Trulite, Inc. Apparatus, system, and method for generating hydrogen
US20040009379A1 (en) * 2002-07-11 2004-01-15 Amendola Steven C. Method and apparatus for processing discharged fuel solution from a hydrogen generator
US7083657B2 (en) * 2002-08-20 2006-08-01 Millennium Cell, Inc. System for hydrogen generation
US20040053100A1 (en) * 2002-09-12 2004-03-18 Stanley Kevin G. Method of fabricating fuel cells and membrane electrode assemblies
US6866836B2 (en) * 2002-09-13 2005-03-15 General Motors Corporation Method of generating hydrogen from borohydrides and water
US6939529B2 (en) * 2002-10-03 2005-09-06 Millennium Cell, Inc. Self-regulating hydrogen generator
FR2845377B1 (fr) * 2002-10-04 2006-03-24 Poudres & Explosifs Ste Nale Compositions solides generatrices d'hydrogene par combustion comprenant un borohydrure alcalin ou alcalino-terreux et un sel oxydant a base de perchlorate d'ammonium, alcalin ou alcalino-terreux
US6955863B2 (en) * 2002-10-25 2005-10-18 Hewlett-Packard Development Company, L.P. Dual-purpose compartment for a hybrid battery and fuel cell powered device
US7323148B2 (en) * 2002-11-05 2008-01-29 Millennium Cell, Inc. Hydrogen generator
EP1565450B1 (de) * 2002-11-27 2007-07-04 MERCK PATENT GmbH Tetrahydropyran-derivate
US7501008B2 (en) * 2003-01-31 2009-03-10 Microcell Corporation Hydrogen storage systems and fuel cell systems with hydrogen storage capacity
US6989210B2 (en) * 2003-04-23 2006-01-24 Hewlett-Packard Development Company, L.P. Fuel cartridge with thermo-degradable barrier system
US6706909B1 (en) * 2003-05-12 2004-03-16 Millennium Cell, Inc. Recycle of discharged sodium borate fuel
ATE340836T1 (de) * 2003-05-27 2006-10-15 Merck Patent Gmbh Pyranderivate
DE502004001386D1 (de) * 2003-05-27 2006-10-19 Merck Patent Gmbh Pyranderivative mit exocyclischer Doppelbindung
US7799315B2 (en) * 2003-06-11 2010-09-21 Steven Amendola Thermochemical hydrogen produced from a vanadium decomposition cycle
US7513978B2 (en) * 2003-06-18 2009-04-07 Phillip J. Petillo Method and apparatus for generating hydrogen
US20050014044A1 (en) * 2003-07-15 2005-01-20 Niranjan Thirukkovalur Fuel cell system
WO2005011599A2 (en) * 2003-08-01 2005-02-10 Northwestern University Antibodies specific for toxic amyloid beta protein oligomers
US20050058595A1 (en) * 2003-09-15 2005-03-17 Celgard Inc. Reactor and method for generating hydrogen from a metal hydride
US20050132640A1 (en) * 2003-12-19 2005-06-23 Kelly Michael T. Fuel blends for hydrogen generators
US7004207B2 (en) * 2004-01-16 2006-02-28 More Energy Ltd. Refilling system for a fuel cell and method of refilling a fuel cell
US20050162122A1 (en) * 2004-01-22 2005-07-28 Dunn Glenn M. Fuel cell power and management system, and technique for controlling and/or operating same
US7201226B2 (en) * 2004-07-22 2007-04-10 Schlumberger Technology Corporation Downhole measurement system and method
JP4949615B2 (ja) * 2004-10-08 2012-06-13 株式会社日立製作所 燃料電池用燃料容器、燃料電池、燃料電池電源装置、および燃料容器を燃料電池へ装着する方法
US20060102489A1 (en) * 2004-10-29 2006-05-18 Kelly Michael T Methods and apparatus for synthesis of metal hydrides
US20060102491A1 (en) * 2004-11-10 2006-05-18 Kelly Michael T Processes for separating metals from metal salts
WO2006053236A1 (en) * 2004-11-12 2006-05-18 Trulite, Inc. Hydrogen generator cartridge
US20070011251A1 (en) * 2004-12-09 2007-01-11 Mcnamara Kevin W Fuel cartridge for fuel cell power systems and methods for power generation
KR100707161B1 (ko) * 2005-07-16 2007-04-13 삼성에스디아이 주식회사 연료 카트리지 및 이를 구비한 직접액체 연료전지
US20070081939A1 (en) * 2005-10-06 2007-04-12 Grant Berry Solid fuel packaging system and method or hydrogen generation

Also Published As

Publication number Publication date
EP1814653A4 (de) 2008-11-05
AU2005304304B2 (en) 2009-01-15
US7438732B2 (en) 2008-10-21
US20060059778A1 (en) 2006-03-23
EP1814653A1 (de) 2007-08-08
WO2006053236A8 (en) 2007-01-25
US20090053134A1 (en) 2009-02-26
WO2006053236A1 (en) 2006-05-18
AU2005304304A1 (en) 2006-05-18

Similar Documents

Publication Publication Date Title
EP1814653B1 (de) Wasserstoffgeneratorkartusche
US8357213B2 (en) Apparatus, system, and method for promoting a substantially complete reaction of an anhydrous hydride reactant
CA2587563C (en) Hydrogen generator cartridge
EP2414096B1 (de) Wasserstofferzeugungssysteme und -verfahren mit natriumsilicid
US20070271844A1 (en) Hydrogen fuel cartridge and methods for hydrogen generation
US8597844B2 (en) Methods and apparatus for refueling reversible hydrogen-storage systems
US7648786B2 (en) System for generating electricity from a chemical hydride
US9774051B2 (en) Fuel supply for a fuel cell
US20080025880A1 (en) Apparatus, system, and method for generating hydrogen from a chemical hydride
KR20070064584A (ko) 연료 전지 카트리지 및 연료 운반 시스템
US9102528B2 (en) Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials
CN104619409B (zh) 自调节气体发生器和方法
JP2008532893A5 (de)
CN101855758A (zh) 处理氢气的装置、系统和方法
CA2863839A1 (en) Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials
WO2008014467A2 (en) Apparatus, system, and method for generating electricity from a chemical hydride

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ANDERSON, HOWARD

Inventor name: SHURTLEFF, JAMES, KEVIN

Inventor name: BRYDON, CHRIS, A.

Inventor name: LADD, ERIC, J.

Inventor name: PATTON, JOHN, M.

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1110822

Country of ref document: HK

A4 Supplementary search report drawn up and despatched

Effective date: 20081006

17Q First examination report despatched

Effective date: 20090721

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Ref country code: AT

Ref legal event code: REF

Ref document number: 566811

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005035243

Country of ref document: DE

Effective date: 20120913

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2391283

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20121123

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 566811

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120718

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121118

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121119

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121019

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

26N No opposition filed

Effective date: 20130419

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121018

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005035243

Country of ref document: DE

Effective date: 20130419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121112

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1110822

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20140529

Year of fee payment: 9

Ref country code: GB

Payment date: 20140529

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140530

Year of fee payment: 9

Ref country code: IT

Payment date: 20140530

Year of fee payment: 9

Ref country code: DE

Payment date: 20140530

Year of fee payment: 9

Ref country code: SE

Payment date: 20140530

Year of fee payment: 9

Ref country code: NL

Payment date: 20140530

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20140530

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140530

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005035243

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150601

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20141130

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141113

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150602

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141112

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141112

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20151229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141113