EP1814653B1 - Wasserstoffgeneratorkartusche - Google Patents
Wasserstoffgeneratorkartusche Download PDFInfo
- Publication number
- EP1814653B1 EP1814653B1 EP05848152A EP05848152A EP1814653B1 EP 1814653 B1 EP1814653 B1 EP 1814653B1 EP 05848152 A EP05848152 A EP 05848152A EP 05848152 A EP05848152 A EP 05848152A EP 1814653 B1 EP1814653 B1 EP 1814653B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cartridge
- liquid
- generation system
- hydrogen generation
- reactant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
- C01B3/065—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J7/00—Apparatus for generating gases
- B01J7/02—Apparatus for generating gases by wet methods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C11/00—Use of gas-solvents or gas-sorbents in vessels
- F17C11/005—Use of gas-solvents or gas-sorbents in vessels for hydrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04201—Reactant storage and supply, e.g. means for feeding, pipes
- H01M8/04208—Cartridges, cryogenic media or cryogenic reservoirs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04201—Reactant storage and supply, e.g. means for feeding, pipes
- H01M8/04216—Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/065—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to apparatuses and methods for producing hydrogen.
- the embodiments described herein relate to apparatuses and methods for releasing hydrogen from chemical hydrides.
- US 5,514,353 describes a demand responsive hydrogen generator based on a hybride water reaction.
- the hydrogen generator is provided with a hydride cartridge comprising a corrugated perforated sheet metal support structure.
- US 2003/0228252 describes an apparatus for the generation of hydrogen through a controlled chemical reaction between water and a chemical hybride.
- the present invention provides a hydrogen generation system (1) comprising:
- the present invention also provides a fuel cartridge (10) for a hydrogen generating system, said cartridge comprising:
- FIG 1A illustrates one embodiment of a hydrogen fuel cartridge which may be employed in the hydrogen generation system of the present invention.
- Fuel cartridge 10 may include a tubular body or housing 11, which in this embodiment ranges from 2.5 to 7.6 cm (1 to 3 inches) in diameter and 10.2 to 20.3 cm (4 to 8 inches) in length.
- housing 11 is not limited to any particular cross-sectional shape or any particular dimensions.
- housing 11 is formed of a material such as aluminum which has sufficient strength, is comparatively light, and has good heat transfer characteristics.
- Figure lA's embodiment also illustrates a rear end cap 12 having a handle 13 allowing fuel cartridge 10 to be easily positioned and locked into place with other components of the overall hydrogen generation system as will be described below.
- front end cap 15 The other end of housing 11 opposite rear end cap 12 will comprise a front end cap 15 which is more clearly seen in Figures 2 and 3 .
- This embodiment of front end cap 15 will include a plurality of liquid reactant (e.g., water) inlet ports 21a-21d, a hydrogen gas outlet port 20, alignment structures 24 and a threaded center aperture 23.
- the liquid reactant may be water or another aqueous reactant (e.g., a water based acid solution).
- liquid reactant inlet ports 21 may be referred to as water inlet ports 21 when describing certain embodiments.
- alignment structures 24 are circular apertures which engage a cartridge receiver or in one embodiment, the receiver plate 40 as seen in Figure 8 (discussed below).
- alignment structures 24 are non-symmetrically positioned around center aperture 23 to ensure end cap 15 can only engage receiver plate 40 in one orientation.
- other embodiments could include different numbers of water inlet ports 21 and hydrogen outlet ports 20, along with different types of alignment structures.
- front end cap 15 will include a groove 25, which will allow end cap 15 to engage and be locked into housing 11 by way of the front end of housing 11 being crimped into the groove 25 (or by any other method forming a substantially gas tight seal).
- the rear side of front end cap 15 will include a support assemblage 17 formed of structural elements having tube connectors 26 which secure liquid reactant injection tubes 30 (see Figure 1A ) to front end cap 15 and provide continuous passages between injection tubes 30 and ports 21.
- injection tubes 30 are fixed to end cap 15 in a manner which substantially prevents tubes 30 from moving relative to end cap 15 along an axis parallel to the length of cartridge housing 11.
- Another support assemblage 17 will provide space for a check valve cavity 22a (the rear side of hydrogen outlet port 20) to hold an integrated check valve 22 allowing gas flow only in the outward direction, i.e., from the interior to the exterior of cartridge 10.
- the end cap is made of molded plastic, e.g., Delrin ® , but one skilled in the art will see that end cap 15 could be made from a variety of materials, including aluminum, steel, stainless steel, copper, other plastics or composite materials.
- the check valve may be a silicone duckbill type valve manufactured by Vernay Laboratories, Inc. of Yellow Springs, OH.
- fluid injection tubes 30 will extend into the interior of cartridge housing 11 which holds a solid reactant (as explained in more detail below).
- injection tubes 30 may extend into housing 11 at least half housing 11's length, although in other embodiments the injection tubes 30 may extend less than half the housing's length.
- water injection tubes 30 will have an inside diameter ranging from about 0.5 to 5.0 mm with the inside diameter more preferably being about 1 mm.
- the injection tubes may be made of aluminum, brass, or other metal, PTFE, Nylon ® , Delrin ® , or other high temperature polymers.
- a series of liquid distribution apertures 32 will be formed along the length of water injection tubes 30.
- the liquid distribution apertures 32 will have a diameter which is no greater than about 1/5 the inside diameter of water injection tubes 30, and more preferably no greater than about 1/10 such inside diameter (e.g., on the order of about 50 to 1000 microns).
- Liquid distribution apertures 32 may be spaced in any manner to promote uniform liquid distribution, such as for example, every 1.3 cm (half inch) on opposing sides of injection tubes 30.
- liquid distribution apertures may be spaced more closely along the length of tubes 30 as the tubes extend away from front end cap 15 in order to compensate for head loss in the fluid as it travels down the length of injection tube 30.
- the aperture size could be increased as the apertures become further from front end cap 15 in order to compensate for head loss.
- a further embodiment seen in Figure 1B would eliminate the multiple apertures 32 along the length of the tubes and have only one injection aperture 32 at the open end of the tubes (although this single aperture could be elsewhere along the length of the tubes).
- the length of the different tubes 30 could vary from the endcap 15 in order to distribute liquid reactant throughout the housing.
- the above described alternative embodiments along with other unspecified alternative embodiments may be employed to distribute liquid reactant at different locations within housing 11.
- a chemical hydride may be considered a reducing compound containing a metal and hydrogen that generates hydrogen gas when it reacts with water or other oxidizing agents.
- Various examples of chemical hydrides are disclosed in US application serial no. 10/459,991 filed June 11, 2003 ( US 2003 228252 ).
- Nonlimiting examples of chemical hydrides may include sodium borohydride, lithium borohydride, lithium aluminum hydride, lithium hydride, sodium hydride, and calcium hydride.
- the chemical hydride reactant will be enclosed within a fabric pouch 31.
- fabric includes not only textile materials, but also includes paper based porous materials typically used for filtration purposes.
- One embodiment of the fabric will be a porous material which can maintain structural integrity at temperatures ranging from about -20 °C to about 200 °C, a pH ranging from about 4 to about 14, and which exhibits at least some wicking potential.
- Preferred fabrics may include woven Nylon, Rayon polyester blend (for example Pellon 30 manufactured by Pellon Consumer Products of Tucker, GA) or porous filter paper such as Paper 602 provided by National Filter Media Corporation, Salt Lake City, UT.
- the wicking potential may be measured in distance water wicks divided by time.
- Illustrative examples include paper 603 - 6" in 60 min., Pellon 30 - 1.8" in 60 min., Nylon - 1.2" in 60 min., coffee filter paper - 2.3" in 60 min.
- a wicking potential of between 0.3 cm and 25.4 cm (0.1 and 10 inches) a minute may be employed; other embodiments could be between 1.3 cm and 7.6 cm (0.5 and 3 inches) a minute.
- the thickness of the fabric or paper could be from about 3 mil to 12 mil, while the pore size of the fabric or paper could be between at least 1 micron and about 50 microns.
- the present invention may include wicking potentials, fabric thicknesses, and pore sizes different from those listed above.
- the fabric pouch 31 is comparatively thin having a substantially greater area than thickness.
- Pouch 31 may be formed in any conventional manner.
- viewing Figure 6 it can be seen how two rectangular sheets of fabric material 33a and 33b may be sealed along three edges (for example by stitching 34) and segmented into 2.5 to 5.1 cm (1 to 2 inch) sections 36 (also by stitching) to leave open ends 35.
- the series of sections 36 thus formed are filled with a fine grain chemical hydride (described below) and sealed along the fourth edge by stitching closed open ends 35.
- An illustrative thickness of such a pouch 31 (i.e., the thickness of sections 36 when unrolled and charged with a chemical hydride) may be approximately 0.6 cm (1 ⁇ 4 of an inch) in one embodiment and its unrolled dimensions could be approximately 14.6 cm by 50.8 cm (5.75 inches by 20 inches). Then the pouch 31 is rolled to a diameter sufficiently small to be inserted into tubular housing 11 as suggested in Figure 5 (the front end cap 15 has been removed for purposes of clarity). The water injection tubes 30 are then carefully inserted between overlapping layers of the rolled pouch 31.
- Figures 1 and 3A illustrate how in one embodiment, water ports 21 (and thus injection tubes 30) may be arranged in a nonuniform configuration such as a spiral pattern.
- water port 21a in Figure 3A is closest to the center point of end cap 15. Then water port 21b is radially spaced further from the center point, with water port 21c spaced even further and water port 21d spaced still further.
- water injection tubes 30 may follow the spiral pattern of rolled pouch 31.
- other embodiments could utilize different orientations of pouch 31 or could use a series of smaller pouches 31 as opposed to the continuous pouch 31 seen in Figure 6 and could use any arrangement of injection tubes 30.
- the components within cartridge 10 will have a temperature stability between at least about -20 °C to at least about 200 °C and a corrosion stability/resistance at pHs ranging from about 4 to about 14.
- FIG. 7 An alternate embodiment of cartridge 10 is seen in Figure 7 .
- the chemical hydride material 38 is not positioned within a pouch, but is placed directly within the interior space of cartridge housing 11 (seen with end cap 15 removed) and water injection tubes 30 will extend into the bed of chemical hydride material 38.
- water injection tubes 30 will be covered with a thin sleeve 37 of fabric such as a woven refractory material which in one embodiment is a 10 mil thick fabric sold under the tradename Silex ® manufactured by Mid Mountain Materials of Mercer Island, WA.
- Naturally end cap 15 seen in Figures 1-3 would be modified to have two liquid injection ports 21 to match the two injection tubes 30 seen in Figure 7 .
- FIG 14 A still further embodiment of cartridge 10 is seen in Figure 14 .
- the end cap 15 is similar to that described above.
- a single injection tube 30 extends into housing 11 toward the bottom of a bed of chemical hydride material.
- the injection tube 30 will have an aperture at the end of the tube.
- the cartridge 10 may be oriented vertically such that water injected into the hydride bed will react first with the hydride material at the bottom of the bed. As additional water is injected, the water will rise and activate hydride material along the length of cartridge 10.
- the cartridge 10 may be in non-vertical orientations.
- bed of chemical hydride material may mean a mass of loose hydride material placed directly in the cartridge 10 (e.g., Figure 7 ) or the hydride material being in a pouch (e.g., Figure 5 ) which is inserted in cartridge 10 or any other manner of (or container for) positioning the hydride material in cartridge 10.
- Receiver plate 40 will include a receiver body 41 which has various structures formed thereon and within for mating with end cap 15 of cartridge 10. Within the receiver body 41 are alignment structures or guide pins 45 which will mate with alignment structures 24 on end cap 15. Additionally, receiver plate 40 includes a plurality of port connectors 44 which will mate with hydrogen and water ports 20 and 21 on end cap 15. Indentions 49 around port connectors 44 will accommodate sealing devices such as O-rings or gaskets. A port connector 44 will communicate with each hydrogen passage 42 and water passages 43 which is formed through receiver body 41.
- FIG. 10 illustrates how external water and hydrogen lines (see schematic in Figure 10 ) will connect (directly or indirectly depending on the embodiment) to hydrogen passage 42 and water passages 43 and thereby provide fluid communication through receiver plate 40 to the hydrogen port 20 and water ports 21 of cartridge 10.
- Figure 8 illustrates how one embodiment of receiver plate 40 will include internal water passages 46 and various inlets and outlets 54 for passages 46.
- Figure 9 illustrates how the openings in water passages 46 will communicate with electronic control valves 77 and hose fittings 53.
- hose fittings 53 are 90 degree, 0.3 cm (1/8 inch) I.D.
- control valves 77 are x-valves available from Parker Hannifan Corporation located in Cleveland HO.
- a plurality of hoses will connect the plurality of water passages 46 (via hose fittings 53) in the receiver plate 40 to water passages 43, likewise equipped with hose fittings.
- the passages 46 may connect directly to passages 43 through the internal volume of receiver plate 40, but forming long internal passages within receiver plate 40 adds substantial manufacturing complexity.
- a fluid pump 78 will direct fluid toward a series of three control valves 77a, 77b, and 77c through hose 50.
- Control valves 77 will have two orientations, an unactivated or normal open (NO) position and an activated or normal closed position (NC).
- control valves 77a, 77b, and 77c are connected in series by fluid pathway 58 (which would be the combination of hoses and passages if embodied in the receiver plate 40 of Figures 8 and 9 ).
- Control valves 77a and 77b will direct fluid to pathway 58 in the NO position and to their respective fluid injection tubes 30 when energized to the NC position by the associated control circuitry.
- Control valve 77c is connected somewhat differently since in the NO position, fluid is directed to injection tube 30d and in the NC position fluid is directed to injection tube 30c. The operation of control valves 77a to 77c in selectively directing fluid to different injection tubes will be readily apparent.
- valves 77a to 77c are left in the NO position; for injection tube 30c, valve 77c is moved to the NC position; for injection tube 30b, valve 77a will be in the NO position and valve 77b in the NC position; and for injection tube 30a, valve 77a will be in the NC position. In this manner, the path of fluid flow will pass through control valves 77 and allow these valves to control fluid delivered to injection tubes 30.
- the receiver plate 40 seen in Figure 8 will connect to end cap 15 (see Figure 3A ) by way of a holding assembly, one example of which is a bolt or other threaded member passing through aperture 48 in receiver plate 40 and engaging the threaded inner surface of center aperture 23 on end cap 15 in order to pull end cap 15 firmly against receiver plate 40 and form seals between hydrogen/water ports 20/21 and port connectors 44.
- Figure 9 shows the complete receiver assembly 28 including support plate 56 and connecting rods 51 engaging rod apertures 50 in receiver plate 40. In the embodiment shown, one rod aperture 50 will be elongated and the others round to assist in orienting the rods 51 for insertion into receiver plate 40.
- cartridge 10 slides through the opening in support plate 56 and in between the connecting rods 51 and seals against the receiver plate 40 as described previously with the threaded end of knob 52 extending through aperture 48.
- a mounting arm 57 will extend from support plate 56 and rest against cartridge 10.
- a cartridge temperature sensor described herein will be attached to mounting arm 57.
- the electronic valves 77 are shown connected to the receiver plate 40. Slot 47 in the receiver plate 40 shown in Figure 8 firmly holds the cartridge sense switch 82 as shown in Figure 9 .
- cartridge sense switch 82 is ZM series microswitch with lever manufactured by Honeywell International, Inc. of Morristown, NJ and will detect when cartridge 10 is in direct or near contact with sense switch 82.
- the chemical hydride reactant utilized in the fuel cartridge may be a dry, powdered form of sodium borohydride (NaBH 4 ) mixed with an activating agent.
- NaBH 4 sodium borohydride
- the NaBH 4 is particularly suitable for use in the pouch 31 seen in Figure 5 and in one embodiment; the NaBH 4 will have a grain size ranging from about mesh 10 to about mesh 1000.
- the activating agent be a powdered solid when mixed with NaBH 4 , since solids tend to react very slowly with each other.
- the activating agent could also be mixed into an organic/oil solvent.
- the activating agent in certain embodiments is preferably water soluble to increase its effectiveness, since the greater its solubility, the greater its potential to activate the water/NaBH 4 reaction.
- magnesium chloride MgCl 2
- Other potential activating agents are other salts of Group IIA (alkaline earth metals) or Group VIIB (halides), such as BeF 2 , BeCl 2 , BeBr 2 , BeI 2 , MgF 2 , MgBr 2 , Mg 2 I, CaF 2 , CaCl 2 , CaBr 2 , and CaI 2 .
- the fluorides and chlorides are preferred because they have a lower molecular weight. However, some of these salts may be less preferred depending on their degree of solubility in water or if they are considered toxic (e.g., beryllium compounds).
- Activating agents may also include other water soluble salts such as Group IA (alkali metals) salts including LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, and KI.
- Group IA and Group IIA hydroxides may be less preferred, since they make basic solutions in water and thus reduce the reaction rate.
- Group IA and Group IIA oxides may also be less preferred since they tend to be more stable and thus not as reactive.
- Group IA and Group IIA sulfides and selenides, such as Li 2 S, Li 2 Se may be better activating agents if they are sufficiently water soluble.
- the activating agents will be from the group of MgCl 2 , BeCl 2 , CuCl 2 , LiCl, NaCl, or KCl. However, any of the above activating agents (or others not listed) could possibly be employed given the proper design and use conditions. In certain embodiments, the activating agent will have a grain size ranging from about mesh 10 to about mesh 1000.
- the quantity of activating agent mixed with the chemical hydride will be from about 25 to about 65 weight percent and more preferably about 50 to about 60 weight percent. In one embodiment, the quantity of activating agent is 55 weight percent. In the embodiment where the solid reactant is 55 weight percent MgCl 2 , approximately 0.8 gm of water will be required to fully react each gm of solid reactant.
- One consideration in optimizing the amount of activating agent is determining the minimum amount of the material which gives the desired hydrogen generation rate and results in complete reaction/utilization of the NaBH 4 . For a 55 weight% MgCl 2 /NaBH 4 mixture, the energy density is 3116 Whr/kg. For comparison, the energy density of a 20 weight% NaBH 4 /H 2 O mixture (i.e., NaBH 4 dissolved in water) is 1066 Whr/kg, while the energy density for pure NaBH 4 is 7101 Whr/kg.
- anhydrous or powdered acids such as boric acid (H 3 BO 3 ), oxalic acid, tartaric acid, etc.
- anhydrous acids can be mixed with the NaBH 4 without reaction, but when water is added, the anhydrous acid dissolves and thus causes a reaction.
- Weak or relatively insoluble anhydrous acids such as boric acid when mixed with NaBH 4 produce hydrogen in the presence of water at a relatively low rate, and thus are less preferred.
- Strong acids such as oxalic acid are very soluble in water and generate substantial hydrogen when mixed with NaBH 4 . However, this mixture is difficult to controllable and is also less preferred.
- intermediate strength acids such as tartaric acid or benzoic acid are more favorable.
- the strength (Ka) of the dry acid will range from about 1x10 -4 to about 1x10 -11 .
- the powdered acid will have a grain size ranging from about mesh 10 to about mesh 1000.
- the quantity of tartaric acid mixed with NaBH 4 will be from about 5 to about 50 weight percent and more preferably about 8 to about 12 weight percent. In this embodiment, approximately 0.8 gm of water will be required to fully react each gm of solid reactant.
- an inexpensive, water-insoluble catalyst may be mixed with the NaBH 4 .
- the catalyst can act to accelerate the water/NaBH 4 reaction as water is injected.
- metal catalyst could include Co, Ni, Cu, Pt, Pd, Fe, Ru, Mn, and Cr.
- the metal catalyst will be in a powder form (e.g., particles less than 25 um) and will be added to the chemical hydride in an amount of about 25 weight percent to about 65 weight percent. In this embodiment, approximately 0.8 gm of water will be required to fully react each gram of solid reactant.
- anhydrous activating agent may be to mix the water soluble activating agent in with the water before it is injected into the cartridge containing a bed of anhydrous NaBH 4 or other metal hydride.
- an aqueous substance such as hydrochloric acid (HCl) may be used.
- the activating material is held in separate container or reservoir 60 such as seen in Figure 2 .
- This container may be attached to the cartridge housing 11 but could be detached in other embodiments.
- Figure 2 illustrates reservoir 60 connected to housing 11 by way of strap 61.
- strap 61 will be formed of aluminum, stainless steel, or composite polymer material in order to hold reservoir 60 in rigid orientation with housing 11.
- reservoir 60 includes a plunger 62 positioned therein. Plunger 62 will move toward port 64 as fluid is removed from reservoir 60. Vent hole 63 prevents a vacuum from forming behind plunger 62 and resisting its movement toward port 64. The plunger is moved forward by pump 78 (see Figure 13 ) applying suction to port 64.
- concentrated HCl acid 38 weight% could be mixed into the water to give a concentration of 28 weight%.
- this solution is controllably injected into the NaBH 4 , it reacts readily to generate hydrogen.
- this acid concentration 28 weight%), approximately 0.4 gm of acid solution will be required to fully react each gm of NaBH 4 .
- It is possible to control the reaction rate by controlling the concentration of acid in the water in addition to the acid solution injection rate.
- water soluble salts such as MgCl 2 into the water and then inject the mixture into the bed of NaBH 4 .
- the acid containing liquid necessarily limited to aqueous solutions.
- the aqueous solution injected into the bed of NaBH 4 will have a pH ranging from about 1 to about 6 and more preferably a pH of about 2.
- suitable acids could include (but are not limited to) nitric acid, sulfuric acid, acetic acid, hydrofluoric acid, hydrobromic acid, carbonic acid, etc., or mixtures thereof.
- alternative chemical hydrides may include (but are not limited to) lithium borohydride, lithium aluminum hydride, lithium hydride, sodium hydride, and calcium hydride.
- these latter chemical hydrides need not be combined with a powdered activating agent as described above and may be activated with water alone.
- these latter chemical hydrides will be utilized in a cartridge such as seen in Figure 7 .
- Fuel cartridges such as those described above will typically be employed in a hydrogen generation system.
- This hydrogen generation system 1 will generally comprise a fuel cartridge 10 connected to receiver plate 40 with a liquid reactant (e.g., water) line 79 supplying water to fuel cartridge 10.
- a water pump 78 controlled by control system 75 will provide a carefully metered amount of water to fuel cartridge 10.
- control system 75 consists of a micro-processor and related control circuitry such as a PIC microcontroller 16F877A.
- Control system 75 will also operate cooling fans 81, switching valves 77, and transfer valve 84.
- control system 75 will receive data on system parameters from temperature sensor 80, cartridge sensor 82, and hydrogen pressure sensor 89.
- temperature sensor 80 is mounted against the external skin of aluminum housing 11.
- a check valve 87 is incorporated into the hydrogen line between the receiver plate and the hydrogen trap 83.
- Hydrogen gas exiting cartridge 10 will flow through a check valve 87 and a hydrogen filter/water trap 83 before being directed to a fuel cell or other device to which hydrogen is to be supplied.
- Filter/water trap 83 serves the dual purpose of filtering particulate out of the hydrogen and also removing excess moisture from the hydrogen gas.
- a water condenser/reservoir 85 will collect water from any moist air returned from the fuel cell or other hydrogen consuming device and will also store water collected from water trap 83 and transferred via transfer valve 84.
- control system 75 will determine the volume of water to pump into fuel cartridge 10 based upon monitoring parameters such as the temperature of the chemical hydride (as indicated by temperature sensor 80) and the hydrogen pressure within the system as measured by pressure sensor 89. As hydrogen pressure drops below a predetermined level in system 1, water pump 78 will be activated to deliver water to fuel cartridge 10, thereby causing the chemical hydride in cartridge 10 to release addition hydrogen gas. In one preferred embodiment, switching valves 77 will be individually controlled by control system 75 as described above. This allows pump 78 to deliver water through only one water injection tube 30 at a time and to sequentially deliver water to each injection tube 30.
- This sequential method of delivering water may in some instances provide a more uniform distribution of water than if all water injection tubes were simply manifolded together without individual control of water flow to each injection tube 30.
- the temperature sensor 80 monitoring the temperature of the chemical hydride will allow control system 75 to make decisions regarding whether fans 81 should be turned on to cool cartridge 10 or whether water should be limited to slow down the reaction rate of the chemical hydride.
- Hydrogen generation system 1 may also include the cartridge sensor 82 which will signal control system 75 as to whether a fuel cartridge 10 is presently installed in the system and will also provide control system 75 with information concerning when a spent cartridge has been removed and a new, fully charged cartridge installed.
- filter/water trap 83 As hydrogen gas flows through filter/water trap 83, excess moisture in the hydrogen gas will be removed and when a sufficient amount of water has accumulated, will be transferred via transfer valve 84 to water condenser/reservoir 85. Hydrogen gas exiting filter/water trap 83 will be directed through line 90 to the particular hydrogen consuming device, which for illustrative purposes will be considered a fuel cell in the present description. Typically, a regulator 88 will be positioned in line 90 to assure the fuel cell is supplied with hydrogen at a constant pressure. If the hydrogen consuming device produces water vapor as a by-product (as do fuel cells), the moist air will be directed via line 86 back to condenser 85 and the water recovered from the air. Likewise, water vapor in the hydrogen passing through purge line 91 (another characteristic feature of fuel cells) will be recovered in condenser 85.
- a portion of the schematic seen in Figure 10 may be modified as suggested in Figure 13 .
- a metering valve 95 will be positioned between pump 78 and acid reservoir 60 while a metering valve 94 is positioned between pump 78 and water reservoir 85.
- metering valves 94 and 95 may be stainless steel adjustable needle-type valves such as provided by Swagelock Company of Solon, OH. Using these types of valves, the amount of acid and water drawn upon each activation of pump 78 is preset.
- the injection switching valves 77 seen in Figure 10 can be replaced with a manifold 95 (illustrated in the alternative with dashed lines in Figure 13 ).
- fluid from the injection pump 78 is split equally between the multiple injection tubes 30 which are connected in parallel.
- Parallel injection tubes are preferably very uniform with tight tolerances so that the pressure drop along the length of each injection tube is the same.
- FIG 11 is a state diagram 100 illustrating the controller logic which could be utilized in one embodiment of the present invention.
- control system 75 monitors the cartridge temperature, the cartridge in/out status, the hydrogen demand status (e.g., does the fuel cell currently require hydrogen), and the pump/valves status. Presuming the use of a bi-color LED indicator (e.g., red/green), the idle state could be indicated by all LED illumination being off.
- the system will enter state 1 (block 102).
- Control system 75 will signal pump 78 to inject a predetermined amount or "pulse" of water (e.g., one cycle of pump 78) toward switching valves 78.
- Control system 75 will determine which injection tube 30 received the last water pulse and then open or shut the appropriate valves 77 to ensure the current water pulse is directed to the desired injection tube 30. As alluded to above, the water pulses will typically be directed in sequence to the various injection tubes 30 to evenly distribute water throughout the hydride bed. Additionally, control system 75 will monitor the total number of pulses (i.e., total volume of water) injected into cartridge 10. Since the cartridge has a known amount of chemical hydride, the volume of water needed to completely react with that weight of chemical hydride may be calculated. By tracking the volume of water injected into cartridge 10, control system 75 may accurately estimate when all the chemical hydride in cartridge 10 has been reacted with water and thus when cartridge 10 should be considered exhausted or spent. An LED response (e.g., flashing red/green) may then indicate when the amount of unreacted chemical hydride in cartridge 10 is becoming low and the current cartridge 10 should be replaced.
- an LED response e.g., flashing red/green
- State 2 (block 103) will monitor the increased pressure of hydrogen due to the injection of a water pulse. If the current hydrogen pressure is less than the desired hydrogen pressure (or the hydrogen pressure appears to be falling), the control system will return to state 1 and signal that pump 78 is to injection another pulse of water. If the cartridge temperature exceeds a predetermined value, the system will activate fans 81. If the temperature continues to increase above a higher predetermined value, then the system will enter state 3 (indicated by a red LED) which will cease injection of further water until the cartridge temperature returns to the specified operating range. State 7 (block 104) will monitor when water should be transferred from filter/trap 83 to reservoir 85 and accordingly activate transfer valve 84.
- state 6 (block 106) will be entered indicating with a flashing red LED that cartridge 10 is exhausted and needs to be replaced. While the spent cartridge is removed, state 4 (block 108) will indicate with a red LED that no cartridge is present in the system.
- state 5 (block 107) resets the cartridge life counter such that state 1 may once again begin counting pulses of water injected into the new cartridge 10 in order to monitor the remaining life of the new cartridge once the system resumes generation of hydrogen.
- the state diagram of Figure 10 is simply one version of control system 75's operation and many alternate sequences of operation may be employed in other embodiments of the invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
Claims (41)
- Wasserstofferzeugungssystem (1), welches umfasst:a. mindestens eine Kartusche (10), welche mindestens eine Flüssigkeitseintrittsöffnung (21) und mindestens eine Gasaustrittsöffnung (20) umfasst, und welche einen im Wesentlichen wasserfreien Hydridreaktant, gemischt mit einem Aktivierungsmittel, umfassend ein Salz eines Erdalkalimetalls oder ein Salz eines Alkalimetalls, enthält;b. mindestens eine Flüssigkeitsrohrleitung (30), welche sich in besagte Kartusche (10) erstreckt, wobei besagte Flüssigkeitsrohrleitung (30) mindestens eine daran gebildete Flüssigkeitsverteilungsöffnung (32) hat;c. einen Kartuschenempfänger, welcher entfernbar in Kartusche (10) einklinkt, wobei besagter Kartuschenempfänger Durchlässe (42 und 43) entsprechend besagter Gasaustrittsöffnung (20) und besagter Flüssigkeitseintrittsöffnung (21) an besagter Kartusche (10) umfasst; undd. ein Injektionskontrollsystem des flüssigen Reaktanten (75), welches operativ mit besagtem Kartuschenempfänger verbunden ist, wobei besagtes Kontrollsystem (75) mindestens einen Umsetzungsparameter abliest und eine Menge an flüssigem Reaktant, injiziert von besagter Verteilungsöffnung (32), basierend auf besagtem mindestens einen Umsetzungsparameter, anpasst.
- Wasserstofferzeugungssystem gemäß Anspruch 1, welches ferner eine Vielzahl an Verteilungsöffnungen (32), gebildet entlang besagter Flüssigkeitsrohrleitung, umfasst, wobei besagte Flüssigkeitsverteilungsöffnungen einen Durchmesser zwischen etwa 50 und etwa 1000 Mikron haben.
- Wasserstofferzeugungssystem gemäß Anspruch 1, wobei besagter Hydridreaktant ein Bett bildet und sich besagte Flüssigkeitsrohrleitung entlang von mindestens der Hälfte einer Länge von besagtem Bett erstreckt.
- Wasserstofferzeugungssystem gemäß Anspruch 1, wobei besagter Umsetzungsparameter einen Wasserstoffdruck innerhalb der besagten Kartusche umfasst.
- Wasserstofferzeugungssystem gemäß Anspruch 1, wobei besagter flüssiger Reaktant ein wässeriger Reaktant ist.
- Wasserstofferzeugungssystem gemäß Anspruch 5, wobei jede der besagten Flüssigkeitsrohrleitungen ein getrenntes Steuerventil (77) hat.
- Wasserstofferzeugungssystem gemäß Anspruch 1, wobei besagter Umsetzungsparameter eine Temperatur von besagter Kartusche (10) umfasst und besagtes Kontrollsystem (75) ein Kühlsystem, basierend auf besagter Temperatur, aktiviert.
- Wasserstofferzeugungssystem gemäß Anspruch 7, wobei besagtes Kühlsystem mindestens einen Lüfter (81) umfasst, welcher einen Luftstrom durch besagte Kartusche (10) erzeugt.
- Wasserstofferzeugungssystem gemäß Anspruch 1, wobei besagtes Hydrid in einer Stofftasche (31) mit einer im Wesentlichen größeren Fläche als Dicke eingeschlossen ist.
- Wasserstofferzeugungssystem gemäß Anspruch 9, worin besagte Stofftasche (31) innerhalb besagter Kartusche (10) gerollt ist und sich besagte Rohrleitung von flüssigem Reaktant zwischen Falten von besagter Stofftasche erstreckt.
- Wasserstofferzeugungssystem gemäß Anspruch 1, worin besagte Stofftasche (31) mindestens eines umfasst, ausgewählt aus Gewebtem, Pellon 30, Nylonbahn oder porösem Papier.
- Wasserstofferzeugungssystem gemäß Anspruch 11, wobei besagter Stoff eine strukturelle Unversehrtheit bei Temperaturen im Bereich von etwa -20°C bis etwa 200°C, einem pH im Bereich von etwa 4 bis etwa 14 beibehält, und welcher mindestens etwas Dochtwirkungspotential aufweist.
- Wasserstofferzeugungssystem gemäß Anspruch 1, worin besagter Hydridreaktant Lithiumaluminiumhydrid ist und die Menge an flüssigem Reaktant, welche eine Verteilungsöffnung verlässt, etwa 50 µl pro Injektionszyklus nicht überschreitet und die Kartuschentemperatur 80°C nicht überschreitet.
- Wasserstofferzeugungssystem gemäß Anspruch 1, welches ferner einen wässerigen Reaktant mit einem pH zwischen etwa 1 und etwa 6 umfasst.
- Wasserstofferzeugungssystem gemäß Anspruch 1, worin besagter flüssiger Reaktant eine wässerige Säurelösung ist.
- Wasserstofferzeugungssystem gemäß Anspruch 1, welches ferner einen Säurespeicher (60) und einen Wasserspeicher (85) einschließt, worin Säure und Wasser gemischt werden, bevor sie aus besagten Verteilungsöffnungen (32) injiziert werden.
- Wasserstofferzeugungssystem gemäß Anspruch 1, worin besagter Kartuschenempfänger eine Empfängerplatte (40) mit Wasserstoff - und Flüssigkeitseintrittsöffnungen (44) ist, welche sich mit besagten Öffnungen von besagter Kartusche verbinden.
- Wasserstofferzeugungssystem gemäß Anspruch 16, worin eine Abdichtungsvorrichtung zwischen besagten Öffnungen der besagten Kartusche und besagten Empfängerplatte positioniert ist; und ein Haltesystem besagte Kartusche und besagte Empfängerplatte mit ausreichend Kraft zusammen bringt, um eine wirksame Abdichtung zu bilden.
- Wasserstofferzeugungssystem gemäß Anspruch 17, worin besagtes Empfängersystem eine Trägerplatte (56) umfasst, welche durch mindestens zwei Trägerstangen (51) an besagter Empfängerplatte gebunden ist.
- Wasserstofferzeugungssystem gemäß Anspruch 17, worin besagte Empfängerplatte (40) mindestens einen Durchlass (46) mit einem daran gebundenen Steuerventil (77) einschließt und besagter Durchlass (46) mit besagter Flüssigkeitseintrittsöffnung (21) kommuniziert.
- Wasserstofferzeugungssystem nach Anspruch 1, worin der im Wesentlichen wasserfreie Hydridreaktant Natriumborhydrid ist.
- Brennstoffkartusche (10) für ein Wasserstofferzeugungssystem, wobei besagte Kartusche umfasst:a. ein Gehäuse (11), welches eine Endkappe (15) umfasst und im Wesentlichen wasserfreien Hydridreaktant, gemischt mit einem Aktivierungsmittel enthält, welches ein Salz von einem Erdalkalimetall oder ein Salz von einem Alkalimetall umfasst;b. mindestens eine Flüssigkeitsrohrleitung (30), welche an besagter Endkappe (15) befestigt ist und sich in besagten im Wesentlichen wasserfreien Hydridreaktant erstreckt, wobei besagte Flüssigkeitsrohrleitung (30) mindestens eine daran gebildete Flüssigkeitsverteilungsöffnung (32) hat, sodass flüssiger Reaktant in flüssiger Form in besagten im Wesentlichen wasserfreien Hydridreaktant passieren kann;c. wobei besagte Endkappe eine Flüssigkeitseintrittsöffnung (21), welche mit besagter Flüssigkeitsrohrleitung (30) kommuniziert, und eine Gasaustrittsöffnung (20) umfasst, wobei sowohl besagte Flüssigkeitseintrittsöffnung (21), als auch besagte Gasaustrittsöffnung (20) angepasst sind, um mit einem Kartuschenempfänger abzudichten.
- Brennstoffkartusche gemäß Anspruch 22, worin besagter Hydridreaktant Natriumborhydrid umfasst und das Aktivierungsmittel wasserfrei ist.
- Brennstoffkartusche gemäß Anspruch 23, worin besagter Hydridreaktant etwa 20 Gew.-% bis etwa 60 Gew.-% Aktivierungsmittel umfasst.
- Brennstoffkartusche gemäß Anspruch 24, worin besagtes Aktivierungsmittel wasserlöslich ist.
- Brennstoffkartusche gemäß Anspruch 22, worin besagtes Aktivierungsmittel mindestens eines, ausgewählt aus BeF2, BeCl2, Be-Br2, BeI2, MgF2, MgBr2, MgCl2, MgI2, CaF2, CaCl2, CaBr2, CaI2, LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, Li2S oder Li2Se ist.
- Brennstoffkartusche gemäß Anspruch 24, worin besagtes Aktivierungsmittel ausgewählt ist aus mindestens einem von MgCl2, Be-Cl2, CuCl2, LiCl, NaCl oder KCl.
- Brennstoffkartusche gemäß Anspruch 22, worin sich eine Vielzahl an Flüssigkeitsrohrleitungen (30) in besagtes Gehäuse (11) erstrecken.
- Brennstoffkartusche gemäß Anspruch 22, worin besagtes Hydrid in einer Stofftasche (31) mit einer im Wesentlichen größeren Fläche als Dicke eingeschlossen ist.
- Brennstoffkartusche gemäß Anspruch 29, worin besagte Stofftasche (31) innerhalb besagter Kartusche gerollt ist und sich besagte Wasserrohrleitung (30) zwischen Falten von besagter Stofftasche erstreckt.
- Brennstoffkartusche gemäß Anspruch 29, worin besagte Stofftasche (31) ein gewebtes Nylonmaterial umfasst.
- Brennstoffkartusche gemäß Anspruch 22, worin besagtes Hydrid Lithiumaluminiumhydrid umfasst und besagte Flüssigkeitsrohrleitung durch eine Stoffmanschette umgeben ist.
- Brennstoffkartusche gemäß Anspruch 28, worin besagte Vielzahl an Flüssigkeitsrohrleitungen (30) radial von einem Mittelpunkt der Endkappe (15) in einer ungleichmäßigen Konfiguration verteilt sind.
- Brennstoffkartusche gemäß Anspruch 33, worin besagte ungleichmäßige Konfiguration ein Spiralmuster hat.
- Brennstoffkartusche gemäß Anspruch 22, worin ein flüssige Säure enthaltender Speicher (60) an besagte Kartusche (10) gebunden ist.
- Brennstoffkartusche gemäß Anspruch 22, welche ferner mindestens eine Öffnung umfasst, welche die Freisetzung von Gas aus besagter Kartusche ermöglicht.
- Brennstoffkartusche gemäß Anspruch 22, welche ferner eine Vielzahl an Flüssigkeitsrohrleitungen (30) umfasst, wobei mindestens zwei der besagten Rohrleitungen verschiedene Längen haben.
- Brennstoffkartusche nach Anspruch 22, wobei besagte Flüssigkeitsrohrleitung ferner eine Vielzahl an Flüssigkeitsverteilungs-öffnungen (32) umfasst.
- Brennstoffkartusche nach Anspruch 22, welche ferner eine Vielzahl an Flüssigkeitsrohrleitungen (30) umfasst, wobei sich besagte Flüssigkeitsverteilungsöffnung (32) an einer Flüssigkeitsrohrleitung an einem anderen Ort befindet als besagte Flüssigkeitsverteilungsöffnung an mindestens einer anderen Rohrleitung.
- Brennstoffkartusche nach Anspruch 39, wobei besagte Verteilungsöffnung (32) durch ein offenes Ende von besagter Rohrleitung gebildet wird.
- Brennstoffkartusche nach Anspruch 22, welche eine Vielzahl an Verteilungsöffnungen (32) umfasst, welche entlang besagter Flüssigkeitsrohrleitung (30) gebildet sind, wobei besagte Flüssigkeitsverteilungsöffnungen (32) einen Durchmesser zwischen etwa 50 und etwa 1000 Mikron haben.
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US62725704P | 2004-11-12 | 2004-11-12 | |
US63246004P | 2004-12-02 | 2004-12-02 | |
US65537305P | 2005-02-23 | 2005-02-23 | |
US68302405P | 2005-05-20 | 2005-05-20 | |
US68845605P | 2005-06-08 | 2005-06-08 | |
PCT/US2005/040975 WO2006053236A1 (en) | 2004-11-12 | 2005-11-12 | Hydrogen generator cartridge |
US11/270,947 US7438732B2 (en) | 2003-06-11 | 2005-11-12 | Hydrogen generator cartridge |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1814653A1 EP1814653A1 (de) | 2007-08-08 |
EP1814653A4 EP1814653A4 (de) | 2008-11-05 |
EP1814653B1 true EP1814653B1 (de) | 2012-07-18 |
Family
ID=36336843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05848152A Not-in-force EP1814653B1 (de) | 2004-11-12 | 2005-11-12 | Wasserstoffgeneratorkartusche |
Country Status (4)
Country | Link |
---|---|
US (2) | US7438732B2 (de) |
EP (1) | EP1814653B1 (de) |
AU (1) | AU2005304304B2 (de) |
WO (1) | WO2006053236A1 (de) |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7556660B2 (en) * | 2003-06-11 | 2009-07-07 | James Kevin Shurtleff | Apparatus and system for promoting a substantially complete reaction of an anhydrous hydride reactant |
US8002853B2 (en) * | 2003-07-29 | 2011-08-23 | Societe Bic | Hydrogen-generating fuel cell cartridges |
US7810669B2 (en) * | 2004-03-05 | 2010-10-12 | Airbus Deutschland Gmbh | Replaceable cartridge for liquid hydrogen |
AU2005254551A1 (en) | 2004-06-14 | 2005-12-29 | Michigan State University | Silicide compositions containing alkali metals and methods of making the same |
WO2006053236A1 (en) * | 2004-11-12 | 2006-05-18 | Trulite, Inc. | Hydrogen generator cartridge |
US7727293B2 (en) * | 2005-02-25 | 2010-06-01 | SOCIéTé BIC | Hydrogen generating fuel cell cartridges |
US20070148508A1 (en) * | 2005-11-10 | 2007-06-28 | Peter Rezac | Reactor purge system and method |
US20080020260A1 (en) * | 2005-11-12 | 2008-01-24 | Brydon Chris A | Apparatus, system, and method for manifolded integration of a humidification chamber for input gas for a proton exchange membrane fuel cell |
US7976971B2 (en) * | 2006-05-11 | 2011-07-12 | Honeywell International Inc. | Power generator with a pneumatic slide valve |
JP5063935B2 (ja) * | 2006-06-02 | 2012-10-31 | 東洋製罐株式会社 | 燃料電池カートリッジ用ポリエステル製容器 |
US7651542B2 (en) * | 2006-07-27 | 2010-01-26 | Thulite, Inc | System for generating hydrogen from a chemical hydride |
US7648786B2 (en) | 2006-07-27 | 2010-01-19 | Trulite, Inc | System for generating electricity from a chemical hydride |
US20080044696A1 (en) * | 2006-08-18 | 2008-02-21 | Knight Steven R | Hydrogen generation cartridge |
JP5013399B2 (ja) * | 2006-09-22 | 2012-08-29 | 独立行政法人産業技術総合研究所 | 大気浄化用光触媒材料の自動性能評価装置 |
US8357214B2 (en) | 2007-04-26 | 2013-01-22 | Trulite, Inc. | Apparatus, system, and method for generating a gas from solid reactant pouches |
DE102007026085B4 (de) | 2007-06-04 | 2011-11-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Gaserzeuger, seine Verwendung und Verfahren zum Herstellen von Gasen |
AU2008279076A1 (en) * | 2007-07-25 | 2009-01-29 | Trulite, Inc. | Apparatus, system, and method for securing a cartridge |
EP2181477A4 (de) | 2007-07-25 | 2011-08-03 | Trulite Inc | Vorrichtung, system und verfahren zur verwaltung der erzeugung und verwendung von elektrischer hybridenergie |
US20090029227A1 (en) * | 2007-07-25 | 2009-01-29 | John Patton | Apparatus, system, and method for securing a cartridge |
CA2731803A1 (en) * | 2007-07-25 | 2009-01-29 | John Patton | Apparatus, system, and method for processing hydrogen gas |
JP5207441B2 (ja) * | 2007-08-13 | 2013-06-12 | セイコーインスツル株式会社 | 水素発生装置及び燃料電池システム |
JP5135581B2 (ja) * | 2007-08-16 | 2013-02-06 | セイコーインスツル株式会社 | 水素発生装置及び燃料電池システム |
JP5117827B2 (ja) * | 2007-11-21 | 2013-01-16 | セイコーインスツル株式会社 | 水素発生装置及び燃料電池システム |
US9034531B2 (en) * | 2008-01-29 | 2015-05-19 | Ardica Technologies, Inc. | Controller for fuel cell operation |
CN101971402A (zh) * | 2008-01-29 | 2011-02-09 | 阿尔迪卡技术公司 | 用于从燃料电池阳极排出非燃料材料的系统 |
US20100064584A1 (en) * | 2008-09-12 | 2010-03-18 | In Tae Bae | Hydrogen generator |
JP4807639B2 (ja) * | 2009-03-18 | 2011-11-02 | 株式会社豊田中央研究所 | 水素化物複合体及び水素ガスの製造方法 |
EP3047903A1 (de) * | 2009-03-30 | 2016-07-27 | Intelligent Energy Limited | Wasserstofferzeugungssysteme und -verfahren mit natriumsilicid und natrium-silicium-gelmaterialien |
US9102528B2 (en) * | 2009-03-30 | 2015-08-11 | Intelligent Energy Limited | Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials |
US8741004B2 (en) * | 2009-07-23 | 2014-06-03 | Intelligent Energy Limited | Cartridge for controlled production of hydrogen |
US8808410B2 (en) | 2009-07-23 | 2014-08-19 | Intelligent Energy Limited | Hydrogen generator and product conditioning method |
US20110020215A1 (en) * | 2009-07-23 | 2011-01-27 | Ryu Wonhyoung | Chemical hydride formulation and system design for controlled generation of hydrogen |
US20110027668A1 (en) * | 2009-07-29 | 2011-02-03 | Honeywell International Inc. | Hydrogen generation from chemical hydrides |
US8895204B2 (en) | 2010-11-08 | 2014-11-25 | Intelligent Energy Limited | Water reactive hydrogen fuel cell power system |
CN101935018A (zh) * | 2010-08-25 | 2011-01-05 | 应宁 | 硼氢化物产氢方法和便携式氢气发生器 |
US8940458B2 (en) | 2010-10-20 | 2015-01-27 | Intelligent Energy Limited | Fuel supply for a fuel cell |
WO2012058687A2 (en) | 2010-10-29 | 2012-05-03 | Ardica Technologies | Pump assembly for a fuel cell system |
WO2012064749A1 (en) | 2010-11-08 | 2012-05-18 | Signa Chemistry, Inc. | Water reactive hydrogen fuel cell power system |
US8919356B2 (en) | 2010-12-14 | 2014-12-30 | Whirlpool Corporation | Ozone generation module |
CN104040769B (zh) * | 2011-07-11 | 2017-02-15 | 智能能源公司 | 具有结合的气体流动阀和减压孔的气体发生器 |
US8951312B2 (en) * | 2011-11-09 | 2015-02-10 | Alvin Gabriel Stern | Compact, safe and portable hydrogen generation apparatus for hydrogen on-demand applications |
US9169976B2 (en) | 2011-11-21 | 2015-10-27 | Ardica Technologies, Inc. | Method of manufacture of a metal hydride fuel supply |
CN103373707B (zh) * | 2012-04-18 | 2015-05-20 | 扬光绿能股份有限公司 | 氢气纯化装置 |
AU2013374887B2 (en) * | 2013-01-24 | 2016-12-15 | Worgas Bruciatori S.R.L. | Apparatus for the production of gas |
GB2511566B (en) * | 2013-03-08 | 2018-09-26 | Intelligent Energy Ltd | Gas supply cartridge |
GB2534132A (en) * | 2015-01-08 | 2016-07-20 | Intelligent Energy Ltd | Pressure sensing switch |
JP6640729B2 (ja) * | 2015-07-06 | 2020-02-05 | エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd | Uavの燃料電池に関するシステム及び方法 |
WO2017195045A2 (en) | 2016-04-14 | 2017-11-16 | Intelligent Energy Limited | Pem fuel cell power systems with efficient hydrogen generation |
US10074862B2 (en) | 2016-04-19 | 2018-09-11 | Intelligent Energy Limited | Hydrogen-generating compositions for a fuel cell |
WO2019037893A1 (de) * | 2017-08-22 | 2019-02-28 | Linde Aktiengesellschaft | Verfahren zur notversorgung eines wasserstoffbetriebenen systems und wasserstoffbetriebenes system mit notversorgung |
WO2019050959A1 (en) | 2017-09-05 | 2019-03-14 | Intelligent Energy Inc. | COMPACT AND EFFICIENT HYDROGEN REACTOR |
US20210155476A1 (en) * | 2018-04-17 | 2021-05-27 | Electriq-Global Energy Solutions Ltd. | Batch systems and methods for hydrogen gas extraction from a liquid hydrogen carrier |
US11888188B2 (en) * | 2019-03-14 | 2024-01-30 | Honeywell International Inc. | Fuel cartridge having fuel beds with space for coolant fluid |
US11011765B2 (en) | 2019-03-14 | 2021-05-18 | Honeywell International Inc. | Fuel cell based power generator |
CN113851681B (zh) * | 2021-11-03 | 2023-04-07 | 倍有云端科技(广东)有限公司 | 便携式新能源汽车用的车载制氢器 |
Family Cites Families (163)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2542746A (en) * | 1949-11-14 | 1951-02-20 | Metal Hydrides Inc | Method of purifying borohydrides of the alkali metals |
US3133837A (en) * | 1959-12-31 | 1964-05-19 | Electric Storage Battery Co | Fuel cell system |
NL293400A (de) * | 1963-05-30 | 1900-01-01 | ||
US3313598A (en) * | 1965-06-07 | 1967-04-11 | Ethyl Corp | Method of controlled hydrogen generation |
US3511710A (en) * | 1965-07-28 | 1970-05-12 | Varta Ag | Method of directly converting the chemical energy of complex hydrides into electrical energy |
US3649360A (en) * | 1970-01-16 | 1972-03-14 | United Aircraft Corp | Combined water removal and hydrogen generation fuel cell powerplant |
US3734863A (en) * | 1971-06-11 | 1973-05-22 | Us Navy | Hydrogen generating compositions |
US3940474A (en) * | 1974-08-06 | 1976-02-24 | The United States Of America As Represented By The Secretary Of The Army | Generation of hydrogen |
US3977990A (en) | 1974-10-30 | 1976-08-31 | The United States Of America As Represented By The Secretary Of The Navy | Controlled generation of cool hydrogen from solid mixtures |
US4000003A (en) | 1976-01-02 | 1976-12-28 | The United States Of America As Represented By The Secretary Of The Army | Fuel cell-secondary cell combination |
US4155712A (en) * | 1976-04-12 | 1979-05-22 | Taschek Walter G | Miniature hydrogen generator |
US4261955A (en) * | 1978-09-01 | 1981-04-14 | The United States Of America As Represented By The Secretary Of The Army | Vertical type porous membrane hydrogen generator |
US4261956A (en) * | 1979-06-13 | 1981-04-14 | Engelhard Minerals & Chemicals Corporation | Cartridge for gas generator |
US4486276A (en) | 1981-02-06 | 1984-12-04 | Engelhard Corporation | Method for suppressing hydrogen formation in an electrolytic cell |
US4433633A (en) * | 1982-04-16 | 1984-02-28 | The United States Of America As Represented By The Secretary Of The Navy | Controlled gas generator system |
US4513065A (en) * | 1982-07-16 | 1985-04-23 | Engelhard Corporation | Hydrogen generator |
US4436793A (en) * | 1982-09-29 | 1984-03-13 | Engelhard Corporation | Control system for hydrogen generators |
US4463066A (en) * | 1982-09-30 | 1984-07-31 | Engelhard Corporation | Fuel cell and system for supplying electrolyte thereto |
US4463068A (en) * | 1982-09-30 | 1984-07-31 | Engelhard Corporation | Fuel cell and system for supplying electrolyte thereto with wick feed |
JPS5978901A (ja) * | 1982-10-21 | 1984-05-08 | Sekisui Chem Co Ltd | 水素供給装置 |
US4962462A (en) | 1983-09-29 | 1990-10-09 | Engelhard Corporation | Fuel cell/battery hybrid system |
US4543246A (en) | 1984-10-04 | 1985-09-24 | Houser Clifford F | Hydrogen generator |
US4740504A (en) * | 1985-10-08 | 1988-04-26 | United States Borax & Chemical Corp. | Antihyperlipidemic amine boranes |
US4628010A (en) | 1985-12-13 | 1986-12-09 | The United States Of America As Represented By The Secretary Of The Navy | Fuel cell with storable gas generator |
US4782096A (en) | 1986-02-10 | 1988-11-01 | Foster Wheeler Usa Corporation | Process for the production of synthesis gas |
US4968393A (en) | 1988-04-18 | 1990-11-06 | A. L. Sandpiper Corporation | Membrane divided aqueous-nonaqueous system for electrochemical cells |
US5047301A (en) | 1989-03-31 | 1991-09-10 | Ergenics Power Systems, Inc. | High temperature battery and system utilizing same |
US5108849A (en) * | 1989-08-30 | 1992-04-28 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Fuel cell fluid flow field plate |
US4988583A (en) * | 1989-08-30 | 1991-01-29 | Her Majesty The Queen As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government | Novel fuel cell fluid flow field plate |
US4978451A (en) | 1989-09-05 | 1990-12-18 | Separation Dynamics, Inc. | Supported hydrophilic membrane |
US4973530A (en) | 1989-12-21 | 1990-11-27 | The United States Of America As Represented By The United States Department Of Energy | Fuel cell water transport |
US5229222A (en) | 1990-11-14 | 1993-07-20 | Sanyo Electric Co., Ltd. | Fuel cell system |
US5200278A (en) * | 1991-03-15 | 1993-04-06 | Ballard Power Systems, Inc. | Integrated fuel cell power generation system |
US5264299A (en) | 1991-12-26 | 1993-11-23 | International Fuel Cells Corporation | Proton exchange membrane fuel cell support plate and an assembly including the same |
US5205841A (en) * | 1992-04-03 | 1993-04-27 | Tpc Technologies, Inc. | Apparatus and method for extracting hydrogen |
US5314762A (en) * | 1992-05-12 | 1994-05-24 | Sanyo Electric Co., Ltd. | Portable power source |
US5747189A (en) * | 1992-07-22 | 1998-05-05 | Valence Technology, Inc. | Smart battery |
US5292600A (en) * | 1992-08-13 | 1994-03-08 | H-Power Corp. | Hydrogen power cell |
US5382478A (en) * | 1992-11-03 | 1995-01-17 | Ballard Power Systems Inc. | Electrochemical fuel cell stack with humidification section located upstream from the electrochemically active section |
US5372617A (en) | 1993-05-28 | 1994-12-13 | The Charles Stark Draper Laboratory, Inc. | Hydrogen generation by hydrolysis of hydrides for undersea vehicle fuel cell energy systems |
US5996976A (en) | 1993-07-13 | 1999-12-07 | Lynntech, Inc. | Gas humidification system using water permeable membranes |
US5634341A (en) * | 1994-01-31 | 1997-06-03 | The Penn State Research Foundation | System for generating hydrogen |
US5557188A (en) | 1994-02-01 | 1996-09-17 | Sun Microsystems, Inc. | Smart battery system and interface |
US5688611A (en) | 1994-06-27 | 1997-11-18 | Ergenics, Inc. | Segmented hydride battery including an improved hydrogen storage means |
US5514353A (en) * | 1994-06-28 | 1996-05-07 | Af Sammer Corporation | Demand responsive hydrogen generator based on hydride water reaction |
KR0124985B1 (ko) * | 1994-08-17 | 1997-12-15 | 심상철 | 알칼리형 연료 전지 |
RU2174728C2 (ru) | 1994-10-12 | 2001-10-10 | Х Пауэр Корпорейшн | Топливный элемент, использующий интегральную технологию пластин для распределения жидкости |
US5863671A (en) * | 1994-10-12 | 1999-01-26 | H Power Corporation | Plastic platelet fuel cells employing integrated fluid management |
JPH08229759A (ja) * | 1995-02-24 | 1996-09-10 | Canon Inc | 位置決め装置並びにデバイス製造装置及び方法 |
US6051128A (en) * | 1995-06-06 | 2000-04-18 | Chevron Chemical Company | Split-feed two-stage parallel aromatization for maximum para-xylene yield |
US5593640A (en) | 1995-06-07 | 1997-01-14 | Ball Corporation | Portable hydrogen generator |
DE19535212C2 (de) | 1995-09-22 | 1997-08-14 | Dornier Gmbh | Vorrichtung zur Elektrolyse sowie deren Verwendung |
US5804329A (en) | 1995-12-28 | 1998-09-08 | National Patent Development Corporation | Electroconversion cell |
US5728464A (en) * | 1996-01-02 | 1998-03-17 | Checketts; Jed H. | Hydrogen generation pelletized fuel |
US5883934A (en) * | 1996-01-16 | 1999-03-16 | Yuugengaisya Youzen | Method and apparatus for controlling ions |
KR100446814B1 (ko) | 1996-01-22 | 2004-12-17 | 마츠시타 덴끼 산교 가부시키가이샤 | 연료전지시스템 |
US6090312A (en) * | 1996-01-31 | 2000-07-18 | Ziaka; Zoe D. | Reactor-membrane permeator process for hydrocarbon reforming and water gas-shift reactions |
US6106965A (en) | 1996-03-29 | 2000-08-22 | Mazda Motor Corporation | Polymer electrolyte fuel cell |
JPH09323425A (ja) | 1996-06-05 | 1997-12-16 | Brother Ind Ltd | ノズルプレート及びその製造方法 |
EP0813264A3 (de) | 1996-06-14 | 2004-02-25 | Matsushita Electric Industrial Co., Ltd. | Brennstoffzellensystem, Brennstoffversorgungssystem für Brennstoffzelle und tragbares elektrisches Gerät |
DE19640808C1 (de) | 1996-10-02 | 1997-11-27 | Siemens Ag | Verfahren zum Betreiben einer PEM-Brennstoffzellenanlage |
US5955039A (en) | 1996-12-19 | 1999-09-21 | Siemens Westinghouse Power Corporation | Coal gasification and hydrogen production system and method |
US6468694B1 (en) | 1997-03-27 | 2002-10-22 | Millennium Cell, Inc. | High energy density boride batteries |
US5948558A (en) | 1997-03-27 | 1999-09-07 | National Patent Development Corporation | High energy density boride batteries |
DE19713250C2 (de) | 1997-03-29 | 2002-04-18 | Ballard Power Systems | Elektrochemischer Energiewandler mit Polymerelektrolytmembran |
US5932365A (en) | 1997-06-09 | 1999-08-03 | Industrial Technology Research Institute | Hydrogen canister fuel cell battery |
US6416895B1 (en) * | 2000-03-09 | 2002-07-09 | Ballard Power Systems Inc. | Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream |
DE69804829T2 (de) * | 1997-07-16 | 2002-11-07 | Ballard Power Systems Inc., Burnaby | Elastische dichtung für eine membranelektrodenanordnung in einer elektrochemischen brennstoffzelle und herstellungsverfahren dafür |
US6156450A (en) | 1997-07-24 | 2000-12-05 | Eveready Battery Company, Inc. | Battery tester having printed electronic components |
KR100254776B1 (ko) | 1997-08-25 | 2000-05-01 | 윤종용 | 스마트 배터리를 갖는 전자기기의 충전 및 방전 방법 |
US6558829B1 (en) * | 1997-10-06 | 2003-05-06 | Reveo, Inc. | Appliance with refuelable and rechargeable metal-air fuel cell battery power supply unit integrated therein |
US6228519B1 (en) * | 1997-10-06 | 2001-05-08 | Reveo, Inc. | Metal-air fuel cell battery systems having mechanism for extending the path length of metal-fuel tape during discharging and recharging modes of operation |
DE19746251C2 (de) | 1997-10-20 | 1999-09-09 | Dbb Fuel Cell Engines Gmbh | Anlage zur Wasserdampfreformierung eines Kohlenwasserstoffs und Betriebsverfahren hierfür |
US6282902B1 (en) * | 1997-10-28 | 2001-09-04 | Hitachi, Ltd. | Waste processing system and fuel reformer used in the waste processing system |
JP3918265B2 (ja) * | 1997-11-21 | 2007-05-23 | トヨタ自動車株式会社 | 燃料電池の製造方法 |
JP4543440B2 (ja) * | 1997-12-22 | 2010-09-15 | 株式会社エクォス・リサーチ | 水直噴型燃料電池システム |
US6072299A (en) * | 1998-01-26 | 2000-06-06 | Medtronic Physio-Control Manufacturing Corp. | Smart battery with maintenance and testing functions |
US6106968A (en) | 1998-03-06 | 2000-08-22 | Lucent Technologies Inc. | Smart valve regulated lead acid battery with embedded electronic monitoring and fluid fill system |
US6337120B1 (en) * | 1998-06-26 | 2002-01-08 | Nok Corporation | Gasket for layer-built fuel cells and method for making the same |
GB9814123D0 (en) * | 1998-07-01 | 1998-08-26 | British Gas Plc | Electrochemical fuel cell |
CA2243219A1 (en) * | 1998-07-14 | 2000-01-14 | A.T.S. Electro-Lube Holdings Ltd. | Electrolytic generation of nitrogen |
US6274093B1 (en) | 1998-08-06 | 2001-08-14 | Ball Aerospace & Technologies Corp. | Self-regulating hydrogen generator |
US6108968A (en) | 1998-09-30 | 2000-08-29 | Peng; Hai-Sung | Device for exterminating garden pests |
US6387557B1 (en) * | 1998-10-21 | 2002-05-14 | Utc Fuel Cells, Llc | Bonded fuel cell stack assemblies |
US6395405B1 (en) * | 1998-11-09 | 2002-05-28 | Robert E. Buxbaum | Hydrogen permeable membrane and hydride battery composition |
DE19857638A1 (de) | 1998-12-14 | 2000-06-15 | Varta Geraetebatterie Gmbh | Elektrischer Akkumulator in Form einer Knopfzelle |
US6399234B2 (en) * | 1998-12-23 | 2002-06-04 | Utc Fuel Cells, Llc | Fuel cell stack assembly with edge seal |
US6602631B1 (en) * | 1999-01-26 | 2003-08-05 | Lynntech Power Systems, Ltd. | Bonding electrochemical cell components |
US6268077B1 (en) * | 1999-03-01 | 2001-07-31 | Motorola, Inc. | Portable fuel cell power supply |
US6459231B1 (en) * | 1999-05-03 | 2002-10-01 | Takeo Kagatani | Power device |
US6231825B1 (en) * | 1999-07-29 | 2001-05-15 | Rohm And Haas Company | Production of sodium borohydride from sodium borohydride dihydrate in a fluidized bed dryer |
US6236326B1 (en) * | 1999-10-29 | 2001-05-22 | Vtech Telecommunications, Ltd. | Method and apparatus for intelligently signaling a battery charge condition in a wireless telephone |
US6312846B1 (en) * | 1999-11-24 | 2001-11-06 | Integrated Fuel Cell Technologies, Inc. | Fuel cell and power chip technology |
US6534033B1 (en) * | 2000-01-07 | 2003-03-18 | Millennium Cell, Inc. | System for hydrogen generation |
US6296958B1 (en) * | 2000-03-08 | 2001-10-02 | Metallic Power, Inc. | Refuelable electrochemical power source capable of being maintained in a substantially constant full condition and method of using the same |
US6544400B2 (en) * | 2000-03-30 | 2003-04-08 | Manhattan Scientifics, Inc. | Portable chemical hydrogen hydride system |
US6503649B1 (en) * | 2000-04-03 | 2003-01-07 | Convergence, Llc | Variable fuel cell power system for generating electrical power |
US6428918B1 (en) | 2000-04-07 | 2002-08-06 | Avista Laboratories, Inc. | Fuel cell power systems, direct current voltage converters, fuel cell power generation methods, power conditioning methods and direct current power conditioning methods |
US6544679B1 (en) * | 2000-04-19 | 2003-04-08 | Millennium Cell, Inc. | Electrochemical cell and assembly for same |
US6250078B1 (en) * | 2000-04-27 | 2001-06-26 | Millennium Cell, L.L.P. | Engine cycle and fuels for same |
US6468682B1 (en) | 2000-05-17 | 2002-10-22 | Avista Laboratories, Inc. | Ion exchange membrane fuel cell |
US6387228B1 (en) * | 2000-08-03 | 2002-05-14 | Henri J. R. Maget | Electrochemical generation of carbon dioxide and hydrogen from organic acids |
US20020022170A1 (en) * | 2000-08-18 | 2002-02-21 | Franklin Jerrold E. | Integrated and modular BSP/MEA/manifold plates for fuel cells |
US6433129B1 (en) * | 2000-11-08 | 2002-08-13 | Millennium Cell, Inc. | Compositions and processes for synthesizing borohydride compounds |
US6524542B2 (en) * | 2001-04-12 | 2003-02-25 | Millennium Cell, Inc. | Processes for synthesizing borohydride compounds |
US6670444B2 (en) * | 2000-11-08 | 2003-12-30 | Millennium Cell, Inc. | Processes for synthesizing borohydride compounds |
US6500577B2 (en) | 2000-12-26 | 2002-12-31 | Ronald B. Foster | Modular polymer electrolyte membrane unit fuel cell assembly and fuel cell stack |
US6531630B2 (en) * | 2000-12-29 | 2003-03-11 | Kenneth Ebenes Vidalin | Bimodal acetic acid manufacture |
DE10065269C1 (de) * | 2000-12-29 | 2002-10-02 | Novars Ges Fuer Neue Technolog | Brennstoffzellenanordnung und Verfahren zu ihrem Betrieb |
US20020088178A1 (en) * | 2001-01-10 | 2002-07-11 | Davis David Wayne | Hydrogen storage and generation system |
KR100395131B1 (ko) | 2001-02-16 | 2003-08-21 | 삼성전자주식회사 | 스마트 배터리의 실제 잔류 용량을 표시하기 위한 장치 및방법 |
WO2002066368A1 (fr) * | 2001-02-22 | 2002-08-29 | Yoshirou Tanaka | Procede de production d'hydrogene |
FR2823203B1 (fr) * | 2001-04-10 | 2004-04-09 | Poudres & Explosifs Ste Nale | Compositions solides generatrices d'hydrogene par combustion comprenant un borohydrure alcalin et un sel d'ammonium |
US6599653B1 (en) * | 2001-05-15 | 2003-07-29 | Dana Corporation | Molded fuel cell plates with seals |
US6497974B2 (en) | 2001-05-23 | 2002-12-24 | Avista Laboratories, Inc. | Fuel cell power system, method of distributing power, and method of operating a fuel cell power system |
US20040043274A1 (en) * | 2001-06-01 | 2004-03-04 | Scartozzi John P. | Fuel cell power system |
US20030001299A1 (en) * | 2001-06-29 | 2003-01-02 | Nachappa Gopalsami | Method and apparatus for ultrasonic temperature monitoring |
JP2003081603A (ja) * | 2001-07-04 | 2003-03-19 | Hitachi Ltd | 水素製造装置及びそれを用いた発電システム |
US6932847B2 (en) * | 2001-07-06 | 2005-08-23 | Millennium Cell, Inc. | Portable hydrogen generator |
US6869717B2 (en) * | 2001-07-09 | 2005-03-22 | Hydrogenics Corporation | Manifold for a fuel cell system |
US7316718B2 (en) * | 2001-07-11 | 2008-01-08 | Millennium Cell, Inc. | Differential pressure-driven borohydride based generator |
US6834623B2 (en) * | 2001-08-07 | 2004-12-28 | Christopher T. Cheng | Portable hydrogen generation using metal emulsions |
US6693253B2 (en) * | 2001-10-05 | 2004-02-17 | Universite De Sherbrooke | Multi-coil induction plasma torch for solid state power supply |
JP4153690B2 (ja) * | 2001-10-25 | 2008-09-24 | 本田技研工業株式会社 | 水素スタンド充填管理装置 |
US7074509B2 (en) * | 2001-11-13 | 2006-07-11 | Eldat Communication Ltd. | Hydrogen generators for fuel cells |
US6858335B2 (en) * | 2001-11-14 | 2005-02-22 | Relion, Inc. | Fuel cell power systems and methods of operating fuel cell power systems |
US6703722B2 (en) * | 2001-12-14 | 2004-03-09 | Avista Laboratories, Inc. | Reconfigurable plural DC power source power system responsive to changes in the load or the plural DC power sources |
US6586563B1 (en) * | 2001-12-18 | 2003-07-01 | Millennium Cell, Inc. | Processes for synthesizing alkali metal borohydride compounds |
US6685570B2 (en) * | 2002-01-22 | 2004-02-03 | Kop-Flex | Plate adapter for flexible half couplings |
US7108777B2 (en) * | 2002-03-15 | 2006-09-19 | Millennium Cell, Inc. | Hydrogen-assisted electrolysis processes |
US7282073B2 (en) * | 2002-04-02 | 2007-10-16 | Millennium Cell, Inc. | Method and system for generating hydrogen by dispensing solid and liquid fuel components |
US7691527B2 (en) * | 2002-04-24 | 2010-04-06 | Petillo Phillip J | Method and apparatus for generating hydrogen |
US7393369B2 (en) | 2002-06-11 | 2008-07-01 | Trulite, Inc. | Apparatus, system, and method for generating hydrogen |
US20040009379A1 (en) * | 2002-07-11 | 2004-01-15 | Amendola Steven C. | Method and apparatus for processing discharged fuel solution from a hydrogen generator |
US7083657B2 (en) * | 2002-08-20 | 2006-08-01 | Millennium Cell, Inc. | System for hydrogen generation |
US20040053100A1 (en) * | 2002-09-12 | 2004-03-18 | Stanley Kevin G. | Method of fabricating fuel cells and membrane electrode assemblies |
US6866836B2 (en) * | 2002-09-13 | 2005-03-15 | General Motors Corporation | Method of generating hydrogen from borohydrides and water |
US6939529B2 (en) * | 2002-10-03 | 2005-09-06 | Millennium Cell, Inc. | Self-regulating hydrogen generator |
FR2845377B1 (fr) * | 2002-10-04 | 2006-03-24 | Poudres & Explosifs Ste Nale | Compositions solides generatrices d'hydrogene par combustion comprenant un borohydrure alcalin ou alcalino-terreux et un sel oxydant a base de perchlorate d'ammonium, alcalin ou alcalino-terreux |
US6955863B2 (en) * | 2002-10-25 | 2005-10-18 | Hewlett-Packard Development Company, L.P. | Dual-purpose compartment for a hybrid battery and fuel cell powered device |
US7323148B2 (en) * | 2002-11-05 | 2008-01-29 | Millennium Cell, Inc. | Hydrogen generator |
EP1565450B1 (de) * | 2002-11-27 | 2007-07-04 | MERCK PATENT GmbH | Tetrahydropyran-derivate |
US7501008B2 (en) * | 2003-01-31 | 2009-03-10 | Microcell Corporation | Hydrogen storage systems and fuel cell systems with hydrogen storage capacity |
US6989210B2 (en) * | 2003-04-23 | 2006-01-24 | Hewlett-Packard Development Company, L.P. | Fuel cartridge with thermo-degradable barrier system |
US6706909B1 (en) * | 2003-05-12 | 2004-03-16 | Millennium Cell, Inc. | Recycle of discharged sodium borate fuel |
ATE340836T1 (de) * | 2003-05-27 | 2006-10-15 | Merck Patent Gmbh | Pyranderivate |
DE502004001386D1 (de) * | 2003-05-27 | 2006-10-19 | Merck Patent Gmbh | Pyranderivative mit exocyclischer Doppelbindung |
US7799315B2 (en) * | 2003-06-11 | 2010-09-21 | Steven Amendola | Thermochemical hydrogen produced from a vanadium decomposition cycle |
US7513978B2 (en) * | 2003-06-18 | 2009-04-07 | Phillip J. Petillo | Method and apparatus for generating hydrogen |
US20050014044A1 (en) * | 2003-07-15 | 2005-01-20 | Niranjan Thirukkovalur | Fuel cell system |
WO2005011599A2 (en) * | 2003-08-01 | 2005-02-10 | Northwestern University | Antibodies specific for toxic amyloid beta protein oligomers |
US20050058595A1 (en) * | 2003-09-15 | 2005-03-17 | Celgard Inc. | Reactor and method for generating hydrogen from a metal hydride |
US20050132640A1 (en) * | 2003-12-19 | 2005-06-23 | Kelly Michael T. | Fuel blends for hydrogen generators |
US7004207B2 (en) * | 2004-01-16 | 2006-02-28 | More Energy Ltd. | Refilling system for a fuel cell and method of refilling a fuel cell |
US20050162122A1 (en) * | 2004-01-22 | 2005-07-28 | Dunn Glenn M. | Fuel cell power and management system, and technique for controlling and/or operating same |
US7201226B2 (en) * | 2004-07-22 | 2007-04-10 | Schlumberger Technology Corporation | Downhole measurement system and method |
JP4949615B2 (ja) * | 2004-10-08 | 2012-06-13 | 株式会社日立製作所 | 燃料電池用燃料容器、燃料電池、燃料電池電源装置、および燃料容器を燃料電池へ装着する方法 |
US20060102489A1 (en) * | 2004-10-29 | 2006-05-18 | Kelly Michael T | Methods and apparatus for synthesis of metal hydrides |
US20060102491A1 (en) * | 2004-11-10 | 2006-05-18 | Kelly Michael T | Processes for separating metals from metal salts |
WO2006053236A1 (en) * | 2004-11-12 | 2006-05-18 | Trulite, Inc. | Hydrogen generator cartridge |
US20070011251A1 (en) * | 2004-12-09 | 2007-01-11 | Mcnamara Kevin W | Fuel cartridge for fuel cell power systems and methods for power generation |
KR100707161B1 (ko) * | 2005-07-16 | 2007-04-13 | 삼성에스디아이 주식회사 | 연료 카트리지 및 이를 구비한 직접액체 연료전지 |
US20070081939A1 (en) * | 2005-10-06 | 2007-04-12 | Grant Berry | Solid fuel packaging system and method or hydrogen generation |
-
2005
- 2005-11-12 WO PCT/US2005/040975 patent/WO2006053236A1/en active Application Filing
- 2005-11-12 AU AU2005304304A patent/AU2005304304B2/en not_active Ceased
- 2005-11-12 EP EP05848152A patent/EP1814653B1/de not_active Not-in-force
- 2005-11-12 US US11/270,947 patent/US7438732B2/en not_active Expired - Fee Related
-
2008
- 2008-08-26 US US12/198,613 patent/US20090053134A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
EP1814653A4 (de) | 2008-11-05 |
AU2005304304B2 (en) | 2009-01-15 |
US7438732B2 (en) | 2008-10-21 |
US20060059778A1 (en) | 2006-03-23 |
EP1814653A1 (de) | 2007-08-08 |
WO2006053236A8 (en) | 2007-01-25 |
US20090053134A1 (en) | 2009-02-26 |
WO2006053236A1 (en) | 2006-05-18 |
AU2005304304A1 (en) | 2006-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1814653B1 (de) | Wasserstoffgeneratorkartusche | |
US8357213B2 (en) | Apparatus, system, and method for promoting a substantially complete reaction of an anhydrous hydride reactant | |
CA2587563C (en) | Hydrogen generator cartridge | |
EP2414096B1 (de) | Wasserstofferzeugungssysteme und -verfahren mit natriumsilicid | |
US20070271844A1 (en) | Hydrogen fuel cartridge and methods for hydrogen generation | |
US8597844B2 (en) | Methods and apparatus for refueling reversible hydrogen-storage systems | |
US7648786B2 (en) | System for generating electricity from a chemical hydride | |
US9774051B2 (en) | Fuel supply for a fuel cell | |
US20080025880A1 (en) | Apparatus, system, and method for generating hydrogen from a chemical hydride | |
KR20070064584A (ko) | 연료 전지 카트리지 및 연료 운반 시스템 | |
US9102528B2 (en) | Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials | |
CN104619409B (zh) | 自调节气体发生器和方法 | |
JP2008532893A5 (de) | ||
CN101855758A (zh) | 处理氢气的装置、系统和方法 | |
CA2863839A1 (en) | Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials | |
WO2008014467A2 (en) | Apparatus, system, and method for generating electricity from a chemical hydride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070605 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: ANDERSON, HOWARD Inventor name: SHURTLEFF, JAMES, KEVIN Inventor name: BRYDON, CHRIS, A. Inventor name: LADD, ERIC, J. Inventor name: PATTON, JOHN, M. |
|
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1110822 Country of ref document: HK |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20081006 |
|
17Q | First examination report despatched |
Effective date: 20090721 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Ref country code: AT Ref legal event code: REF Ref document number: 566811 Country of ref document: AT Kind code of ref document: T Effective date: 20120815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602005035243 Country of ref document: DE Effective date: 20120913 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2391283 Country of ref document: ES Kind code of ref document: T3 Effective date: 20121123 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 566811 Country of ref document: AT Kind code of ref document: T Effective date: 20120718 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Effective date: 20120718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120718 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120718 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120718 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120718 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121118 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120718 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121119 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120718 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121019 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120718 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120718 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120718 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120718 |
|
26N | No opposition filed |
Effective date: 20130419 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121018 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602005035243 Country of ref document: DE Effective date: 20130419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120718 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121112 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1110822 Country of ref document: HK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051112 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20140529 Year of fee payment: 9 Ref country code: GB Payment date: 20140529 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20140530 Year of fee payment: 9 Ref country code: IT Payment date: 20140530 Year of fee payment: 9 Ref country code: DE Payment date: 20140530 Year of fee payment: 9 Ref country code: SE Payment date: 20140530 Year of fee payment: 9 Ref country code: NL Payment date: 20140530 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20140530 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140530 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602005035243 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20150601 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20141130 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20141112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141113 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150602 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141112 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141112 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141201 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20151229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141113 |