EP1813135A1 - Circuit pour faire fonctionner une lampe a decharge a haute pression - Google Patents

Circuit pour faire fonctionner une lampe a decharge a haute pression

Info

Publication number
EP1813135A1
EP1813135A1 EP05817229A EP05817229A EP1813135A1 EP 1813135 A1 EP1813135 A1 EP 1813135A1 EP 05817229 A EP05817229 A EP 05817229A EP 05817229 A EP05817229 A EP 05817229A EP 1813135 A1 EP1813135 A1 EP 1813135A1
Authority
EP
European Patent Office
Prior art keywords
circuit arrangement
arrangement according
voltage
discharge lamp
pressure discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05817229A
Other languages
German (de)
English (en)
Inventor
Bernhard Siessegger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP1813135A1 publication Critical patent/EP1813135A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2881Load circuits; Control thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the invention relates to a circuit arrangement according to the preamble of patent claim 1.
  • Such a circuit arrangement is disclosed, for example, in EP-A 0 868 833.
  • This document describes a circuit arrangement for operating a high-pressure discharge lamp with a voltage converter designed as an inverter, a load circuit fed by the inverter, which is provided with connections for a high-pressure discharge lamp and with a throttle for limiting the lamp current, and a pulse ignition device for Igniting the gas discharge in the high pressure discharge lamp has.
  • the circuit arrangement further has a transformer for electrical isolation of the inverter from the load circuit and the pulse ignition device.
  • the circuit arrangement according to the invention for operating a high-pressure discharge lamp has a voltage converter, a load circuit fed by the voltage converter, which is provided with connections for a high-pressure discharge lamp and with a throttle for limiting the current through the high-pressure discharge lamp, and a pulse ignition device for igniting the gas discharge in the High- on discharge lamp, wherein the throttle is formed as a secondary winding of the Zündtrans ⁇ formator of the pulse ignition device.
  • the circuit arrangement according to the invention is suitable for the operation of high-pressure discharge lamps which do not have a separate auxiliary starting electrode.
  • a transformer for Anpassimg the input voltage of the voltage converter to the voltage required in the load circuit and for galvanic isolation between the voltage converter and the load circuit is provided.
  • the transformer has two secondary windings, wherein a first secondary winding forcertainsversor ⁇ supply of the load circuit and the second secondary winding, optionally together with the first secondary winding, for power supply of the Impulszündvorrich- tion, in addition to a galvanic isolation between the voltage and voltage allow the pulse ignition device.
  • the aforementioned transformer not only serves for galvanic isolation, but also allows the output voltage of the voltage converter to be transformed to a higher value.
  • an autotransformer can also be used instead of the aforementioned transformer if a galvanic separation between the voltage converter and Load circuit or pulse igniter is not required.
  • a voltage-limiting, bidirectional component for example a bidirectional transilluminator, which is also referred to as a suppressor diode or TVS diode, is advantageously connected in parallel with this secondary winding.
  • the load circuit advantageously has at least one capacitor connected in series with the choke, the capacitance of which is dimensioned such that it causes a partial compensation of the inductance of the choke during lamp operation, after the ignition phase of the high-pressure discharge lamp has ended to reduce the power dissipation in the circuit. If a relatively small secondary inductance of the pulse transformer can be ensured, then a partial compensation can be omitted. A certain amount of the secondary inductance of the pulse transformer should be present to stabilize the discharge in any case, unless the stabilization is accomplished by the transformer for matching the input voltage of the voltage converter to those in the load circuit, which would have to have a correspondingly large secondary leakage inductance for this purpose. A stabilization of the discharge involving both components is also possible.
  • the voltage converter is advantageously designed as a one-transistor converter for the purpose of further simplification of the circuit arrangement. This is to be understood in the sense of a single high-frequency connected transit gate.
  • the circuit is characterized by very low switching losses, since the selection of the switching frequency and the duty cycle of the driving of the switching transistor is such that it is switched on or off only in the de-energized state (zero-voltage switching, ZVS).
  • the voltage converter of the circuit arrangement according to the invention preferably comprises at least one switching means switching in periodically recurring time intervals, and means for changing the switching frequency of the at least one switching means after ignition of the gas discharge in the high-pressure discharge lamp in order to easily control the power of the high-pressure discharge lamp to allow after ignition of the gas discharge.
  • the means for changing the switching frequency of the at least one switching means are preferably designed such that immediately after ignition of the gas discharge in the high-pressure discharge lamp a sudden change in the Weg ⁇ frequency of the at least one switching means takes place and then, while the run-up or start-up phase of the high-pressure discharge lamp is a continuous or quasi-continuous change in the switching frequency. Due to the sudden change in the switching frequency, the ignition device is deactivated and quasi-continuous by the continuous or in the case of a digital control device.
  • a change in the switching frequency of the at least one switching means of the voltage converter makes it possible to regulate the power of the high-pressure discharge lamp.
  • the switching frequency can be adjusted so that the high-pressure discharge lamp is operated with an excessive power compared to its rated power in order to shorten the duration of the start-up phase.
  • the switching frequency can be changed continuously or quasi-continuously until, during stationary operation of the high-pressure discharge lamp, a final value for the switching frequency is reached in order to operate the high-pressure discharge lamp with a power zvi which substantially corresponds to its rated power.
  • Figure 1 is a schematic circuit diagram of the circuit arrangement according to the first embodiment
  • Figure 2 is a schematic circuit diagram of the circuit arrangement according to the second embodiment
  • FIG. 3 is a detailed circuit diagram of the circuit arrangement according to the first embodiment
  • Figure 4 is a schematic circuit diagram of the circuit arrangement according to the third embodiment
  • Figure 5 is a schematic circuit diagram of the circuit arrangement according to the undo th embodiment
  • FIG. 6 is a schematic circuit diagram of the circuit arrangement according to the fifth embodiment
  • the first embodiment of the invention Heidelbergungs ⁇ arrangement is shown schematically.
  • This circuit arrangement includes a Ein ⁇ transistor voltage converter which is connected to a DC voltage source UO and of the primary winding LIa of a transformer Tl and a semicon terschalter S with antiparallel connected diode D and a parallel to the switch S switched capacitor Cl is formed, and a Load circuit which is coupled via the Trans ⁇ formator Tl to the voltage converter, and a Impulszündvorrich- device IZ, T2 for igniting the gas discharge in the high pressure discharge lamp La.
  • the secondary winding LIb of the transformer Tl, the inductor L2b, the capacitor C2 and the high-pressure discharge lamp La or connections for the high-pressure discharge lamp La are arranged.
  • the inductor L2b is also designed as a secondary winding of the ignition transformer T2 of the pulse ignition source.
  • FIG. 2 second embodiment of the invention differs from the first embodiment only in that an autotransformer Tl 'is used in place of the transformer Tl. For this reason, the same reference numerals are used in Figures 1 and 2 for identical components.
  • the load circuit and the voltage input of the pulse ignition device IZ, T2 are fed by the primary LIa 'and the secondary winding section LIb' of the autotransformer Tl '.
  • FIG. 3 shows details of the first exemplary embodiment as well as details of the pulse ignition device IZ, T2 and of the semiconductor switch S and Q illustrated in FIGS. 1 and 2 as a block diagram.
  • the semiconductor switch S is shown in Figure 3 as a field effect transistor Q with integrated body diode and parasitic capacitance.
  • the pulse ignition device IZ, T2 is supplied with the help of the two secondary windings LIb, LIc of the transformer Tl from the one-transistor voltage converter with energy.
  • the ignition capacitor C3 is charged via the rectifier diode D3 and the resistor R to the breakdown voltage of the spark gap FS.
  • the ignition capacitor C3 discharges via the spark gap FS and the primary winding L2a of the ignition transformer. formators T2.
  • high voltage pulses are generated in the secondary winding L2b of the ignition transformer T2, which lead to the ignition of the gas discharge in the high-pressure discharge lamp La.
  • a bidirectional one is parallel to the first secondary winding LIb or to the winding sections LIa', LIb ' Suppressor diode D2 switched.
  • the field-effect transistor Q of the voltage converter is operated by means of its drive device ST with a switching frequency of approximately 220 kHz.
  • the required breakdown voltage of the spark gap FS can build up on the ignition capacitor C3 on account of the dimensioning of the components indicated in the table.
  • the switching frequency of the transistor Q is switched to the value of 750 kHz and then, corresponding to the evaporation of the filling components in the discharge vessel of the lamp La, increased to 820 kHz.
  • the switching frequency is selected such that the high-pressure discharge lamp La is operated at its nominal power of 35 watts. Because of the then conductive discharge path of the high-pressure discharge lamp La, after termination of the ignition phase of the pulse ignition device there will be no further. High voltage pulses generated.
  • the secondary winding L2b of the ignition transformer T2 which is arranged in the load circuit and flows through the lamp current, serves as a choke limiting the lamp current after termination of the ignition phase, that is, for stabilizing the discharge.
  • FIG. 4 schematically shows a circuit arrangement according to the third embodiment of the invention. This embodiment differs from the first exemplary embodiment only in that the circuit arrangement according to the third exemplary embodiment omits the capacitor C2 and the secondary winding L2b of the ignition transformer has 20 turns and an inductance of 32 ⁇ iH. In all other details, the third exemplary embodiment corresponds to the first exemplary embodiment depicted in FIGS. 1 and 3. Therefore, the same reference numerals have been used for identical parts.
  • FIG. 5 schematically shows a circuit arrangement according to the fourth exemplary embodiment of the invention.
  • This embodiment differs from the third embodiment only in that the capacitor Cl is replaced by the two capacitors CIa and CIb, wherein the capacitor CIa is connected in parallel to the switching path of the switching transistor S and its body diode D and the capacitor CIb parallel to the secondary winding LIb of the transformer Tl is connected.
  • the bidirectional suppressor diode D2 is omitted in this exemplary embodiment because, in addition to its function, the capacitor CIb together with CIa additionally acts as a voltage-limiting component and ensures that the voltage generated by the ignition transformer is applied to the lamp.
  • kl, kla, klb denote the capacitances of the capacitors Cl, CIa, CIb and nla, nlb the number of turns of the primary LIa or secondary winding LIb of the transformer Tl.
  • the capacitor Cl or CIa can also be connected in parallel to the primary winding LIa of the transformer Tl, instead of in parallel to the switching transistor S.
  • the capacitance Cl can be adapted to different load conditions or to guarantee the circuit function in the case of a restricted frequency response. be changed in their value.
  • this is done in stages, being used as a switch MOSFET transistors.
  • MOSFET transistors allow a bidirectional current flow in the on state and the body diode present in the off state is no obstacle in this application, since due to the presence of the diode D in the circuit no negative voltage on Cl can occur, consequently the variation of Cl used switch must have no scrub ratiosperrfahtechnik.
  • An embodiment is shown in FIG. 6.
  • CIa 'and CIb' can be dimensioned so that after the ignition of the lamp instead of the frequency change, as described in the first embodiment, a drive of the MOSFET Q2 by means of the control circuit ST to the capacitor CIb ' to activate or deactivate, and in contrast to the above, no switching of the Weg ⁇ frequency occurs.
  • Q2 can be controlled directly by an output of a microcontroller, without the need for a correspondingly fast gate drive as in the case of Q1.
  • CIa ' can be dispensed with entirely and its function can be perceived exclusively by the parasitic capacitance of the MOSFET Q1.
  • the switching or variation of Cl as well as the choice of Cl should be such that the switch S or Q always, ie both during ignition and in the subsequent operation, switching in the de-energized state of the switch (zero-voltage switching , ZVS) takes place.
  • the circuit arrangement shown schematically in Figure 6 according to the fifth embodiment of the invention differs from the firstticians ⁇ example only in that the capacitor Cl is replaced by the two capacitors CIa 'and CIb', wherein the capacitor CIa 'parallel to the switching path of the switching transistor Ql and its body diode is connected and the series circuit consisting of the capacitor CIb 'and a second switching transistor Q2 is connected in parallel with the capacitor CIa'. Therefore, the same speedsze ⁇ chen were used in Figures 3 and 6 for identical components.
  • the high-pressure discharge lamp La is a mercury-free halogen-metal vapor high-pressure gas discharge lamp with a nominal output of 35 W in steady state operation and a nominal lamp voltage of 45V for use in a motor vehicle headlight.
  • Ignition transformer L2a, L2b has, apart from a small air gap, a magnetic circuit closed in a soft magnetic material (eg ferrite).

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

L'invention concerne un circuit pour faire fonctionner une lampe à décharge à haute pression. Ce circuit comprend un transformateur de tension, un circuit de charge alimenté par ce transformateur de tension, ce circuit de charge étant pourvu de raccords pour la lampe à décharge à haute pression (La) et d'une bobine de choc (L2b) destinée à limiter le courant passant à travers la lampe à décharge à haute pression (La), ainsi qu'un dispositif d'allumage à impulsion servant à amorcer la décharge de gaz dans la lampe à décharge à haute pression (La). Selon l'invention, la bobine de choc (L2b) se présente sous la forme d'un enroulement secondaire du transformateur d'allumage (T2) du dispositif d'allumage à impulsion.
EP05817229A 2004-11-19 2005-11-11 Circuit pour faire fonctionner une lampe a decharge a haute pression Withdrawn EP1813135A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004055976A DE102004055976A1 (de) 2004-11-19 2004-11-19 Schaltungsanordnung zum Betrieb einer Hochdruckentladungslampe
PCT/DE2005/002031 WO2006053529A1 (fr) 2004-11-19 2005-11-11 Circuit pour faire fonctionner une lampe a decharge a haute pression

Publications (1)

Publication Number Publication Date
EP1813135A1 true EP1813135A1 (fr) 2007-08-01

Family

ID=35734917

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05817229A Withdrawn EP1813135A1 (fr) 2004-11-19 2005-11-11 Circuit pour faire fonctionner une lampe a decharge a haute pression

Country Status (6)

Country Link
US (1) US20090102390A1 (fr)
EP (1) EP1813135A1 (fr)
JP (1) JP2008521181A (fr)
CN (1) CN101061755A (fr)
DE (1) DE102004055976A1 (fr)
WO (1) WO2006053529A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080061705A1 (en) * 2006-09-13 2008-03-13 Himax Technologies Limited Ccfl inverter with single transistor
DE102007015809A1 (de) 2007-03-30 2008-10-02 Ipgate Ag Elektrische Parkierbremse
DE102013200870B4 (de) * 2013-01-21 2019-10-10 SUMIDA Components & Modules GmbH Entladungslampe und Vorrichtung zum Zünden und Betreiben eines Brenners einer Entladungslampe
CN103561530A (zh) * 2013-11-15 2014-02-05 程凯芬 一种新型的荧光节能灯
CN109673095B (zh) * 2018-11-20 2020-02-07 福建睿能科技股份有限公司 一种电压输出电路及驱动电路、开关电源

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0240049A1 (fr) * 1986-03-28 1987-10-07 Koninklijke Philips Electronics N.V. Circuit pour mettre en oeuvre une lampe à décharge haute pression
DE4002334A1 (de) * 1989-01-26 1990-08-02 Koito Mfg Co Ltd Lampen-beleuchtungsschaltkreis mit ueberlastschutz
US5140229A (en) * 1990-04-28 1992-08-18 Koito Manufacturing Co., Ltd. Lighting circuit for vehicular discharge lamp

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL179779C (nl) * 1977-01-26 1986-11-03 Philips Nv Inrichting voor het ontsteken en voeden van een gas- en/of dampontladingslamp.
GB2172451B (en) * 1985-02-07 1989-06-14 El Co Villamos Keszulekek Es S Circuit system for igniting and lighting a high-pressure discharge lamp particulary a sodium vapour lamp
EP0314077B1 (fr) * 1987-10-27 1994-01-26 Matsushita Electric Works, Ltd. Circuit de commande pour lampe à décharge
DE69225834T2 (de) * 1991-04-04 1998-12-24 Philips Electronics Nv Schaltungsanordnung
US5426346A (en) * 1994-03-09 1995-06-20 General Electric Company Gas discharge lamp ballast circuit with reduced parts-count starting circuit
DE19610385A1 (de) * 1996-03-16 1997-09-18 Bosch Gmbh Robert Gasentladungslampe, insbesondere für Kraftfahrzeug-Scheinwerfer
DE19644115A1 (de) * 1996-10-23 1998-04-30 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zum Betrieb einer Hochdruckentladungslampe sowie Beleuchtungssystem mit einer Hochdruckentladungslampe und einem Betriebsgerät für die Hochdruckentladungslampe
US6486614B1 (en) * 1999-09-30 2002-11-26 Matsushita Electric Works, Ltd. Discharge lamp lighting device
JP2003017283A (ja) * 2001-06-29 2003-01-17 Ushio Inc 光源装置
DE10330117A1 (de) * 2003-07-03 2005-01-20 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung zur Ansteuerung einer Hochdruckentladungslampe
DE10345610A1 (de) * 2003-09-29 2005-05-12 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zum Betreiben mindestens einer Niederdruckentladungslampe
DE102004020499A1 (de) * 2004-04-26 2005-11-10 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung zum Betrieb von Hochdruckentladungslampen und Betriebsverfahren für eine Hochdruckentladungslampe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0240049A1 (fr) * 1986-03-28 1987-10-07 Koninklijke Philips Electronics N.V. Circuit pour mettre en oeuvre une lampe à décharge haute pression
DE4002334A1 (de) * 1989-01-26 1990-08-02 Koito Mfg Co Ltd Lampen-beleuchtungsschaltkreis mit ueberlastschutz
US5140229A (en) * 1990-04-28 1992-08-18 Koito Manufacturing Co., Ltd. Lighting circuit for vehicular discharge lamp

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2006053529A1 *

Also Published As

Publication number Publication date
US20090102390A1 (en) 2009-04-23
WO2006053529A1 (fr) 2006-05-26
JP2008521181A (ja) 2008-06-19
DE102004055976A1 (de) 2006-05-24
CN101061755A (zh) 2007-10-24

Similar Documents

Publication Publication Date Title
EP1654913B1 (fr) Ballast pour au moins une lampe a decharge a haute pression, procede pour faire fonctionner une telle lampe et systeme d'eclairage comprenant une telle lampe
EP0264765B1 (fr) Disposition de circuit pour la mise en oeuvre de lampe à incandescence halogène basse tension
DE60006046T2 (de) Vorschaltgerät für Starkstromgasentladungslampe
WO2008055545A1 (fr) Convertisseur cc/cc autohétérodyne et procédé à cet effet
EP1211794B1 (fr) Procédé de regulation de courant de sortie et/ou tension de sortie d'alimentation à découpage
DE2705968A1 (de) Starter- und vorschaltanordnung fuer gasentladungslampe
DE4129430A1 (de) Schaltungsanordnung zum betrieb einer lampe
DE3909174A1 (de) Impuls fuer impuls stromgeregelte spannungsversorgung
EP1741320A1 (fr) Montage et procede pour faire fonctionner des lampes a decharge haute pression
DE3447486A1 (de) Treiber zum betrieb eines elektrischen verbrauchers sowie mit einem solchen treiber aufgebautes steuergeraet oder steuereinrichtung
DE3829388A1 (de) Schaltungsanordnung zum betrieb einer last
DE102007002342B3 (de) Vereinfachte primärseitige Ansteuerschaltung für den Schalter in einem Schaltnetzteil
EP1813135A1 (fr) Circuit pour faire fonctionner une lampe a decharge a haute pression
DE60223971T2 (de) Vorschaltgerät für eine Entladungslampe
EP0917412A2 (fr) Circuit auto-oscillant avec circuit de démarrage simplifié
EP0057910B1 (fr) Circuit pour l'alimentation régulée d'un utilisateur
WO2009010098A1 (fr) Ensemble circuit pourvu d'un transformateur de tension et procédé correspondant
EP1658676B1 (fr) Circuit et procede pour transformer une tension d'alimentation a pics de tension
DE102004062401A1 (de) Leistungswandler
EP1647166A1 (fr) Circuit pour faire fonctionner des lampes a decharge a haute pression
DE4005776A1 (de) Schaltungsanordnung zum starten und/oder zum betrieb einer gasentladungslampe
DE3342010A1 (de) Wechselrichterschaltung
EP0682464A1 (fr) Circuit pour alimenter des lampes électriques
EP1532726B1 (fr) Regulateur a decoupage
DE3530638A1 (de) Schaltungsanordnung zum starten und betrieb von gasentladungslampen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070919

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20091002