EP1811659A1 - Amplitude variable driver circuit and testing apparatus - Google Patents

Amplitude variable driver circuit and testing apparatus Download PDF

Info

Publication number
EP1811659A1
EP1811659A1 EP05793128A EP05793128A EP1811659A1 EP 1811659 A1 EP1811659 A1 EP 1811659A1 EP 05793128 A EP05793128 A EP 05793128A EP 05793128 A EP05793128 A EP 05793128A EP 1811659 A1 EP1811659 A1 EP 1811659A1
Authority
EP
European Patent Office
Prior art keywords
amplitude
differential amplifiers
driver circuit
operable
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05793128A
Other languages
German (de)
French (fr)
Other versions
EP1811659A4 (en
Inventor
Kei c/o ADVANTEST CORPORATION SASAJIMA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Publication of EP1811659A1 publication Critical patent/EP1811659A1/en
Publication of EP1811659A4 publication Critical patent/EP1811659A4/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/4508Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using bipolar transistors as the active amplifying circuit
    • H03F3/45085Long tailed pairs
    • H03F3/45089Non-folded cascode stages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2836Fault-finding or characterising
    • G01R31/2839Fault-finding or characterising using signal generators, power supplies or circuit analysers
    • G01R31/2841Signal generators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0017Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier
    • H03G1/0023Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier in emitter-coupled or cascode amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0088Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using discontinuously variable devices, e.g. switch-operated

Definitions

  • the present invention relates to an amplitude varying driver circuit which outputs an output signal according to an input signal and a test apparatus including an amplitude varying driver circuit. More particularly, the present invention relates to an amplitude varying driver circuit which outputs an output signal, which is an amplitude-changed input signal.
  • the present application also relates to the following application, the contents of which are incorporated herein by reference if applicable. USA Patent Application No. 10/976,354 filed on October 27, 2004 .
  • a circuit using a differential amplifier as a circuit for changing amplitude of an input signal and outputting the signal is known.
  • Such a circuit controls a current flowing to the differential amplifier, and generates and outputs a potential of the output signal according to the current using a resistor connected to the differential amplifier in series.
  • transition frequencies differ between a high amplitude output and a low amplitude output.
  • a transistor which is suitable for the transition frequency optimal for the high amplitude output, is selected.
  • the transition frequency for the low amplitude output will decrease, and sufficient switching characteristic will not be attained, and a waveform of the high frequency wave will deteriorate.
  • the high amplitude output may exceed the limit of the collector current of the transistor.
  • an amplitude varying driver circuit operable to output an output signal, which is an amplified input signal being supplied.
  • the amplitude varying driver circuit includes: a plurality of differential amplifiers provided in parallel with one another, wherein a signal corresponding to the input signal is input into each base terminal thereof; a resistor section, which is provided in series with the plurality of differential amplifiers, operable to establish potential of the output signal according to total current flowing to the plurality of differential amplifiers; and an amplitude control transistor, which is provided in series with the plurality of differential amplifiers, operable to define total current flowing to the plurality of differential amplifiers.
  • the amplitude varying driver circuit may further include an amplitude control section operable to control the total current defined by the amplitude control transistor according to amplitude of the output signal to be output. Moreover, it may further include a drive control unit operable to control a current flowing to each of the differential amplifiers based on an amplitude of the output signal to be output, respectively.
  • the amplitude varying driver circuit may further include a plurality of individual current control transistors, which are provided corresponding to and the differential amplifiers, wherein the plurality of individual current control transistors are provided in series with the corresponding differential amplifiers, wherein the drive control unit may control current flowing to the differential amplifier corresponding to the individual current control transistor by controlling the voltage applied to a base terminal of each of the individual current control transistors.
  • the drive control unit may make the differential amplifiers of quantity according to amplitude of the output signal to be output operate. Moreover, the drive control unit may control current flowing to the operating differential amplifiers to be substantially the same as one another.
  • the amplitude varying driver circuit may further include a pre-driver circuit operable to control amplitude of a signal input into each base terminal of the plurality of differential amplifiers according to amplitude of the output signal to be output. Moreover, it may further include a potential fixed transistor, which is provided between the resistor section and the plurality of differential amplifier, operable to apply voltage to a base terminal thereof.
  • a test apparatus operable to test an electronic device.
  • the test apparatus includes: a pattern generating section operable to generate a test pattern for testing the electronic device; a waveform shaping section operable to generate an input signal to be input into the electronic device based on the test pattern; an amplitude varying driver circuit operable to input an output signal, which is the amplified input signal, into the electronic device; and a decision section operable to compare a signal output from the electronic device with a supplied expected value signal, and to decide acceptability of the electronic device, wherein the amplitude varying driver circuit includes: a plurality of differential amplifiers provided in parallel with one another, wherein a signal corresponding to the input signal is input into each base terminal thereof; a resistor section, which is provided in series with the plurality of differential amplifiers, operable to establish potential of the output signal according to total current flowing to the plurality of differential amplifiers; and an amplitude control transistor, which is provided in series with the plurality of differential amplifiers, oper
  • variation in waveform quality between a high amplitude output and a low amplitude output can be reduced, and an output signal having wide varying amplitude range can be generated with sufficient accuracy.
  • Fig. 1 is a drawing exemplary showing a configuration of a test apparatus 200 according to an embodiment of the present invention.
  • the test apparatus 200 is an apparatus for testing an electronic devices 300, such as a semiconductor circuit, and includes a pattern generating section 210, a waveform shaping section 220, a timing generating section 230, an amplitude varying driver circuit 100, and a decision section 240.
  • the pattern generating section 210 generates a test pattern for testing the electronic device 300.
  • the test pattern is a digital signal which is expressed by 1/0 patterns.
  • the waveform shaping section 220 generates an input signal which is to be input into the electronic device 300 based on the test pattern. For example, the input signal having a voltage according to the test pattern is generated for each given timing.
  • the timing generating section 230 generates a timing clock having desired frequency, and supplies it to the waveform shaping section 220.
  • the waveform shaping section 220 generates a voltage according to the test pattern according to a pulse of the timing clock.
  • the amplitude varying driver circuit 100 inputs an output signal according to the input signal to the electronic device 300.
  • the amplitude varying driver circuit 100 generates an output signal by changing the amplitude of the input signal according to the specification of the electronic device 300.
  • the decision section 240 compares the signal output from the electronic device 300 with the given expected value signal, and decides the acceptability of the electronic device 300.
  • the pattern generating section 210 may generate an expected value signal based on the test pattern.
  • Fig. 2 is a drawing exemplary showing a configuration of the amplitude varying driver circuit 100.
  • the amplitude varying driver circuit 100 is a circuit which generates an output signal according to an input signal.
  • the amplitude varying driver circuit 100 includes resistor sections (102-1 ⁇ 102-2, to be collectively referred to as 102 hereinafter), potential fixed transistors (103-1 ⁇ 103-2, to be collectively referred to as 103 hereinafter), a plurality of differential amplifier (106-1, 106-2, ..., to be collectively referred to as 106 hereinafter) provided in parallel, a pre-driver circuit 118, a drive control unit 120, an amplitude control section 122, individual current control transistors (112-1 ⁇ 112-2, to be collectively referred to as 112 hereinafter), a amplitude control transistor 114, and a resistor 116.
  • Each of the differential amplifiers 106 includes transistors 108 and 110 provided in parallel, and a signal according to the input signal is input into a base terminal of each transistor.
  • the resistor sections 102 are provided in series with a plurality of differential amplifiers 106. That is, these are provided in series to the differential amplifiers 106, respectively.
  • the resistor section 102-1 connects with the collector terminal of the transistor 108 of each of the differential amplifiers 106, and the resistor section 102-2 connects with the collector terminal of the transistor 110 of each differential amplifier 106.
  • the resistor sections 102 generate potential of output signals (Vout1, Vout2) according to the total current flowing to the plurality of differential amplifiers 106.
  • the amplitude control transistor 114 and each of the plurality of differential amplifiers 106 are provided in series, and specifies the total current flowing to the plurality of differential amplifiers 106. That is, the amplitude of the output signal is settled according to the voltage applied to the base terminal of the amplitude control transistor 114.
  • the amplitude control transistor 114 connects with an emitter terminal of each of the differential amplifiers 106, and the amplitude control transistor 114 is grounded via the resistor 116.
  • the amplitude control section 122 controls the total current defined by the amplitude control transistor 114 according to the amplitude of the output signal to be output. That is, the voltage applied to the base terminal of the amplitude control transistor 114 is changed according to the amplitude of the output signal. By such control, the output signal having desired amplitude is generated.
  • the drive control unit 120 controls the current flowing to each differential amplifier 106 based on the amplitude of the output signal to be output, respectively.
  • each of the individual current control transistors 112 is provided corresponding to each of the differential amplifiers, and is connected to the corresponding emitter terminal of the differential amplifier 106 in series. Then, the drive control unit 120 controls the current flowing to the differential amplifiers 106 corresponding to the individual current control transistors 112 by controlling the voltage applied to the base terminals of the individual current control transistors 112, respectively.
  • the drive control unit 120 settles the quantity of the operating differential amplifiers 106 and controls each of the current control transistors 112 corresponding to the operating differential amplifiers 106 to ON state so that the current flowing to each of the differential amplifiers 106 becomes within a predetermined limit.
  • the range of the current flowing to a differential amplifier 106 is predetermined within the range in which the differential amplifier 106 can operate properly.
  • the current flowing to each of the differential amplifiers 106 can be controlled within the predetermined proper range, and the differential amplifiers 106 can be used in the proper current range. Therefore, the variation of the waveform quality between the high amplitude output and the low amplitude output can be reduced, and an output signal, of which the amplitude varies a lot, can be generated with sufficient accuracy.
  • the pre-driver circuit 118 controls the amplitude of the signals input into base terminals of the plurality of differential amplifiers 106 according to the amplitude of the output signal to be output.
  • the pre-driver circuit 118 receives the input signals, changes the amplitudes of the input signals according to the amplitudes of the output signals to be output, and inputs them to the base terminals of the differential amplifiers 106, respectively.
  • the pre-driver circuit 118 changes the amplitudes of the input signals, respectively, and inputs them so that the differential amplifiers 106 may operate properly.
  • the pre-driver circuit 118 generates signals which are to be supplied to the base terminals of the differential amplifiers 106.
  • the potential fixed transistors 103 are provided between the resistor sections 102 and the plurality of differential amplifiers 106, and fixed voltage is applied to each base terminal. Thereby, the potential of the collector terminal of each of the differential amplifiers 106 can be maintained at substantially constant, and charge/discharge to/from the capacitance component by switching operation of the differential amplifiers 106 can be prevented. Therefore, the differential amplifiers 106 can be operated speedy with sufficient accuracy.
  • the drive control unit 120 makes only one differential amplifier 106 (the differential amplifier 106-1 in this example) to be operated. That is, the individual current control transistor 112-1 is controlled to be in ON state, and other individual current control transistors 112 are controlled to be in OFF state.
  • Fig. 3 is a drawing exemplary showing operation of the amplitude varying driver circuit 100 explained with reference to Fig. 2.
  • an axis of abscissa shows set values of the amplitude of the output signals
  • an axis of ordinate shows the current flowing to each individual current control transistor 112.
  • the pre-driver circuit 118 supplies signals according to the input signals to the base terminals of the operating differential amplifiers 106.
  • each of the differential amplifiers 106 can be made to operate in the proper current range.
  • Fig. 4 is a drawing showing another example of a configuration of the amplitude varying driver circuit 100.
  • the amplitude varying driver circuit 100 in this example includes the same configuration as the amplitude varying driver circuit 100 explained with reference to Fig. 2 except for the pre-driver circuit 118.
  • the pre-driver circuit 118 in Fig. 2 generates signals to the base terminals of the differential amplifiers 106, respectively, the pre-driver circuit 118 in this example generates a common signal to the differential amplifiers 106 and supplies it.
  • the pre-driver circuit 118 changes the amplitudes of the input signals, respectively, and inputs them so that each of the differential amplifiers 106 may operate properly. For example, the amplitudes of the input signals are made to vary in proportion to the set amplitudes of the output signals.
  • the drive control unit 120 controls the individual current control transistors 112 so that tail current may flow to a pair of each of the differential amplifiers 106 in order as the set amplitude of the output signal increases as is explained in Fig. 3.
  • each of the differential amplifiers 106 can be made to operate in the proper current range by simple control.
  • the drive control unit 120 may control each of the individual current control transistors 112 so that the current flowing to the operating differential amplifiers 106 may be substantially the same as one another.
  • operation of the amplitude varying driver circuit 100 in the case of substantially the same current flows to each of the differential amplifiers 106 will be explained.
  • Figs. 5A and 5B are drawings exemplary showing operation of the amplitude varying driver circuit 100 explained with reference to Fig. 4.
  • Fig. 5A is a drawing exemplary showing operation of the pre-driver circuit 118
  • Fig. 5B is a drawing exemplary showing operation of the individual current control transistors 112.
  • an axis of abscissa indicates set-up values of the amplitude of the output signals
  • an axis of ordinate indicates set-up values of the amplitudes of the signals output from the pre-driver circuit 118.
  • an axis of abscissa indicates set-up values of the amplitudes of the output signals
  • an axis of ordinate indicates the current flowing to the individual current control transistors 112.
  • the drive control unit 120 makes only one differential amplifier 106 operate when the current flowing to the amplitude control transistor 114 is within the predetermined proper current for a differential amplifier 106 (the differential amplifier 106-1 in this example). That is, the individual current control transistor 112-1 is controlled to be in ON state, and other individual current control transistors 112 are controlled to be in an OFF state.
  • the pre-driver circuit 118 amplifies the input signal according to the set amplitude of the output signal and supplies it to the base terminal of each of the differential amplifiers 106. At this time, the current flowing to the differential amplifier 106-1 is equal to the current I which flows to the amplitude control transistor 114.
  • the drive control unit 120 divides the total current by the upper limit of the proper current range, and the differential amplifiers 106 of the quantity of the raised quotient of the division are made to operate. That is, the individual current control transistors 112 corresponding to the differential amplifiers 106 are controlled in the ON state. Then, it is controlled so that the current flowing to the operating differential amplifiers 106 becomes substantially the same as one another. Since the range of fluctuation of current flowing to each of the differential amplifier 106 becomes small according to such control, the output signal having large varying amplitude range is generable with sufficient accuracy.
  • the pre-driver circuit controls the amplitudes of the signals supplied to the base terminals of the operating differential amplifiers 106 so that the continuity of the total current flowing to the operating differential amplifiers 106 may be maintained.
  • variation in waveform quality between a high amplitude output and a low amplitude output can be reduced, and an output signal having wide varying amplitude range can be generated with sufficient accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Amplifiers (AREA)
  • Control Of Amplification And Gain Control (AREA)

Abstract

There is provided an amplitude varying driver circuit operable to output an output signal, which is an amplified input signal being supplied. The amplitude varying driver circuit includes: a plurality of differential amplifiers provided in parallel with one another, wherein a signal corresponding to the input signal is input into each base terminal thereof; a resistor section, which is provided in series with the plurality of differential amplifiers, operable to establish potential of the output signal according to total current flowing to the plurality of differential amplifiers; and an amplitude control transistor, which is provided in series with the plurality of differential amplifiers, operable to define total current flowing to the plurality of differential amplifiers.

Description

    TECHNICAL FIELD
  • The present invention relates to an amplitude varying driver circuit which outputs an output signal according to an input signal and a test apparatus including an amplitude varying driver circuit. More particularly, the present invention relates to an amplitude varying driver circuit which outputs an output signal, which is an amplitude-changed input signal. The present application also relates to the following application, the contents of which are incorporated herein by reference if applicable.
    USA Patent Application No. 10/976,354 filed on October 27, 2004 .
  • BACKGROUND ART
  • Conventionally, a circuit using a differential amplifier as a circuit for changing amplitude of an input signal and outputting the signal is known. Such a circuit controls a current flowing to the differential amplifier, and generates and outputs a potential of the output signal according to the current using a resistor connected to the differential amplifier in series.
  • DISCLOSURE OF THE INVENTION PROBLEMS TO BE SOLVED BY THE INVENTION
  • In such a circuit, when increasing amplitude varying range, change of the current flowing to the differential amplifier increases, and it is difficult to maintain quality of an output wave between a high amplitude output and a low amplitude output.
  • Since a transition frequency of a transistor is dependent on a current flowing to the transistor, transition frequencies differ between a high amplitude output and a low amplitude output. Generally, a transistor, which is suitable for the transition frequency optimal for the high amplitude output, is selected. However, in such a case, the transition frequency for the low amplitude output will decrease, and sufficient switching characteristic will not be attained, and a waveform of the high frequency wave will deteriorate.
  • On the other hand, when the transistor, which is suitable for the transition frequency optimal for the low amplitude output, is selected, the high amplitude output may exceed the limit of the collector current of the transistor.
  • Therefore, it is an object of the present invention to provide an amplitude varying driver circuit and a test apparatus which can solve the problem of the conventional technology described above. The above and other objects can be achieved by combinations described in the independent claims. The dependent claims define further advantageous and exemplary combinations of the present invention.
  • MEANS FOR SOLVING THE PROBLEMS
  • To solve the above-mentioned problem, according to a first aspect of the present invention, there is provided an amplitude varying driver circuit operable to output an output signal, which is an amplified input signal being supplied. The amplitude varying driver circuit includes: a plurality of differential amplifiers provided in parallel with one another, wherein a signal corresponding to the input signal is input into each base terminal thereof; a resistor section, which is provided in series with the plurality of differential amplifiers, operable to establish potential of the output signal according to total current flowing to the plurality of differential amplifiers; and an amplitude control transistor, which is provided in series with the plurality of differential amplifiers, operable to define total current flowing to the plurality of differential amplifiers.
  • The amplitude varying driver circuit may further include an amplitude control section operable to control the total current defined by the amplitude control transistor according to amplitude of the output signal to be output. Moreover, it may further include a drive control unit operable to control a current flowing to each of the differential amplifiers based on an amplitude of the output signal to be output, respectively.
  • The amplitude varying driver circuit may further include a plurality of individual current control transistors, which are provided corresponding to and the differential amplifiers, wherein the plurality of individual current control transistors are provided in series with the corresponding differential amplifiers, wherein the drive control unit may control current flowing to the differential amplifier corresponding to the individual current control transistor by controlling the voltage applied to a base terminal of each of the individual current control transistors.
  • The drive control unit may make the differential amplifiers of quantity according to amplitude of the output signal to be output operate. Moreover, the drive control unit may control current flowing to the operating differential amplifiers to be substantially the same as one another.
  • The amplitude varying driver circuit may further include a pre-driver circuit operable to control amplitude of a signal input into each base terminal of the plurality of differential amplifiers according to amplitude of the output signal to be output. Moreover, it may further include a potential fixed transistor, which is provided between the resistor section and the plurality of differential amplifier, operable to apply voltage to a base terminal thereof.
  • According to a second aspect of the present invention, there is provided a test apparatus operable to test an electronic device. The test apparatus includes: a pattern generating section operable to generate a test pattern for testing the electronic device; a waveform shaping section operable to generate an input signal to be input into the electronic device based on the test pattern; an amplitude varying driver circuit operable to input an output signal, which is the amplified input signal, into the electronic device; and a decision section operable to compare a signal output from the electronic device with a supplied expected value signal, and to decide acceptability of the electronic device, wherein the amplitude varying driver circuit includes: a plurality of differential amplifiers provided in parallel with one another, wherein a signal corresponding to the input signal is input into each base terminal thereof; a resistor section, which is provided in series with the plurality of differential amplifiers, operable to establish potential of the output signal according to total current flowing to the plurality of differential amplifiers; and an amplitude control transistor, which is provided in series with the plurality of differential amplifiers, operable to define total current flowing to the plurality of differential amplifiers.
  • The summary of the invention does not necessarily describe all necessary features of the present invention. The present invention may also be a sub-combination of the features described above.
  • EFFECTS OF THE INVENTION
  • According to the present invention, variation in waveform quality between a high amplitude output and a low amplitude output can be reduced, and an output signal having wide varying amplitude range can be generated with sufficient accuracy.
  • BRIEF DESCRIPTION OF THE DRAWINGS
    • Fig. 1 is a drawing exemplary showing a configuration of a test apparatus 200 according to an embodiment of the present invention.
    • Fig. 2 is a drawing exemplary showing a configuration of an amplitude varying driver circuit 100.
    • Fig. 3 is a drawing exemplary showing operation of the amplitude varying driver circuit 100 explained in Fig. 2.
    • Fig. 4 is a drawing showing another example of a configuration of the amplitude varying driver circuit 100.
    • Figs. 5A and 5B are drawings exemplary showing operation of the amplitude varying driver circuit 100 explained in Fig. 4, in which Fig 5A is a drawing exemplary showing operation of a pre-driver circuit 118, and Fig. 5B is a drawing exemplary showing operation of each differential amplifier 106.
    BEST MODE FOR CARRYING OUT THE INVENTION
  • The invention will now be described based on the preferred embodiments, which do not intend to limit the scope of the present invention, but exemplify the invention. All of the features and the combinations thereof described in the embodiment are not necessarily essential to the invention.
  • Fig. 1 is a drawing exemplary showing a configuration of a test apparatus 200 according to an embodiment of the present invention. The test apparatus 200 is an apparatus for testing an electronic devices 300, such as a semiconductor circuit, and includes a pattern generating section 210, a waveform shaping section 220, a timing generating section 230, an amplitude varying driver circuit 100, and a decision section 240.
  • The pattern generating section 210 generates a test pattern for testing the electronic device 300. The test pattern is a digital signal which is expressed by 1/0 patterns. The waveform shaping section 220 generates an input signal which is to be input into the electronic device 300 based on the test pattern. For example, the input signal having a voltage according to the test pattern is generated for each given timing.
  • The timing generating section 230 generates a timing clock having desired frequency, and supplies it to the waveform shaping section 220. The waveform shaping section 220 generates a voltage according to the test pattern according to a pulse of the timing clock.
  • The amplitude varying driver circuit 100 inputs an output signal according to the input signal to the electronic device 300. For example, the amplitude varying driver circuit 100 generates an output signal by changing the amplitude of the input signal according to the specification of the electronic device 300.
  • The decision section 240 compares the signal output from the electronic device 300 with the given expected value signal, and decides the acceptability of the electronic device 300. The pattern generating section 210 may generate an expected value signal based on the test pattern.
  • Fig. 2 is a drawing exemplary showing a configuration of the amplitude varying driver circuit 100. The amplitude varying driver circuit 100 is a circuit which generates an output signal according to an input signal. The amplitude varying driver circuit 100 includes resistor sections (102-1~102-2, to be collectively referred to as 102 hereinafter), potential fixed transistors (103-1~103-2, to be collectively referred to as 103 hereinafter), a plurality of differential amplifier (106-1, 106-2, ..., to be collectively referred to as 106 hereinafter) provided in parallel, a pre-driver circuit 118, a drive control unit 120, an amplitude control section 122, individual current control transistors (112-1~112-2, to be collectively referred to as 112 hereinafter), a amplitude control transistor 114, and a resistor 116.
  • Each of the differential amplifiers 106 includes transistors 108 and 110 provided in parallel, and a signal according to the input signal is input into a base terminal of each transistor. The resistor sections 102 are provided in series with a plurality of differential amplifiers 106. That is, these are provided in series to the differential amplifiers 106, respectively. The resistor section 102-1 connects with the collector terminal of the transistor 108 of each of the differential amplifiers 106, and the resistor section 102-2 connects with the collector terminal of the transistor 110 of each differential amplifier 106. The resistor sections 102 generate potential of output signals (Vout1, Vout2) according to the total current flowing to the plurality of differential amplifiers 106.
  • The amplitude control transistor 114 and each of the plurality of differential amplifiers 106 are provided in series, and specifies the total current flowing to the plurality of differential amplifiers 106. That is, the amplitude of the output signal is settled according to the voltage applied to the base terminal of the amplitude control transistor 114. In this example, the amplitude control transistor 114 connects with an emitter terminal of each of the differential amplifiers 106, and the amplitude control transistor 114 is grounded via the resistor 116.
  • By such configuration, even if it is the case where a high amplitude output signal is to be output, required current can be distributed and the current flowing to one of the differential amplifiers 106 can be made low. Therefore, the waveform quality difference between the high amplitude signal and the low amplitude signal may be reduced.
  • Moreover, the amplitude control section 122 controls the total current defined by the amplitude control transistor 114 according to the amplitude of the output signal to be output. That is, the voltage applied to the base terminal of the amplitude control transistor 114 is changed according to the amplitude of the output signal. By such control, the output signal having desired amplitude is generated.
  • Moreover, the drive control unit 120 controls the current flowing to each differential amplifier 106 based on the amplitude of the output signal to be output, respectively. In this example, each of the individual current control transistors 112 is provided corresponding to each of the differential amplifiers, and is connected to the corresponding emitter terminal of the differential amplifier 106 in series. Then, the drive control unit 120 controls the current flowing to the differential amplifiers 106 corresponding to the individual current control transistors 112 by controlling the voltage applied to the base terminals of the individual current control transistors 112, respectively.
  • For example, the drive control unit 120 settles the quantity of the operating differential amplifiers 106 and controls each of the current control transistors 112 corresponding to the operating differential amplifiers 106 to ON state so that the current flowing to each of the differential amplifiers 106 becomes within a predetermined limit. The range of the current flowing to a differential amplifier 106 is predetermined within the range in which the differential amplifier 106 can operate properly.
  • By such control, the current flowing to each of the differential amplifiers 106 can be controlled within the predetermined proper range, and the differential amplifiers 106 can be used in the proper current range. Therefore, the variation of the waveform quality between the high amplitude output and the low amplitude output can be reduced, and an output signal, of which the amplitude varies a lot, can be generated with sufficient accuracy.
  • Moreover, the pre-driver circuit 118 controls the amplitude of the signals input into base terminals of the plurality of differential amplifiers 106 according to the amplitude of the output signal to be output. The pre-driver circuit 118 receives the input signals, changes the amplitudes of the input signals according to the amplitudes of the output signals to be output, and inputs them to the base terminals of the differential amplifiers 106, respectively. For example, for the current flowing to each of the differential amplifier 106, the pre-driver circuit 118 changes the amplitudes of the input signals, respectively, and inputs them so that the differential amplifiers 106 may operate properly. In this example, the pre-driver circuit 118 generates signals which are to be supplied to the base terminals of the differential amplifiers 106.
  • Moreover, the potential fixed transistors 103 are provided between the resistor sections 102 and the plurality of differential amplifiers 106, and fixed voltage is applied to each base terminal. Thereby, the potential of the collector terminal of each of the differential amplifiers 106 can be maintained at substantially constant, and charge/discharge to/from the capacitance component by switching operation of the differential amplifiers 106 can be prevented. Therefore, the differential amplifiers 106 can be operated speedy with sufficient accuracy.
  • In this example, when the current flowing to the amplitude control transistor 114 is within the predetermined proper current limit for a differential amplifier 106, the drive control unit 120 makes only one differential amplifier 106 (the differential amplifier 106-1 in this example) to be operated. That is, the individual current control transistor 112-1 is controlled to be in ON state, and other individual current control transistors 112 are controlled to be in OFF state.
  • Fig. 3 is a drawing exemplary showing operation of the amplitude varying driver circuit 100 explained with reference to Fig. 2. In Fig. 3, an axis of abscissa shows set values of the amplitude of the output signals, and an axis of ordinate shows the current flowing to each individual current control transistor 112.
  • When the total current of the drive control unit 120 flowing to the amplitude control transistor 114 is greater than larger than the proper current range of a differential amplifier 106, the total current is divided by the upper limit of the proper current range, the differential amplifiers 106 of the quantity of the quotient of the division are made to operate at the upper limit of the proper current range (straight line of the current waveform in Fig. 3), and the current, of which the value is equal to the remainder of the differential, flows to another differential amplifier 106 (curved section of the current waveform in Fig. 3). That is, each of the individual current control transistors 112 are controlled so that tail current may flow to a pair of each of the differential amplifiers 106 in order as the set amplitude of the output signal increases. At this time, the pre-driver circuit 118 supplies signals according to the input signals to the base terminals of the operating differential amplifiers 106.
  • By such control, when the total current flowing to the amplitude control transistor 114 is high, current can be dispersedly flows to the plurality of differential amplifiers 106. Therefore, each of the differential amplifiers 106 can be made to operate in the proper current range.
  • Fig. 4 is a drawing showing another example of a configuration of the amplitude varying driver circuit 100. The amplitude varying driver circuit 100 in this example includes the same configuration as the amplitude varying driver circuit 100 explained with reference to Fig. 2 except for the pre-driver circuit 118.
  • Although the pre-driver circuit 118 in Fig. 2 generates signals to the base terminals of the differential amplifiers 106, respectively, the pre-driver circuit 118 in this example generates a common signal to the differential amplifiers 106 and supplies it. Like the case explained with reference to Fig. 2, the pre-driver circuit 118 changes the amplitudes of the input signals, respectively, and inputs them so that each of the differential amplifiers 106 may operate properly. For example, the amplitudes of the input signals are made to vary in proportion to the set amplitudes of the output signals.
  • Moreover, according to this example, the drive control unit 120 controls the individual current control transistors 112 so that tail current may flow to a pair of each of the differential amplifiers 106 in order as the set amplitude of the output signal increases as is explained in Fig. 3. Thereby, each of the differential amplifiers 106 can be made to operate in the proper current range by simple control.
  • Moreover, according to the configuration shown in Fig. 4, the drive control unit 120 may control each of the individual current control transistors 112 so that the current flowing to the operating differential amplifiers 106 may be substantially the same as one another. Next, operation of the amplitude varying driver circuit 100 in the case of substantially the same current flows to each of the differential amplifiers 106 will be explained.
  • Figs. 5A and 5B are drawings exemplary showing operation of the amplitude varying driver circuit 100 explained with reference to Fig. 4. Fig. 5A is a drawing exemplary showing operation of the pre-driver circuit 118, and Fig. 5B is a drawing exemplary showing operation of the individual current control transistors 112. Moreover, in Fig. 5A, an axis of abscissa indicates set-up values of the amplitude of the output signals, and an axis of ordinate indicates set-up values of the amplitudes of the signals output from the pre-driver circuit 118. Moreover, in Fig. 5B, an axis of abscissa indicates set-up values of the amplitudes of the output signals, and an axis of ordinate indicates the current flowing to the individual current control transistors 112.
  • The drive control unit 120 makes only one differential amplifier 106 operate when the current flowing to the amplitude control transistor 114 is within the predetermined proper current for a differential amplifier 106 (the differential amplifier 106-1 in this example). That is, the individual current control transistor 112-1 is controlled to be in ON state, and other individual current control transistors 112 are controlled to be in an OFF state.
  • Then, the pre-driver circuit 118 amplifies the input signal according to the set amplitude of the output signal and supplies it to the base terminal of each of the differential amplifiers 106. At this time, the current flowing to the differential amplifier 106-1 is equal to the current I which flows to the amplitude control transistor 114.
  • Moreover, when the total current flowing to the amplitude control transistor 114 is greater than the proper current range of a differential amplifier 106, the drive control unit 120 divides the total current by the upper limit of the proper current range, and the differential amplifiers 106 of the quantity of the raised quotient of the division are made to operate. That is, the individual current control transistors 112 corresponding to the differential amplifiers 106 are controlled in the ON state. Then, it is controlled so that the current flowing to the operating differential amplifiers 106 becomes substantially the same as one another. Since the range of fluctuation of current flowing to each of the differential amplifier 106 becomes small according to such control, the output signal having large varying amplitude range is generable with sufficient accuracy.
  • Moreover, as shown in Fig. 5A, when the quantity of the operating differential amplifier 106 changes, the pre-driver circuit controls the amplitudes of the signals supplied to the base terminals of the operating differential amplifiers 106 so that the continuity of the total current flowing to the operating differential amplifiers 106 may be maintained.
  • Although the present invention has been described by way of an exemplary embodiment, it should be understood that those skilled in the art might make many changes and substitutions without departing from the spirit and the scope of the present invention. It is obvious from the definition of the appended claims that embodiments with such modifications also belong to the scope of the present invention.
  • INDUSTRIAL APPLICABILITY
  • As is apparent from the above-mentioned explanation, according to the present invention, variation in waveform quality between a high amplitude output and a low amplitude output can be reduced, and an output signal having wide varying amplitude range can be generated with sufficient accuracy.

Claims (9)

  1. An amplitude varying driver circuit operable to output an output signal, which is an amplified input signal being supplied, comprising:
    a plurality of differential amplifiers provided in parallel with one another, wherein a signal corresponding to the input signal is input into each base terminal thereof;
    a resistor section, which is provided in series with said plurality of differential amplifiers, operable to establish potential of the output signal according to total current flowing to said plurality of differential amplifiers; and
    an amplitude control transistor, which is provided in series with said plurality of differential amplifiers, operable to define total current flowing to said plurality of differential amplifiers.
  2. The amplitude varying driver circuit as claimed in claim 1, further comprising an amplitude control section operable to control the total current defined by said amplitude control transistor according to an amplitude of the output signal to be output.
  3. The amplitude varying driver circuit as claimed in claim 2, further comprising a drive control unit operable to control a current flowing to each of said differential amplifiers based on an amplitude of the output signal to be output, respectively.
  4. The amplitude varying driver circuit given in a claim 3, further comprising a plurality of individual current control transistors, which are provided corresponding to and said differential amplifiers, wherein said plurality of individual current control transistors are provided in series with said corresponding differential amplifiers, wherein
    said drive control unit controls current flowing to said differential amplifier corresponding to said individual current control transistor by controlling the voltage applied to a base terminal of each of said individual current control transistors.
  5. The amplitude varying driver circuit as claimed in claim 4, wherein said drive control unit makes said differential amplifiers of quantity according to amplitude of the output signal to be output operate.
  6. The amplitude varying driver circuit as claimed in claim 5, wherein said drive control unit controls current flowing to said operating differential amplifiers to be substantially the same as one another.
  7. The amplitude varying driver circuit as claimed in claim 3, further comprising a pre-driver circuit operable to control amplitude of a signal input into each base terminal of said plurality of differential amplifiers according to amplitude of the output signal to be output.
  8. The amplitude varying driver as claimed in claim 3, further comprising a potential fixed transistor, which is provided between the resistor section and said plurality of differential amplifier, operable to apply voltage to a base terminal thereof.
  9. A test apparatus operable to test an electronic device, comprising:
    a pattern generating section operable to generate a test pattern for testing the electronic device;
    a waveform shaping section operable to generate an input signal to be input into the electronic device based on the test pattern;
    an amplitude varying driver circuit operable to input an output signal, which is the amplified input signal, into the electronic device; and
    a decision section operable to compare a signal output from the electronic device with a supplied expected value signal, and to decide acceptability of the electronic device, wherein
    said amplitude varying driver circuit comprises:
    a plurality of differential amplifiers provided in parallel with one another, wherein a signal corresponding to the input signal is input into each base terminal thereof;
    a resistor section, which is provided in series with said plurality of differential amplifiers, operable to establish potential of the output signal according to total current flowing to said plurality of differential amplifiers; and
    an amplitude control transistor, which is provided in series with said plurality of differential amplifiers, operable to define total current flowing to said plurality of differential amplifiers.
EP05793128A 2004-10-27 2005-10-11 Amplitude variable driver circuit and testing apparatus Withdrawn EP1811659A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/976,354 US7180310B2 (en) 2004-10-27 2004-10-27 Amplitude varying driver circuit and test apparatus
PCT/JP2005/018711 WO2006046399A1 (en) 2004-10-27 2005-10-11 Amplitude variable driver circuit and testing apparatus

Publications (2)

Publication Number Publication Date
EP1811659A1 true EP1811659A1 (en) 2007-07-25
EP1811659A4 EP1811659A4 (en) 2009-08-12

Family

ID=36205657

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05793128A Withdrawn EP1811659A4 (en) 2004-10-27 2005-10-11 Amplitude variable driver circuit and testing apparatus

Country Status (6)

Country Link
US (1) US7180310B2 (en)
EP (1) EP1811659A4 (en)
JP (1) JP4939227B2 (en)
KR (1) KR20070069201A (en)
CN (1) CN100511982C (en)
WO (1) WO2006046399A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100994811B1 (en) * 2006-03-17 2010-11-17 가부시키가이샤 어드밴티스트 Testing apparatus and performance board
JP5215676B2 (en) * 2008-01-16 2013-06-19 シャープ株式会社 Variable gain amplifier
US8194721B2 (en) * 2008-05-23 2012-06-05 Integrated Device Technology, Inc Signal amplitude distortion within an integrated circuit
US8179952B2 (en) * 2008-05-23 2012-05-15 Integrated Device Technology Inc. Programmable duty cycle distortion generation circuit
US8259888B2 (en) * 2008-05-23 2012-09-04 Integrated Device Technology, Inc. Method of processing signal data with corrected clock phase offset
WO2011045832A1 (en) * 2009-10-14 2011-04-21 株式会社アドバンテスト Differential driver circuit and testing apparatus using same
JP6107100B2 (en) * 2012-12-10 2017-04-05 富士通株式会社 Synthesis circuit and driving device using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5613233A (en) * 1994-09-30 1997-03-18 Rockwell International Corp. Apparatus with distortion cancelling feedback signal
US6157257A (en) * 1999-06-30 2000-12-05 Conexant Systems, Inc. Low power folding amplifier

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3215518C1 (en) * 1982-04-26 1983-08-11 Siemens AG, 1000 Berlin und 8000 München Linking element with an emitter follower as an input circuit
JPS59212780A (en) * 1983-05-18 1984-12-01 Toshiba Corp Level detecting circuit
US5001362A (en) * 1989-02-14 1991-03-19 Texas Instruments Incorporated BiCMOS reference network
US5184029A (en) * 1991-10-15 1993-02-02 Hewlett-Packard Company Driver circuit for circuit tester
US6111716A (en) * 1998-02-13 2000-08-29 Vtc Inc. Referenced magnetoresistives sensor band pass preamplifier
US6294949B1 (en) * 1999-06-07 2001-09-25 Advantest Corporation Voltage drive circuit, voltage drive apparatus and semiconductor-device testing apparatus
JP4532670B2 (en) 1999-06-07 2010-08-25 株式会社アドバンテスト Voltage driving circuit, voltage driving apparatus, and semiconductor device testing apparatus
JP3970623B2 (en) * 2001-02-28 2007-09-05 シャープ株式会社 Variable gain amplifier
JP2004015409A (en) 2002-06-06 2004-01-15 Renesas Technology Corp Semiconductor integrated circuit for communication and wireless communication system
JP2004159221A (en) * 2002-11-08 2004-06-03 Renesas Technology Corp Semiconductor integrated circuit for communication, and radio communication system
JP2004266309A (en) 2003-01-14 2004-09-24 Matsushita Electric Ind Co Ltd Variable gain amplifier circuit and radio communication equipment
JP4377652B2 (en) * 2003-10-28 2009-12-02 三菱電機株式会社 Driver circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5613233A (en) * 1994-09-30 1997-03-18 Rockwell International Corp. Apparatus with distortion cancelling feedback signal
US6157257A (en) * 1999-06-30 2000-12-05 Conexant Systems, Inc. Low power folding amplifier

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2006046399A1 *

Also Published As

Publication number Publication date
US7180310B2 (en) 2007-02-20
KR20070069201A (en) 2007-07-02
CN101040435A (en) 2007-09-19
WO2006046399A1 (en) 2006-05-04
EP1811659A4 (en) 2009-08-12
JP4939227B2 (en) 2012-05-23
CN100511982C (en) 2009-07-08
JPWO2006046399A1 (en) 2008-05-22
US20060087328A1 (en) 2006-04-27

Similar Documents

Publication Publication Date Title
EP1811659A1 (en) Amplitude variable driver circuit and testing apparatus
US7459952B2 (en) Clock signal generating device, generating method, and signal processing device
US4523312A (en) IC tester
US6275023B1 (en) Semiconductor device tester and method for testing semiconductor device
WO2009090826A1 (en) Power supply circuit and testing apparatus
JP2012083208A (en) Testing device
US20070152727A1 (en) Clock signal generating apparatus and clock signal receiving apparatus
US7012444B2 (en) Semiconductor tester
US7782075B2 (en) Electronic device, load fluctuation compensation circuit, power supply, and test apparatus
US7102405B2 (en) Pulse-width modulation circuit and switching amplifier using the same
US5642067A (en) Variable slew rate pulse generator
US7714600B2 (en) Load fluctuation correction circuit, electronic device, testing device, and timing generating circuit
US6836168B1 (en) Line driver with programmable slew rates
WO2008121569A2 (en) Timing interpolator with improved linearity
US6487250B1 (en) Signal output system
US20010016022A1 (en) Delay time adjusting circuit comprising frequency dividers having different frequency division rates
US7187721B1 (en) Transition-time control in a high-speed data transmitter
CN112162126B (en) Multi-channel pulse generator, signal generation method, multi-channel synchronization system and method
US6737857B2 (en) Apparatus and method for driving circuit pins in a circuit testing system
US7557560B2 (en) Timing generator and test device
JP3136890B2 (en) Programmable delay generator
JPS63135882A (en) Electronic device driving circuit
WO2008038594A1 (en) Delay circuit, jigger-apllied circuit, and tester
US20180109245A1 (en) Slew rate adjusting circuit and slew rate adjusting method
CN116418324B (en) Phase interpolator and phase interpolation method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070514

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE GB IT

A4 Supplementary search report drawn up and despatched

Effective date: 20090710

17Q First examination report despatched

Effective date: 20091007

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110503