EP1807680A1 - Vorrichtung zur bestimmung und/oder überwachung des volumen- und/ oder massendurchflusses eines mediums - Google Patents

Vorrichtung zur bestimmung und/oder überwachung des volumen- und/ oder massendurchflusses eines mediums

Info

Publication number
EP1807680A1
EP1807680A1 EP05808181A EP05808181A EP1807680A1 EP 1807680 A1 EP1807680 A1 EP 1807680A1 EP 05808181 A EP05808181 A EP 05808181A EP 05808181 A EP05808181 A EP 05808181A EP 1807680 A1 EP1807680 A1 EP 1807680A1
Authority
EP
European Patent Office
Prior art keywords
measuring tube
reflector
pipe
tubular
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05808181A
Other languages
German (de)
English (en)
French (fr)
Inventor
Achim Wiest
Andreas Berger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Flowtec AG, Flowtec AG filed Critical Endress and Hauser Flowtec AG
Publication of EP1807680A1 publication Critical patent/EP1807680A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details

Definitions

  • the invention relates to a device for determining and / or
  • the measuring medium can be either a gaseous or a liquid measuring medium.
  • the flowmeter is either a clamp-on flowmeter or an in-line flowmeter that is installed in the piping.
  • Ultrasonic flowmeters of the type described above which determine the volume flow by means of the so-called transit time difference method, are widely used in process and automation technology.
  • clamp-on flowmeters have the advantage that they allow the volume flow in a container, e.g. in a pipeline, contactless and without contact with the medium to determine.
  • Clamp-on flowmeters are described, for example, in EP 0 686 255 Bl, US Pat. No. 4,484,478, DE 43 35 369 C1, DE 298 03 911 U1, DE 4336370 C1 or US Pat. No. 4,598,593.
  • the ultrasonic measurement signals are at a predetermined angle in the container in which the medium is irradiated or emitted from the container.
  • the position of the ultrasonic transducers on the measuring tube (inline) or on the piping (clamp-on) depends on the inner diameter of the measuring tube and the speed of sound of the measuring medium.
  • An essential component of an ultrasonic transducer is usually a piezoelectric element.
  • the ultrasonic measuring signals generated or received by the piezoelectric element are transmitted via a coupling wedge or a flow body and, in the case of a clamp-on flow measuring device, via the pipe wall led into the interior of the pipe or the measuring tube.
  • the two ultrasonic transducers are arranged so that the traversed sound paths are passed through the central region of the pipe or the measuring tube.
  • the determined flow measurement thus reflects the average flow of the medium in the pipeline or in the measuring tube.
  • this averaging is too inaccurate. Therefore, it has also become known in in-line flowmeters to provide a plurality of sensor pairs distributed over the circumference of the measuring tube to the measuring tube, whereby the flow information from different seg ⁇ ment convinced angular ranges of the measuring tube can be provided. It goes without saying that this solution is of course relatively expensive due to the large number of sensor pairs.
  • the invention has for its object to provide an ultrasonic flow meter, which provides a segmented, dependent on the inner diameter of the pipe or the measuring tube flow rate available.
  • the object is achieved in that at least one reflector element in
  • the reflector element has a defined distance from the inner wall of the pipe and that the reflector element is arranged in a running through the pipe sound path of the ultrasonic measurement signals.
  • the reflector element is designed and / or arranged such that it interrupts the sound path at points of interest for metrological purposes and deflects the ultrasonic measuring signals.
  • the ultrasonic measurement signal carries only information from the traversed spatial area of the measuring tube or the pipeline.
  • the solution according to the invention already comes with a pair of sensors to provide information about the flow profile of the measuring medium in the measuring tube. For the first time, it is also possible with the solution according to the invention to realize a multi-path clamp-on flowmeter.
  • the reflector element or the reflector elements can be designed completely arbitrary.
  • the at least one reflector element is a tubular element.
  • the tubular element or the tubular elements are arranged concentrically in the pipeline.
  • the tubular element or the tubular elements is fixed by webs on the inner wall of the pipe or the inner wall of the measuring tube is / are.
  • This embodiment makes it possible to exclude certain edge areas from the measurement of the flow.
  • the web acts as a sound conductor in this embodiment. Again, the sound conductor is broken at metrologically interesting points. This makes it possible, for example, a flow measurement only in the central or core region of the pipe or the measuring tube.
  • the reflector element or the reflector elements are disk-shaped. Again, the reflector element or the reflector elements are fixed via one or more webs on the inner wall of the pipe or the measuring tube. In this case, reflector element and web / webs are configured substantially T-shaped.
  • An advantageous development of the device according to the invention provides, in turn, for the ultrasound transducers and the webs to be arranged relative to one another such that the ultrasound measuring signals can be coupled in via the webs into the inner region of the tubular element or out of the inner region of the tubular element , With this configuration, the flow can be determined in a desired segment, since in each case the area in which the webs are located, is hidden from the flow measurement.
  • the tubular element may also have an n-shaped cross-section, where n is a natural number with n> 3.
  • the tubular n-cornered element is aus ⁇ designed so that its outer diameter substantially corresponds to the inner diameter of the pipe and that the tubular element in the region of the corners with the Pipeline is connected.
  • the device is in the reflector element or the reflector elements to one or more disc-shaped platelets, which are designed and / or arranged so that they represent a negligible for the flowing medium flow resistance.
  • a plurality of plates in the form of spatially offset stages of a conductor are arranged.
  • an advantageous embodiment of the device according to the invention provides a control unit, via which the disk-shaped reflector plate or the disk-shaped reflector plate can be moved into the sound path and moved out of the sound path.
  • the platelets are arranged either spirally, or they correspond to the rungs of an offset conductor structure.
  • the ultrasonic measuring signals are transmitted and received at an opening angle matched to the respective application, a sensor pair is usually sufficient to provide the flow information from different segments of the pipe or of the measuring pipe in accordance with the invention.
  • the ultrasonic transducers have a plurality of piezoelectric elements as transmitting and / or receiving elements, the transmitting and / or receiving elements being arranged in an array.
  • the transmission and / or reception elements By suitable control of the transmission and / or reception elements, it is possible to realize different emission or reception angles and thus sound paths with different angular orientation.
  • FIG. 1 shows a longitudinal section through a first embodiment of the device according to the invention with three ultrasonic sensors and a coupling / decoupling via webs, [0020] FIG.
  • FIG. 1 a shows a cross section of the embodiment of the device according to the invention shown in FIG. 1;
  • FIG. 2 shows a longitudinal section through a second embodiment of the device according to the invention with two ultrasonic sensors and a coupling / uncoupling via webs
  • FIG. 2a shows a cross section of the embodiment of the device according to the invention shown in FIG. 2, FIG.
  • FIG. 3 shows a longitudinal section through a third embodiment of the device according to the invention with two ultrasonic sensors and a tubular reflector with a round cross-section
  • FIG. 3 a shows a cross section of the embodiment of the device according to the invention shown in FIG. 3, FIG.
  • FIG. 4 shows a longitudinal section through a fourth embodiment of the device according to the invention with three ultrasonic sensors and a tubular reflector with a round cross-section, [0026] FIG.
  • FIG. 4a shows a cross section of the embodiment of the device according to the invention shown in FIG. 4, FIG.
  • FIG. 5 shows a longitudinal section through a fifth embodiment of the inventive device with three ultrasonic sensors and a tubular reflector with triangular cross-section
  • FIG. 5a shows a cross section of the embodiment of the device according to the invention shown in FIG. 5, FIG.
  • FIG. 6 shows a longitudinal section through a sixth embodiment of the device according to the invention with two ultrasonic sensors and a coupling in / out via webs of a T-shaped reflector
  • FIG. 6a shows a cross section of the embodiment of the device according to the invention shown in FIG. 6;
  • FIG. 7 shows a longitudinal section through a seventh embodiment of the device according to the invention with four ultrasonic sensors and a coupling in / out via webs of a T-shaped reflector, [0032] FIG.
  • FIG. 7a shows a cross section of the embodiment of the device according to the invention shown in FIG. 7;
  • FIG. 8 shows a longitudinal section through an eighth embodiment of the device according to the invention with a stationary and a displaceable ultrasound sensor and with reflector plates, [0034] FIG.
  • FIG. 8a shows a cross section of the embodiment of the device according to the invention shown in FIG. 8;
  • FIG. 9 shows a longitudinal section through a ninth embodiment of the device according to the invention with two ultrasonic sensors and with reflector plates which can be positioned in the sound path
  • FIG. 9 a shows a cross section of the embodiment of the device according to the invention shown in FIG. 9.
  • FIG. 1 shows a longitudinal section through a first embodiment of the invention according to the device 1 with three ultrasonic sensors 14a, 14b, 14c.
  • the control of the ultrasonic transducers 14a, 14b, 14c and the evaluation of the ultrasonic measurement signals via the transit time method takes place in the control / evaluation unit 4.
  • the tubular reflector element 5 with a round cross section is arranged concentrically within the pipeline / measuring tube 3.
  • the tubular reflector element 5 has four webs 8 on its outer wall 7. About the webs 8, the tubular reflector element 5 is fixed to the inner wall 6 of the pipe / the measuring tube 3.
  • the ultrasonic sensors 14a, 14b are arranged so that a part of the ultrasonic measurement signals via the webs 8a, 8c is switched on or coupled.
  • the sound path S1 extends between the two ultrasonic transducers 14a, 14b arranged on a line to the longitudinal axis of the pipeline / measuring tube 3; the sound path S2 extends between the two mutually opposite ultrasonic transducers 14a, 14c.
  • FIGS. 2 and 2a show different sections of a second embodiment of the device 1 according to the invention.
  • This embodiment differs from the embodiment shown in FIG. 1 in that only two ultrasonic sensors 14a, 14b be used.
  • the coupling in / out of the ultrasonic measurement signals takes place via webs 8, however, these webs 8 are due to the interrupted sound conduction are better readable measuring signals available. Again, the measurement is limited to the determination of the flow of the measuring medium 2 in the central region 16 of the pipe / the measuring tube.
  • edge regions 17 defined in the embodiments illustrated in the FIGS. 1, 2 a, 2 a, 2 a, 2 b are not used in the determination of the flow rate. This is achieved by coupling and uncoupling the ultrasonic measuring signals via the webs 8 -, the solution shown in FIGS. 3 and 3a being limited to a determination of the flow in the edge region 17 In this solution, the ultrasound measurement signals emitted by an ultrasound transducer 14a, 1b are respectively reflected by the tubular reflector element 5 and received by the respective other ultrasound transducer 14b, 14a.
  • the solution shown in FIGS. 4, 4a also has an additional, opposite ultrasonic transducer 14c.
  • this solution it is possible to independently determine the flow of the measuring medium 2 in the pipeline / in the measuring tube 3, both for the edge region 17 and for the central region 16.
  • the embodiment of the device 1 according to the invention shown in FIGS. 5 and 5 differs from the previously described embodiment (FIGS. 4, 4) by the shape of the reflector element 9: the reflector Gate element 9 has a triangular cross-section. The reflector element 9 is dimensioned such that it is fixed to the corner areas on the inner wall 6 of the pipeline / measuring tube 3.
  • Figures 6, 6a, 7, 7a show different embodiments of the device 1 according to the invention, wherein it is the same for both that the Reflekto ⁇ rimplantation 10 are designed here T-shaped. The differences lie in the number and arrangement of the ultrasonic transducers 14.
  • a plurality of reflector plates 11 are arranged in a ladder-shaped structure.
  • the individual reflector plates 11 form the spatially offset rungs of the conductors 12.
  • an alternative sees a corresponding one Displacement of at least one ultrasonic transducer 14a, 14b along the connecting line of the two ultrasonic transducers 14a, 14b before.
  • a plurality of ultrasonic transducers 14 may also be provided at the marked positions.
  • the ultrasonic transducers 14 may have a plurality of piezoelectric elements as transmitting and / or receiving elements, wherein the transmitting and / or receiving elements are arranged in an array.
  • the Control / evaluation unit 4 By suitable control of the transmitting and / or receiving elements by the Control / evaluation unit 4, it is possible to realize different emission or Emp ⁇ catch angle and thus sound paths with different angular orientations.
  • FIGS. 9 and 9a A final embodiment of the device 1 according to the invention is shown in FIGS. 9 and 9a.
  • the reflector plates 11 are here so spaced and strung in a helix 13, that in each case a reflector plate 11 is rotated by turning the helix 13 about its longitudinal axis in the sound path of the ultrasonic transducer 14a, 14b.
  • the rotation of the helix can take place either stepwise or continuously.
  • FIG. 5 tubular reflector element with round cross section
  • FIG. 7 outer wall of the tubular reflector element
  • FIG. 9 tubular reflector element with triangular cross-section
EP05808181A 2004-11-03 2005-10-25 Vorrichtung zur bestimmung und/oder überwachung des volumen- und/ oder massendurchflusses eines mediums Withdrawn EP1807680A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004053673A DE102004053673A1 (de) 2004-11-03 2004-11-03 Vorrichtung zur Bestimmung und/oder Überwachung des Volumen- und/oder Massendurchflusses eines Mediums
PCT/EP2005/055553 WO2006048395A1 (de) 2004-11-03 2005-10-25 Vorrichtung zur bestimmung und/oder überwachung des volumen- und/ oder massendurchflusses eines mediums

Publications (1)

Publication Number Publication Date
EP1807680A1 true EP1807680A1 (de) 2007-07-18

Family

ID=35809627

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05808181A Withdrawn EP1807680A1 (de) 2004-11-03 2005-10-25 Vorrichtung zur bestimmung und/oder überwachung des volumen- und/ oder massendurchflusses eines mediums

Country Status (6)

Country Link
US (1) US7448282B2 (zh)
EP (1) EP1807680A1 (zh)
CN (1) CN101076709A (zh)
DE (1) DE102004053673A1 (zh)
RU (1) RU2354938C2 (zh)
WO (1) WO2006048395A1 (zh)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10361464A1 (de) * 2003-12-23 2005-07-28 Endress + Hauser Flowtec Ag, Reinach Vorrichtung zur Bestimmung und/oder Überwachung des Volumen- und/oder Massendurchflusses eines Messmediums
WO2008060942A2 (en) * 2006-11-09 2008-05-22 Cidra Corporation Apparatus and method for measuring a fluid flow parameter within an internal passage of an elongated body
WO2009002394A1 (en) * 2007-06-21 2008-12-31 Avistar, Inc. Method and apparatus for controlling relative coal flow in pipes from a pulverizer
US9026370B2 (en) 2007-12-18 2015-05-05 Hospira, Inc. User interface improvements for medical devices
DE102008029772A1 (de) * 2008-06-25 2009-12-31 Endress + Hauser Flowtec Ag Verfahren und Messsystem zur Bestimmung und/oder Überwachung des Durchflusses eines Messmediums durch ein Messrohr
DE102008049891B4 (de) * 2008-10-02 2012-12-06 Hydrometer Gmbh Strömungsrichter für ein Durchflussmessgerät, insbesondere ein Ultraschallmessgerät
DE102008055164A1 (de) * 2008-12-29 2010-07-01 Endress + Hauser Flowtec Ag Messsystem zur Bestimmung und/oder Überwachung des Durchflusses eines Messmediums durch das Messrohr mittels Ultraschall
US8857269B2 (en) 2010-08-05 2014-10-14 Hospira, Inc. Method of varying the flow rate of fluid from a medical pump and hybrid sensor system performing the same
EP2540295A1 (en) * 2011-06-27 2013-01-02 Centre national de la recherche scientifique Compositions for the treatment of Fragile X syndrome
WO2013028497A1 (en) 2011-08-19 2013-02-28 Hospira, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
WO2013090709A1 (en) 2011-12-16 2013-06-20 Hospira, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
ES2741725T3 (es) 2012-03-30 2020-02-12 Icu Medical Inc Sistema de detección de aire y método para detectar aire en una bomba de un sistema de infusión
US8505391B1 (en) * 2012-03-30 2013-08-13 Joseph Baumoel Flange mounted ultrasonic flowmeter
US10463788B2 (en) 2012-07-31 2019-11-05 Icu Medical, Inc. Patient care system for critical medications
US10046112B2 (en) 2013-05-24 2018-08-14 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
EP3003442B1 (en) 2013-05-29 2020-12-30 ICU Medical, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
AU2014274146B2 (en) 2013-05-29 2019-01-24 Icu Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
US9494454B2 (en) 2013-12-06 2016-11-15 Joseph Baumoel Phase controlled variable angle ultrasonic flow meter
US9383238B2 (en) * 2014-02-19 2016-07-05 Chevron U.S.A. Inc. Apparatus, system and process for characterizing multiphase fluids in a fluid flow stream
ES2776363T3 (es) 2014-02-28 2020-07-30 Icu Medical Inc Sistema de infusión y método que utiliza detección óptica de aire en línea de doble longitud de onda
WO2015184366A1 (en) 2014-05-29 2015-12-03 Hospira, Inc. Infusion system and pump with configurable closed loop delivery rate catch-up
EP2952216A1 (de) * 2014-06-05 2015-12-09 Hemedis GmbH Vorrichtung zur bereitstellung einer aus mehreren komponenten bestehenden mischlösung
US9982206B2 (en) 2014-06-27 2018-05-29 Tubitak Coal feeding system
US9310236B2 (en) 2014-09-17 2016-04-12 Joseph Baumoel Ultrasonic flow meter using reflected beams
DE102014118187A1 (de) 2014-12-09 2016-06-09 Endress + Hauser Flowtec Ag Ultraschall-Durchflussmessgerät
US11344668B2 (en) 2014-12-19 2022-05-31 Icu Medical, Inc. Infusion system with concurrent TPN/insulin infusion
US10850024B2 (en) 2015-03-02 2020-12-01 Icu Medical, Inc. Infusion system, device, and method having advanced infusion features
US9752907B2 (en) 2015-04-14 2017-09-05 Joseph Baumoel Phase controlled variable angle ultrasonic flow meter
CN108027262B (zh) * 2015-09-09 2020-07-07 丹佛斯有限公司 用于超声流量传感器的两部分反射器保持器
EP4085944A1 (en) 2016-05-13 2022-11-09 ICU Medical, Inc. Infusion pump system with common line auto flush
WO2017214441A1 (en) 2016-06-10 2017-12-14 Icu Medical, Inc. Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
EP3273205B1 (de) 2016-07-18 2019-11-20 Flexim Flexible Industriemesstechnik Gmbh Verfahren und anordnung zur ultraschall-clamp-on-durchflussmessung und körper zur realisierung der messung
DE102016119910A1 (de) * 2016-10-19 2018-04-19 Endress + Hauser Flowtec Ag Clamp-On-Ultraschallsensor zur Verwendung bei einem Ultraschall- Durchflussmessgerät und ein Ultraschall-Durchflussmessgerät
CN107144313B (zh) * 2017-05-27 2019-04-05 京东方科技集团股份有限公司 流量测量装置和流量测量方法
DE202017106804U1 (de) 2017-11-09 2017-11-17 Hegewald Medizinprodukte Gmbh Messeinrichtung zur Bestimmung des Durchflusses von Flüssigkeiten zur parenteralen Ernährung, der Pharmazie oder der Biotechnologie oder von Blut oder Blutbestandteilen
US10089055B1 (en) 2017-12-27 2018-10-02 Icu Medical, Inc. Synchronized display of screen content on networked devices
EP3588017A1 (de) * 2018-06-27 2020-01-01 Sensus Spectrum LLC Ultraschallmessvorrichtung
DE102018132053B4 (de) * 2018-12-13 2022-08-25 Endress+Hauser Flowtec Ag Ultraschallwandleranordnung einer Clamp-On-Ultraschall-Durchflussmessstelle, und eine Clamp-On-Ultraschall-Durchflussmessstelle sowie Verfahren zur Inbetriebnahme der Clamp-On-Ultraschall-Durchflussmessstelle
DE102018132055B4 (de) * 2018-12-13 2022-08-25 Endress + Hauser Flowtec Ag Ultraschallwandleranordnung einer Clamp-On-Ultraschall-Durchflussmessstelle, und eine Clamp-On-Ultraschall-Durchflussmessstelle sowie Verfahren zur Inbetriebnahme der Clamp-On-Ultraschall-Durchflussmessstelle
CN109724658B (zh) * 2019-01-21 2020-07-17 武汉易维电子科技有限公司 流量计量电路及流量计量装置
CN109725059B (zh) * 2019-01-31 2021-04-23 景德镇陶瓷大学 一种超声多普勒无损检测管道内壁腐蚀缺陷的方法
US11278671B2 (en) 2019-12-04 2022-03-22 Icu Medical, Inc. Infusion pump with safety sequence keypad
CA3189781A1 (en) 2020-07-21 2022-01-27 Icu Medical, Inc. Fluid transfer devices and methods of use
US11135360B1 (en) 2020-12-07 2021-10-05 Icu Medical, Inc. Concurrent infusion with common line auto flush
JP2024517468A (ja) * 2021-05-13 2024-04-22 サン-ゴバン セラミックス アンド プラスティクス,インコーポレイティド 物体を検査するためのプロセス及びシステム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59010261D1 (de) * 1990-09-28 1996-05-09 Siemens Ag Ultraschall (US)-Durchflussmesser-Einbaueinheit zum Einbauen in ein Messrohr
US5341345A (en) * 1993-08-09 1994-08-23 Baker Hughes Incorporated Ultrasonic stand-off gauge
DE4336370C1 (de) * 1993-10-25 1995-02-02 Siemens Ag Vorrichtung zur Durchflußmessung
US5770800A (en) * 1994-09-27 1998-06-23 The United States Of America As Represented By The United States Department Of Energy Flexible ultrasonic pipe inspection apparatus
JPH11201790A (ja) * 1998-01-16 1999-07-30 Kubota Corp 管内設置型超音波流量計
DE19808642C1 (de) 1998-02-28 1999-08-26 Flexim Flexible Industriemeste Vorrichtung zur Durchflußmessung
US6178827B1 (en) * 1999-04-22 2001-01-30 Murray F. Feller Ultrasonic flow sensor
JP3669580B2 (ja) * 2002-05-24 2005-07-06 学校法人慶應義塾 超音波流速分布及び流量計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006048395A1 *

Also Published As

Publication number Publication date
US20080060448A1 (en) 2008-03-13
US7448282B2 (en) 2008-11-11
DE102004053673A1 (de) 2006-05-04
RU2007120505A (ru) 2008-12-10
RU2354938C2 (ru) 2009-05-10
CN101076709A (zh) 2007-11-21
WO2006048395A1 (de) 2006-05-11

Similar Documents

Publication Publication Date Title
WO2006048395A1 (de) Vorrichtung zur bestimmung und/oder überwachung des volumen- und/ oder massendurchflusses eines mediums
EP1931948B1 (de) Vorrichtung zur bestimmung oder überwachung des volumen- oder massedurchflusses eines mediums durch eine rohrleitung
EP1337810B1 (de) Durchflussmesser
DE102011052670B4 (de) Ultraschallwandlervorrichtung
DE69907913T2 (de) Kreuzmessen von akustischen signalen eines durchflussmessers
DE19530807C2 (de) Verfahren zur Bestimmung des Volumendurchflusses von strömenden Medien
DE102010040396A1 (de) Durchflussmesser zur Erfassung einer Eigenschaft eines fluiden Mediums
EP3404372B1 (de) Ultraschalldurchflussmessgerät
EP2684010A2 (de) Verfahren zur ultraschall-clamp-on-durchflussmessung und vorrichtung zur umsetzung des verfahrens
EP3421950B1 (de) Durchflusssensor, verfahren und durchflussmessgerät zur bestimmung von geschwindigkeiten von phasen eines mehrphasigen mediums
WO2014060175A1 (de) DURCHFLUSSMESSGERÄT, SOWIE VERWENDUNG DIESES DURCHFLUSSGERÄTES UND VERFAHREN ZUR ERMITTLUNG DER FLIEßGESCHWINDIGKEIT
DE102012015887B4 (de) Vortex-Durchflussmessgerät
WO2005114112A2 (de) Bestimmung des empfangszeitpunkts eines ultraschallsingals mittels pulsformerfassung
EP3940346B1 (de) Durchflussmessgerät und verfahren zur messung des durchflusses eines fluids
EP3081908A1 (de) Verfahren und vorrichtung zum erkennen des vorhandenseins von flüssigkeit in einem gasstrom
EP2072972A1 (de) Vorrichtung zum messen der bewegung eines fluids in einem rohr
WO2017121443A1 (de) Ultraschallfluidzähler sowie verfahren zur durchfluss- und/oder volumenbestimmung eines strömenden mediums
EP3273205B1 (de) Verfahren und anordnung zur ultraschall-clamp-on-durchflussmessung und körper zur realisierung der messung
EP0138017B1 (de) Verfahren zur Ultraschall-Durchflussmessung nach dem Dopplerprinzip mit verbesserter Ortsauflösung
EP3663728A1 (de) Messeinrichtung zur ermittlung einer fluidgrösse
EP3748308A1 (de) Ultraschalldurchflussmessgerät, verwendung eines ultraschalldurchflussmessgerätes in einem absperrorgan und absperrorgan
DE102016111133A1 (de) Vorrichtung zur Bestimmung oder Überwachung des Volumen- und/oder Massendurchflusses eines fluiden Mediums in einer Rohrleitung
EP3855134A1 (de) Vorrichtung zur messung der flussgeschwindigkeit eines fluids
DE202020104105U1 (de) Durchflussmessgerät zur Messung des Durchflusses eines Fluids
EP0682772A1 (de) Strömungsmessonde

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WIEST, ACHIM

Inventor name: BERGER, ANDREAS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100501