EP1806548A1 - Air-conditioning installation containing a supercritical fluid - Google Patents

Air-conditioning installation containing a supercritical fluid Download PDF

Info

Publication number
EP1806548A1
EP1806548A1 EP07100075A EP07100075A EP1806548A1 EP 1806548 A1 EP1806548 A1 EP 1806548A1 EP 07100075 A EP07100075 A EP 07100075A EP 07100075 A EP07100075 A EP 07100075A EP 1806548 A1 EP1806548 A1 EP 1806548A1
Authority
EP
European Patent Office
Prior art keywords
control signal
compressor
installation according
value
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07100075A
Other languages
German (de)
French (fr)
Other versions
EP1806548B1 (en
Inventor
Jing Ming Liu
Mohamed Yahia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP1806548A1 publication Critical patent/EP1806548A1/en
Application granted granted Critical
Publication of EP1806548B1 publication Critical patent/EP1806548B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • F25B2600/0271Compressor control by controlling pressure the discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser

Definitions

  • the invention relates to air conditioning installations traversed by a supercritical fluid, especially for a motor vehicle.
  • a supercritical fluid for example carbon dioxide (R744) is a high pressure refrigerant.
  • R744 carbon dioxide
  • the use of these refrigerants has developed in the air conditioning systems of vehicles to limit the harmful effects on the environment of fluorinated compounds, conventionally used as a refrigerant.
  • An air-conditioning installation traversed by such a fluid comprises a fluid circuit mainly equipped with a compressor, a gas cooler, an expansion device, and an evaporator.
  • the installation is also equipped with an air conditioning regulator whose role is to control the operation of various components of the air conditioning circuit to provide a cooling capacity meeting the cold demands of users.
  • the air conditioning regulator can control the temperature of the air blown out of the evaporator.
  • the air conditioning regulator also controls the high pressure in order to adjust the opening opening of the expansion device so as to reach the cooling capacity required by the user.
  • the air conditioning regulator of existing embodiments generally fixes the opening of the expansion device without taking into account the actual operating conditions.
  • the regulator when the air conditioning circuit is subjected to a very high thermal load, the regulator imposes a large opening of the expansion device, and therefore a high supercritical refrigerant flow rate, during the start-up phase of the air conditioning.
  • the regulator if it imposes a weak opening of the expansion device, during the start-up phase, this can generate pressure peaks leading to a stop of the compressor and therefore to the shutdown of the air conditioning so that the thermal comfort of the passenger is not reached.
  • the patent application FR 2,856,782 has proposed an air conditioning system, equipped with an expansion device, electronic expansion valve type, in which the initial opening degree of the regulator, at the start of the air conditioning, is calculated, from an estimate of the initial temperature fluid at the entrance of the pressure reducer, the initial pressure of the fluid at the outlet of the expander, and the initial flow rate of the fluid in the expander, and an estimation of the pressure of the fluid at the inlet of the expander which maximizes the coefficient of performance.
  • the initialization of the opening of the electronic expander at the start of the air conditioning is then adapted to the actual conditions of operation of the air conditioning and avoids an overpressure output of the regulator.
  • the invention improves the situation by proposing an air conditioning installation, in particular for a motor vehicle, comprising a refrigerant circuit traversed by a supercritical fluid, said circuit comprising a compressor provided with a control valve whose degree of The opening varies according to the intensity of a control signal, a gas cooler, an expansion device and an evaporator.
  • the invention provides a regulation module able to control the control signal of the compressor valve during the start-up phase of the air conditioning so as to maintain the compressor discharge pressure substantially below the compressor cut-off pressure.
  • the invention also proposes a method of regulating an air conditioning circuit traversed by a supercritical fluid, particularly for a motor vehicle, comprising a compressor provided with a control valve whose degree of opening varies according to the intensity of a control signal.
  • the invention provides control of the control signal of the compressor valve during the start-up phase of the air conditioning so as to maintain the compressor discharge pressure substantially below the compressor cut-off pressure.
  • Figure 1 shows a diagram of an air conditioning circuit 10 to be integrated with a motor vehicle.
  • the air conditioning circuit is flown by a high pressure refrigerant, including carbon dioxide R744.
  • the circuit comprises an externally controlled compressor 14 provided with a variable aperture control valve 140 as a function of a control signal.
  • the compressor is adapted to receive the fluid in the gaseous state and to compress it.
  • the circuit is furthermore equipped with a gas cooler 11 which cools the gas compressed by the compressor, at a substantially constant pressure, with an internal heat exchanger 9, an expansion device 12, in particular a mechanical expansion device. which lowers the pressure of the fluid from the internal exchanger 9, and an evaporator 13 which moves the fluid from the liquid state to the gaseous state, at a substantially constant pressure, to produce a flow of air conditioning sent to the passenger compartment of the vehicle.
  • the gas cooler 11 receives a stream of air 16 which under certain operating conditions is set in motion by a motor-fan unit 15, to evacuate the heat taken from the refrigerant.
  • the evaporator 13 receives an air flow 18 from a blower 20 and produces a flow of conditioned air sent to the cabin.
  • the internal heat exchanger 9 allows a heat exchange between the portion of the fluid flowing from the gas cooler 11 to the expander 12 and the portion of the fluid flowing from the evaporator 13 to the compressor 14.
  • the expansion device is in particular of the mechanical type.
  • Figure 2 is a diagram showing an air conditioning system according to the invention, intended to equip a motor vehicle.
  • the installation is provided with the air conditioning circuit 10 described with reference to FIG.
  • the installation is furthermore equipped with a regulation module or an air-conditioning computer 40 comprising an electronic card 43, a cockpit regulator 41 and an air conditioning loop regulator 42.
  • the cockpit regulator 41 sets the instruction of the evaporation temperature Te cons of the regulator 42.
  • the control signal of the compressor when the cockpit regulator 41 supplies an evaporation temperature setpoint to the regulator of the air conditioning loop 42, the control signal of the compressor, during the start-up phase, is calculated according to a regulation law that uses the difference between the measurement of the evaporator temperature of the compressor and the setpoint of the evaporator temperature of the compressor.
  • the measurement of the evaporation temperature can be provided by a temperature probe 130 placed behind the evaporator 13, in its overheating zone, or in the flow of air passing through the evaporator.
  • the evaporating temperature setpoint represents the target temperature requested in the passenger compartment by a passenger of the vehicle.
  • This regulation law is conventionally used in all the operating cycles of the compressor.
  • the difference between the measurement of the evaporator temperature of the compressor and the set point of the evaporation temperature is very important. Therefore, the control signal imposed on the compressor generates a large opening of the compressor control valve.
  • the expansion device is of mechanical type, this results in a very high discharge pressure at the compressor outlet, which may have pressure peaks. These pressure peaks can cause a stop of the air conditioning by setting high pressure cutoff of the compressor.
  • the Applicant proposes to regulate the control signal of the compressor.
  • the Applicant proposes a climate control module during the start-up phase of the air conditioning, suitable for limiting the pressure peaks and the compressor stops.
  • the regulation module 40 is adapted to control the control signal of the compressor valve during the starting phase of the air conditioning so as to maintain the compressor discharge pressure substantially below the compressor cut-off pressure.
  • the principle of regulation proposed here is based on management of the start-up phase of the air conditioning by means of a control of the discharge pressure or high pressure of the compressor and a progressive regulation of the control signal of the compressor, depending operating parameters of the air conditioning loop.
  • the regulation module implements the regulation of the air conditioning during the start-up phase according to a chosen period, for example of 1 second.
  • the regulation module 40 calculates a current value of the PWM control signal (k), at a given time, and compares this value with an upper threshold of the PWM control signal sup and a lower threshold PWM control signal inf . The control module then adjusts the calculated value of the control signal if it exceeds the aforementioned thresholds.
  • the regulator module further acts on a magnitude related to the PWM control signal to control the rate of change of the signal itself and prevent a sudden change that could generate a peak pressure.
  • the magnitude associated with the control signal is the upper limit of the PWM control signal greater than the PWM control signal must not exceed.
  • the quantity linked to the control signal is the setpoint of evaporation temperature Te cons which is used to regulate the compressor, according to the conventional closed loop control law. This quantity has an influence on the value of the PWM control signal.
  • the regulation module determines the current value of this quantity linked to the control signal at the instant in question, that is to say PWM sup (k) or Te cons (k) as the case may be, so that this quantity has a rate of progressive variation between a lower bound and an upper bound, in a time interval of length defined by a time constant KPWM or K Te respectively.
  • PWM sup (k) or Te cons (k) as the case may be
  • the time constants KPWM for the first embodiment or K Te for the second embodiment are determined according to the operating parameters of the air conditioning circuit.
  • the magnitude related to the PWM control signal sup (k) or Te cons (k) can be calculated with a first-order filter from the lower bound, the upper bound, the time constant, and the value of the quantity calculated at the previous iteration of PWM control sup (k-1) or Te cons (k-1).
  • the notations k and k-1, or k and k + 1, are used to designate two successive iteration instants of the regulation, thus distant from a duration equal to the period of time.
  • the term "precedent” or the expression “previous value” will be used to designate the value of a magnitude at time k-1
  • the term “current” or the expression “current value” will be used to denote the value of a magnitude at time k
  • the term “next” or the expression “next value” will be used to denote the value of a magnitude at time k + 1.
  • the controller module is used to control the evolution of the compressor control signal for limiting the occurrence of pressure peaks and thus maintain the high pressure of the compressor substantially below the HP compressor stop cutoff pressure during the phase of start-up.
  • control module is also adapted to regulate the high pressure in cases where the high pressure of the compressor approaches the compressor cut-off pressure during the start-up phase.
  • the regulation module 40 adjusts the value of the control signal in a chosen relation related to the difference between the high pressure of the compressor HP (k) and the HP cutoff pressure stop .
  • the method is implemented at the start of the air conditioning and is repeated at each moment k, as the start phase is not completed, as indicated in the test of step 3.
  • a conventional control law of the compressor which provides the control signal of the compressor as a function of the evaporation temperature, in particular as a function of the difference between the measurement and the temperature setpoint. of evaporation, is implemented in step 304.
  • This control law can be for example a proportional integral control derivative PID.
  • step 300 it is determined whether the difference between the high pressure of the compressor HP (k) at the instant k considered and a stop HP stop pressure is less than a constant C, for example equal to 5 bar.
  • the HP shut- off pressure is the value of the high pressure that causes the compressor to shut down.
  • the high pressure of the HP compressor (k) at time k can be provided by a sensor 142 or estimated. The verification of the condition of step 300 makes it possible to detect that the high pressure is approaching the cut-off pressure, and therefore a risk of stopping the compressor.
  • step 304 if this pressure difference ⁇ HP (k) - HP off ⁇ is greater than the constant C prefixed, the control signal of the compressor PWM (k), at instant k, is calculated according to the law conventional control according to the evaporation temperature Te, for example as a function of the difference between the measurement of the evaporation temperature Te mes and the setpoint of the evaporation temperature Te cons .
  • the control module calculates the variation of the control signal) PWM (k) at time k, at step 302, depending on the difference HP (k) - HP off , according to equation A1 of Appendix A.
  • the regulation module calculates the PWM control signal (k) of the compressor valve 140 at time k as a function of the value of the PWM control signal (k-1) at the previous time k-1 and the variation of the control signal) PWM (k) determined in step 302.
  • the value of the control signal PWM (k- 1) can be taken equal to the last value of the control signal before the start mode. The value of the PWM control signal (k) thus calculated makes it possible to maintain the discharge pressure of the compressor around the cutoff pressure.
  • Steps 300 to 306 are implemented to avoid stopping the compressor by acting on the PWM control signal as soon as a risk of exceeding the cut-off pressure is detected while maintaining a high pressure level to cool as quickly as possible. possible vehicle interior, that is to say, comply with the instruction requested by the user.
  • the detent module determines the current value of the upper threshold PWM sup (k) that the control signal PWM (k) must not exceed in steps 303 and 308.
  • the current value of the upper threshold of the PWM control signal sup (k) is calculated so that this quantity has a progressive rate of change between a lower bound and an upper bound, in a time interval of length defined by a time constant. KPWM.
  • the pace of the rate of variation is in particular increasing from the lower bound to the upper bound, as illustrated in the diagram of step 303.
  • the upper limit PWM max is represented by the maximum value of the control signal. This maximum value corresponds to the control signal of the compressor, when it is in maximum capacity. It can be for example equal to 90%.
  • the lower limit is represented by the minimum value of the control signal PWM min .
  • This minimum value corresponds to the value of the control signal of the compressor, when it is in minimum displacement. It can be equal for example to 20%.
  • the K PWM time constant may vary during the start-up period. it represents the time taken by the control signal to go from the lower terminal PWM min to the upper terminal PWM max .
  • Determining the upper threshold PWM sup (k) also uses the value of the upper threshold PWM sup (k-1) determined at the previous time k-1. This value is normally stored in memory.
  • the time constant of the filter K PWM can be calculated at each iteration of the control process from the discharge pressure of the compressor HP, the outside temperature Text and the rotation speed N of the compressor.
  • the upper threshold value PWM sup (k) is obtained according to the equation A2, where T ech corresponds to the sampling period of the filter.
  • the evolution of the threshold of the control signal is thus regulated during the time interval. This regulation makes it possible to avoid abrupt variations of the control signal during the start-up phase, and thus to limit pressure peaks.
  • step 310 the control module determines whether the value of the control signal PWM (k) obtained in step 304 or in step 306 is between the current value of the upper threshold PWM sup (k), obtained in step 303, and a lower threshold represented by the minimum value PWM min of the control signal.
  • step 312 if it is determined that the value of the PWM signal (k) determined in step 304 or step 306 exceeds the upper threshold value PWM sup (k) obtained in step 303, the value of the upper threshold PWM sup (k) is assigned to the signal PWM (k). However, when the value of the PWM signal (k) determined in step 304 or step 306 is less than the minimum value of the PWM control signal min , this minimum value PWM min is assigned to the PWM signal (k). In other cases, the value of the PWM signal (k) is not changed.
  • step 314 the control signal PWM (k) obtained in step 312 is applied to the control valve 140 of the compressor. Steps 300 to 314 are then reiterated at the next time k + 1, if it is determined that the startup phase is not completed (step 3).
  • the climate control module thus makes it possible to control the speed of change of the PWM control signal in time during the start-up period.
  • the invention provides a rate of change of the progressive control signal during this phase by means of a regulation of the upper threshold of the control signal and the level of the control signal.
  • it makes it possible to detect a risk of stopping the compressor by controlling the level of the high pressure and to avoid the actual stopping of the compressor by acting on the control signal of the compressor.
  • the regulation of the invention thus reduces the risk of pressure peaks and compressor interruptions that result during the startup phase of the air conditioning.
  • FIG. 5 is a diagram illustrating the evolution over time of the discharge pressure of the compressor (curve a), the suction pressure of the compressor (curve b) and the control signal of the compressor PWM (curve c), during the phase of starting, according to the first embodiment of the invention.
  • the starting phase control method is applied between about 460 seconds and 550 seconds.
  • the start-up phase ends at around 550 seconds.
  • a progressive increase is imposed on the PWM control signal (curve c) to avoid compressor cuts.
  • the regulation is down the control signal between 470 seconds and 480 seconds to prevent the high pressure (curve a) exceeds the HP stop cutoff pressure, for example between 130 and 140 bars (13 to 14 Mpa), and thus a compressor stop.
  • Curve c shows a second effect of regulation during the start-up phase. Indeed, between 510 and 530 seconds, the increase of the PWM signal sent to the compressor valve is limited to about 80% so as to counteract the increase in pressure pressure visible on the curve at 510 seconds. The high pressure (curve a) does not have any pressure peaks likely to exceed the cutoff pressure.
  • Steps 4 and 400 are similar to steps 3 and 300 respectively of Figure 3. These steps will not be described again here.
  • step 402 if the pressure difference ⁇ HP (k) - HP off ⁇ is less than the constant C prefixed, the control signal of the compressor PWM (k), at time k, is calculated according to the relation A1, similarly to step 306 of FIG.
  • step 404 if the pressure difference ⁇ HP (k) - HP off ⁇ is greater than the constant C prefixed, the control signal of the compressor PWM (k), at instant k, is calculated according to the law conventional control according to the difference between the measurement of the evaporation temperature Te mes and a predetermined set of evaporation temperature Te cons (k) at time k.
  • This conventional regulation law can be for example a derivative integral proportional regulation.
  • Step 403 makes it possible to determine this instruction.
  • the goal is to impose a gradual decrease of this setpoint over time, for example using a first order filter using a variable time constant K Te .
  • the current value of the evaporation temperature setpoint Te cons (k) is calculated so that this quantity has a progressive rate of variation between an upper bound and a lower bound, in a time interval of length defined by a constant of time K Te .
  • the pace of the speed of variation is particularly decreasing from the lower bound to the upper bound, as shown in the diagram of step 303.
  • the upper limit is represented by the maximum temperature setpoint Te cons_max of operation of the air conditioning. It can be for example equal to 15 ° C.
  • the lower limit is represented by the target temperature target Te cons_min requested in the cockpit by a passenger. It is generally between 2 ° C and 5 ° c.
  • the time constant K Te may vary during the start-up period. It represents the time taken by the control signal to go from the upper limit Te cons_max to the lower limit Te cons_min .
  • the determination of the current value of the evaporation temperature set point Te cons (k) also uses the value of the upper threshold Te cons (k-1) determined at the instant k-1 above. This value is normally stored in memory.
  • the time constant of the filter K Te can be calculated at each iteration of the control method from the discharge pressure of the compressor HP, the outside temperature Text and the rotation speed N of the compressor.
  • the value of the evaporation temperature setpoint Te cons (k) is obtained according to the equation A3, where T ech corresponds to the sampling period of the filter.
  • the evolution of the evaporation temperature set point is thus regulated during the time interval. This regulation makes it possible to avoid sudden variations of the PWM control signal during the start-up phase, and thus to limit the peaks of pressure.
  • step 410 the control module determines whether the value of the PWM control signal (k) obtained in step 404 or in step 406 is between the upper threshold of the control signal and the lower threshold of the signal control.
  • the upper threshold of the PWM max control signal represents the value of the control signal when the compressor is maximum displacement
  • the lower threshold of the PWM control signal min represents the value of the control signal when the compressor is minimum displacement.
  • step 412 if it is determined that the value of the PWM signal (k) determined in step 404 or step 406 exceeds the maximum PWM max value, the PWM max value is assigned to the PWM signal (k ). Otherwise, if the value of the PWM signal (k) determined in step 304 or step 306 is smaller than the minimum value of the PWM min control signal, the PWM min value is assigned to the PWM signal (k). In other cases, the value of the PWM signal (k) is not changed.
  • step 414 the control signal PWM (k) obtained in step 412 is applied to the control valve 140 of the compressor. Steps 400 to 414 are then reiterated at the next time k + 1, if it is determined that the startup phase is not completed (step 4).
  • the second embodiment makes it possible to impose a progressive increase in the control signal of the PWM compressor, without abrupt variation.
  • the high pressure of the HP compressor is also kept below the HP shutdown pressure of the compressor during the start-up period, which avoids pressure peaks and repetitive compressor shutdowns.
  • the regulation module proposed by the invention is therefore particularly suitable for controlling the start-up phase of an air conditioning circuit traversed by a supercritical fluid, even under the conditions of high thermal loads.
  • a supercritical type fluid such as CO2 requires operation at sometimes very high pressures.
  • the higher the pressures the more difficult it is to maintain a good seal. Therefore, it is particularly desirable, as proposed by the invention, to avoid seeing the high pressure exceed the cutoff threshold of the compressor while achieving the goal of thermal comfort as soon as possible requested by the user of the air conditioning system.
  • the invention applies to any type of expansion device, it is particularly advantageous when the expansion device is of the mechanical type.
  • the invention relates to the air conditioning installation using the start-up phase according to the invention, but it also relates to the method for implementing this start-up phase.

Abstract

The air conditioning system has a coolant circuit carrying a supercritical fluid and containing a compressor (14) with a control valve, a gas cooler (11), an expander (12) and an evaporator (13). It differs by incorporating a regulating module (40) that controls the compressor valve command signal during the system's starting phase so that the compressor's output pressure is maintained below the cut-off level. The regulating module calculates a current value for the command signal and compares it with a threshold value when the compressor is at minimal power.

Description

L'invention concerne les installations de climatisation parcourues par un fluide supercritique, notamment pour véhicule automobile.The invention relates to air conditioning installations traversed by a supercritical fluid, especially for a motor vehicle.

Un fluide supercritique, par exemple le dioxyde de carbone (R744) est un fluide frigorigène à haute pression. L'utilisation de ces fluides frigorigènes s'est développée dans les circuits de climatisation des véhicules pour limiter les effets néfastes sur l'environnement des composés fluorés, utilisés classiquement comme fluide réfrigérant.A supercritical fluid, for example carbon dioxide (R744) is a high pressure refrigerant. The use of these refrigerants has developed in the air conditioning systems of vehicles to limit the harmful effects on the environment of fluorinated compounds, conventionally used as a refrigerant.

Une installation de climatisation parcourue par un tel fluide comporte un circuit de fluide équipé principalement d'un compresseur, d'un refroidisseur de gaz, d'un dispositif de détente, et d'un évaporateur.An air-conditioning installation traversed by such a fluid comprises a fluid circuit mainly equipped with a compressor, a gas cooler, an expansion device, and an evaporator.

L'installation est également munie d'un régulateur de climatisation dont le rôle est de contrôler le fonctionnement de divers composants du circuit de climatisation pour fournir une puissance frigorifique répondant aux demandes en froid des utilisateurs.The installation is also equipped with an air conditioning regulator whose role is to control the operation of various components of the air conditioning circuit to provide a cooling capacity meeting the cold demands of users.

Par exemple, le régulateur de climatisation peut contrôler la température de l'air soufflé en sortie de l'évaporateur. Le régulateur de climatisation contrôle également la haute pression afin d'ajuster l'ouverture de passage du dispositif de détente de manière à atteindre la puissance frigorifique requise par l'utilisateur.For example, the air conditioning regulator can control the temperature of the air blown out of the evaporator. The air conditioning regulator also controls the high pressure in order to adjust the opening opening of the expansion device so as to reach the cooling capacity required by the user.

Cependant, pendant la phase de démarrage de la climatisation, le régulateur de climatisation de réalisations existantes fixe généralement l'ouverture du dispositif de détente sans prendre en compte les conditions réelles de fonctionnement.However, during the start-up phase of the air conditioning, the air conditioning regulator of existing embodiments generally fixes the opening of the expansion device without taking into account the actual operating conditions.

Ainsi, lorsque le circuit de climatisation est soumis à une charge thermique très importante, le régulateur impose une ouverture du dispositif de détente importante, et donc un débit de fluide réfrigérant supercritique élevé, pendant la phase de démarrage de la climatisation. En revanche, s'il impose une ouverture faible du dispositif de détente, pendant la phase de démarrage, cela peut générer des pics de pression conduisant à une arrêt du compresseur et donc à l'arrêt de la climatisation de sorte que le confort thermique du passager n'est pas atteint.Thus, when the air conditioning circuit is subjected to a very high thermal load, the regulator imposes a large opening of the expansion device, and therefore a high supercritical refrigerant flow rate, during the start-up phase of the air conditioning. On the other hand, if it imposes a weak opening of the expansion device, during the start-up phase, this can generate pressure peaks leading to a stop of the compressor and therefore to the shutdown of the air conditioning so that the thermal comfort of the passenger is not reached.

Pour remédier à cette inconvénient, la demande de brevet FR 2 856 782 a proposé une installation de climatisation, muni d'un dispositif de détente, de type détendeur électronique, dans laquelle le degré d'ouverture initial du détendeur, au démarrage de la climatisation, est calculé, à partir d'une estimation de la température initiale du fluide à l'entrée du détendeur, de la pression initiale du fluide à la sortie du détendeur, et du débit initial du fluide dans le détendeur, ainsi que d'une estimation de la pression du fluide en entrée du détendeur qui maximise le coefficient de performance. L'initialisation de l'ouverture du détendeur électronique au démarrage de la climatisation, est alors adaptée aux conditions réelles de fonctionnement de la climatisation et permet d'éviter une surpression en sortie du détendeur.To remedy this drawback, the patent application FR 2,856,782 has proposed an air conditioning system, equipped with an expansion device, electronic expansion valve type, in which the initial opening degree of the regulator, at the start of the air conditioning, is calculated, from an estimate of the initial temperature fluid at the entrance of the pressure reducer, the initial pressure of the fluid at the outlet of the expander, and the initial flow rate of the fluid in the expander, and an estimation of the pressure of the fluid at the inlet of the expander which maximizes the coefficient of performance. The initialization of the opening of the electronic expander at the start of the air conditioning, is then adapted to the actual conditions of operation of the air conditioning and avoids an overpressure output of the regulator.

Toutefois, l'installation proposée par la demande de brevet FR 2 856 782 n'est pas adaptée lorsque le dispositif de détente est de type mécanique. Dans les installations classiques utilisant ce type de dispositif de détente, une ouverture initiale faible est généralement imposée au dispositif de détente, pendant la période de démarrage de la climatisation. Dans des conditions de forte charge thermique, cette ouverture initiale n'est donc pas adaptée.However, the installation proposed by the patent application FR 2,856,782 is not suitable when the expansion device is of the mechanical type. In conventional installations using this type of expansion device, a weak initial opening is generally imposed on the expansion device during the start-up period of the air conditioning. Under conditions of high thermal load, this initial opening is not suitable.

L'invention vient à améliorer la situation en proposant une installation de climatisation, notamment pour véhicule à moteur, comprenant un circuit de fluide frigorigène parcouru par un fluide supercritique, ledit circuit comportant un compresseur muni d'une vanne de commande dont le degré d'ouverture varie en fonction de l'intensité d'un signal de commande, un refroidisseur de gaz, un dispositif de détente et un évaporateur. L'invention prévoit un module de régulation apte à contrôler le signal de commande de la vanne du compresseur pendant la phase de démarrage de la climatisation de manière à maintenir la pression de décharge du compresseur sensiblement en dessous de la pression de coupure du compresseur.The invention improves the situation by proposing an air conditioning installation, in particular for a motor vehicle, comprising a refrigerant circuit traversed by a supercritical fluid, said circuit comprising a compressor provided with a control valve whose degree of The opening varies according to the intensity of a control signal, a gas cooler, an expansion device and an evaporator. The invention provides a regulation module able to control the control signal of the compressor valve during the start-up phase of the air conditioning so as to maintain the compressor discharge pressure substantially below the compressor cut-off pressure.

Des caractéristiques optionnelles de l'installation de climatisation de l'invention, complémentaires ou de substitution, sont énoncées ci-après:

  • Le module de régulation est apte à calculer une valeur courante du signal de commande, à un instant donné, et à comparer ladite valeur à un seuil supérieur du signal de commande et à un seuil inférieur du signal de commande, le seuil inférieur correspondant à la valeur prise par le signal de commande lorsque le compresseur est en cylindrée minimale.
  • En présence d'une valeur courante du signal de commande supérieure au seuil supérieur du signal de commande, le module de régulation est propre à remplacer la valeur courante du signal de commande par le seuil supérieur du signal de commande.
  • En présence d'une valeur courante du signal de commande inférieure au seuil inférieur du signal de commande, le module de régulation est propre à remplacer la valeur courante du signal de commande par ledit seuil inférieur du signal de commande.
  • L'installation est apte à appliquer la valeur courante du signal de commande obtenue à la vanne de contrôle du compresseur.
  • Le module de régulation est en outre apte à calculer la différence entre la pression de décharge du compresseur et la pression de coupure du compresseur, et à comparer ladite condition à une constante prédéfinie.
  • En présence d'une différence de pression inférieure à ladite constante, la valeur courante du signal de commande est calculée en fonction de l'écart entre la mesure de la température d'évaporation et une consigne de température d'évaporation.
  • En présence d'une différence de pression supérieure à ladite constante, la valeur courante du signal de commande est calculée à partir de la différence de pression et d'une valeur du signal de commande déterminé à un instant précédent.
  • Le module de régulation est apte à déterminer la valeur courante d'une grandeur liée au signal de commande à l'instant donné considéré de sorte que cette grandeur ait une vitesse de variation progressive entre une borne inférieure et une borne supérieure, dans un intervalle de temps de longueur définie par une constante de temps.
  • La grandeur liée au signal de commande est le seuil supérieur du signal de commande, et la vitesse de variation de cette grandeur est croissante dans l'intervalle de temps entre la borne inférieure définie par la valeur minimale du signal de commande lorsque le compresseur est en cylindrée minimale, et la borne supérieure définie par la valeur maximale du signal de commande lorsque le compresseur est en cylindrée maximale.
  • La grandeur liée au signal de commande est la consigne de température d'évaporation, et la vitesse de variation de cette grandeur est décroissante dans l'intervalle de temps entre la borne supérieure définie par la consigne de température maximale de la climatisation et la borne inférieure définie par la consigne de température demandée dans l'habitacle.
  • Le seuil supérieur du signal de commande correspond à la valeur maximale du signal de commande lorsque le compresseur est en cylindrée maximale.
  • La grandeur liée au signal de commande est la consigne de température d'évaporation et en ce que le seuil supérieur du signal de commande correspond à la valeur maximale du signal de commande lorsque le compresseur est en cylindrée maximale.
  • La grandeur est calculée avec un filtre de premier ordre à partir de la borne minimale, de la borne supérieure, de la constante de temps, de la valeur précédente de ladite grandeur et d'une période d'échantillonnage de durée choisie.
  • La constante de temps est calculée à partir de la vitesse de rotation du compresseur, de la température extérieure à l'habitable du véhicule et de la pression de décharge du compresseur.
  • Le module de régulation est apte à contrôler du signal de commande selon une période choisie.
  • La période choisie est sensiblement égale à seconde.
Optional features of the air conditioning system of the invention, complementary or substitution, are set out below:
  • The regulation module is able to calculate a current value of the control signal, at a given instant, and to compare said value with an upper threshold of the control signal and with a lower threshold of the control signal, the lower threshold corresponding to the value taken by the control signal when the compressor is in minimum displacement.
  • In the presence of a current value of the control signal greater than the upper threshold of the control signal, the control module is able to replace the current value of the control signal with the upper threshold of the control signal.
  • In the presence of a current value of the control signal lower than the lower threshold of the control signal, the regulation module is able to replace the current value of the control signal by said lower threshold of the control signal.
  • The installation is able to apply the current value of the control signal obtained to the control valve of the compressor.
  • The regulation module is furthermore able to calculate the difference between the compressor discharge pressure and the compressor cut-off pressure, and to compare said condition with a predefined constant.
  • In the presence of a pressure difference smaller than said constant, the current value of the control signal is calculated as a function of the difference between the measurement of the evaporation temperature and an evaporation temperature setpoint.
  • In the presence of a pressure difference greater than said constant, the current value of the control signal is calculated from the pressure difference and a value of the control signal determined at a previous time.
  • The regulation module is able to determine the current value of a quantity linked to the control signal at the given instant considered so that this quantity has a progressive variation speed between a lower bound and an upper bound, in a range of length time defined by a time constant.
  • The magnitude related to the control signal is the upper threshold of the control signal, and the rate of change of this magnitude is increasing in the time interval between the lower limit defined by the minimum value of the control signal when the compressor is in operation. minimum displacement, and the upper limit defined by the maximum value of the control signal when the compressor is in maximum capacity.
  • The magnitude related to the control signal is the evaporation temperature setpoint, and the rate of variation of this quantity is decreasing in the time interval between the upper limit defined by the maximum temperature setpoint of the air conditioning and the lower limit. defined by the temperature setpoint required in the passenger compartment.
  • The upper threshold of the control signal corresponds to the maximum value of the control signal when the compressor is in maximum capacity.
  • The magnitude related to the control signal is the evaporating temperature set point and in that the upper threshold of the control signal corresponds to the maximum value of the control signal when the compressor is in maximum capacity.
  • The magnitude is calculated with a first-order filter from the minimum bound, the upper bound, the time constant, the previous value of the said quantity, and a sampling period of the chosen duration.
  • The time constant is calculated from the rotational speed of the compressor, the outside temperature of the vehicle and the discharge pressure of the compressor.
  • The regulation module is able to control the control signal according to a chosen period.
  • The chosen period is substantially equal to second.

L'invention propose en outre un procédé de régulation d'un circuit de climatisation, parcouru par un fluide supercritique, notamment pour véhicule à moteur, comportant un compresseur muni d'une vanne de commande dont le degré d'ouverture varie en fonction de l'intensité d'un signal de commande. L'invention prévoit le contrôle du signal de commande de la vanne du compresseur pendant la phase de démarrage de la climatisation de manière à maintenir la pression de décharge du compresseur sensiblement en dessous de la pression de coupure du compresseur.The invention also proposes a method of regulating an air conditioning circuit traversed by a supercritical fluid, particularly for a motor vehicle, comprising a compressor provided with a control valve whose degree of opening varies according to the intensity of a control signal. The invention provides control of the control signal of the compressor valve during the start-up phase of the air conditioning so as to maintain the compressor discharge pressure substantially below the compressor cut-off pressure.

D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés sur lesquels :

  • la figure 1 est un schéma d'une installation de climatisation fonctionnant selon un cycle supercritique ;
  • la figure 2 est un schéma d'une installation de climatisation de véhicule automobile à moteur munie d'un dispositif de contrôle de démarrage, selon l'invention ;
  • la figure 3 est un organigramme illustrant les différentes étapes mises en oeuvre pour réguler le signal de commande du compresseur pendant la phase de démarrage, selon un premier mode de réalisation de l'invention ;
  • la figure 4 est un organigramme illustrant les différentes étapes mises en oeuvre pour réguler le signal de commande du compresseur pendant la phase de démarrage, selon un deuxième mode de réalisation de l'invention ; et
  • la figure 5 est un diagramme représentant l'évolution de la pression de décharge du compresseur, de la pression d'aspiration du compresseur et du signal de commande du compresseur en fonction du temps, selon l'invention.
Other features and advantages of the invention will appear on examining the detailed description below, and the attached drawings in which:
  • Figure 1 is a diagram of an air conditioning system operating in a supercritical cycle;
  • Figure 2 is a diagram of a motor vehicle air conditioning system provided with a starting control device, according to the invention;
  • FIG. 3 is a flowchart illustrating the various steps implemented to regulate the compressor control signal during the start-up phase, according to a first embodiment of the invention;
  • FIG. 4 is a flowchart illustrating the various steps implemented to regulate the compressor control signal during the start-up phase, according to a second embodiment of the invention; and
  • FIG. 5 is a diagram showing the evolution of the compressor discharge pressure, the compressor suction pressure and the compressor control signal as a function of time, according to the invention.

On se réfère tout d'abord à la figure 1 qui représente un schéma d'un circuit de climatisation 10 destiné à être intégré à un véhicule automobile.Referring first to Figure 1 which shows a diagram of an air conditioning circuit 10 to be integrated with a motor vehicle.

Le circuit de climatisation est parcouru par un fluide frigorigène à haute pression, notamment le dioxyde de carbone R744.The air conditioning circuit is flown by a high pressure refrigerant, including carbon dioxide R744.

Le circuit comporte un compresseur 14 à contrôle externe muni d'une vanne de contrôle 140 à ouverture variable en fonction d'un signal de commande. Le compresseur est adapté pour recevoir le fluide à l'état gazeux et pour le comprimer. Le circuit est en outre équipé d'un refroidisseur de gaz 11 qui refroidit le gaz comprimé par le compresseur, à pression sensiblement constante, d'un échangeur thermique interne 9, d'un dispositif de détente 12, en particulier un dispositif de détente mécanique, qui abaisse la pression du fluide provenant de l'échangeur interne 9, et d'un évaporateur 13 qui faire passer le fluide de l'état liquide à l'état gazeux, à pression sensiblement constante, pour produire un flux d'air climatisé envoyé vers l'habitacle du véhicule.The circuit comprises an externally controlled compressor 14 provided with a variable aperture control valve 140 as a function of a control signal. The compressor is adapted to receive the fluid in the gaseous state and to compress it. The circuit is furthermore equipped with a gas cooler 11 which cools the gas compressed by the compressor, at a substantially constant pressure, with an internal heat exchanger 9, an expansion device 12, in particular a mechanical expansion device. which lowers the pressure of the fluid from the internal exchanger 9, and an evaporator 13 which moves the fluid from the liquid state to the gaseous state, at a substantially constant pressure, to produce a flow of air conditioning sent to the passenger compartment of the vehicle.

Le refroidisseur de gaz 11 reçoit un flux d'air 16 qui dans certaines conditions de fonctionnement est mis en mouvement par un groupe moto-ventilateur 15, pour évacuer la chaleur prélevée au fluide frigorigène.The gas cooler 11 receives a stream of air 16 which under certain operating conditions is set in motion by a motor-fan unit 15, to evacuate the heat taken from the refrigerant.

L'évaporateur 13 reçoit un flux d'air 18 d'un pulseur 20 et produit un flux d'air climatisé envoyé vers l'habitacle.The evaporator 13 receives an air flow 18 from a blower 20 and produces a flow of conditioned air sent to the cabin.

L'échangeur thermique interne 9 permet un échange de chaleur entre la partie du fluide qui circule du refroidisseur de gaz 11 vers le détendeur 12 et la partie du fluide qui circule de l'évaporateur 13 vers le compresseur 14.The internal heat exchanger 9 allows a heat exchange between the portion of the fluid flowing from the gas cooler 11 to the expander 12 and the portion of the fluid flowing from the evaporator 13 to the compressor 14.

Le dispositif de détente est en particulier de type mécanique.The expansion device is in particular of the mechanical type.

La figure 2 est un schéma représentant une installation de climatisation selon l'invention, destinée à équiper un véhicule automobile.Figure 2 is a diagram showing an air conditioning system according to the invention, intended to equip a motor vehicle.

L'installation est munie du circuit de climatisation 10 décrit en référence à la figure 1.The installation is provided with the air conditioning circuit 10 described with reference to FIG.

L'installation est en outre munie d'un module de régulation ou calculateur de climatisation 40 comprenant une carte électronique 43, un régulateur d'habitacle 41 et un régulateur de boucle de climatisation 42. Le régulateur d'habitacle 41 fixe la consigne de la température d'évaporation Tecons du régulateur 42.The installation is furthermore equipped with a regulation module or an air-conditioning computer 40 comprising an electronic card 43, a cockpit regulator 41 and an air conditioning loop regulator 42. The cockpit regulator 41 sets the instruction of the evaporation temperature Te cons of the regulator 42.

Dans les installations de l'art antérieur, lorsque le régulateur d'habitacle 41 fournit une consigne de température d'évaporation au régulateur de la boucle de climatisation 42, le signal de commande du compresseur, pendant la phase de démarrage, est calculé en fonction d'une loi de régulation qui utilise l'écart entre la mesure de la température d'évaporation du compresseur et la consigne de la température d'évaporation du compresseur. La mesure de la température d'évaporation peut être fournie par une sonde de température 130 placée derrière l'évaporateur 13, dans sa zone de surchauffe, ou encore dans le flux d'air traversant l'évaporateur. La consigne de température d'évaporation représente la température cible demandée dans l'habitacle par un passager du véhicule.In the installations of the prior art, when the cockpit regulator 41 supplies an evaporation temperature setpoint to the regulator of the air conditioning loop 42, the control signal of the compressor, during the start-up phase, is calculated according to a regulation law that uses the difference between the measurement of the evaporator temperature of the compressor and the setpoint of the evaporator temperature of the compressor. The measurement of the evaporation temperature can be provided by a temperature probe 130 placed behind the evaporator 13, in its overheating zone, or in the flow of air passing through the evaporator. The evaporating temperature setpoint represents the target temperature requested in the passenger compartment by a passenger of the vehicle.

Cette loi de régulation est classiquement utilisée dans tous les cycles de fonctionnement du compresseur. Pendant la période de démarrage de la climatisation, dans les conditions de forte charge thermique, l'écart entre la mesure de la température d'évaporation du compresseur et la consigne de la température d'évaporation est très important. Par conséquent, le signal de commande imposé au compresseur génère une ouverture importante de la vanne de commande du compresseur. Lorsque le dispositif de détente est de type mécanique, il en résulte une pression de décharge très importante à la sortie du compresseur, qui peut présenter des pics de pression. Ces pics de pression peuvent entraîner un arrêt de la climatisation par mise en coupure haute pression du compresseur.This regulation law is conventionally used in all the operating cycles of the compressor. During the start-up period of the air conditioning, under the conditions of high thermal load, the difference between the measurement of the evaporator temperature of the compressor and the set point of the evaporation temperature is very important. Therefore, the control signal imposed on the compressor generates a large opening of the compressor control valve. When the expansion device is of mechanical type, this results in a very high discharge pressure at the compressor outlet, which may have pressure peaks. These pressure peaks can cause a stop of the air conditioning by setting high pressure cutoff of the compressor.

Pour améliorer le fonctionnement de l'installation climatisation pendant la phase de démarrage, notamment lorsque le dispositif de détente 12 est de type mécanique, la Demanderesse propose de réguler le signal de commande du compresseur.To improve the operation of the air conditioning system during the start-up phase, especially when the expansion device 12 is of mechanical type, the Applicant proposes to regulate the control signal of the compressor.

La Demanderesse propose un module de régulation de la climatisation pendant la phase de démarrage de la climatisation, propre à limiter les pics de pression et les arrêts du compresseur. Pour cela, le module de régulation 40 est adapté pour contrôler le signal de commande de la vanne du compresseur pendant la phase de démarrage de la climatisation de manière à maintenir la pression de décharge du compresseur sensiblement en dessous de la pression de coupure du compresseur.The Applicant proposes a climate control module during the start-up phase of the air conditioning, suitable for limiting the pressure peaks and the compressor stops. For this, the regulation module 40 is adapted to control the control signal of the compressor valve during the starting phase of the air conditioning so as to maintain the compressor discharge pressure substantially below the compressor cut-off pressure.

Le principe de la régulation proposé ici repose sur une gestion de la phase de démarrage de la climatisation au moyen d'un contrôle de la pression de décharge ou haute pression du compresseur et d'une régulation progressive du signal de commande du compresseur, en fonction des paramètres de fonctionnement de la boucle de climatisation.The principle of regulation proposed here is based on management of the start-up phase of the air conditioning by means of a control of the discharge pressure or high pressure of the compressor and a progressive regulation of the control signal of the compressor, depending operating parameters of the air conditioning loop.

Le module de régulation met en oeuvre la régulation de la climatisation pendant la phase de démarrage selon une période choisie, par exemple de 1 seconde.The regulation module implements the regulation of the air conditioning during the start-up phase according to a chosen period, for example of 1 second.

Pour limiter l'apparition de pics de pression, le module de régulation 40 calcule une valeur courante du signal de commande PWM(k), à un instant donné, et compare cette valeur à un seuil supérieur du signal de commande PWMsup et à un seuil inférieur du signal de commande PWMinf. Le module de régulation adapte ensuite la valeur calculée du signal de commande si celle-ci dépasse les seuils précités.To limit the occurrence of pressure peaks, the regulation module 40 calculates a current value of the PWM control signal (k), at a given time, and compares this value with an upper threshold of the PWM control signal sup and a lower threshold PWM control signal inf . The control module then adjusts the calculated value of the control signal if it exceeds the aforementioned thresholds.

Le module de régulation agit en outre sur une grandeur liée au signal de commande PWM pour contrôler la vitesse de variation du signal lui-même et empêcher une variation brusque qui pourrait générer un pic de pression.The regulator module further acts on a magnitude related to the PWM control signal to control the rate of change of the signal itself and prevent a sudden change that could generate a peak pressure.

Dans une première forme de réalisation illustrée sur la figure 3, la grandeur liée au signal de commande est le seuil supérieur du signal de commande PWMsup que le signal de commande PWM ne doit pas dépasser.In a first embodiment illustrated in Figure 3, the magnitude associated with the control signal is the upper limit of the PWM control signal greater than the PWM control signal must not exceed.

Dans une deuxième forme de réalisation illustrée sur la figure 4, la grandeur liée au signal de commande est la consigne de température d'évaporation Tecons qui est utilisée pour réguler le compresseur, selon la loi de régulation classique en boucle fermée. Cette grandeur a une influence sur la valeur du signal de commande PWM.In a second embodiment illustrated in FIG. 4, the quantity linked to the control signal is the setpoint of evaporation temperature Te cons which is used to regulate the compressor, according to the conventional closed loop control law. This quantity has an influence on the value of the PWM control signal.

Le module de régulation détermine la valeur courante de cette grandeur liée au signal de commande à l'instant considéré, c'est-à-dire PWMsup(k) ou Tecons(k) selon le cas, afin que cette grandeur ait une vitesse de variation progressive entre une borne inférieure et une borne supérieure, dans un intervalle de temps de longueur définie par une constante de temps KPWM ou KTe respectivement. Comme ces grandeurs influent sur l'évolution du signal de commande PWM dans le temps, leur contrôle permet d'agir sur celui-ci et d'éviter qu'il ne présente des variations brusques qui pourraient générer des pics de pression.The regulation module determines the current value of this quantity linked to the control signal at the instant in question, that is to say PWM sup (k) or Te cons (k) as the case may be, so that this quantity has a rate of progressive variation between a lower bound and an upper bound, in a time interval of length defined by a time constant KPWM or K Te respectively. As these quantities influence the evolution of the PWM control signal over time, their control makes it possible to act on it and to prevent it from having sudden variations that could generate pressure peaks.

Les constantes de temps KPWM pour le premier mode de réalisation ou KTe pour le deuxième mode de réalisation sont déterminées en fonction des paramètres de fonctionnement du circuit de climatisation.The time constants KPWM for the first embodiment or K Te for the second embodiment are determined according to the operating parameters of the air conditioning circuit.

La grandeur liée au signal de commande PWMsup(k) ou Tecons(k) peut être calculée avec un filtre de premier ordre à partir de la borne inférieure, de la borne supérieure, de la constante de temps, et de la valeur de la grandeur calculée à l'itération précédente de la régulation PWMsup(k-1) ou Tecons(k-1).The magnitude related to the PWM control signal sup (k) or Te cons (k) can be calculated with a first-order filter from the lower bound, the upper bound, the time constant, and the value of the quantity calculated at the previous iteration of PWM control sup (k-1) or Te cons (k-1).

Les notations k et k-1, ou k et k+1, sont utilisées pour désigner deux instants d'itération successifs de la régulation, donc distants d'une durée égale à la période de temps. Dans toute la description, le terme "précédent" ou l'expression "valeur précédente" seront utilisés pour désigner la valeur d'une grandeur à l'instant k-1, le terme "courant" ou l'expression "valeur courante" seront utilisés pour désigner la valeur d'une grandeur à l'instant k, et le terme "suivant" ou l'expression "valeur suivante" seront utilisés pour désigner la valeur d'une grandeur à l'instant k+1.The notations k and k-1, or k and k + 1, are used to designate two successive iteration instants of the regulation, thus distant from a duration equal to the period of time. Throughout the description, the term "precedent" or the expression "previous value" will be used to designate the value of a magnitude at time k-1, the term "current" or the expression "current value" will be used to denote the value of a magnitude at time k, and the term "next" or the expression "next value" will be used to denote the value of a magnitude at time k + 1.

Le module de régulation permet ainsi de contrôler l'évolution du signal de commande du compresseur pour limiter l'apparition de pics de pression et donc maintenir la haute pression du compresseur sensiblement en dessous de la pression de coupure HParrêt du compresseur pendant la phase de démarrage.The controller module is used to control the evolution of the compressor control signal for limiting the occurrence of pressure peaks and thus maintain the high pressure of the compressor substantially below the HP compressor stop cutoff pressure during the phase of start-up.

En complément, le module de régulation est également adapté pour réguler la haute pression dans les cas où la haute pression du compresseur approcherait de la pression de coupure du compresseur, pendant la phase de démarrage. Pour cela, le module de régulation 40 ajuste la valeur du signal de commande selon une relation choisie liée à la différence entre la haute pression du compresseur HP(k) et la pression de coupure HParrêt. En régulant ainsi le signal de commande PWM, le module de régulation 40 permet d'empêcher un dépassement de la pression de coupure et donc un arrêt de la climatisation.In addition, the control module is also adapted to regulate the high pressure in cases where the high pressure of the compressor approaches the compressor cut-off pressure during the start-up phase. For this, the regulation module 40 adjusts the value of the control signal in a chosen relation related to the difference between the high pressure of the compressor HP (k) and the HP cutoff pressure stop . By thus regulating the PWM control signal, the regulation module 40 makes it possible to prevent the breaking pressure to be exceeded and thus to stop the air conditioning.

Le procédé de régulation de la phase de démarrage de la figure 3 va tout d'abord être décrit en détail.The control method of the start phase of Figure 3 will first be described in detail.

Le procédé est mis en oeuvre au démarrage de la climatisation et est répété à chaque instant k, tant que la phase de démarrage n'est pas achevée, comme indiqué dans le test de l'étape 3.The method is implemented at the start of the air conditioning and is repeated at each moment k, as the start phase is not completed, as indicated in the test of step 3.

Si la phase de démarrage est achevée, une loi de régulation classique du compresseur, qui fournit le signal de commande du compresseur en fonction de la température d'évaporation, en particulier en fonction de l'écart entre la mesure et la consigne de la température d'évaporation, est mise en oeuvre à l'étape 304. Cette loi de régulation peut être par exemple une régulation proportionnelle intégrale dérivée PID.If the start-up phase is completed, a conventional control law of the compressor, which provides the control signal of the compressor as a function of the evaporation temperature, in particular as a function of the difference between the measurement and the temperature setpoint. of evaporation, is implemented in step 304. This control law can be for example a proportional integral control derivative PID.

Si la phase de démarrage n'est pas achevée, les étapes qui suivent sont mises en oeuvre.If the startup phase is not completed, the following steps are implemented.

A l'étape 300, il est déterminé si la différence entre la haute pression du compresseur HP(k) à l'instant k considéré et une pression de coupure HParrêt est inférieure à une constante C, par exemple égale à 5 bars. La pression de coupure HParrêt correspond à la valeur de la haute pression qui provoque l'arrêt du compresseur. La haute pression du compresseur HP(k) à l'instant k peut être fournie par un capteur 142 ou estimée. La vérification de la condition de l'étape 300 permet de détecter que la haute pression s'approche de la pression de coupure, et donc un risque d'arrêt du compresseur.In step 300, it is determined whether the difference between the high pressure of the compressor HP (k) at the instant k considered and a stop HP stop pressure is less than a constant C, for example equal to 5 bar. The HP shut- off pressure is the value of the high pressure that causes the compressor to shut down. The high pressure of the HP compressor (k) at time k can be provided by a sensor 142 or estimated. The verification of the condition of step 300 makes it possible to detect that the high pressure is approaching the cut-off pressure, and therefore a risk of stopping the compressor.

A l'étape 304, si cette différence de pression {HP(k) - HParrêt} est supérieure à la constante C préfixée, le signal de commande du compresseur PWM(k), à l'instant k, est calculé selon la loi de régulation classique en fonction de la température d'évaporation Te, par exemple en fonction de l'écart entre la mesure de la température d'évaporation Temes et la consigne de la température d'évaporation Tecons.In step 304, if this pressure difference {HP (k) - HP off } is greater than the constant C prefixed, the control signal of the compressor PWM (k), at instant k, is calculated according to the law conventional control according to the evaporation temperature Te, for example as a function of the difference between the measurement of the evaporation temperature Te mes and the setpoint of the evaporation temperature Te cons .

En revanche, si la différence de pression {HP(k) - HParrêt} est inférieure à la constante C préfixée, le module de régulation calcule la variation du signal de commande)PWM(k) à l'instant k, à l'étape 302, en fonction de la différence HP(k) - HParrêt, selon l'équation A1 de l'annexe A.On the other hand, if the pressure difference {HP (k) - HP off } is less than the constant C, the control module calculates the variation of the control signal) PWM (k) at time k, at step 302, depending on the difference HP (k) - HP off , according to equation A1 of Appendix A.

Ensuite, à l'étape 306, le module de régulation calcule le signal de commande PWM(k) de la vanne 140 du compresseur à l'instant k en fonction de la valeur du signal de commande PWM(k-1) à l'instant k-1 précédent et de la variation du signal de commande )PWM(k) déterminée à l'étape 302. Au démarrage de la climatisation (première itération de la régulation de démarrage), la valeur du signal de commande PWM(k-1) peut être prise égale à la dernière valeur du signal de commande avant le mode de démarrage. La valeur du signal de commande PWM(k) ainsi calculer permet de maintenir la pression de décharge du compresseur autour de la pression de coupure. Les étapes 300 à 306 sont mises en oeuvre pour éviter un arrêt du compresseur en agissant sur le signal de commande PWM dès qu'un risque de dépassement de la pression de coupure est détecté tout en maintenant un niveau de pression élevée pour refroidir le plus rapidement possible l'habitacle du véhicule, c'est-à-dire respecter la consigne demandée par l'utilisateur.Then, in step 306, the regulation module calculates the PWM control signal (k) of the compressor valve 140 at time k as a function of the value of the PWM control signal (k-1) at the previous time k-1 and the variation of the control signal) PWM (k) determined in step 302. At the start of the air-conditioning (first iteration of the start-up control), the value of the control signal PWM (k- 1) can be taken equal to the last value of the control signal before the start mode. The value of the PWM control signal (k) thus calculated makes it possible to maintain the discharge pressure of the compressor around the cutoff pressure. Steps 300 to 306 are implemented to avoid stopping the compressor by acting on the PWM control signal as soon as a risk of exceeding the cut-off pressure is detected while maintaining a high pressure level to cool as quickly as possible. possible vehicle interior, that is to say, comply with the instruction requested by the user.

A l'issue des étapes 304 et 306, le module de détente détermine la valeur courante du seuil supérieur PWMsup(k) que le signal de commande PWM(k) ne doit pas dépasser dans les étapes 303 et 308.At the end of steps 304 and 306, the detent module determines the current value of the upper threshold PWM sup (k) that the control signal PWM (k) must not exceed in steps 303 and 308.

La valeur courante du seuil supérieur du signal de commande PWMsup(k) est calculée de sorte que cette grandeur ait une vitesse de variation progressive entre une borne inférieure et une borne supérieure, dans un intervalle de temps de longueur définie par une constante de temps KPWM. L'allure de la vitesse de variation est en particulier croissante de la borne inférieure à la borne supérieure, comme illustré dans le diagramme de l'étape 303.The current value of the upper threshold of the PWM control signal sup (k) is calculated so that this quantity has a progressive rate of change between a lower bound and an upper bound, in a time interval of length defined by a time constant. KPWM. The pace of the rate of variation is in particular increasing from the lower bound to the upper bound, as illustrated in the diagram of step 303.

La borne supérieure PWMmax est représentée par la valeur maximale du signal de commande. Cette valeur maximale correspond au signal de commande du compresseur, lorsque celui-ci est en cylindrée maximale. Elle peut être par exemple égale à 90%.The upper limit PWM max is represented by the maximum value of the control signal. This maximum value corresponds to the control signal of the compressor, when it is in maximum capacity. It can be for example equal to 90%.

La borne inférieure est représentée par la valeur minimale du signal de commande PWMmin. Cette valeur minimale correspond à la valeur du signal de commande du compresseur, lorsque celui-ci est en cylindrée minimale. Elle peut être égale par exemple à 20%.The lower limit is represented by the minimum value of the control signal PWM min . This minimum value corresponds to the value of the control signal of the compressor, when it is in minimum displacement. It can be equal for example to 20%.

La valeur courante du seuil supérieur du signal de commande PWMsup(k) peut être calculée par exemple à l'aide d'un filtre de premier ordre, à partir de:

  • la borne supérieure PWMmax,
  • la borne inférieure PWMmin, et
  • la constante de temps KPWM.
The current value of the upper threshold of the PWM control signal sup (k) can be calculated for example using a first-order filter, from:
  • the upper terminal PWM max ,
  • the lower limit PWM min , and
  • the time constant K PWM .

La constante de temps KPWM peut varier au cours de la période de démarrage. elle représente le temps mis par le signal de commande pour passer de la borne inférieure PWMmin à la borne supérieure PWMmax.The K PWM time constant may vary during the start-up period. it represents the time taken by the control signal to go from the lower terminal PWM min to the upper terminal PWM max .

La détermination du seuil supérieur PWMsup(k) utilise également la valeur du seuil supérieur PWMsup(k-1) déterminé à l'instant k-1 précédent. Cette valeur est en principe stockée en mémoire.Determining the upper threshold PWM sup (k) also uses the value of the upper threshold PWM sup (k-1) determined at the previous time k-1. This value is normally stored in memory.

La constante de temps du filtre KPWM peut être calculée à chaque itération du procédé de régulation à partir de la pression de décharge du compresseur HP, de la température extérieure Text et de la vitesse de rotation N du compresseur.The time constant of the filter K PWM can be calculated at each iteration of the control process from the discharge pressure of the compressor HP, the outside temperature Text and the rotation speed N of the compressor.

Dans l'exemple d'un filtre de premier ordre, la valeur de seuil supérieur PWMsup(k) est obtenue selon l'équation A2, où Tech correspond à la période d'échantillonnage du filtre.In the example of a first order filter, the upper threshold value PWM sup (k) is obtained according to the equation A2, where T ech corresponds to the sampling period of the filter.

L'évolution du seuil du signal de commande est ainsi régulée pendant l'intervalle de temps. Cette régulation permet d'éviter des variations brusques du signal de commande pendant la phase de démarrage, et donc de limiter les pics de pression.The evolution of the threshold of the control signal is thus regulated during the time interval. This regulation makes it possible to avoid abrupt variations of the control signal during the start-up phase, and thus to limit pressure peaks.

A l'étape 310, le module de régulation détermine si la valeur du signal de commande PWM(k) obtenue à l'étape 304 ou à l'étape 306 est comprise entre la valeur courante du seuil supérieur PWMsup(k), obtenu à l'étape 303, et un seuil inférieur représenté par la valeur minimale PWMmin du signal de commande.In step 310, the control module determines whether the value of the control signal PWM (k) obtained in step 304 or in step 306 is between the current value of the upper threshold PWM sup (k), obtained in step 303, and a lower threshold represented by the minimum value PWM min of the control signal.

A l'étape 312, s'il est déterminé que la valeur du signal PWM(k) déterminée à l'étape 304 ou à l'étape 306 dépasse la valeur de seuil supérieur PWMsup(k) obtenue à l'étape 303, la valeur du seuil supérieur PWMsup(k) est affectée au signal PWM(k). Cependant, lorsque la valeur du signal PWM(k) déterminée à l'étape 304 ou à l'étape 306 est inférieure à la valeur minimale du signal de commande PWMmin, cette valeur minimale PWMmin est affectée au signal PWM(k). Dans les autres cas, la valeur du signal PWM(k) n'est pas modifiée.In step 312, if it is determined that the value of the PWM signal (k) determined in step 304 or step 306 exceeds the upper threshold value PWM sup (k) obtained in step 303, the value of the upper threshold PWM sup (k) is assigned to the signal PWM (k). However, when the value of the PWM signal (k) determined in step 304 or step 306 is less than the minimum value of the PWM control signal min , this minimum value PWM min is assigned to the PWM signal (k). In other cases, the value of the PWM signal (k) is not changed.

A l'étape 314, le signal de commande PWM(k) obtenu à l'étape 312 est appliqué à la vanne de contrôle 140 du compresseur. Les étapes 300 à 314 sont ensuite réitérées à l'instant k+1 suivant, s'il est déterminé que la phase de démarrage n'est pas achevée (étape 3).In step 314, the control signal PWM (k) obtained in step 312 is applied to the control valve 140 of the compressor. Steps 300 to 314 are then reiterated at the next time k + 1, if it is determined that the startup phase is not completed (step 3).

Le module de régulation de la climatisation, selon le premier mode de réalisation de l'invention, permet ainsi de contrôler la vitesse de changement du signal de commande PWM dans le temps, pendant la période de démarrage. L'invention fournit une vitesse de variation du signal de commande progressive pendant cette phase au moyen d'une régulation du seuil supérieur du signal de commande et niveau du signal de commande. En complément, elle permet de détecter un risque d'arrêt du compresseur en contrôlant le niveau de la haute pression et d'éviter l'arrêt effectif du compresseur en agissant sur le signal de commande du compresseur. La régulation de l'invention diminue ainsi les risques de pics de pression et les coupures du compresseur qui en découlent pendant la phase de démarrage de la climatisation.The climate control module, according to the first embodiment of the invention, thus makes it possible to control the speed of change of the PWM control signal in time during the start-up period. The invention provides a rate of change of the progressive control signal during this phase by means of a regulation of the upper threshold of the control signal and the level of the control signal. In addition, it makes it possible to detect a risk of stopping the compressor by controlling the level of the high pressure and to avoid the actual stopping of the compressor by acting on the control signal of the compressor. The regulation of the invention thus reduces the risk of pressure peaks and compressor interruptions that result during the startup phase of the air conditioning.

La figure 5 est un diagramme illustrant l'évolution dans le temps de la pression de décharge du compresseur (courbe a), de la pression d'aspiration du compresseur (courbe b) et du signal de commande du compresseur PWM (courbe c), pendant la phase de démarrage, selon le premier mode de réalisation de l'invention. Le procédé de régulation de la phase de démarrage est appliqué entre environ 460 secondes et 550 secondes. La phase de démarrage s'achève à partir de 550 secondes environ. Comme on peut le voir sur ce diagramme, une augmentation progressive est imposée au signal de commande PWM (courbe c) pour éviter les coupures du compresseur. En particulier, on constate que la régulation fait redescendre le signal de commande entre 470 secondes et 480 secondes pour éviter que la haute pression (courbe a) ne dépasse la pression de coupure HParrêt, par exemple comprise entre 130 et 140 bars (13 à 14 Mpa), et donc un arrêt du compresseur. La courbe c montre un deuxième effet de la régulation pendant la phase de démarrage. En effet, entre 510 et 530 secondes, l'augmentation du signal PWM envoyé à la vanne du compresseur est limité au environ de 80% de sorte à contrecarrer l'augmentation de pression de pression visible sur la courbe à 510 secondes. La haute pression (courbe a) ne présente donc pas de pics de pression susceptible de dépasser la pression de coupure.FIG. 5 is a diagram illustrating the evolution over time of the discharge pressure of the compressor (curve a), the suction pressure of the compressor (curve b) and the control signal of the compressor PWM (curve c), during the phase of starting, according to the first embodiment of the invention. The starting phase control method is applied between about 460 seconds and 550 seconds. The start-up phase ends at around 550 seconds. As can be seen in this diagram, a progressive increase is imposed on the PWM control signal (curve c) to avoid compressor cuts. In particular, it is observed that the regulation is down the control signal between 470 seconds and 480 seconds to prevent the high pressure (curve a) exceeds the HP stop cutoff pressure, for example between 130 and 140 bars (13 to 14 Mpa), and thus a compressor stop. Curve c shows a second effect of regulation during the start-up phase. Indeed, between 510 and 530 seconds, the increase of the PWM signal sent to the compressor valve is limited to about 80% so as to counteract the increase in pressure pressure visible on the curve at 510 seconds. The high pressure (curve a) does not have any pressure peaks likely to exceed the cutoff pressure.

La deuxième forme de réalisation de l'invention va maintenant être décrite en référence à l'organigramme de la figure 4.The second embodiment of the invention will now be described with reference to the flowchart of FIG. 4.

Les étapes 4 et 400 sont analogues aux étapes 3 et 300 respectives de la figure 3. Ces étapes ne seront donc pas décrites à nouveau ici.Steps 4 and 400 are similar to steps 3 and 300 respectively of Figure 3. These steps will not be described again here.

A l'étape 402, si la différence de pression {HP(k) - HParrêt} est inférieure à la constante C préfixée, le signal de commande du compresseur PWM(k), à l'instant k, est calculé selon la relation A1, de manière analogue à l'étape 306 de la figure 3.In step 402, if the pressure difference {HP (k) - HP off } is less than the constant C prefixed, the control signal of the compressor PWM (k), at time k, is calculated according to the relation A1, similarly to step 306 of FIG.

A l'étape 404, si la différence de pression {HP(k)- HParrêt} est supérieure à la constante C préfixée, le signal de commande du compresseur PWM(k), à l'instant k, est calculé selon la loi de régulation classique en fonction de l'écart entre la mesure de la température d'évaporation Temes et une consigne prédéterminée de température d'évaporation Tecons(k) à l'instant k . Cette loi de régulation classique peut être par exemple une régulation proportionnelle intégrale dérivée.In step 404, if the pressure difference {HP (k) - HP off } is greater than the constant C prefixed, the control signal of the compressor PWM (k), at instant k, is calculated according to the law conventional control according to the difference between the measurement of the evaporation temperature Te mes and a predetermined set of evaporation temperature Te cons (k) at time k. This conventional regulation law can be for example a derivative integral proportional regulation.

L'étape 403 permet de déterminer cette consigne. Le but est d'imposer une diminution progressive de cette consigne dans le temps, par exemple à l'aide d'un filtre de premier ordre utilisant une constante de temps KTe variable.Step 403 makes it possible to determine this instruction. The goal is to impose a gradual decrease of this setpoint over time, for example using a first order filter using a variable time constant K Te .

La valeur courante de la consigne de température d'évaporation Tecons(k) est calculée de sorte que cette grandeur ait une vitesse de variation progressive entre une borne supérieure et une borne inférieure, dans un intervalle de temps de longueur définie par une constante de temps KTe. L'allure de la vitesse de variation est en particulier décroissante de la borne inférieure à la borne supérieure, comme illustré dans le diagramme de l'étape 303.The current value of the evaporation temperature setpoint Te cons (k) is calculated so that this quantity has a progressive rate of variation between an upper bound and a lower bound, in a time interval of length defined by a constant of time K Te . The pace of the speed of variation is particularly decreasing from the lower bound to the upper bound, as shown in the diagram of step 303.

La borne supérieure est représentée par la consigne de température maximale Tecons_max de fonctionnement de la climatisation. Elle peut être par exemple égale à 15°C.The upper limit is represented by the maximum temperature setpoint Te cons_max of operation of the air conditioning. It can be for example equal to 15 ° C.

La borne inférieure est représentée par la consigne de température cible Tecons_min demandée dans l'habitacle par un passager. Elle est généralement comprise entre 2°C et 5°c.The lower limit is represented by the target temperature target Te cons_min requested in the cockpit by a passenger. It is generally between 2 ° C and 5 ° c.

La valeur courante de la consigne de température d'évaporation Tecons(k) peut être calculée par exemple à l'aide d'un filtre de premier ordre, à partir de:

  • la borne supérieure Tecons_max,
  • la borne inférieure Tecons_min, et
  • la constante de temps KTe.
The current value of the evaporation temperature set point Te cons (k) can be calculated for example using a first order filter, from:
  • the upper terminal Te cons_max,
  • the lower limit Te cons_min , and
  • the time constant K Te .

La constante de temps KTe peut varier au cours de la période de démarrage. Elle représente le temps mis par le signal de commande pour passer de la borne supérieure Tecons_max à la borne inférieure Tecons_min.The time constant K Te may vary during the start-up period. It represents the time taken by the control signal to go from the upper limit Te cons_max to the lower limit Te cons_min .

La détermination de la valeur courante de la consigne de température d'évaporation Tecons(k) utilise également la valeur du seuil supérieur Tecons(k-1) déterminée à l'instant k-1 précédent. Cette valeur est en principe stockée en mémoire.The determination of the current value of the evaporation temperature set point Te cons (k) also uses the value of the upper threshold Te cons (k-1) determined at the instant k-1 above. This value is normally stored in memory.

La constante de temps du filtre KTe peut être calculée à chaque itération du procédé de régulation à partir de la pression de décharge du compresseur HP, de la température extérieure Text et de la vitesse de rotation N du compresseur.The time constant of the filter K Te can be calculated at each iteration of the control method from the discharge pressure of the compressor HP, the outside temperature Text and the rotation speed N of the compressor.

Dans l'exemple d'un filtre de premier ordre, la valeur de la consigne de température d'évaporation Tecons(k) est obtenue selon l'équation A3, où Tech correspond à la période d'échantillonnage du filtre.In the example of a first-order filter, the value of the evaporation temperature setpoint Te cons (k) is obtained according to the equation A3, where T ech corresponds to the sampling period of the filter.

L'évolution de la consigne de température d'évaporation est ainsi régulée pendant l'intervalle de temps. Cette régulation permet d'éviter des variations brusques du signal de commande PWM pendant la phase de démarrage, et donc de limiter les pics de pression.The evolution of the evaporation temperature set point is thus regulated during the time interval. This regulation makes it possible to avoid sudden variations of the PWM control signal during the start-up phase, and thus to limit the peaks of pressure.

A l'étape 410, le module de régulation détermine si la valeur du signal de commande PWM(k) obtenue à l'étape 404 ou à l'étape 406 est comprise entre le seuil supérieur du signal de commande et le seuil inférieur du signal de commande. Dans ce mode de réalisation, le seuil supérieur du signal de commande PWMmax représente la valeur du signal de commande lorsque le compresseur est cylindrée maximale, et le seuil inférieur du signal de commande PWMmin représente la valeur du signal de commande lorsque le compresseur est cylindrée minimale. Ces seuils PWMmax et PWMmin sont donc constants dans ce mode de réalisation. Ces seuils sont déterminés à l'étape 408.In step 410, the control module determines whether the value of the PWM control signal (k) obtained in step 404 or in step 406 is between the upper threshold of the control signal and the lower threshold of the signal control. In this mode of realization, the upper threshold of the PWM max control signal represents the value of the control signal when the compressor is maximum displacement, and the lower threshold of the PWM control signal min represents the value of the control signal when the compressor is minimum displacement. These thresholds PWM max and PWM min are therefore constant in this embodiment. These thresholds are determined at step 408.

A l'étape 412, s'il est déterminé que la valeur du signal PWM(k) déterminée à l'étape 404 ou à l'étape 406 dépasse la valeur maximale PWMmax, la valeur PWMmax est affectée au signal PWM(k). Sinon, si la valeur du signal PWM(k) déterminée à l'étape 304 ou à l'étape 306 est inférieure à la valeur minimale du signal de commande PWMmin, la valeur PWMmin est affectée au signal PWM(k). Dans les autres cas, la valeur du signal PWM(k) n'est pas modifiée.In step 412, if it is determined that the value of the PWM signal (k) determined in step 404 or step 406 exceeds the maximum PWM max value, the PWM max value is assigned to the PWM signal (k ). Otherwise, if the value of the PWM signal (k) determined in step 304 or step 306 is smaller than the minimum value of the PWM min control signal, the PWM min value is assigned to the PWM signal (k). In other cases, the value of the PWM signal (k) is not changed.

A l'étape 414, le signal de commande PWM(k) obtenu à l'étape 412 est appliqué à la vanne de contrôle 140 du compresseur. Les étapes 400 à 414 sont ensuite réitérées à l'instant k+1 suivant, s'il est déterminé que la phase de démarrage n'est pas achevée (étape 4).In step 414, the control signal PWM (k) obtained in step 412 is applied to the control valve 140 of the compressor. Steps 400 to 414 are then reiterated at the next time k + 1, if it is determined that the startup phase is not completed (step 4).

En régulant la vitesse de variation de la consigne de température d'évaporation, par exemple à l'aide du filtre, à l'étape 403, le deuxième forme de réalisation permet d'imposer une augmentation progressive au signal de commande du compresseur PWM, sans variation brusque. La haute pression du compresseur HP est en outre maintenue au dessous de la pression de coupure HParrêt du compresseur pendant la période de démarrage, ce qui évite des pics de pression et des arrêts répétitifs du compresseur.By regulating the speed of variation of the evaporation temperature set point, for example by means of the filter, in step 403, the second embodiment makes it possible to impose a progressive increase in the control signal of the PWM compressor, without abrupt variation. The high pressure of the HP compressor is also kept below the HP shutdown pressure of the compressor during the start-up period, which avoids pressure peaks and repetitive compressor shutdowns.

Le module de régulation proposé par l'invention est donc particulièrement adapté pour contrôler la phase de démarrage d'un circuit de climatisation parcouru par un fluide supercritique, y compris dans les conditions de fortes charges thermiques. En effet, l'emploi de fluide de type supercritique comme le CO2 impose un fonctionnement à des pressions parfois très élevée. Evidement, plus les pressions sont élevées et plus il est difficile de maintenir une bonne étanchéité. C'est pourquoi, il est particulièrement souhaitable, comme proposé par l'invention, d'éviter de voir la haute pression dépasser le seuil de coupure du compresseur tout en atteignant le plus rapidement possible l'objectif de confort thermique demandé par l'utilisateur de l'installation de climatisation.The regulation module proposed by the invention is therefore particularly suitable for controlling the start-up phase of an air conditioning circuit traversed by a supercritical fluid, even under the conditions of high thermal loads. Indeed, the use of supercritical type fluid such as CO2 requires operation at sometimes very high pressures. Obviously, the higher the pressures, the more difficult it is to maintain a good seal. Therefore, it is particularly desirable, as proposed by the invention, to avoid seeing the high pressure exceed the cutoff threshold of the compressor while achieving the goal of thermal comfort as soon as possible requested by the user of the air conditioning system.

Bien que l'invention s'applique à tout type de dispositif de détente, elle est particulièrement avantageuse lorsque le dispositif de détente est de type mécanique. L'invention vise l'installation de climatisation utilisant la phase de démarrage selon l'invention mais elle vise aussi le procédé de mise en oeuvre de cette phase de démarrage.Although the invention applies to any type of expansion device, it is particularly advantageous when the expansion device is of the mechanical type. The invention relates to the air conditioning installation using the start-up phase according to the invention, but it also relates to the method for implementing this start-up phase.

Annexe AAnnex A

  • A1: ΔPWM k = a HP k - HP arrêt 2 + b ( HP k - HP arrêt ) + c 1
    Figure imgb0001
    A1: ΔPWM k = at HP k - HP stop 2 + b ( HP k - HP stop ) + vs 1
    Figure imgb0001
  • A2: PWM sup k = K PWM max T ech * PWM sup k - 1 1 + K PWM max T ech + 1 1 + K PWM max T ech * PWM max - PWM min
    Figure imgb0002
    A2: PWM sup k = K PWM max T ech * PWM sup k - 1 1 + K PWM max T ech + 1 1 + K PWM max T ech * PWM max - PWM min
    Figure imgb0002
  • A3 : T cons k = K Te T ech * T cons k - 1 1 + K Te T ech + 1 1 + K Te T ech * Te cons - max - Te cons - min
    Figure imgb0003
    A3: T cons k = K You T ech * T cons k - 1 1 + K You T ech + 1 1 + K You T ech * You cons - max - You cons - min
    Figure imgb0003

Claims (17)

Installation de climatisation, notamment pour véhicule à moteur, comprenant un circuit de fluide frigorigène parcouru par un fluide supercritique, ledit circuit comportant un compresseur (14) muni d'une vanne de commande (140) dont le degré d'ouverture varie en fonction de l'intensité d'un signal de commande, un refroidisseur de gaz (11), un dispositif de détente (12) et un évaporateur (13), caractérisée en ce qu'elle comporte en outre un module de régulation (40) apte à contrôler le signal de commande de la vanne du compresseur pendant la phase de démarrage de la climatisation de manière à maintenir la pression de décharge du compresseur sensiblement en dessous d'une pression de coupure du compresseur.Air conditioning system, in particular for a motor vehicle, comprising a refrigerant circuit traversed by a supercritical fluid, said circuit comprising a compressor (14) provided with a control valve (140) whose degree of opening varies according to the intensity of a control signal, a gas cooler (11), an expansion device (12) and an evaporator (13), characterized in that it further comprises a regulation module (40) adapted to controlling the control signal of the compressor valve during the start-up phase of the air conditioning so as to maintain the compressor discharge pressure substantially below a compressor cut-off pressure. Installation selon la revendication 1, caractérisée en ce que le module de régulation est apte à calculer une valeur courante du signal de commande (306, 304) selon une relation choisie, à un instant donné, et à comparer (310) ladite valeur à un seuil supérieur du signal de commande et à un seuil inférieur du signal de commande, le seuil inférieur correspondant à la valeur prise par le signal de commande lorsque le compresseur est en cylindrée minimale.Installation according to Claim 1, characterized in that the regulation module is able to calculate a current value of the control signal (306, 304) according to a chosen relation, at a given time, and to compare (310) said value with a upper threshold of the control signal and a lower threshold of the control signal, the lower threshold corresponding to the value taken by the control signal when the compressor is in minimum displacement. Installation selon la revendication 2, caractérisée en ce qu'en présence d'une valeur courante du signal de commande supérieure au seuil supérieur du signal de commande, le module de régulation est propre à remplacer la valeur courante du signal de commande par le seuil supérieur du signal de commande (312).Installation according to Claim 2, characterized in that, in the presence of a current value of the control signal greater than the upper threshold of the control signal, the control module is able to replace the current value of the control signal with the upper threshold. the control signal (312). Installation selon l'une des revendications 2 et 3, caractérisée en ce qu'en présence d'une valeur courante du signal de commande inférieure au seuil inférieur du signal de commande, le module de régulation est propre à remplacer la valeur courante du signal de commande par ledit seuil inférieur du signal de commande (312).Installation according to one of claims 2 and 3, characterized in that in the presence of a current value of the control signal lower than the lower threshold of the control signal, the control module is able to replace the current value of the signal of control by said lower threshold of the control signal (312). Installation selon l'une des revendications 2 à 4, caractérisée en ce que l'installation est apte à appliquer la valeur courante du signal de commande obtenue à la vanne de contrôle du compresseur (140).Installation according to one of claims 2 to 4, characterized in that the installation is adapted to apply the current value of the control signal obtained to the control valve of the compressor (140). Installation selon l'une des revendications 2 à 5, caractérisée en ce que le module de régulation est en outre apte à calculer la différence entre la pression de décharge du compresseur et la pression de coupure du compresseur, et à comparer ladite condition à une constante prédéfinie (300).Installation according to one of Claims 2 to 5, characterized in that the regulation module is furthermore able to calculate the difference between the compressor discharge pressure and the compressor cut-off pressure, and to compare the said condition with a constant predefined (300). Installation selon la revendication 6, caractérisée en ce qu'en présence d'une différence de pression inférieure à ladite constante, la valeur courante du signal de commande est calculée en fonction de l'écart entre la mesure de la température d'évaporation et une consigne de température d'évaporation (302).Installation according to claim 6, characterized in that in the presence of a pressure difference smaller than said constant, the current value of the control signal is calculated as a function of the difference between the measurement of the evaporation temperature and a evaporating temperature setpoint (302). Installation selon l'une des revendications 6 et 7, caractérisée en ce qu'en présence d'une différence de pression supérieure à ladite constante, la valeur courante du signal de commande est calculée à partir de la différence de pression et d'une valeur du signal de commande déterminé à un instant précédent (306).Installation according to one of claims 6 and 7, characterized in that in the presence of a pressure difference greater than said constant, the current value of the control signal is calculated from the pressure difference and a value of the control signal determined at a previous instant (306). Installation selon l'une des revendications 2 à 8, caractérisée en ce que le module de régulation est apte à déterminer la valeur courante d'une grandeur liée au signal de commande à l'instant donné considéré (303, 403) de sorte que cette grandeur ait une vitesse de variation progressive entre une borne inférieure et une borne supérieure, dans un intervalle de temps de longueur définie par une constante de temps.Installation according to one of Claims 2 to 8, characterized in that the control module is adapted to determine the current value of a quantity related to the control signal at the given instant under consideration (303, 403) so that this magnitude has a gradual rate of change between a lower bound and an upper bound in a time interval of length defined by a time constant. Installation selon la revendication 9, caractérisée en ce que la grandeur liée au signal de commande est le seuil supérieur du signal de commande (303), et en ce que la vitesse de variation de cette grandeur est croissante dans l'intervalle de temps entre la borne inférieure définie par la valeur minimale du signal de commande lorsque le compresseur est en cylindrée minimale, et la borne supérieure définie par la valeur maximale du signal de commande lorsque le compresseur est en cylindrée maximale.An installation according to claim 9, characterized in that the magnitude related to the control signal is the upper threshold of the control signal (303), and in that the rate of change of this magnitude is increasing in the time interval between the lower limit defined by the minimum value of the control signal when the compressor is in minimum capacity, and the upper limit defined by the maximum value of the control signal when the compressor is in maximum capacity. Installation selon la revendication 9, caractérisée en ce que la grandeur liée au signal de commande est la consigne de température d'évaporation, et en ce que la vitesse de variation de cette grandeur est décroissante dans l'intervalle de temps entre la borne supérieure définie par la consigne de température maximale de la climatisation et la borne inférieure définie par la consigne de température demandée dans l'habitacle.Installation according to Claim 9, characterized in that the quantity linked to the control signal is the evaporating temperature set point, and in that the rate of variation of this quantity is decreasing in the time interval between the defined upper limit. by the maximum temperature regulation of the air conditioning and the lower limit defined by the temperature setpoint required in the passenger compartment. Installation selon la revendication 11, caractérisée en ce que le seuil supérieur du signal de commande correspond à la valeur maximale du signal de commande lorsque le compresseur est en cylindrée maximale (403).Installation according to Claim 11, characterized in that the upper threshold of the control signal corresponds to the maximum value of the control signal when the compressor is in maximum displacement (403). Installation selon l'une des revendications 9 à 12, caractérisée en ce que ladite grandeur est calculée avec un filtre de premier ordre à partir de la borne minimale, de la borne supérieure, de la constante de temps, de la valeur précédente de ladite grandeur et d'une période d'échantillonnage de durée choisie.Installation according to one of claims 9 to 12, characterized in that said quantity is calculated with a first-order filter from the minimum limit, the upper limit, the time constant, of the previous value of said magnitude and a sampling period of chosen duration. Installation selon l'une des revendications 9 à 13, caractérisée en ce que la constante de temps est calculée à partir de la vitesse de rotation du compresseur, de la température extérieure à l'habitable du véhicule et de la pression de décharge du compresseur.Installation according to one of claims 9 to 13, characterized in that the time constant is calculated from the compressor rotational speed, the temperature outside the space of the vehicle and the compressor discharge pressure. Installation selon l'une des revendications 2 à 14, caractérisée en ce que le module de régulation est apte à contrôler du signal de commande selon une période choisie.Installation according to one of claims 2 to 14, characterized in that the regulation module is able to control the control signal according to a chosen period. Installation selon la revendication 15, caractérisée en ce que la période choisie est sensiblement égale à 1 seconde.Installation according to claim 15, characterized in that the period chosen is substantially equal to 1 second. Procédé de régulation d'un circuit de climatisation, parcouru par un fluide supercritique, notamment pour véhicule à moteur, comportant un compresseur muni d'une vanne de commande dont le degré d'ouverture varie en fonction de l'intensité d'un signal de commande, caractérisé en ce qu'on contrôle le signal de commande de la vanne du compresseur pendant la phase de démarrage de la climatisation de manière à maintenir la pression de décharge du compresseur sensiblement en dessous de la pression de coupure du compresseur.A method of regulating an air conditioning circuit traversed by a supercritical fluid, in particular for a motor vehicle, comprising a compressor provided with a control valve whose degree of opening varies as a function of the intensity of a signal of control, characterized in that the control signal of the compressor valve is monitored during the start-up phase of the air-conditioning so as to maintain the compressor discharge pressure substantially below the compressor cut-off pressure.
EP07100075A 2006-01-04 2007-01-03 Air-conditioning installation containing a supercritical fluid Not-in-force EP1806548B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0600058A FR2895787B1 (en) 2006-01-04 2006-01-04 AIR CONDITIONING SYSTEM HAVING A SUPERCRITICAL FLUID

Publications (2)

Publication Number Publication Date
EP1806548A1 true EP1806548A1 (en) 2007-07-11
EP1806548B1 EP1806548B1 (en) 2011-02-23

Family

ID=36128390

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07100075A Not-in-force EP1806548B1 (en) 2006-01-04 2007-01-03 Air-conditioning installation containing a supercritical fluid

Country Status (4)

Country Link
EP (1) EP1806548B1 (en)
AT (1) ATE499575T1 (en)
DE (1) DE602007012602D1 (en)
FR (1) FR2895787B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011056371A3 (en) * 2009-11-03 2011-08-18 Carrier Corporation Pressure spike reduction for refrigerant systems incorporating a microchannel heat exchanger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131845A (en) * 1983-01-17 1984-07-28 Toshiba Corp Control method of compressor in air conditioner
EP1122430A2 (en) * 2000-02-07 2001-08-08 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Controller for variable displacement compressor
US6298674B1 (en) * 1999-07-29 2001-10-09 Daimlerchrysler Ag Method for operating a subcritically and transcritically operated vehicle air conditioner
JP2002061968A (en) * 2000-08-23 2002-02-28 Zexel Valeo Climate Control Corp Controller of freezing cycle
EP1442906A2 (en) * 2003-02-03 2004-08-04 Calsonic Kansei Corporation Air conditioning apparatus using supercritical refrigerant for vehicle
EP1482260A1 (en) * 2003-05-30 2004-12-01 Sanyo Electric Co., Ltd. Cooling apparatus
EP1493979A1 (en) * 2003-06-30 2005-01-05 Valeo Climatisation Car air-conditioner with a supercritical cycle
EP1521061A2 (en) * 2003-10-02 2005-04-06 Bayerische Motoren Werke Aktiengesellschaft Sensor arrangement for monitoring at least two physical quantities

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131845A (en) * 1983-01-17 1984-07-28 Toshiba Corp Control method of compressor in air conditioner
US6298674B1 (en) * 1999-07-29 2001-10-09 Daimlerchrysler Ag Method for operating a subcritically and transcritically operated vehicle air conditioner
EP1122430A2 (en) * 2000-02-07 2001-08-08 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Controller for variable displacement compressor
JP2002061968A (en) * 2000-08-23 2002-02-28 Zexel Valeo Climate Control Corp Controller of freezing cycle
EP1442906A2 (en) * 2003-02-03 2004-08-04 Calsonic Kansei Corporation Air conditioning apparatus using supercritical refrigerant for vehicle
EP1482260A1 (en) * 2003-05-30 2004-12-01 Sanyo Electric Co., Ltd. Cooling apparatus
EP1493979A1 (en) * 2003-06-30 2005-01-05 Valeo Climatisation Car air-conditioner with a supercritical cycle
EP1521061A2 (en) * 2003-10-02 2005-04-06 Bayerische Motoren Werke Aktiengesellschaft Sensor arrangement for monitoring at least two physical quantities

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 262 (M - 341) 30 November 1984 (1984-11-30) *
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 06 4 June 2002 (2002-06-04) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011056371A3 (en) * 2009-11-03 2011-08-18 Carrier Corporation Pressure spike reduction for refrigerant systems incorporating a microchannel heat exchanger
US10107535B2 (en) 2009-11-03 2018-10-23 Carrier Corporation Pressure spike reduction for refrigerant systems incorporating a microchannel heat exchanger

Also Published As

Publication number Publication date
EP1806548B1 (en) 2011-02-23
FR2895787B1 (en) 2013-04-26
ATE499575T1 (en) 2011-03-15
FR2895787A1 (en) 2007-07-06
DE602007012602D1 (en) 2011-04-07

Similar Documents

Publication Publication Date Title
EP1965156B1 (en) Air conditioning device equipped with an electric expansion valve
EP1806547A1 (en) Expansion module for air-conditioning installation with two evaporators
EP1715264B1 (en) Improved expansion valve for air conditioning circuit
FR2815397A1 (en) Automotive air conditioning system, uses supercritical cycle where the expansion unit of the refrigeration fluid loop is controlled to allow complete evaporation of fluid
EP1850075A1 (en) Air-conditioning circuit with supercritical cycle
EP1806548B1 (en) Air-conditioning installation containing a supercritical fluid
EP1112872A1 (en) Airconditioning unit for a vehicle with optimised ventilation control
EP1687161B1 (en) Vehicle air-conditioning assembly
EP2057430B1 (en) Supercritical cycle climatization facility
EP1403107B1 (en) Air conditioner with an electronic control device
EP1493979A1 (en) Car air-conditioner with a supercritical cycle
EP2699434B1 (en) Method for controlling an air-conditioning system of the passenger compartment of a vehicle
EP3224067B1 (en) Method for operating a device for the thermal conditioning of a motor vehicle interior and device for implementing the method
WO2003099597A2 (en) System and method for regulating an air-conditioning unit
FR2959005A1 (en) White frost detecting method for exchanger of air-conditioning loop of motor vehicle, involves delivering absence information of white frost on exchanger when measured intensity of motor is not greater than threshold intensity
EP2141426B1 (en) Method for the implementation of an AC loop of an heating, ventilating and/or air conditioning installation of a vehicle
EP3747080B1 (en) Method for cooling an electrical storage device equipping a vehicle
EP2712746B1 (en) Method for controlling the power consumption of the compressor of a vehicle air-conditioning circuit, and related system
FR3057211A1 (en) METHOD FOR CONTROLLING A HEATING LOOP, VENTILATION AND / OR AIR CONDITIONING
WO2014095591A1 (en) System for the electrical regulation of the expansion of a coolant and method for controlling such a system
EP2400240B1 (en) Method for controlling a storage device in a coolant circuit
WO2019175358A1 (en) Method and system for controlling a thermal regulation system of a motor vehicle
WO2017103373A1 (en) Method for controlling a compressor for a motor vehicle air-conditioning system
FR2734347A1 (en) Controller for air conditioner on public transport vehicle
FR3053005A1 (en) METHOD FOR OPERATING A REFRIGERANT FLUID CIRCUIT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080104

17Q First examination report despatched

Effective date: 20080211

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602007012602

Country of ref document: DE

Date of ref document: 20110407

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007012602

Country of ref document: DE

Effective date: 20110407

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110223

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110524

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110603

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110623

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110523

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007012602

Country of ref document: DE

Effective date: 20111124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

BERE Be: lapsed

Owner name: VALEO SYSTEMES THERMIQUES

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120103

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200113

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200131

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007012602

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803