EP1805404A1 - Procede de pilotage d'un circuit de commande et dispositif d'actionnement - Google Patents

Procede de pilotage d'un circuit de commande et dispositif d'actionnement

Info

Publication number
EP1805404A1
EP1805404A1 EP05815531A EP05815531A EP1805404A1 EP 1805404 A1 EP1805404 A1 EP 1805404A1 EP 05815531 A EP05815531 A EP 05815531A EP 05815531 A EP05815531 A EP 05815531A EP 1805404 A1 EP1805404 A1 EP 1805404A1
Authority
EP
European Patent Office
Prior art keywords
measurement signal
bridge
threshold
electrical control
control member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05815531A
Other languages
German (de)
English (en)
Inventor
Eugenio Macua
Christophe Ripoll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP1805404A1 publication Critical patent/EP1805404A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/80Constructional details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2072Bridge circuits, i.e. the load being placed in the diagonal of a bridge to be controlled in both directions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits

Definitions

  • the invention relates to the field of fuel injection control for an internal combustion engine intended for example to equip a motor vehicle.
  • the invention more particularly relates to a fuel injection control for atomizing the injected fuel in the form of very fine droplets.
  • the fuel injection devices currently used on internal combustion engines fitted to motor vehicles or road vehicles operate conventionally on the model of a valve whose open or closed state is permanently controlled, the dosage of the fuel injected then being done directly by the opening time.
  • Such injection systems comprise an electric fuel supply pump which supplies, through the channel of a distribution manifold, all the injectors under pressure having a constant difference with the pressure prevailing in the intake manifold. thanks to a pressure regulator.
  • By electronically controlling the electromagnet actuating the valve of each injector it controls the start and the opening time thereof and then determines a precise fuel flow for each of the injectors.
  • the amount of fuel injected depends solely on the opening time of the electro-injectors.
  • the injectors of the electromagnetically controlled needle type which are the most commonly used, however, have limits which slow down the improvement of engine performance, especially in terms of pollution control.
  • the times taken to open or close the needles are still too high, about 1 to 2 ms, which prevents to distribute properly the injection over the entire opening time of the valve.
  • the minimum opening time which determines the minimum amount of fuel that can be injected, is still too great for some operating points of the engine.
  • Known needle injectors also have injection ports of relatively large diameters to enable the required quantities of fuel to be discharged for full load and high engine operation. This arrangement generates fuel jets having drops of large dimensions, which slows the vaporization of the fuel (and therefore the preparation of the fuel mixture) and is able to promote the phenomenon of wall wetting.
  • the unvaporized fuel tends to be deposited on the walls of the intake duct or the direct injection combustion chamber.
  • Such a deposit causes metering problems, particularly acute in the transient for lack of knowledge of the amount of fuel that actually enters the corresponding combustion chamber.
  • This phenomenon of wall wetting is one of the important causes of high pollutant emissions during cold engine starts.
  • the document FR-A-2801346 describes a fuel injection device for an internal combustion engine equipped with an injector comprising a nozzle supplied with fuel and at the end of which is provided an injection orifice, means for placing fuel. in cyclic vibration of the nozzle such as a transducer controlled in duration and intensity by the engine control electronic system, and shutter means biased by elastic return means against the end of the nozzle, said elastic return means being formed by a rod passing through the body of the injector to a cavity located at the opposite end relative to the injection orifice, said rod cooperating with a mass and damping means housed in said cavity; vibrating the nozzle and shutter means ensuring the ejection of a predetermined amount of fuel.
  • the document FR-A-2 846 808 describes an actuator device provided with an actuator, an electronic actuator control topology comprising a bridge circuit with a source. continuous between the first and second terminals of the circuit, the actuator being connected between the third and fourth terminals of the circuit, having a switch connected between the first and third terminals and a switch connected between the second and fourth terminals.
  • the bridge circuit further has a first diode connected between the first and fourth terminals and a second diode connected between the second and third terminals.
  • the driving method of a control circuit is intended for an actuating device provided with at least one actuator having an actuated part and an electric control member for moving the actuated part, the control circuit comprising a bridge, the electrical control member being connected in said bridge.
  • the method comprises the steps of: supplying the bridge generating at least one measurement signal representative of the position of the actuated part selectively interrupt the conduction in at least one branch of the bridge as a function of the measurement signal to maintain it substantially in a zone defined between a low threshold and a high threshold during an activation phase of the electrical control member and wherein: the conduction is interrupted in at least one branch so as to place the electric control member in short position; circuit via two branches of the bridge when the measurement signal reaches at least a determined threshold above the low threshold.
  • the electrical control device is placed in short circuit when the measurement signal reaches or exceeds said determined threshold.
  • the electrical control device is placed in short circuit when the measurement signal passes below said determined threshold.
  • the electrical control device is placed in short circuit when the measurement signal reaches the high threshold.
  • the electrical control device is placed in short circuit when the measurement signal passes an intermediate threshold situated between the high threshold and the low threshold.
  • the conduction is interrupted in at least one branch as a function of a time base signal.
  • the conduction is interrupted in at least one branch so as to apply the power supply to the terminals of the electrical control unit so that the measurement signal reaches the operating zone when the signal if it is below the low threshold and the time base signal indicates a unit of time.
  • the conduction is interrupted in at least one branch so as to apply the power supply to the terminals of the electrical control unit so that the measurement signal reaches the low threshold when the signal of The measurement is in the operating area and the time base signal indicates a unit of time.
  • FIG 1 is an electrical diagram of the actuating device according to one aspect of the invention.
  • FIG. 2 is a time diagram of the displacement of the device of FIG. 1;
  • FIG. 3 is a timing diagram of the various signals of the device of FIG. 1;
  • FIG. 4 is a state machine of the actuating device of FIG. 1;
  • FIG. 5 is a timing diagram of the current in the actuator.
  • the invention provides an actuating device having an electronic control topology of an actuator with simplified structure and control.
  • One or two antiparallel diodes are used in a bridge circuit, resulting in a decrease in the number of active switches and a simplification of the control.
  • the actuating device 1 comprises a bridge circuit 2, a control unit
  • the bridge circuit 2 comprises four terminals 5, 6, 7, 8, a DC voltage source 9, for example a battery or a DC AC power converter connected to the first and second terminals 5 and 6 of the bridge 2 and provides a voltage keep on going. Alternatively, it can be provided that the source 9 provides a continuous intensity.
  • the electrical control member 10 for controlling the actuator is connected between the third and fourth terminals 7 and 8 of the bridge circuit 5. In electrical terms, the electrical control member 10 is likened to an inductor.
  • a first switch 1 1 is connected between the first and third terminals 5 and 7 and a second switch 12 is connected between the second and fourth terminals 6 and 8.
  • the bridge circuit 2 can be in the form of an integrated circuit in which are provided the transistors of MOS type that can be used as switches 1 1 and 12.
  • the switching of the switches 1 1 and 12 is controlled via the control unit 3, to which the control terminals of said switches 1 1 and 12 are connected.
  • the bridge circuit 2 further has first and second diodes 1 3 and 14.
  • the first diode 13 is connected between the second and third terminals 6 and 7, the cathode of the diode 13 being connected to the third terminal 7.
  • the second diode 14 is connected between the first and fourth terminals 5 and 8, the cathode of the second diode 14 being connected to the first terminal 5.
  • diodes 13 and 14 simplifies the structure of the control unit 3 and the method of controlling the switches.
  • the diodes 13 and 14 may be of any suitable type. Diode mounted MOS transistors are preferably used to facilitate the integration of the electronic control topology and to reduce the cost thereof.
  • the detecting unit 4 comprises a current probe 15 mounted on a power line disposed between the fourth terminal 8 and the electrical control member 10. Bi, of course, the current probe 15 could also be mounted between the third terminal 7 and the electrical control member 10.
  • the detection assembly 4 also comprises three comparators 16, 17 and 18, for example in the form of operational amplifiers, each having a first input connected to the output of the sensor current 15 and an output connected to a specific input of the control unit 3. The second input of each comparator 16, 17, 18 is connected to a specific voltage reference 19, 20, 21, respectively, each providing a reference of high, low and very low, respectively.
  • the needle can be moved initially from the shutter position to the injection setpoint position with a maximum amplitude, and then move alternately with a small amplitude of aU , and this, periodically.
  • the needle can subsequently be returned to the closed position or maintained at the injection setpoint position. It can also be provided that the reciprocating movement does not immediately follow the movement towards the injection setpoint position and that the needle is maintained for a certain duration at the injection setpoint position.
  • Such a sequence may correspond either to an injection sequence or to a sequence prior to the injection.
  • the injection setpoint position it is possible for the injection setpoint position to be an open position of the needle in the case where the reciprocating displacement is used during the injection. It can also be provided that the injection setpoint position is a closed position and that the reciprocating movement with respect to the injection setpoint position is generated just before the opening of the needle.
  • FIG. 3 illustrates the timing diagrams of various control signals applied by the control unit 3 and signals applied across the electrical control unit 10.
  • the electrical control member 10 is electrically assimilated to an inductor.
  • the continuous electrical source 9 applies a continuous potential.
  • the voltage level applied to the gate of the transistors forming the switches 11 and 12 corresponds to their switching position.
  • the switches 11 and 12 are open and the current in the electrical control member 10 is zero.
  • an order of operation comes (signal F) and switches 11 and 12 are closed, by turning on the corresponding transistor.
  • the current then begins to grow.
  • the comparator 18 detects that the very low threshold is reached.
  • a third phase the switches 11 and 12 remain closed and the comparator 17 detects that the low current threshold is reached. The current continues to grow substantially linearly.
  • the comparator 16 detects that the high current threshold is reached.
  • the control unit 3 controls the opening of the switch 11, which causes the conduction of the diode 13.
  • the current in the electrical control member 10 decreases slowly.
  • the control unit 3 receives a clock signal H and controls the opening of the switch 12, resulting in a rapid decay of the current I which must then pass through the diodes 13 and 14.
  • the comparator 17 detects that the current has reached the low level threshold.
  • the control unit 3 then controls the closing of the switch 12, which causes a slow decay of the current in the electrical control member 10.
  • the two slow decay phases have similar decay slopes.
  • the control unit 3 receives a clock signal H and controls the closing of the switch 11, hence a growth of the current I.
  • the comparator 17 detects that the current exceeds the threshold low level.
  • the comparator 16 detects that the current exceeds the high level threshold.
  • the control unit 3 then controls the opening of the switch 11. The last four phases can then be repeated a number of times.
  • the order of end of control actuation occurs in a current decay phase in the electrical control member 10, the switch 11 is open and the switch 12 is closed.
  • the control unit 3 controls the opening of the switch 12, which causes the conduction of the diode 14, the diode 13 is already in conduction.
  • the current in the electrical control member 10 then decreases sharply.
  • the comparator 18 detects the downward crossing of the very low level threshold.
  • state 1 The different states of the device are illustrated in FIG. 4.
  • state 1 the switches 11 and 12 are open.
  • the device goes to state 1 as soon as it is switched on. If an error is detected, the transition to state 7 is controlled.
  • state 1 switches 11 and 12 are closed.
  • state 6 In the event of a stop, the device switches to state 6.
  • state 7 In case of detection of crossing the low threshold DSB the device goes to state 2.
  • state 2 switches 11 and 12 are closed.
  • the device switches to state 6.
  • state 7 If the high threshold DSH is detected, the device device goes to state 3.
  • state 3 the switch 11 is open and the switch 12 is on.
  • the device goes to state 6. In case of error, the device goes to state 7. In case of clock signal H, the device goes to state 4. In state 4, switches 11 and 12 are open. In the event of detection of the low level threshold DSB down, the device goes to state 5. In case of stop, the device goes to state 6. In case of error, the device switches to state 7. In case of clock signal H, the device returns to state 2. At state 5, switch 11 is open and switch 12 is on. In the event of a stop, the device switches to state 6. If an error occurs, the device switches to state 7. In case of clock signal H, the device returns to state 1.
  • the switches 11 and 12 are open.
  • the device returns to state 0 on receipt of an initialization signal.
  • the detection of the very low threshold makes it possible to identify the moment when the current in the coil has canceled after the end of the on command of the device. It can thus be expected that the very low current threshold has been crossed to then restart the device. This avoids operating errors, which increases the reliability and robustness of the device.
  • the invention makes it possible to precisely control the movement of the actuator, which makes it possible to better cut the jet of fuel in the case of an injector and to improve the fuel atomization during the injection.
  • the current waveform 1 is illustrated with high, low and intermediate three-level control.
  • An additional comparator 19 is shown in dotted line in FIG. 1 to detect the intermediate current threshold. The waveform of the current is then close to a sinusoid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Procédé de pilotage d'un circuit de commande d'un dispositif d' actionnement (1) muni d'au moins un actionneur présentant une pièce actionnée et un organe électrique de commande (10) de déplacement de la pièce actionnée, le circuit de commande comprenant un pont (2) , l'organe électrique de commande étant connecté dans ledit pont, le procédé comprenant les étapes consistant à : - alimenter le pont (2) - produire au moins un signal de mesure (15) représentatif de la position de la pièce actionnée - interrompre sélectivement la conduction dans au moins une branche du pont (2) en fonction du signal de mesure pour le maintenir sensiblement dans une zone de fonctionnement définie entre un seuil bas et un seuil haut pendant un phase d'activation de l'organe électrique de commande (10) et dans lequel : - on interrompt la conduction dans au moins une branche de façon à placer l'organe électrique de commande (10) en court-circuit par l'intermédiaire de deux branches du pont (2) lorsque le signal de mesure atteint au moins un seuil déterminé situé au-dessus du seuil bas.

Description

Procédé de pilotage d'un circuit de commande et dispositif d'actionnement.
L'invention se rapporte au domaine de la commande d'injection de carburant pour moteur à combustion interne destiné par exemple à équiper un véhicule automobile.
L'invention concerne plus particulièrement une commande d'injection de carburant permettant d'atomiser le carburant injecté sous forme de très fines gouttelettes. Les dispositifs d'injection de carburant utilisés aujourd'hui sur les moteurs à combustion interne équipant les véhicules automobiles ou routiers, fonctionnent classiquement sur le modèle d'une vanne dont on commande en permanence l'état ouvert ou fermé, le dosage du carburant injecté se faisant alors directement par le temps d'ouverture. De tels systèmes d'injection comprennent une pompe électrique d'alimentation en carburant qui alimente, par le canal d'une rampe de distribution, l'ensemble des injecteurs sous une pression présentant une différence constante avec la pression régnant dans le collecteur d'admission grâce à un régulateur de pression. En contrôlant électroniquement l'électro-aimant actionnant la soupape de chaque injecteur, on commande le début et la durée d'ouverture de celle-ci et on détermine alors un débit précis de carburant pour chacun des injecteurs. Ainsi, la quantité de carburant injectée dépend uniquement du temps d'ouverture des électro-injecteurs. Les injecteurs du type à aiguille commandée électromagnétiquement, qui sont les plus communément employés, présentent toutefois des limites qui freinent l'amélioration des performances des moteurs, notamment en terme de dépollution. En particulier, les temps mis pour ouvrir ou fermer les aiguilles sont encore trop élevés, environ 1 à 2 ms, ce qui empêche de répartir correctement l ' injection sur tout le temps d' ouverture de la soupape. De plus, le temps minimum d ' ouverture, qui détermine la dose minimale de carburant pouvant être injecté, est encore trop important pour certains points de fonctionnement du moteur.
Les injecteurs à aiguille connus présentent par ail leurs des orifices d' injection de diamètres relativement importants pour permettre de débiter les quantités requises de carburant pour les fonctionnements à pleine charge et hauts régi mes des moteurs. Cette disposition génère des jets de carburant présentant des gouttes de fortes dimensions, ce qui freine la vaporisation du carburant (et donc la préparation du mélange carburé) et est à même de favoriser le phénomène de mouillage de paroi.
En effet, le carburant non vaporisé tend à se déposer sur les parois du conduit d' admission ou de la chambre de combustion en injection directe. Un tel dépôt entraîne des problèmes de dosage, particulièrement aigus dans les transitoi res par manque de connaissance de la quantité de carburant qui rentre effectivement dans la chambre de combustion correspondante. Ce phénomène de mouillage des paroi s est l ' une des causes importantes des fortes émissions de pol luants lors des démarrages à froid des moteurs.
Par ailleurs, avec un injecteur classique à aiguill e, à l ' ouverture de l ' aiguille lorsque cette dernière commence à quitter son siège, il se forme une bull e de liquide qui disparaît lorsque l ' aiguille est complètement levée, l ' écoulement du fluide se régularisant alors.
Ce changement dans la nature de l 'écoulement rend impossi ble tout contrôle précis du débit instantané de l ' injecteur.
Certains ont cherché à résoudre ces différents problèmes, en développant des injecteurs utilisant des actuateurs piézo-électriques pour manœuvrer l'aiguille de façon à abaisser la durée d'ouverture et de fermeture de l'aiguille, mais de tels systèmes qui fonctionnent toujours selon le principe d'une vanne, conservent des inconvénients importants liés notamment à la dispersion importante affectant la taille des gouttes dans le jet de carburant au sortir du nez de l'injecteur.
L'ensemble des problèmes cités précédemment se solde donc par une vaporisation du carburant pouvant être incomplète et non homogène lors de la préparation du mélange carburé dans la chambre de combustion, des dosages imprécis, avec pour conséquence une combustion incomplète se traduisant par la formation d'une quantité élevée de gaz polluants et un déficit énergétique altérant le rendement du moteur.
Le document FR-A-2801346 décrit un dispositif d'injection de carburant pour moteur à combustion interne équipé d'un injecteur comportant une buse alimentée en carburant et à l'extrémité de laquelle est ménagé un orifice d'injection, des moyens de mise en vibration cyclique de la buse tels qu'un transducteur piloté en durée et en intensité par le système électronique de contrôle moteur, et des moyens obturateurs rappelés par des moyens élastiques de rappel contre l'extrémité de la buse, lesdits moyens élastiques de rappel étant formés par une tige traversant le corps de l'injecteur jusqu'à une cavité située à l'extrémité opposée par rapport à l'orifice d'injection, ladite tige coopérant avec une masse et des moyens d'amortissement logés dans ladite cavité, la mise en vibration de la buse et des moyens obturateurs assurant l'éjection d'une quantité de carburant prédéterminée.
Le document FR-A-2 846 808 décrit un dispositif d'actionnement muni d'un actionneur, d'une topologie électronique de pilotage de l'actionneur comprenant un circuit en pont avec une source continue entre les première et deuxième bornes du circuit, l ' actionneur étant connecté entre les troisième et quatrième bornes du circuit, présentant un interrupteur connecté entre les première et troisième bornes et un interrupteur connecté entre les deuxième et quatrième bornes. Le circuit en pont présente en outre une première diode connectée entre les première et quatrième bornes et une deuxième diode connectée entre les deuxième et troisième bornes. Un tel dispositif d' actionnement est relativement simple. Toutefoi s, le besoin est apparu d' améliorer la précision de la commande en position. Le procédé de pilotage d'un circuit de commande est destiné à un dispositif d'actionnement muni d'au moins un actionneur présentant une pièce actionnée et un organe électrique de commande de déplacement de la pièce actionnée, le circuit de commande comprenant un pont, l'organe électrique de commande étant connecté dans ledit pont. Le procédé comprend les étapes consistant à : alimenter le pont produire au moins un signal de mesure représentatif de la position de la pièce actionnée interrompre sélectivement la conduction dans au moins une branche du pont en fonction du signal de mesure pour le maintenir sensiblement dans une zone de fonctionnement définie entre un seuil bas et un seuil haut pendant un phase d'activation de l'organe électrique de commande et dans lequel : on interrompt la conduction dans au moins une branche de façon à placer l'organe électrique de commande en court-circuit par l'intermédiaire de deux branches du pont lorsque le signal de mesure atteint au moins un seuil déterminé situé au-dessus du seuil bas.
On peut ainsi obtenir un courant de forme proche d'une sinusoïde dans l'organe électrique de commande. Dans un mode de réalisation de l'invention, on place l'organe électrique de commande en court-circuit lorsque le signal de mesure atteint ou dépasse ledit seuil déterminé.
Dans un mode de réalisation de l'invention, on place l'organe électrique de commande en court-circuit lorsque le signal de mesure passe en dessous dudit seuil déterminé.
Dans un mode de réalisation de l'invention, on place l'organe électrique de commande en court-circuit lorsque le signal de mesure atteint le seuil haut.
Dans un mode de réalisation de l'invention, on place l'organe électrique de commande en court-circuit lorsque le signal de mesure passe un seuil intermédiaire situé entre le seuil haut et le seuil bas.
Dans un mode de réalisation de l'invention, on interrompt la conduction dans au moins une branche en fonction d'un signal de base de temps.
Dans un mode de réalisation de l'invention, on interrompt la conduction dans au moins une branche de façon à appliquer l'alimentation aux bornes de l'organe électrique de commande de sorte que le signal de mesure rejoigne la zone de fonctionnement lorsque le signal de mesure si situe en dessous du seuil bas et que le signal de base de temps indique une unité de temps.
Dans un mode de réalisation de l'invention, on interrompt la conduction dans au moins une branche de façon à appliquer l'alimentation aux bornes de l'organe électrique de commande de sorte que le signal de mesure rejoigne le seuil bas lorsque le signal de mesure se situe dans la zone de fonctionnement et que le signal de base de temps indique une unité de temps.
La présente invention sera mieux comprise à la lecture de la description détaillée de quelques modes de réalisation pris à titre d'exemples nullement limitatifs et illustrés par les dessins annexés, sur lesquels:
-la figure 1 est un schéma électrique du dispositif d 'actionnement selon un aspect de l 'invention ; 005/050861
-la figure 2 est un diagramme temporel du déplacement du dispositif de la figure 1 ;
-la figure 3 est un chronogramme des différents signaux du dispositif de la figure 1 ; -la figure 4 est une machine d' état du dispositif d' actionnement de la figure 1 ; et
- la figure 5 est un diagramme temporel du courant dans l'actionneur.
L' invention propose un dispositif d 'actionnement présentant une topologie électronique de pilotage d' un actionneur à la structure et au pilotage simplifiés. Une ou deux diodes en antiparallèle sont utilisées dans un circuit en pont, d'où une diminution du nombre d' interrupteurs actifs et une simplification de la commande.
Comme on peut le voir sur la figure 1 , le dispositif d' actionnement 1 comprend un circuit en pont 2, une unité de pilotage
3 et un ensemble de détection 4.
Le circuit en pont 2 comprend quatre bornes 5, 6, 7, 8, une source de tension continue 9, par exemple une batterie ou un convertisseur de puissance alternatif continu connecté aux première et deuxième bornes 5 et 6 du pont 2 et fournit une tension continue. En variante, on peut prévoir que la source 9 fournisse une intensité continue. L'organe électrique de commande 10 permettant de commander l 'actionneur est connecté entre les troisième et quatrième bornes 7 et 8 du circuit en pont 5. En termes électriques, l 'organe électrique de commande 10 est assimilé à une inductance. Un premier interrupteur 1 1 est connecté entre les première et troisième bornes 5 et 7 et un deuxième interrupteur 12 est connecté entre les deuxième et quatrième bornes 6 et 8. Le circuit en pont 2 peut se présenter sous la forme d'un circuit intégré dans lequel sont ménagés les transistors de type MOS qui peuvent être utilisés comme interrupteurs 1 1 et 12. On peut également utiliser d' autres types d' interrupteurs, comme des transistors IGBT. La commutation des interrupteurs 1 1 et 12 est commandée par l ' intermédiaire de l ' unité de pilotage 3, à laquelle les bornes de commande desdits interrupteurs 1 1 et 12 sont reliées. Le circuit en pont 2 présente en outre des premi ère et deuxième diodes 1 3 et 14. La première diode 13 est connectée entre les deuxi ème et troisième bornes 6 et 7, la cathode de la diode 13 étant raccordée à la troisième borne 7. La deuxième diode 14 est reliée entre les première et quatrième bornes 5 et 8, la cathode de la deuxième diode 14 étant connectée à la première borne 5.
L' utilisation de diodes 13 et 14 simplifie la structure de l ' unité de pilotage 3 et le procédé de pilotage des interrupteurs. Les diodes 13 et 14 peuvent être de tout type approprié. On utilise de préférence des transistors MOS montés en diode afin de faciliter l ' intégration de la topologie électronique de pilotage et d' en réduire le coût.
L' ensemble de détecti on 4 comprend une sonde de courant 1 5 montée sur une ligne électrique disposée entre la quatrième borne 8 et l ' organe électrique de commande 10. Bi en entendu, la sonde de courant 15 pourrait également être montée entre la troisième borne 7 et l ' organe électrique de commande 10. L' ensemble de détection 4 comprend également trois comparateurs 16, 17 et 18, par exemple sous la forme d' amplificateurs opérationnels, ayant chacun une première entrée reliée à la sortie de la sonde de courant 15 et une sortie reliée à une entrée spécifique de l ' unité de pilotage 3. La deuxième entrée de chaque comparateur 16, 17, 18 est reliée à une référence spécifique de tension 19, 20, 21 , respectivement, fournissant chacune une référence de niveau haut, de niveau bas et de niveau très bas, respectivement. Dans l'application du procédé à un injecteur de moteur à combustion interne, on souhaite notamment réaliser une séquence de pilotage de l'actionneur en fonction du temps entre une position d'obturation de l'injecteur et une position de consigne d'injection. L'aiguille peut être déplacée initialement de la position d'obturation à la position de consigne d'injection avec une amplitude maximale, puis se déplacer alternativement avec une faible amplitude daU, et ce, de façon périodique. L'aiguille peut ultérieurement être ramenée à la position d'obturation ou être maintenue à la position de consigne d'injection. On peut également prévoir que le déplacement alternatif ne suive pas immédiatement le déplacement vers la position de consigne d'injection et que l'aiguille soit maintenue pendant une certaine durée à la position de consigne d'injection.
Une telle séquence peut correspondre soit à une séquence d'injection, soit à une séquence préalable à l'injection. On peut notamment prévoir que la position de consigne d'injection soit une position d'ouverture de l'aiguille dans le cas où le déplacement alternatif est utilisé pendant l'injection. On peut également prévoir que la position de consigne d'injection soit une position d'obturation et que le déplacement alternatif par rapport à la position de consigne d'injection soit généré juste avant l'ouverture de l'aiguille.
Sur la figure 3 sont illustrés les chronogrammes de différents signaux de pilotage appliqués par l'unité de pilotage 3 et des signaux appliqués aux bornes de l'organe électrique de commande 10. L'organe électrique de commande 10 est assimilé électriquement à une inductance. La source électrique continue 9 applique un potentiel continu. Le niveau de tension appliqué sur la grille des transistors formant les interrupteurs 11 et 12 correspond à leur position de commutation. Pendant une première phase, les interrupteurs 11 et 12 sont ouverts et le courant dans l'organe électrique de commande 10 est nul. Dans une deuxième phase, un ordre de mise en fonctionnement intervient (signal F) et les interrupteurs 11 et 12 sont fermés, par mise en conduction du transistor correspondant. Le courant commence alors à croître. Dans une troisième phase, le comparateur 18 détecte que Ie seuil très bas est atteint. Dans une troisième phase, les interrupteurs 11 et 12 restent fermés et le comparateur 17 détecte que le seuil de courant bas est atteint. Le courant continue à croître de façon sensiblement linéaire. Dans la phase suivante, le comparateur 16 détecte que le seuil de courant haut est atteint. L'unité de pilotage 3 commande l'ouverture de l'interrupteur 11, ce qui provoque la mise en conduction de la diode 13. Le courant dans l'organe électrique de commande 10 décroît lentement. Dans la phase suivante, l'unité de pilotage 3 reçoit un signal d'horloge H et commande l'ouverture de l'interrupteur 12, d'où une décroissance rapide du courant I qui doit alors passer par les diodes 13 et 14.
Puis, le comparateur 17 détecte que le courant a atteint le seuil de niveau bas. L'unité de pilotage 3 commande alors la fermeture de l'interrupteur 12, ce qui provoque une décroissance lente du courant dans l'organe électrique de commande 10. Les deux phases de décroissance lente présentent des pentes de décroissance similaires. Dans la phase suivante, l'unité de pilotage 3 reçoit un signal d'horloge H et commande la fermeture de l'interrupteur 11, d'où une croissance du courant I. Le comparateur 17 détecte que le courant franchit à la hausse le seuil de niveau bas. Le comparateur 16 détecte que le courant franchit à la hausse le seuil de niveau haut. L'unité de pilotage 3 commande alors l'ouverture de l'interrupteur 11. Les quatre dernières phases peuvent ensuite être répétées un certain nombre de fois.
Comme illustré, l'ordre de fin de commande d'actionnement intervient dans une phase de décroissance du courant dans l'organe électrique de commande 10, l'interrupteur 11 étant ouvert et l'interrupteur 12 étant fermé. A réception d'une commande de fin d'actionnement, l'unité de pilotage 3 commande l'ouverture de l'interrupteur 12, ce qui provoque la mise en conduction de la diode 14, la diode 13 étant déjà en conduction. Le courant dans l'organe électrique de commande 10 diminue alors fortement. Le comparateur
17 détecte le franchissement à la baisse du seuil de niveau bas. Puis, le comparateur 18 détecte le franchissement à la baisse du seuil de niveau très bas.
Les différents états du dispositif sont illustrés sur la figure 4. A l'état 0, les interrupteurs 11 et 12 sont ouverts. Le dispositif passe à l'état 1 dès la mise en marche. Si une erreur est détectée, le passage à l'état 7 est commandé. Dans l'état 1, les interrupteurs 11 et 12 sont fermés. En cas d'arrêt, le dispositif passe à l'état 6. En cas d'erreur ou de signal d'horloge H, le dispositif passe à l'état 7. En cas de détection de franchissement du seuil bas à la hausse DSB, le dispositif passe à l'état 2. A l'état 2, les interrupteurs 11 et 12 sont fermés. En cas d'arrêt, le dispositif passe à l'état 6. En cas d'erreur ou de signal d'horloge H, le dispositif passe à l'état 7. En cas de détection du seuil haut à la hausse DSH, le dispositif passe à l'état 3. A l'état 3, l'interrupteur 11 est ouvert et l'interrupteur 12 est passant. En cas d'arrêt, le dispositif passe à l'état 6. En cas d'erreur, le dispositif passe à l'état 7. En cas de signal d'horloge H, le dispositif passe à l'état 4. A l'état 4, les interrupteurs 11 et 12 sont ouverts. En cas de détection du seuil de niveau bas à la baisse DSB, le dispositif passe à l'état 5. En cas d'arrêt, le dispositif passe à l'état 6. En cas d'erreur, le dispositif passe à l'état 7. En cas de signal d'horloge H, le dispositif repasse à l'état 2. A l'état 5, l'interrupteur 11 est ouvert et l'interrupteur 12 est passant. En cas d'arrêt, le dispositif passe à l'état 6. En cas d'erreur, le dispositif passe à l'état 7. En cas de signal d'horloge H, le dispositif repasse à l'état 1.
A l'état 6, les interrupteurs 11 et 12 sont ouverts. En cas de détection de franchissement à la baisse du seuil très bas DSTB, le dispositif passe à l'état 0. En cas d'erreur, le dispositif passe à l'état 7.
A l'état 7, les interrupteurs 11 et 12 sont ouverts. Le dispositif repasse à l'état 0 sur réception d'un signal d'initialisation. La détection du seuil très bas permet de repérer le moment où le courant dans la bobine s'est annulé après la fin de la commande de marche du dispositif. On peut ainsi attendre que le seuil de courant très bas ait été franchi pour ensuite remettre en marche le dispositif. On évite ainsi des erreurs de fonctionnement, ce qui accroît la fiabilité et la robustesse du dispositif.
L'invention permet de contrôler de façon précise le mouvement de l'actionneur, ce qui permet de mieux découper le jet de carburant dans le cas d'un injecteur et d'améliorer la pulvérisation de carburant lors de l'injection. Sur la figure 5, est illustrée la forme d'onde du courant 1 avec une commande à trois niveaux de courant haut, bas et intermédiaire. Il est prévu un comparateur supplémentaire 19 représenté en pointillés sur la figure 1 afin de détecter le seuil de courant intermédiaire. La forme d'onde du courant est alors proche d'une sinusoïde.

Claims

REVENDICATIONS
1 -Procédé de pilotage d'un circuit de commande d'un dispositif d'actionnement muni d'au moins un actionneur présentant une pièce actionnée et un organe électrique de commande de déplacement de la pièce actionnée, le circuit de commande comprenant un pont, l'organe électrique de commande étant connecté dans ledit pont, le procédé comprenant les étapes consistant à : alimenter le pont produire au moins un signal de mesure représentatif de la position de la pièce actionnée - interrompre sélectivement la conduction dans au moins une branche du pont en fonction du signal de mesure pour le maintenir sensiblement dans une zone de fonctionnement définie entre un seuil bas et un seuil haut pendant un phase d'activation de l'organe électrique de commande et dans lequel : - on interrompt la conduction dans au moins une branche de façon à placer l'organe électrique de commande en court-circuit par l'intermédiaire de deux branches du pont lorsque le signal de mesure atteint au moins un seuil déterminé situé au-dessus du seuil bas.
2-Procédé selon la revendication 1 , dans lequel on place l'organe électrique de commande en court-circuit lorsque le signal de mesure atteint ou dépasse ledit seuil déterminé.
3-Procédé selon la revendication 1 ou 2, dans lequel on place l'organe électrique de commande en court-circuit lorsque le signal de mesure passe en dessous dudit seuil déterminé. 4-Procédé selon l'une des revendications précédentes, dans lequel on place l'organe électrique de commande en court-circuit lorsque le signal de mesure atteint le seuil haut. 5-Procédé selon l'une des revendications précédentes, dans lequel on place l'organe électrique de commande en court-circuit lorsque le signal de mesure passe un seuil intermédiaire situé entre le seuil haut et le seuil bas. 6-Procédé selon l'une des revendications précédentes, dans lequel on interrompt la conduction dans au moins une branche en fonction d'un signal de base de temps. 7-Procédé selon l'une des revendications précédentes, dans lequel on interrompt la conduction dans au moins une branche de façon à appliquer l'alimentation aux bornes de l'organe électrique de commande de sorte que le signal de mesure rejoigne la zone de fonctionnement lorsque le signal de mesure si situe en dessous du seuil bas et que le signal de base de temps indique une unité de temps.
8-Procédé selon l'une des revendications précédentes, dans lequel on interrompt la conduction dans au moins une branche de façon à appliquer l'alimentation aux bornes de l'organe électrique de commande de sorte que le signal de mesure rejoigne le seuil bas lorsque le signal de mesure se situe dans la zone de fonctionnement et que le signal de base de temps indique une unité de temps.
EP05815531A 2004-10-18 2005-10-18 Procede de pilotage d'un circuit de commande et dispositif d'actionnement Withdrawn EP1805404A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0411007A FR2876741B1 (fr) 2004-10-18 2004-10-18 Procede de pilotage d'un circuit de commande et dispositif d'actionnement
PCT/FR2005/050861 WO2006042998A1 (fr) 2004-10-18 2005-10-18 Procede de pilotage d'un circuit de commande et dispositif d'actionnement

Publications (1)

Publication Number Publication Date
EP1805404A1 true EP1805404A1 (fr) 2007-07-11

Family

ID=34951170

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05815531A Withdrawn EP1805404A1 (fr) 2004-10-18 2005-10-18 Procede de pilotage d'un circuit de commande et dispositif d'actionnement

Country Status (6)

Country Link
US (1) US7747376B2 (fr)
EP (1) EP1805404A1 (fr)
JP (1) JP4689676B2 (fr)
KR (1) KR20070068360A (fr)
FR (1) FR2876741B1 (fr)
WO (1) WO2006042998A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2879046B1 (fr) * 2004-12-08 2007-10-26 Renault Sas Procede de commande d'un circuit de pilotage pour des actionneurs piezostrictifs ou magnotostrictifs
DE102005007327B4 (de) * 2005-02-17 2010-06-17 Continental Automotive Gmbh Schaltungsanordnung und Verfahren zum Betreiben einer Injektoranordnung
KR101877399B1 (ko) * 2014-06-03 2018-07-12 에이피시스템 주식회사 광 조사 방법 및 장치
DE102017210503B4 (de) * 2017-06-22 2019-05-09 Continental Automotive Gmbh Notlaufverfahren zur Ansteuerung einer Kraftstoffpumpe

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE423490B (sv) * 1979-06-13 1982-05-10 Bofors Ab Anordning for att pa avstand overvaka tendfunktionen hos snabba sleckningssystem
US4395621A (en) * 1980-04-10 1983-07-26 Parker Randall W Timing control apparatus and circuit
FR2647981B1 (fr) * 1989-05-30 1991-08-16 Thomson Tubes Electroniques Dispositif d'excitation pour actionneur electromagnetique
JP2564644Y2 (ja) * 1992-04-24 1998-03-09 本田技研工業株式会社 電磁式燃料噴射弁の駆動制御装置
DE19926173A1 (de) * 1999-06-09 2000-12-21 Bosch Gmbh Robert Bustreiberschaltung für ein Zweileiter-Bussystem
FR2801346B1 (fr) 1999-11-19 2002-10-31 Renault Dispositif d'injection de carburant pour moteur a combustion interne
FR2841403B1 (fr) * 2002-06-21 2004-10-15 Renault Sa Procede de pilotage electronique d'un dispositif de commande d'un actuateur piezo-electrique ultrasonore
DE10232742A1 (de) * 2002-07-19 2004-02-05 Ina-Schaeffler Kg Treiberstufe für ein Solenoidventil
US6850394B2 (en) * 2002-08-23 2005-02-01 Cheil Electric Wiring Devices Co. Apparatus and method for determining mis-wiring in a ground fault circuit interrupter
FR2846808B1 (fr) 2002-11-04 2005-06-24 Renault Sa Dispositif d'actionnement muni d'une topologie electronique de pilotage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006042998A1 *

Also Published As

Publication number Publication date
FR2876741B1 (fr) 2007-03-02
WO2006042998A1 (fr) 2006-04-27
JP4689676B2 (ja) 2011-05-25
US7747376B2 (en) 2010-06-29
JP2008517200A (ja) 2008-05-22
US20080262696A1 (en) 2008-10-23
KR20070068360A (ko) 2007-06-29
FR2876741A1 (fr) 2006-04-21

Similar Documents

Publication Publication Date Title
FR2541379A1 (fr) Perfectionnement aux systemes d'injection a commande electromagnetique pour moteur diesel de type pression-temps ou l'aiguille de l'injecteur est pilotee par la decharge puis la charge d'une capacite
EP1248904B1 (fr) Dispositif d'injection de carburant pour moteur a combustion interne
WO1997008452A1 (fr) Dispositif d'injection de carburant du type a accumulation
EP1805404A1 (fr) Procede de pilotage d'un circuit de commande et dispositif d'actionnement
FR2481749A1 (fr) Dispositif de dosage de carburant pour moteur
EP1647693B1 (fr) Procédé de pilotage d'un circuit de commande et dispositif d'actionnement
EP1398487B1 (fr) Dispositif et procédé de commande d'injecteur piézo-électrique
EP1420468B1 (fr) Dispositif d'actionnement muni d'une topologie électronique de pilotage
EP1398489A1 (fr) Dispositif et procédé de commande d'injecteur piézo-électrique
EP1398488A1 (fr) Dispositif et procédé de commande d'injecteur piézo-électrique
FR2533263A1 (fr) Dispositif de commande d'organes electromagnetiques a actionnement rapide, tels qu'electrovannes ou injecteurs pour moteurs a combustion interne
EP0598650B1 (fr) Dispositif d'alimentation en combustible à injecteurs aérés
FR2693508A1 (fr) Procédé et dispositif de commande d'un appareil électro-magnétique, en particulier une électrovanne pour l'injection d'un moteur à combustion interne.
WO2000063553A1 (fr) Dispositif d'injection de carburant pour moteur a combustion interne
WO1998049443A1 (fr) Dispositif d'injection de carburant pour moteur a combustion interne
EP1625296B1 (fr) Procede et systeme de gestion de la regenation d'un filtre a particules et moteur a combustion interne equipe d'un tel filtre a particules
WO2010069971A1 (fr) Dispositif d'injection de carburant pour moteur a injection directe de vehicule automobile
EP1670078B1 (fr) Procédé de commande d'un circuit de pilotage pour des actionneurs piézostrictifs ou magnétostrictifs
WO2010069972A2 (fr) Dispositif d'injection de carburant pour moteur a injection directe de vehicule automobile
WO2010069973A1 (fr) Dispositif d'injection de carburant pour moteur a injection directe de vehicule automobile
FR2739142A1 (fr) Procede de controle de la richesse d'un melange air / carburant alimentant un moteur a combustion interne et dispositif correspondant
EP2078158B1 (fr) Dispositif de maintien d'une aiguille d'un injecteur de carburant, et injecteur de carburant associe
EP1828583A1 (fr) Procede de pilotage electronique d'un actionneur piezo-electrique ultrasonore
FR2929333A3 (fr) Dispositif de commande permettant un fonctionnement integre d'un systeme electrique de vehicule et de systemes d'injection de carburant a solenoide electrique et d'allumage de moteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070820

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140128