EP1805400A1 - Method and device for the control and diagnosis of an exhaust gas turbocharger - Google Patents
Method and device for the control and diagnosis of an exhaust gas turbochargerInfo
- Publication number
- EP1805400A1 EP1805400A1 EP05792105A EP05792105A EP1805400A1 EP 1805400 A1 EP1805400 A1 EP 1805400A1 EP 05792105 A EP05792105 A EP 05792105A EP 05792105 A EP05792105 A EP 05792105A EP 1805400 A1 EP1805400 A1 EP 1805400A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- turbine
- vtg
- psn
- mass flow
- tur
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000003745 diagnosis Methods 0.000 title claims abstract description 5
- 238000000034 method Methods 0.000 title claims description 17
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 39
- 230000001419 dependent effect Effects 0.000 claims description 5
- VVNCNSJFMMFHPL-VKHMYHEASA-N D-penicillamine Chemical compound CC(C)(S)[C@@H](N)C(O)=O VVNCNSJFMMFHPL-VKHMYHEASA-N 0.000 claims 2
- 229940075911 depen Drugs 0.000 claims 2
- 238000010586 diagram Methods 0.000 abstract description 6
- 239000007789 gas Substances 0.000 description 79
- 238000002485 combustion reaction Methods 0.000 description 18
- 230000001276 controlling effect Effects 0.000 description 10
- 238000005259 measurement Methods 0.000 description 8
- 239000000446 fuel Substances 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 235000008694 Humulus lupulus Nutrition 0.000 description 1
- 244000025221 Humulus lupulus Species 0.000 description 1
- 235000010678 Paulownia tomentosa Nutrition 0.000 description 1
- 240000002834 Paulownia tomentosa Species 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000003584 silencer Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/18—Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B33/00—Engines characterised by provision of pumps for charging or scavenging
- F02B33/44—Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/24—Control of the pumps by using pumps or turbines with adjustable guide vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B39/00—Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B77/00—Component parts, details or accessories, not otherwise provided for
- F02B77/08—Safety, indicating, or supervising devices
- F02B77/083—Safety, indicating, or supervising devices relating to maintenance, e.g. diagnostic device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D41/0007—Controlling intake air for control of turbo-charged or super-charged engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1445—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being related to the exhaust flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1448—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1446—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the invention relates to a method and a device for controlling and diagnosing an exhaust gas turbocharger.
- exhaust gas turbocharger are used in particular in NEN Brennkraftmaschi ⁇ and include a compressor which is mechanically coupled to a turbine.
- the turbine is arranged in an exhaust tract of the internal combustion engine and, utilizing the thermal energy of the exhaust gas, drives the compressor, which is arranged in an intake tract of the internal combustion engine.
- a particularly high efficiency have exhaust gas turbocharger whose turbine geometry is variable, that is, have an actuator for adjusting the turbine geometry, with ⁇ means of which the efficiency of the turbine can be varied.
- Exhaust gas turbochargers with variable turbine geometry are widely ver ⁇ spread in diesel internal combustion engines and can be there ein ⁇ reason of relatively low exhaust gas temperatures ein ⁇ set.
- turbochargers with variable turbine geometry are also used in gasoline internal combustion engines.
- the object of the invention is to provide a method and a Vor ⁇ direction for controlling an exhaust gas turbocharger, which or simply allows precise control of the exhaust gas turbocharger. It is a further object of the invention a method and apparatus for diagnosing an exhaust-gas turbocharger to provide ⁇ which respectively enables precise diagnosing of the turbocharger in a simple way and Wei ⁇ se.
- the invention is characterized according to its first aspect by a method and a corresponding device for controlling an exhaust gas turbocharger with a compressor and a turbine.
- the turbine is assigned to the A ⁇ provide an actuator of a turbine geometry.
- a performance characteristic value is determined as a function of a turbine output, a mass flow through the turbine and a gas temperature upstream of the turbine.
- a mass flow characteristic is determined depending on the mass flow through the turbine and the gas temperature upstream of the turbine and a downstream gas pressure downstream of the turbine.
- a setting position of the actuator for setting the turbine geometry is determined by means of a characteristic diagram.
- the adjuster position for Ein ⁇ make the turbine geometry is a control signal to the actuator Ansteu ⁇ ern determined.
- the invention is characterized according to a further aspect fer ⁇ ner by a method and a corresponding device for diagnosis of an exhaust gas turbocharger, in which depends on the whilr position for adjusting the turbine geometry a Di ⁇ agnose the exhaust gas turbocharger is performed.
- the performance characteristic may be particularly simply determined because the mass flow gleichzuset through the turbine usually zen ⁇ is connected to the mass flow, the wing flows of an internal combustion engine after the combustion of the air / fuel mixture of the cylinders in an exhaust ⁇ .
- the mass flow is correlated by the turbine with a metered into the cylinder of the internal combustion engine, gas mass and the metered fuel mass, of which at least a desired Gasmas ⁇ senstrom in the cylinders of the internal combustion engine and a ge ⁇ desired fuel mass for controlling the internal ⁇ combustion engine already known ,
- the power parameter is determined as a function of the turbine power divided by the mass flow through the turbine and divi ⁇ diert by the gas temperature upstream of the turbine.
- the mass flow characteristic is determined depending on the Turbi ⁇ nenée multiplied by the square root of the gas Tempe ⁇ temperature upstream of the turbine and divided by the stro- mabissertigen gas pressure.
- the map, with ⁇ means of which provide an actuator position of the actuator for Ein ⁇ the turbine geometry is determined, particularly a ⁇ fold and be precisely determined.
- the map has as inputs the performance index and the mass flow characteristic. This is based on the surprising Detects ⁇ nis basis that a sufficiently precise determination in the relevant adjuster position is also independent of a Turbinen ⁇ speed possible. This has the consequence that for the Kenn ⁇ field from which the actuator position of the actuator is determined, a significantly lower storage space is required, as if in addition an input variable is the turbine speed. Furthermore, as well as the computational effort for interpolation between bases of the map is significantly reduced due to the smaller dimension of the map.
- the power characteristic is transformed in such a way that characteristic map points of the same transformed power characteristics in essentially the same values are assigned to the actuator position.
- the setting position for setting the turbine geometry is determined depending on the transformed performance characteristics.
- an upstream gas pressure which prevails upstream of the turbine, is determined by means of a further characteristic diagram and depending on the downstream gas pressure.
- the upstream gas pressure can be determined without additional benö ⁇ preferential measurement variables, which then advantageously be ⁇ sets may be for correcting a volume of machinessgra ⁇ .
- a control signal for setting a position of a blow-off valve is determined depending on the position of the actuator for the variable turbine geometry. In this way, in an existing blow-off valve in a bypass duct to the turbine of the exhaust gas turbocharger, the operating range of the exhaust gas turbocharger can be easily further extended.
- FIG. 1 shows an internal combustion engine with an exhaust gas turbocharger and a control device
- FIG. 2 is a flow chart of a program for controlling and / or diagnosing the exhaust gas turbocharger.
- FIG. 3 shows a first characteristic diagram and FIG. 4 shows a second characteristic diagram.
- An internal combustion engine (FIG. 1) comprises an intake tract 1, an engine block 2, a cylinder head 3 and an exhaust tract
- the intake tract 1 preferably comprises a throttle valve
- the engine block 2 furthermore a collector 6 and a suction pipe 7, which leads to a cylinder Z 1 via an inlet channel into the engine block 2.
- the engine block 2 further comprises a crankshaft 8, which is coupled via a connecting rod 10 with the piston 11 of the Zylin ⁇ DERS Zl.
- the cylinder head 3 includes a valve actuator with a gas ⁇ inlet valve 12, a gas outlet 13 and Ventilantrie ⁇ ben 14, 15th
- a camshaft is provided which acts on the gas inlet valve 12 and the gas outlet valve 13 via cams.
- the cylinder head 3 further comprises an injection valve 32 and a spark plug 34.
- the injection valve 32 may also be arranged in the intake pipe 7.
- the spark plug 34 may also be dispensed with in the case of a combustion process with autoignition of the mixture.
- the exhaust tract 1 and the exhaust tract 4 an exhaust ⁇ turbocharger assigned.
- the exhaust gas turbocharger comprises a Turbi ⁇ ne 18 that is mechanically coupled to a compressor 20th
- the turbine 18 is arranged in the exhaust tract 4 and converts the thermal energy of the exhaust gas into mechanical energy and thus drives the turbine 20, which is arranged in the intake tract 1.
- the exhaust gas turbocharger thus couples the intake tract 1 thermomechanically with the exhaust gas tract 4.
- the compressor 20 is preferably arranged upstream of the throttle valve 5 in the intake tract 1. However, it can also be arranged downstream of the throttle ⁇ flap 5.
- the turbine 18 has a variable turbine geometry.
- the exhaust gas turbocharger may take a bypass channel 24 um ⁇ , the ge parallel to the turbine 18 in the exhaust tract 4 ⁇ leads is.
- a blow-off valve 26 is arranged on ⁇ .
- a catalytic converter 28 and, as a rule, a silencer are also preferably arranged.
- the exhaust-gas turbocharger in the intake tract 1 downstream of the compressor 20 preferably also comprises an intercooler 30.
- a control device 36 is provided, which are assigned sensors which detect different measurement variables and each ⁇ wells determine the value of the measurand.
- the control device 36 determines dependent on at least one of the measured variables manipulated variables, which are then converted into one or more actuating signals for controlling the actuators by means of corresponding actuators.
- the control device 36 can also be referred to as a device for controlling the internal combustion engine.
- the sensors are a pedal position sensor 38, which detects an accelerator pedal position of an accelerator pedal 40, a Heilmassen ⁇ sensor 42 which detects an air mass flow upstream of the throttle valve 5, a throttle position sensor 44 which detects an opening degree of the throttle valve 5, a first temperature sensor 46 which an intake air Temperature detected downstream of the compressor 20, a Saugrohr horrsen- sensor 48, which detects an intake manifold pressure in the collector 6, a crankshaft angle sensor 50, which detects a Kurbelwellen ⁇ angle to which then a rotational speed N of the crankshaft 8 to ⁇ ordered.
- a second temperature sensor 52 detects a gas temperature T3 upstream of the turbine 18 in the exhaust ⁇ tract 4.
- an exhaust gas probe 54 is preferably provided, which detects a residual oxygen content of the exhaust gas and de ⁇ ren measurement signal is characteristic of the air / fuel ratio in the cylinder zl.
- any desired quantity of said sensors may be present, or additional sensors may also be present.
- the actuators are, for example, the throttle valve, the gas inlet and gas outlet valves 12, 13, the adjustable blade of the turbine 18 or the spark plug 34 or the injection valve ⁇ 32nd
- cylinders Z2 to Z4 are preferably also provided, to which corresponding actuators and, if appropriate, sensors are then assigned.
- a gas pressure P3 upstream of the turbine 18 and a gas pressure P4 downstream of the turbine 18 an adjuster position PSN_VTG of the actuator 22 for adjusting the Turbinengeo ⁇ geometry, a Turbine speed N_TUR and a on the Gas ⁇ pressure P3 upstream of the turbine 18 related mass flow characteristic MF_KW_P3 or a turbine efficiency ETA_TUR are ⁇ represent are based on individual measurement points. These maps are determined by the manufacturer by suitable measurements.
- the turbine efficiency ETA_TUR summarizes an isentropic ⁇ response of the turbine 18, and a mechanical efficiency of the turbocharger together.
- the upstream to the gas pressure P3 ⁇ Windumble the turbine 18 based mass flow characteristic MF_KW_P3 is given by the following relationship:
- a turbine power P_TUR is given by the following relationship:
- ETA_TUR denotes a difference in entalpha given by KI
- C_P_TUR denotes the specific heat capacity at constant pressure and is usually fixed
- K denotes the adiabatic exponent, which is also preferably fixed.
- PSN_VTG denotes an actuator position of the actuator 22 for adjusting the turbine geometry.
- the turbine efficiency ETA_TUR can be regularly determined from engine-specified maps depending on the pressure ratio PQ of the upstream pressure P3 and the downstream pressure of the turbine P4 and the turbine speed N_TUR and the actuator position PSN_VTG.
- the right-hand side of equation F5 is known for controlling or diagnosing the exhaust gas turbocharger.
- the power turbines ⁇ P_TUR is predetermined as a nominal value by a corresponding physika ⁇ metallic model of the compressor.
- Such Mo ⁇ is disclosed dell 102 13 529 Cl in the DE, the content of which is incorporated ⁇ this respect.
- the power factor P_KW is then subjected to a mathematical transformation, which is preferably given by the following equation:
- TRANS_KW1, TRANS_KW, TRANS_KW3 designates first to third transformation characteristic values that can be suitably predefined in such a way that the same transformed performance characteristics P_KW_TRANS are essentially assigned the same values of the actuator position PSN_VTG.
- a characteristic field KF_PSN_VTG exemplified for exemplary whilr ⁇ Posi tions PSN_VTG1 to PSN_VTG5.
- the characteristic map KF_PSN_VTG according to FIG. 3 is shown for measurement data records which have been assigned numerically from the corresponding characteristic diagrams of the respective manufacturer of the exhaust gas turbocharger.
- To save the map KF_PSN_VTG in a data memory of the control device 36 are determined, for example, by interpolation between the respective setting positions PSN_VTG1 to PSN_VTG5 Kennfeldstütz ⁇ points for crossing points of the dashed lines of Figure 3 and stored in the data memory of the control device 36.
- the map KF_PSN_VTG now stored in the data memory for the operation of the exhaust gas turbocharger then has a relatively small storage space requirement.
- map KF_PQ is the pressure ratio PQ.
- the respective actuator position PSN_VTG and the gas pressure P3 upstream of the turbine 18 can then be determined in the control device. This is done by means of the program, which is explained in more detail with reference to the Ab ⁇ flow chart of Figure 2.
- the program is inserted ist ⁇ in a program memory of the controller 36 and is processed ervorides 36 during operation of the turbine 18 in the STEU ⁇ .
- the program is started in a step S1 and although be ⁇ preferably close to a start of the internal combustion engine.
- step S2 the performance index P_KW depending on the turbine power P_TUR, the mass flow through the turbine MF_TUR 18 and the gas temperature T3 is determined upstream of the door ⁇ bine. This is preferably done according to the rela ⁇ hung F5.
- the downstream gas pressure P4 is determined as a function of an ambient pressure P_AMB and a dynamic pressure.
- the ambient pressure p_AMB can be determined very easily depending on the measurement signal of the intake manifold pressure sensor 48 ⁇ to when the compressor 20, the air sucked almost not compressed and a pressure drop across the throttle valve 5 ver ⁇ is negligible. However, it may also be by means of a geeigne ⁇ th pressure sensor and are detected although a suitably arranged pressure sensors ⁇ .
- the back pressure can easily be determined by means of ei ⁇ nes model, which depends on the mass flow through the turbine 18 and MF_TUR is essentially predetermined by the geometry of the catalyst 28 and the Schalldämp ⁇ fers.
- the mass flow characteristic MF_KW is subsequently determined as a function of the mass flow MF_TUR by the turbine 18, the gas temperature T3 upstream of the turbine 18 and the downstream gas pressure P4. This is preferably done by means of the relationship F7, the relevant part of which is also shown in step S6.
- the transformed power characteristic value P_KW_TRANS is determined by means of the relationship given by the relationship F8.
- step S the adjuster position PSN_VTG is then dependent on the map KF_PSN_VTG to the input ⁇ sizes of the transformed performance index P_KW_TRANS and the mass flow characteristic value MF_KW determined.
- a step S20 may be provided for steps S16 and / or S18 in which a diagnosis of the exhaust gas turbocharger is dependent on the actuator position PSN_VTG determined in step S10 and at least one suitably selected threshold value THD_PSN of the actuator position and / or dependent from the upstream gas pressure P3 and at least a threshold value THD_P3 of the upstream gas pressure appropriately set.
- the program remains in a step S22 for a given waiting period or until the expiration of a predefinable crank angle, before the processing is continued again in step S2 with re-initialized variables.
- the transformation in step S8 may also be dispensed with.
- the feasiblesgrö ⁇ is then KISSING of the map KF_PSN_VTG to determine the adjuster position PSN_VTG instead of the transformed performance index P_KW_TRANS the performance index P_KW.
- the turbine power P_TUR, the mass flow MF_TUR through the turbine 18 and the downstream gas pressure P4 are preferably target values.
- the positioner PSN_VTG is also preferably a nominal value.
- pilot control of the turbine 18 is achieved.
- a control can also be provided.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supercharger (AREA)
Abstract
The invention relates to an exhaust gas turbocharger which comprises a compressor (20) and a turbine (18) having an adjusting drive (22) for adjusting a turbine geometry. A performance characteristic (P_KW) is determined depending on a turbine output (P_TUR), a mass flow (MF_TUR) through the turbine (18) and a gas temperature (T3) upstream of the turbine (18). A mass flow characteristic (MF_KW) is determined depending on the mass flow (MF_TUR) through the turbine (18) and the gas temperature (T3) upstream of the turbine (18) and a gas pressure (P4) downstream of the turbine (18). Depending on the performance characteristic (P_KW) and the mass flow characteristic (MF_KW), an adjuster position (PSN_VTG) of the adjusting drive (22) for adjusting the turbine geometry is determined using a characteristic diagram (KF_PSN_VTG). For control, an adjusting signal (SSG_VTG) for controlling the adjusting drive is determined depending on the adjuster position (PSN_VTG) for adjusting the turbine geometry. For diagnosis of the exhaust gas turbocharger, the exhaust gas turbocharger is diagnosed depending on the adjuster position (PSN_VTG).
Description
Beschreibungdescription
Verfahren und Vorrichtung zum Steuern und zum Diagnostizieren eines AbgasturboladersMethod and device for controlling and diagnosing an exhaust gas turbocharger
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Steuern und zum Diagnostizieren eines Abgasturboladers. Abgas¬ turbolader werden insbesondere eingesetzt in Brennkraftmaschi¬ nen und umfassen einen Verdichter, der mechanisch mit einer Turbine gekoppelt ist. Die Turbine ist in einem Abgastrakt der Brennkraftmaschine angeordnet und treibt unter Ausnutzung der thermischen Energie des Abgases den Verdichter an, der in ei¬ nem Ansaugtrakt der Brennkraftmaschine angeordnet ist.The invention relates to a method and a device for controlling and diagnosing an exhaust gas turbocharger. ¬ exhaust gas turbocharger are used in particular in NEN Brennkraftmaschi¬ and include a compressor which is mechanically coupled to a turbine. The turbine is arranged in an exhaust tract of the internal combustion engine and, utilizing the thermal energy of the exhaust gas, drives the compressor, which is arranged in an intake tract of the internal combustion engine.
Durch einen geeigneten Einsatz des Abgasturboladers kann bei einem vorgegebenen Bauvolumen der Brennkraftmaschine deren Leistungsabgabe erhöht werden. Ferner kann unter anderem auf¬ grund des geringeren Gewichts pro Leistungseinheit der Wir¬ kungsgrad der Brennkraftmaschine mittels des Abgasturboladers erhöht sein.By a suitable use of the exhaust gas turbocharger, its power output can be increased for a given volume of construction of the internal combustion engine. Further, among other auf¬ due to the lower weight per unit of power We ¬ ciency be increased by means of the exhaust turbocharger of the internal combustion engine.
Einen besonders hohen Wirkungsgrad weisen Abgasturbolader auf, deren Turbinengeometrie variabel ist, das heißt die einen Stellantrieb zum Einstellen der Turbinengeometrie haben, mit¬ tels dessen der Wirkungsgrad der Turbine variiert werden kann. Abgasturbolader mit variabler Turbinengeometrie sind weit ver¬ breitet bei Diesel-Brennkraftmaschinen und können dort auf¬ grund der relativ niedrigen Abgastemperaturen problemlos ein¬ gesetzt werden. Zunehmend werden Abgasturbolader mit variabler Turbinengeometrie auch in Benzin-Brennkraftmaschinen einge¬ setzt.
Die Aufgabe der Erfindung ist es, ein Verfahren und eine Vor¬ richtung zum Steuern eines Abgasturboladers zu schaffen, das beziehungsweise die ein präzises Steuern des Abgasturboladers einfach ermöglicht. Ferner ist es die Aufgabe der Erfindung ein Verfahren und eine Vorrichtung zur Diagnose eines Abgas¬ turboladers zu schaffen, das beziehungsweise die ein präzises Diagnostizieren des Abgasturboladers auf einfache Art und Wei¬ se ermöglicht.A particularly high efficiency have exhaust gas turbocharger whose turbine geometry is variable, that is, have an actuator for adjusting the turbine geometry, with ¬ means of which the efficiency of the turbine can be varied. Exhaust gas turbochargers with variable turbine geometry are widely ver ¬ spread in diesel internal combustion engines and can be there ein¬ reason of relatively low exhaust gas temperatures ein¬ set. Increasingly, turbochargers with variable turbine geometry are also used in gasoline internal combustion engines. The object of the invention is to provide a method and a Vor¬ direction for controlling an exhaust gas turbocharger, which or simply allows precise control of the exhaust gas turbocharger. It is a further object of the invention a method and apparatus for diagnosing an exhaust-gas turbocharger to provide ¬ which respectively enables precise diagnosing of the turbocharger in a simple way and Wei ¬ se.
Die Aufgabe wird gelöst durch die Merkmale der unabhängigen Patentansprüche. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.The object is solved by the features of the independent claims. Advantageous embodiments of the invention are characterized in the subclaims.
Die Erfindung zeichnet sich gemäß ihres ersten Aspekts aus durch ein Verfahren und eine entsprechende Vorrichtung zum Steuern eines Abgasturboladers mit einem Verdichter und einer Turbine. Der Turbine ist ein Stellantrieb zugeordnet zum Ein¬ stellen einer Turbinengeometrie. Ein Leistungskennwert wird ermittelt abhängig von einer Turbinenleistung, einem Massen¬ strom durch die Turbine und einer Gastemperatur stromaufwärts der Turbine. Ein Massenstromkennwert wird ermittelt abhängig von dem Massenstrom durch die Turbine und der Gastemperatur stromaufwärts der Turbine und einem stromabwärtigen Gasdruck stromabwärts der Turbine. Abhängig von dem Leistungskennwert und dem Massenstromkennwert wird mittels eines Kennfeldes eine Stellerposition des Stellantriebs zum Einstellen der Turbinen¬ geometrie ermittelt. Abhängig von der Stellerposition zum Ein¬ stellen der Turbinengeometrie wird ein Stellsignal zum Ansteu¬ ern des Stellantriebs ermittelt.The invention is characterized according to its first aspect by a method and a corresponding device for controlling an exhaust gas turbocharger with a compressor and a turbine. The turbine is assigned to the A ¬ provide an actuator of a turbine geometry. A performance characteristic value is determined as a function of a turbine output, a mass flow through the turbine and a gas temperature upstream of the turbine. A mass flow characteristic is determined depending on the mass flow through the turbine and the gas temperature upstream of the turbine and a downstream gas pressure downstream of the turbine. Depending on the performance characteristic and the mass flow characteristic value, a setting position of the actuator for setting the turbine geometry is determined by means of a characteristic diagram. Depending on the adjuster position for Ein¬ make the turbine geometry is a control signal to the actuator Ansteu ¬ ern determined.
Die Erfindung zeichnet sich gemäß eines weiteren Aspekts fer¬ ner aus durch ein Verfahren und eine entsprechende Vorrichtung zur Diagnose eines Abgasturboladers, bei dem abhängig von der
Stellerposition zum Einstellen der Turbinengeometrie eine Di¬ agnose des Abgasturboladers durchgeführt wird.The invention is characterized according to a further aspect fer ¬ ner by a method and a corresponding device for diagnosis of an exhaust gas turbocharger, in which depends on the Steller position for adjusting the turbine geometry a Di¬ agnose the exhaust gas turbocharger is performed.
Der Leistungskennwert kann besonders einfach ermittelt werden, da der Massenstrom durch die Turbine in der Regel gleichzuset¬ zen ist mit dem Massenstrom, der nach der Verbrennung des Luft/Kraftstoff-Gemisches aus den Zylindern in einem Abgas¬ trakt einer Brennkraftmaschine strömt. Somit korreliert der Massenstrom durch die Turbine mit einer in die Zylinder der Brennkraftmaschine zugemessenen Gasmasse und der zugemessenen Kraftstoffmasse, von denen zumindest ein gewünschter Gasmas¬ senstrom in die Zylinder der Brennkraftmaschine und eine ge¬ wünschte zuzumessende Kraftstoffmasse zum Steuern der Brenn¬ kraftmaschine ohnehin bekannt sind.The performance characteristic may be particularly simply determined because the mass flow gleichzuset through the turbine usually zen ¬ is connected to the mass flow, the wing flows of an internal combustion engine after the combustion of the air / fuel mixture of the cylinders in an exhaust ¬. Thus, the mass flow is correlated by the turbine with a metered into the cylinder of the internal combustion engine, gas mass and the metered fuel mass, of which at least a desired Gasmas ¬ senstrom in the cylinders of the internal combustion engine and a ge ¬ desired fuel mass for controlling the internal ¬ combustion engine already known ,
Die Gastemperatur stromaufwärts der Turbine kann entweder mit¬ tels eines geeigneten Temperatursensors direkt erfasst werden oder auch einfach mittels eines physikalischen Abgastempera¬ turmodells unter anderem abhängig von der zugemessenen Kraft¬ stoffmasse und/oder dem Gasmassenstrom in die Zylinder ermit¬ telt werden. Die Turbinenleistung kann einfach je nach Be¬ triebspunkt der Brennkraftmaschine vorgegeben werden. Der Gas¬ druck stromabwärts der Turbine kann mittels eines geeigneten Drucksensors direkt erfasst werden oder auch einfach ohne zu¬ sätzlichen Drucksensor von einem Umgebungsdruck und einem Staudruck in dem Abgastrakt der Brennkraftmaschine abgeschätzt werden, wobei der Staudruck abhängt von dem Massenstrom durch die Turbine.The gas temperature upstream of the turbine can either be detected directly by means of a suitable temperature sensor or simply determined by means of a physical exhaust gas temperature model inter alia as a function of the metered fuel mass and / or the gas mass flow into the cylinders. The turbine power can simply be specified depending on the operating point of the internal combustion engine. The gas pressure ¬ downstream of the turbine can be detected directly by means of a suitable pressure sensor or simply be estimated without zu ¬ additional pressure sensor of an ambient pressure and a back pressure in the exhaust system of the engine, the back pressure depends on the mass flow through the turbine.
Die Zuordnung zwischen der jeweiligen Stellerpositionen des Stellantriebs zum Einstellen der Turbinengeometrie, des Leis¬ tungskennwertes und des Massenstromkennwertes kann einfach aus Kennfeldern abgeleitet werden, die regelmäßig von dem Herstel-
ler des Abgasturboladers durch entsprechende Messungen ermit¬ telt wurden und somit ohne weiteres zur Verfügung stehen.The association between the respective actuator positions of the actuator for adjusting the turbine geometry, Leis ¬ tung characteristic value and the mass flow characteristic value can be easily derived from maps, which regularly from the manufacturer ler of the turbocharger by appropriate measurements ermit ¬ were telt and thus are readily available.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung wird der Leistungskennwert ermittelt abhängig von der Turbinenleistung dividiert durch den Massenstrom durch die Turbine und divi¬ diert durch die Gastemperatur stromaufwärts der Turbine.According to an advantageous embodiment of the invention, the power parameter is determined as a function of the turbine power divided by the mass flow through the turbine and divi¬ diert by the gas temperature upstream of the turbine.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung wird der Massenstromkennwert ermittelt abhängig von der Turbi¬ nenleistung, multipliziert mit der Quadratwurzel der Gastempe¬ ratur stromaufwärts der Turbine und dividiert durch den stro- mabwärtigen Gasdruck. Auf diese Weise kann das Kennfeld, mit¬ tels dessen eine Stellerposition des Stellantriebs zum Ein¬ stellen der Turbinengeometrie ermittelt wird, besonders ein¬ fach und präzise ermittelt werden.According to a further advantageous embodiment of the invention, the mass flow characteristic is determined depending on the Turbi ¬ nenleistung multiplied by the square root of the gas Tempe ¬ temperature upstream of the turbine and divided by the stro- mabwärtigen gas pressure. In this manner, the map, with ¬ means of which provide an actuator position of the actuator for Ein¬ the turbine geometry is determined, particularly a ¬ fold and be precisely determined.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung hat das Kennfeld als Eingangsgrößen den Leistungskennwert und den Massenstromkennwert. Dem liegt die überraschende Erkennt¬ nis zugrunde, dass ein hinreichend präzises Ermitteln in der jeweiligen Stellerposition auch unabhängig von einer Turbinen¬ drehzahl möglich ist. Dies hat zur Folge, dass für das Kenn¬ feld, aus dem die Stellerposition des Stellantriebs ermittelt wird, ein erheblich geringerer Speicherplatz benötigt wird, als wenn zusätzlich eine Eingangsgröße die Turbinendrehzahl ist. Ferner wird so auch der Rechenaufwand zum Interpolieren zwischen Stützpunkten des Kennfeldes aufgrund der geringeren Dimension des Kennfeldes erheblich verringert.According to a further advantageous embodiment of the invention, the map has as inputs the performance index and the mass flow characteristic. This is based on the surprising Detects ¬ nis basis that a sufficiently precise determination in the relevant adjuster position is also independent of a Turbinen¬ speed possible. This has the consequence that for the Kenn¬ field from which the actuator position of the actuator is determined, a significantly lower storage space is required, as if in addition an input variable is the turbine speed. Furthermore, as well as the computational effort for interpolation between bases of the map is significantly reduced due to the smaller dimension of the map.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung wird der Leistungskennwert transformiert und zwar derart, dass Kennfeldpunkten gleicher transformierter Leistungskennwerte im
wesentlichen die gleichen Werte der Stellerposition zugeordnet sind. Die Stellposition zum Einstellen der Turbinengeometrie wird abhängig von den transformierten Leistungskennwerten er¬ mittelt. Dies hat den Vorteil, dass ansteuerbare Betriebspunk¬ te der Turbine so günstiger verteilt sind über das Kennfeld zum Ermitteln der Stellerposition mit der Folge, dass bei gleichem Speicherplatzbedarf ein präziseres Steuern und auch Diagnostizieren des Abgasturboladers möglich ist.According to a further advantageous embodiment of the invention, the power characteristic is transformed in such a way that characteristic map points of the same transformed power characteristics in essentially the same values are assigned to the actuator position. The setting position for setting the turbine geometry is determined depending on the transformed performance characteristics. This has the advantage that controllable operating punk ¬ te of the turbine are distributed so effective on the map for determining the actuator position, with the result that with the same memory requirements and a more accurate control also diagnosing the exhaust gas turbocharger is possible.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung wird abhängig von der Stellerposition und dem Massenstromkenn- wert mittels eines weiteren Kennfeldes und abhängig von dem stromabwärtigen Gasdruck ein stromaufwärtiger Gasdruck ermit¬ telt, der stromaufwärts der Turbine herrscht. Auf diese Weise kann auch der stromaufwärtige Gasdruck ohne zusätzlich benö¬ tigte Messgrößen ermittelt werden, der dann vorteilhaft einge¬ setzt werden kann zum Korrigieren eines Volumen Wirkungsgra¬ des .According to a further advantageous embodiment of the invention, depending on the actuator position and the mass flow characteristic value, an upstream gas pressure, which prevails upstream of the turbine, is determined by means of a further characteristic diagram and depending on the downstream gas pressure. In this way, the upstream gas pressure can be determined without additional benö¬ preferential measurement variables, which then advantageously be ¬ sets may be for correcting a volume of Wirkungsgra¬.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung wird abhängig von der Stellerposition für die variable Turbi¬ nengeometrie ein Stellsignal zum Einstellen einer Stellung ei¬ nes Abblaseventils ermittelt. Auf diese Weise kann bei einem vorhandenen Abblaseventil in einem Bypasskanal zu der Turbine des Abgasturboladers der Betriebsbereich des Abgasturboladers einfach weiter erweitert werden.According to a further advantageous embodiment of the invention, depending on the position of the actuator for the variable turbine geometry, a control signal for setting a position of a blow-off valve is determined. In this way, in an existing blow-off valve in a bypass duct to the turbine of the exhaust gas turbocharger, the operating range of the exhaust gas turbocharger can be easily further extended.
Ausführungsbeispiele der Erfindung sind im folgenden anhand der schematischen Zeichnungen erläutert. Es zeigen:Embodiments of the invention are explained below with reference to the schematic drawings. Show it:
Figur 1 eine Brennkraftmaschine mit einem Abgasturbolader und einer Steuervorrichtung,
Figur 2 ein Ablaufdiagramm eines Programms zum Steuern und/oder Diagnostizieren des Abgasturboladers,1 shows an internal combustion engine with an exhaust gas turbocharger and a control device, FIG. 2 is a flow chart of a program for controlling and / or diagnosing the exhaust gas turbocharger.
Figur 3 ein erstes Kennfeld und Figur 4 ein zweites Kennfeld.3 shows a first characteristic diagram and FIG. 4 shows a second characteristic diagram.
Elemente gleicher Konstruktion oder Funktion sind figurenüber¬ greifend mit den gleichen Bezugszeichen gekennzeichnet.Elements of the same construction or function are cross-figured across the same reference numerals.
Eine Brennkraftmaschine (Figur 1) umfasst einen Ansaugtrakt 1, einen Motorblock 2, einen Zylinderkopf 3 und einen AbgastraktAn internal combustion engine (FIG. 1) comprises an intake tract 1, an engine block 2, a cylinder head 3 and an exhaust tract
4. Der Ansaugtrakt 1 umfasst vorzugsweise eine Drosselklappe4. The intake tract 1 preferably comprises a throttle valve
5, ferner einen Sammler 6 und ein Saugrohr 7, das hin zu einem Zylinder Zl über einen Einlasskanal in den Motorblock 2 ge¬ führt ist. Der Motorblock 2 umfasst ferner eine Kurbelwelle 8, welche über eine Pleuelstange 10 mit dem Kolben 11 des Zylin¬ ders Zl gekoppelt ist.5, furthermore a collector 6 and a suction pipe 7, which leads to a cylinder Z 1 via an inlet channel into the engine block 2. The engine block 2 further comprises a crankshaft 8, which is coupled via a connecting rod 10 with the piston 11 of the Zylin ¬ DERS Zl.
Der Zylinderkopf 3 umfasst einen Ventilantrieb mit einem Gas¬ einlassventil 12, einem Gasauslassventil 13 und Ventilantrie¬ ben 14, 15.The cylinder head 3 includes a valve actuator with a gas ¬ inlet valve 12, a gas outlet 13 and Ventilantrie ¬ ben 14, 15th
Bevorzugt ist eine Nockenwelle vorgesehen, die über Nocken auf das Gaseinlassventil 12 und das Gasauslassventil 13 einwirkt. Der Zylinderkopf 3 umfasst ferner ein Einspritzventil 32 und eine Zündkerze 34. Alternativ kann das Einspritzventil 32 auch in dem Saugrohr 7 angeordnet sein. Ferner kann auch auf die Zündkerze 34 im Falle eines Brennverfahrens mit Selbstzündung des Gemisches verzichtet sein.Preferably, a camshaft is provided which acts on the gas inlet valve 12 and the gas outlet valve 13 via cams. The cylinder head 3 further comprises an injection valve 32 and a spark plug 34. Alternatively, the injection valve 32 may also be arranged in the intake pipe 7. Furthermore, the spark plug 34 may also be dispensed with in the case of a combustion process with autoignition of the mixture.
Ferner ist dem Ansaugtrakt 1 und dem Abgastrakt 4 ein Abgas¬ turbolader zugeordnet. Der Abgasturbolader umfasst eine Turbi¬ ne 18, die mechanisch gekoppelt ist mit einem Verdichter 20.
Die Turbine 18 ist in dem Abgastrakt 4 angeordnet und wandelt die thermische Energie des Abgases in mechanische Energie um und treibt so die Turbine 20 an, welche in dem Ansaugtrakt 1 angeordnet ist. Der Abgasturbolader koppelt so den Ansaugtrakt 1 thermomechanisch mit dem Abgastrakt 4. Der Verdichter 20 ist bevorzugt stromaufwärts der Drosselklappe 5 in dem Ansaugtrakt 1 angeordnet. Er kann jedoch auch stromabwärts der Drossel¬ klappe 5 angeordnet sein. Die Turbine 18 hat eine variable Turbinengeometrie. Dazu ist der Turbine 18 ein Stellantrieb 22 zum Einstellen der Turbinengeometrie zugeordnet, mittels des¬ sen Schaufeln der Turbine 18 oder Teile der Schaufeln ver¬ stellt werden können mit der Folge einer Veränderung des je¬ weiligen Wirkungsgrades der Turbine 18.Furthermore, the exhaust tract 1 and the exhaust tract 4, an exhaust ¬ turbocharger assigned. The exhaust gas turbocharger comprises a Turbi ¬ ne 18 that is mechanically coupled to a compressor 20th The turbine 18 is arranged in the exhaust tract 4 and converts the thermal energy of the exhaust gas into mechanical energy and thus drives the turbine 20, which is arranged in the intake tract 1. The exhaust gas turbocharger thus couples the intake tract 1 thermomechanically with the exhaust gas tract 4. The compressor 20 is preferably arranged upstream of the throttle valve 5 in the intake tract 1. However, it can also be arranged downstream of the throttle ¬ flap 5. The turbine 18 has a variable turbine geometry. For this purpose, the turbine 18 is associated with an actuator 22 for adjusting the turbine geometry, by means of the ¬ sen blades of the turbine 18 or parts of the blades provides ver¬ can be the result of a change of the je¬ weiligen efficiency of the turbine 18th
Zusätzlich kann der Abgasturbolader einen Bypasskanal 24 um¬ fassen, der parallel zu der Turbine 18 in dem Abgastrakt 4 ge¬ führt ist. In dem Bypasskanal 24 ist ein Abblaseventil 26 an¬ geordnet.In addition, the exhaust gas turbocharger, may take a bypass channel 24 um¬, the ge parallel to the turbine 18 in the exhaust tract 4 ¬ leads is. In the bypass channel 24, a blow-off valve 26 is arranged on ¬ .
In dem Abgastrakt 4 sind ferner bevorzugt ein Katalysator 28 und in der Regel auch ein Schalldämpfer angeordnet.In the exhaust tract 4, a catalytic converter 28 and, as a rule, a silencer are also preferably arranged.
Bevorzugt umfasst der Abgasturbolader in dem Ansaugtrakt 1 stromabwärts des Verdichters 20 noch einen Ladeluftkühler 30.The exhaust-gas turbocharger in the intake tract 1 downstream of the compressor 20 preferably also comprises an intercooler 30.
Ferner ist eine Steuervorrichtung 36 vorgesehen, der Sensoren zugeordnet sind, die verschiedene Messgrößen erfassen und je¬ weils den Wert der Messgröße ermitteln. Die Steuervorrichtung 36 ermittelt abhängig von mindestens einer der Messgrößen Stellgrößen, die dann in ein oder mehrere Stellsignale zum Steuern der Stellglieder mittels entsprechender Stellantriebe umgesetzt werden. Die Steuervorrichtung 36 kann auch als Vor¬ richtung zum Steuern der Brennkraftmaschine bezeichnet werden.
Die Sensoren sind ein Pedalstellungsgeber 38, welcher eine Fahrpedalstellung eines Fahrpedals 40 erfasst, ein Luftmassen¬ sensor 42, welcher einen Luftmassenstrom stromaufwärts der Drosselklappe 5 erfasst, ein Drosselklappenstellungssensor 44, welcher einen Öffnungsgrad der Drosselklappe 5 erfasst, ein erster Temperatursensor 46, welcher eine Ansaugluft-Temperatur stromabwärts des Verdichters 20 erfasst, ein Saugrohrdrucksen- sor 48, welcher einen Saugrohrdruck in dem Sammler 6 erfasst, ein Kurbelwellenwinkelsensor 50, welcher einen Kurbelwellen¬ winkel erfasst, dem dann eine Drehzahl N der Kurbelwelle 8 zu¬ geordnet wird. Ein zweiter Temperatursensor 52 erfasst eine Gastemperatur T3 stromaufwärts der Turbine 18 in dem Abgas¬ trakt 4. Ferner ist bevorzugt eine Abgassonde 54 vorgesehen, welche einen Restsauerstoffgehalt des Abgases erfasst und de¬ ren Messsignal charakteristisch ist für das Luft/Kraftstoff- Verhältnis in dem Zylinder Zl.Further, a control device 36 is provided, which are assigned sensors which detect different measurement variables and each ¬ weils determine the value of the measurand. The control device 36 determines dependent on at least one of the measured variables manipulated variables, which are then converted into one or more actuating signals for controlling the actuators by means of corresponding actuators. The control device 36 can also be referred to as a device for controlling the internal combustion engine. The sensors are a pedal position sensor 38, which detects an accelerator pedal position of an accelerator pedal 40, a Luftmassen¬ sensor 42 which detects an air mass flow upstream of the throttle valve 5, a throttle position sensor 44 which detects an opening degree of the throttle valve 5, a first temperature sensor 46 which an intake air Temperature detected downstream of the compressor 20, a Saugrohrdrucksen- sensor 48, which detects an intake manifold pressure in the collector 6, a crankshaft angle sensor 50, which detects a Kurbelwellen¬ angle to which then a rotational speed N of the crankshaft 8 to ¬ ordered. A second temperature sensor 52 detects a gas temperature T3 upstream of the turbine 18 in the exhaust ¬ tract 4. Furthermore, an exhaust gas probe 54 is preferably provided, which detects a residual oxygen content of the exhaust gas and de ¬ ren measurement signal is characteristic of the air / fuel ratio in the cylinder zl.
Je nach Ausführungsform der Erfindung kann eine beliebige Un¬ termenge der genannten Sensoren vorhanden sein oder es können auch zusätzliche Sensoren vorhanden sein.Depending on the embodiment of the invention, any desired quantity of said sensors may be present, or additional sensors may also be present.
Die Stellglieder sind beispielsweise die Drosselklappe, die Gaseinlass- und Gasauslassventile 12, 13, die verstellbare Schaufel der Turbine 18 oder die Zündkerze 34 oder das Ein¬ spritzventil 32.The actuators are, for example, the throttle valve, the gas inlet and gas outlet valves 12, 13, the adjustable blade of the turbine 18 or the spark plug 34 or the injection valve ¬ 32nd
Neben dem Zylinder Zl sind bevorzugt auch noch weitere Zylin¬ der Z2 bis Z4 vorgesehen, denen dann auch entsprechende Stell¬ glieder und gegebenenfalls Sensoren zugeordnet sind.In addition to the cylinder Z1, further cylinders Z2 to Z4 are preferably also provided, to which corresponding actuators and, if appropriate, sensors are then assigned.
Im folgenden ist ein physikalisches Model der Turbine 18 des Abgasturboladers näher erläutert, auf Basis dessen in der
Steuervorrichtung 36 ein Programm zum Steuern und zum Diagnos¬ tizieren des Abgasturboladers gespeichert ist, das während des Betriebs des Abgasturboladers abgearbeitet wird.In the following, a physical model of the turbine 18 of the exhaust gas turbocharger is explained in more detail, based on which in the Control device 36, a program for controlling and diagnos¬ ticulate the exhaust gas turbocharger is stored, which is executed during operation of the exhaust gas turbocharger.
Von Herstellern von Abgasturboladern werden regelmäßig Kenn¬ felder zur Verfügung gestellt, durch die der Zusammenhang zwi¬ schen einem Gasdruck P3 stromaufwärts der Turbine 18 und einem Gasdruck P4 stromabwärts der Turbine 18, einer Stellerposition PSN_VTG des Stellantriebs 22 zum Einstellen der Turbinengeo¬ metrie, einer Turbinendrehzahl N_TUR und einem auf den Gas¬ druck P3 stromaufwärts der Turbine 18 bezogenen Massenstrom- kennwert MF_KW_P3 oder einem Turbinenwirkungsgrad ETA_TUR dar¬ gestellt sind anhand einzelner Messpunkte. Diese Kennfelder sind herstellerseitig durch geeignete Messungen ermittelt. Der Turbinenwirkungsgrad ETA_TUR fasst einen isentropen Wirkungs¬ grad der Turbine 18 und einen mechanischen Wirkungsgrad des Abgasturboladers zusammen. Der auf den Gasdruck P3 stromauf¬ wärts der Turbine 18 bezogenen Massenstromkennwert MF_KW_P3 ist gegeben durch folgende Beziehung:By manufacturers of turbochargers Kenn¬ are regularly fields provided, through which the connection zwi¬ rule a gas pressure P3 upstream of the turbine 18 and a gas pressure P4 downstream of the turbine 18, an adjuster position PSN_VTG of the actuator 22 for adjusting the Turbinengeo ¬ geometry, a Turbine speed N_TUR and a on the Gas¬ pressure P3 upstream of the turbine 18 related mass flow characteristic MF_KW_P3 or a turbine efficiency ETA_TUR are ¬ represent are based on individual measurement points. These maps are determined by the manufacturer by suitable measurements. The turbine efficiency ETA_TUR summarizes an isentropic ¬ response of the turbine 18, and a mechanical efficiency of the turbocharger together. The upstream to the gas pressure P3 ¬ Windwärts the turbine 18 based mass flow characteristic MF_KW_P3 is given by the following relationship:
Eine Turbinenleistung P_TUR ist gegeben durch folgende Bezie¬ hung:A turbine power P_TUR is given by the following relationship:
P_TUR=MF_TUR*DELTA_H*ETA_TUR (F21P_TUR = MF_TUR * DELTA_H * ETA_TUR (F21
ETA_TUR bezeichnet eine Entalphiedifferenz, die gegeben ist durch
K-IETA_TUR denotes a difference in entalpha given by KI
F4 VF4 V
DELTA H = C P TUR * T3 : (F3 ) P3DELTA H = CP TUR * T3 : (F3) P3
wobei C_P_TUR die spezifische Wärmekapazität bei konstantem Druck bezeichnet und in der Regel fest vorgegeben ist, und K den Adiabatenexponenten bezeichnet, der ebenfalls bevorzugt fest vorgegeben ist.where C_P_TUR denotes the specific heat capacity at constant pressure and is usually fixed, and K denotes the adiabatic exponent, which is also preferably fixed.
Aus den Formeln F2 und F3 ergibt sich somit für die Turbinen¬ leistung P_TURThe formulas F2 and F3 thus result in the turbine power P_TUR
K-IK-I
P TUR=MF TUR*C P TUR*T3: PAΛ* *ETA TUR (F41 Fi.P TUR = MF TUR * CP TUR * T3 : PAΛ * * ETA TUR (F41 Fi.
durch Umformen der Gleichung F4 ergibt sich für einen Leis¬ tungskennwert P_KW folgende Beziehung:By transforming the equation F4, the following relationship results for a power characteristic value P_KW:
P TURP TUR
P KW= (F5)P KW = (F5)
MF TUR*T3MF TUR * T3
P KW=C P TUR' ETA TUR=/J—,-V_TUR,PSN_VTG | (F6)
P KW = CP TUR 'ETA TUR = / J -, - V_TUR, PSN_VTG | (F6)
PSN_VTG bezeichnet eine Stellerposition des Stellantriebs 22 zum Einstellen der Turbinengeometrie. In diesem Zusammenhang wird genutzt, dass der Turbinenwirkungsgrad ETA_TUR regelmäßig aus von Herstellern vorgegebenen Kennfeldern ermittelt werden kann abhängig von dem Druckverhältnis PQ des stromaufwärtigen Drucks P3 und des stromabwärtigen Drucks der Turbine P4 und der Turbinendrehzahl N_TUR und der Stellerposition PSN_VTG.
Die rechte Seite der Gleichung F5 ist zum Steuern oder Diag¬ nostizieren des Abgasturboladers bekannt. So ist die Turbinen¬ leistung P_TUR als Sollwert durch ein entsprechendes physika¬ lisches Modell des Verdichters vorgegeben . Ein derartiges Mo¬ dell ist in der DE 102 13 529 Cl offenbart, deren Inhalt dies¬ bezüglich einbezogen ist. Ferner kann die Gasmassentemperatur T3 stromaufwärts der Turbine 18 mittels des zweiten Tempera¬ tursensors 52 erfasst werden oder auch abhängig von einem Ab¬ gastemperaturmodell ermittelt werden, das unter anderem ab¬ hängt von einem Gasmassenstrom in Zylinder Zl bis Z4 der Brennkraftmaschine und der zugemessenen Kraftstoffmasse. Der Massenstrom MF_TUR durch die Turbine 18 korreliert ebenfalls zu dem Gasmassenstrom in die Zylinder Zl bis Z4 und der zuge¬ messenen Kraftstoffmasse. Somit können die Größen auf der rechten Seite der Gleichung F5 als Eingangsgrößen des Modells der Turbine 18 des Abgasturboladers betrachtet werden.PSN_VTG denotes an actuator position of the actuator 22 for adjusting the turbine geometry. In this connection, it is utilized that the turbine efficiency ETA_TUR can be regularly determined from engine-specified maps depending on the pressure ratio PQ of the upstream pressure P3 and the downstream pressure of the turbine P4 and the turbine speed N_TUR and the actuator position PSN_VTG. The right-hand side of equation F5 is known for controlling or diagnosing the exhaust gas turbocharger. Thus, the power turbines ¬ P_TUR is predetermined as a nominal value by a corresponding physika ¬ metallic model of the compressor. Such Mo ¬ is disclosed dell 102 13 529 Cl in the DE, the content of which is incorporated ¬ this respect. Further, the mass of gas temperature can T3 upstream of the turbine 18 by means of the second temperature ¬ tursensors be detected 52 or determined gas temperature model also depends on a Ab¬, inter alia, from ¬ depends on a gas mass flow into cylinders of Zl to Z4 of the internal combustion engine and the metered fuel mass. The mass flow MF_TUR through the turbine 18 also correlates to the gas mass flow in the cylinders Z1 to Z4 and the zuge¬ measured fuel mass. Thus, the magnitudes on the right side of the equation F5 can be considered as input variables of the model of the turbine 18 of the exhaust gas turbocharger.
Weiterhin muss die Durchflussgleichung erfüllt sein, die durch die Beziehung Fl vorgegeben ist. Da jedoch der Gasdruck P3 stromaufwärts der Turbine 18 regelmäßig unbekannt ist, wird die Gleichung Fl mit dem Druckverhältnis PQ gleich P3 zu P4 erweitert. Damit ergibt sich:Furthermore, the flow equation given by the relationship Fl must be satisfied. However, since the gas pressure P3 upstream of the turbine 18 is regularly unknown, the equation Fl is expanded to P4 with the pressure ratio PQ equal to P3. This results in:
MF ;PSN_VTG I (F7)
MF; PSN_VTG I (F7)
Der Zusammenhang zwischen dem auf den Gasdruck stromabwärts der Turbine bezogenen Massenstromkennwert MF_KW_P3, dem Druck¬ verhältnis PQ, der Turbinendrehzahl N_TUR und der Stellerposi¬ tion PSN_VTG ist für einzelne Messwerte häufig bekannt und wird von dem jeweiligen Hersteller des Abgasturboladers in Form von Kennfeldern zur Verfügung gestellt.
Es ist nicht möglich, auf analytischem Weg eine Stellerpositi¬ on PSN_VTG zu bestimmen, die sowohl die Gleichung F7 als auch die Gleichung F6 erfüllt. Es ist jedoch möglich auf numeri¬ schem Weg, das heißt durch Auswerten der durch den Hersteller des Abgasturboladers vermessenen Zusammenhänge den Zusammen¬ hang zwischen dem Leistungskennwert P_KW und dem Massenstrom- kennwert MF_KW für verschiedene Turbinendrehzahlen N_TUR und Stellerpositionen PSN_VTG zu ermitteln und in einem neuen Kennfeld abzulegen. Es zeigt sich hierbei, dass in diesem Zu¬ sammenhang der Einfluss der Turbinendrehzahl N_TUR vernachläs¬ sigt werden kann und sich somit ein dreidimensionales Kennfeld ergibt, mit den Eingangsgrößen Leistungskennwert P_KW und Mas- senstromkennwert MF_KW.The relationship between the related to the gas pressure downstream of the turbine mass flow characteristic MF_KW_P3, the pressure ¬ ratio PQ, the turbine speed N_TUR and the actuator Posi ¬ tion PSN_VTG is often known for individual values and is provided by the respective manufacturer of the turbocharger in the form of maps available , It is not possible to determine analytically a Stellerpositi ¬ on PSN_VTG that both satisfies the equation F7 and the equation F6. However, it is possible to numeri¬ schem way, that is by evaluating the measured by the manufacturer of the exhaust turbocharger relationships the co ¬ hang between the performance index P_KW and the mass flow characteristic value MF_KW for various turbine speeds N_TUR and controller positions PSN_VTG be determined and in a new map store. It is shown here that in this ¬ to the influence of the turbine speed N_TUR connexion vernachläs¬ can be SIGt and thus a three-dimensional map shows the input variables performance index P_KW, Mass senstromkennwert MF_KW.
Bevorzugt wird anschließend der Leistungskennwert P_KW einer mathematischen Transformation unterzogen, die bevorzugt durch die folgende Gleichung gegeben ist:Preferably, the power factor P_KW is then subjected to a mathematical transformation, which is preferably given by the following equation:
P KW*TRANS KWlP KW * TRANS KWl
P KW TRANS= ~ - *TRANS KWl (F81P KW TRANS = ~ - * TRANS KWl (F81
MF KW+TRANS KW3MF KW + TRANS KW3
TRANS_KW1, TRANS_KW, TRANS_KW3 bezeichnet erste bis dritte Transformationskennwerte, die geeignet so vorgebbar sind, dass gleichen transformierten Leistungskennwerten P_KW_TRANS im we¬ sentlichen die gleichen Werte der Stellerposition PSN_VTG zu¬ geordnet sind. In Figur 3 ist beispielhaft ein derartiges Kennfeld KF_PSN_VTG dargestellt für exemplarische Stellerposi¬ tionen PSN_VTG1 bis PSN_VTG5.TRANS_KW1, TRANS_KW, TRANS_KW3 designates first to third transformation characteristic values that can be suitably predefined in such a way that the same transformed performance characteristics P_KW_TRANS are essentially assigned the same values of the actuator position PSN_VTG. In Figure 3, such a characteristic field KF_PSN_VTG exemplified for exemplary Steller ¬ Posi tions PSN_VTG1 to PSN_VTG5.
Das Kennfeld KF_PSN_VTG gemäß der Figur 3 ist dargestellt für Messdatensätze, die aus den entsprechenden Kennfeldern des je¬ weiligen Herstellers des Abgasturboladers auf numerische Weise zugeordnet worden sind. Zum Abspeichern des Kennfeldes
KF_PSN_VTG in einem Datenspeicher der Steuervorrichtung 36 werden beispielsweise durch Interpolation zwischen den jewei¬ ligen Stellerpositionen PSN_VTG1 bis PSN_VTG5 Kennfeldstütz¬ punkte für Kreuzungspunkte der gestrichelten Linien der Figur 3 ermittelt und in dem Datenspeicher der Steuervorrichtung 36 abgelegt. Das nun so für den Betrieb des Abgasturboladers in dem Datenspeicher abgespeicherte Kennfeld KF_PSN_VTG hat dann einen relativ geringen Speicherplatzbedarf. Aus dem jeweils ebenfalls durch den Hersteller des Abgasturboladers bemessenen Kennfeldes, das den Zusammenhang zwischen dem Massenstromkenn- wert durch die Turbine MF_KW_P3 der auf den Gasdruck P3 strom¬ aufwärts der Turbine bezogen ist, dem Druckverhältnis PQ, der Turbinendrehzahl N_TUR und der jeweiligen Stellerposition PSN_VTG darstellt, können durch Multiplikation des jeweiligen Druckverhältnisses PQ mit den auf den jeweiligen auf den Gas¬ druck stromaufwärts der Turbine bezogenen Massenstromkennwer- ten MF_KW_P3 die jeweiligen Massenstromkennwerte MF_KW erhal¬ ten werden. Dieser Zusammenhang ist für die exemplarischen Stellerpositionen PSN_VTG1 bis PSN_VTG5 anhand der Figur 4 dargestellt. Auch hier kann der Einfluss der Turbinendrehzahl N_TUR vernachlässigt werden und durch Interpolation zwischen den bekannten Messpunkten ein geeignet dimensioniertes Kenn¬ feld KF_PQ ermittelt werden und in dem Datenspeicher der Steu¬ ervorrichtung 36 abgelegt werden mit den Eingangsgrößen des Massenstromkennwerts MF_KW und der jeweiligen Stellerposition PSN_VTG. Die Ausgangsgröße dieses Kennfeldes, das als Kennfeld KF_PQ bezeichnet wird ist das Druckverhältnis PQ.The characteristic map KF_PSN_VTG according to FIG. 3 is shown for measurement data records which have been assigned numerically from the corresponding characteristic diagrams of the respective manufacturer of the exhaust gas turbocharger. To save the map KF_PSN_VTG in a data memory of the control device 36 are determined, for example, by interpolation between the respective setting positions PSN_VTG1 to PSN_VTG5 Kennfeldstütz¬ points for crossing points of the dashed lines of Figure 3 and stored in the data memory of the control device 36. The map KF_PSN_VTG now stored in the data memory for the operation of the exhaust gas turbocharger then has a relatively small storage space requirement. From the likewise dimensioned by the manufacturer of the exhaust gas turbocharger map, which is the relationship between the mass flow characteristic value through the turbine MF_KW_P3 the current to the gas pressure P3 ¬ upstream of the turbine, the pressure ratio PQ, the turbine speed N_TUR and the respective actuator position PSN_VTG represents can be obtained by multiplying the respective pressure ratio with the PQ to the respective ¬ on the gas upstream of the turbine printing Massenstromkennwer- th the respective mass flow characteristic values MF_KW preserver ¬ be ten MF_KW_P3. This relationship is illustrated for the exemplary actuator positions PSN_VTG1 to PSN_VTG5 with reference to FIG. Again, the influence of the turbine speed N_TUR can be neglected and a suitably dimensioned characteristic field KF_PQ can be determined by interpolation between the known measuring points and stored in the data memory of the control device 36 with the input variables of the mass flow characteristic MF_KW and the respective actuator position PSN_VTG. The output of this map, which is referred to as map KF_PQ is the pressure ratio PQ.
Unter Nutzung der Kennfelder KF_PSN_VTG und KF_PQ können dann in der Steuervorrichtung die jeweilige Stellerposition PSN_VTG und der Gasdruck P3 stromaufwärts der Turbine 18 ermittelt werden. Dies erfolgt mittels des Programms, das anhand des Ab¬ laufdiagramms der Figur 2 näher erläutert ist. Das Programm
ist in einem Programmspeicher der Steuervorrichtung 36 abge¬ legt und wird während des Betriebs der Turbine 18 in der Steu¬ ervorrichtung 36 abgearbeitet.Using the characteristic maps KF_PSN_VTG and KF_PQ, the respective actuator position PSN_VTG and the gas pressure P3 upstream of the turbine 18 can then be determined in the control device. This is done by means of the program, which is explained in more detail with reference to the Ab ¬ flow chart of Figure 2. The program is inserted abge¬ in a program memory of the controller 36 and is processed ervorrichtung 36 during operation of the turbine 18 in the STEU ¬.
Das Programm wird in einem Schritt Sl gestartet und zwar be¬ vorzugt zeitnah zu einem Start der Brennkraftmaschine.The program is started in a step S1 and although be ¬ preferably close to a start of the internal combustion engine.
In einem Schritt S2 wird der Leistungskennwert P_KW abhängig von der Turbinenleistung P_TUR, dem Massenstrom MF_TUR durch die Turbine 18 und der Gastemperatur T3 stromaufwärts der Tur¬ bine ermittelt. Dies erfolgt bevorzugt entsprechend der Bezie¬ hung F5.In a step S2, the performance index P_KW depending on the turbine power P_TUR, the mass flow through the turbine MF_TUR 18 and the gas temperature T3 is determined upstream of the door ¬ bine. This is preferably done according to the rela ¬ hung F5.
In einem Schritt S4 wird der stromabwärtige Gasdruck P4 abhän¬ gig von einem Umgebungsdruck P_AMB und einem Staudruck ermit¬ telt. Der Umgebungsdruck P_AMB kann besonders einfach abhängig von dem Messsignal des Saugrohrdrucksensors 48 ermittelt wer¬ den, wenn der Verdichter 20 die angesaugte Luft nahezu nicht verdichtet und ein Druckabfall über der Drosselklappe 5 ver¬ nachlässigbar ist. Er kann jedoch auch mittels eines geeigne¬ ten Drucksensors und zwar eines geeignet angeordneten Druck¬ sensors erfasst werden. Der Staudruck kann einfach mittels ei¬ nes Modells ermittelt werden, das abhängt von dem Massenstrom MF_TUR durch die Turbine 18 und im wesentlichen vorgegeben ist durch eine Geometrie des Katalysators 28 und des Schalldämp¬ fers .In a step S4, the downstream gas pressure P4 is determined as a function of an ambient pressure P_AMB and a dynamic pressure. The ambient pressure p_AMB can be determined very easily depending on the measurement signal of the intake manifold pressure sensor 48 ¬ to when the compressor 20, the air sucked almost not compressed and a pressure drop across the throttle valve 5 ver ¬ is negligible. However, it may also be by means of a geeigne¬ th pressure sensor and are detected although a suitably arranged pressure sensors ¬. The back pressure can easily be determined by means of ei¬ nes model, which depends on the mass flow through the turbine 18 and MF_TUR is essentially predetermined by the geometry of the catalyst 28 and the Schalldämp ¬ fers.
In einem Schritt S6 wird anschließend der Massenstromkennwert MF_KW abhängig von dem Massenstrom MF_TUR durch die Turbine 18, der Gastemperatur T3 stromaufwärts der Turbine 18 und dem stromabwärtigen Gasdruck P4 ermittelt. Dies erfolgt bevorzugt mittels der Beziehung F7, deren relevanter Teil auch in dem Schritt S6 dargestellt ist.
In einem Schritt S8 wird der transformierte Leistungskennwert P_KW_TRANS mittels der durch die Beziehung F8 vorgegebenen Be¬ ziehung ermittelt.In a step S6, the mass flow characteristic MF_KW is subsequently determined as a function of the mass flow MF_TUR by the turbine 18, the gas temperature T3 upstream of the turbine 18 and the downstream gas pressure P4. This is preferably done by means of the relationship F7, the relevant part of which is also shown in step S6. In a step S8, the transformed power characteristic value P_KW_TRANS is determined by means of the relationship given by the relationship F8.
In einem Schritt SlO wird anschließend die Stellerposition PSN_VTG abhängig von dem Kennfeld KF_PSN_VTG mit den Eingangs¬ größen des transformierten Leistungskennwertes P_KW_TRANS und des Massenstromkennwerts MF_KW ermittelt.In a step S, the adjuster position PSN_VTG is then dependent on the map KF_PSN_VTG to the input ¬ sizes of the transformed performance index P_KW_TRANS and the mass flow characteristic value MF_KW determined.
In einem Schritt S12 wird anschließend das Druckverhältnis PQ aus dem Kennfeld KF_PQ durch entsprechende Kennfeldinterpola¬ tion zwischen Stützstellen des Kennfeldes KF_PQ entsprechend der Vorgehensweise des Schrittes SlO abhängig von den Ein¬ gangsgrößen des Kennfeldes KF_PQ und zwar der Stellerposition PSN_VTG und dem Massenstromkennwert MF_KW ermittelt.In a step S12, the pressure ratio PQ from the map KF_PQ is then by appropriate Kennfeldinterpola ¬ tion between supporting points of the characteristic field KF_PQ according to the procedure of step SIO depending on the A ¬ gear sizes determined MF_KW of the characteristic field KF_PQ namely the adjuster position PSN_VTG and the mass flow characteristic.
In einem Schritt S14 wird der Gasdruck P3 stromaufwärts der Turbine 18 ermittelt abhängig von dem Druckverhältnis PQ mul¬ tipliziert mit dem stromabwärtigen Gasdruck P4. Anschließend wird in einem Schritt S16 ein Stellsignal SSG_VTG für den Stellantrieb 22 zum Einstellen der Turbinengeometrie abhängig von der Stellerposition PSN_VTG ermittelt und anschließend der Stellantrieb 22 zum Einstellen der Turbinengeometrie entspre¬ chend angesteuert.In a step S14, the gas pressure P3 upstream of the turbine 18 is determined depending on the pressure ratio PQ mul ¬ tipliziert with the downstream gas pressure P4. An actuating signal SSG_VTG is then determined for the actuator 22 for adjusting the turbine geometry, depending on the adjuster position PSN_VTG and then the actuator 22 accordingly driven for adjusting the turbine geometry entspre ¬ in a step S16.
Im Falle des Vorhandenseins des Bypasskanals 24 und des Abbla¬ seventils 26 kann auch ein Stellsignal SSG_WG zum Ansteuern des Abblaseventils 26 abhängig von der Stellerposition PSN_VTG ermittelt werden. Auf diese Weise kann dann der Betriebsbe¬ reich des Abgasturboladers noch weiter vergrößert werden und Stellerpositionen PSN_VTG, die nicht ansteuerbar sind hin-
sichtlich der Wirkung der Turbine 18 durch entsprechendes An¬ steuern des Abblaseventils eingestellt werden.In the case of the presence of the bypass channel 24 and the Abbla ¬ seventils 26 and a control signal SSG_WG for driving the relief valve 26 can be determined depending on the actuator position PSN_VTG. In this way, ready for operation ¬ can then reaching the turbocharger to be further enlarged and controller positions PSN_VTG that are not controlled back visually the effect of the turbine 18 by appropriate An¬ control of the relief valve can be adjusted.
Alternativ oder zusätzlich kann zu den Schritten S16 und/oder S18 ein Schritt S20 vorgesehen sein, in dem eine Diagnose des Abgasturboladers erfolgt abhängig von der in dem Schritt SlO ermittelten Stellerposition PSN_VTG und mindestens einem ge¬ eignet gewählten Schwellenwert THD_PSN der Stellerposition und/oder abhängig von dem stromaufwärtigen Gasdruck P3 und mindestens einem Schwellenwert THD_P3 des stromaufwärtigen Gasdrucks, der geeignet vorgegeben ist. Anschließend verharrt das Programm in einem Schritt S22 für eine vorgegeben Warte¬ zeitdauer oder auch bis zum Ablauf eines vorgebbaren Kurbel¬ wellenwinkels, bevor die Bearbeitung erneut in dem Schritt S2 mit erneut initialisierten Variablen fortgesetzt wird.Alternatively or additionally, a step S20 may be provided for steps S16 and / or S18 in which a diagnosis of the exhaust gas turbocharger is dependent on the actuator position PSN_VTG determined in step S10 and at least one suitably selected threshold value THD_PSN of the actuator position and / or dependent from the upstream gas pressure P3 and at least a threshold value THD_P3 of the upstream gas pressure appropriately set. Subsequently, the program remains in a step S22 for a given waiting period or until the expiration of a predefinable crank angle, before the processing is continued again in step S2 with re-initialized variables.
Alternativ kann auf die Transformation in dem Schritt S8 auch verzichtet sein. In diesem Fall ist dann eine der Eingangsgrö¬ ßen des Kennfelds KF_PSN_VTG zum Ermitteln der Stellerposition PSN_VTG statt des transformierten Leistungskennwertes P_KW_TRANS der Leistungskennwert P_KW.Alternatively, the transformation in step S8 may also be dispensed with. In this case, the Eingangsgrö ¬ is then KISSING of the map KF_PSN_VTG to determine the adjuster position PSN_VTG instead of the transformed performance index P_KW_TRANS the performance index P_KW.
Die Turbinenleistung P_TUR, der Massenstrom MF_TUR durch die Turbine 18 und der stromabwärtige Gasdruck P4 sind bevorzugt Sollwerte.The turbine power P_TUR, the mass flow MF_TUR through the turbine 18 and the downstream gas pressure P4 are preferably target values.
Auch bei der Stellerposition PSN_VTG handelt es sich bevorzugt um einen Sollwert. Durch das Programm gemäß der Figur 2 wird eine Vorsteuerung der Turbine 18 erreicht. Bevorzugt kann auch noch eine Regelung vorgesehen sein.
The positioner PSN_VTG is also preferably a nominal value. By means of the program according to FIG. 2, pilot control of the turbine 18 is achieved. Preferably, a control can also be provided.
Claims
1. Verfahren zum Steuern eines Abgasturboladers mit einem Ver¬ dichter (20), einer Turbine (18) und einem Stellantrieb (22) zum Einstellen einer Turbinengeometrie, bei dem1. A method for controlling an exhaust gas turbocharger with a Ver¬ denser (20), a turbine (18) and an actuator (22) for adjusting a turbine geometry, in which
- ein Leistungskennwert (P_KW) ermittelt wird abhängig von ei¬ ner Turbinenleistung (P_TUR) , einem Massenstrom (MF_TUR) durch die Turbine (18) und einer Gastemperatur (T3) stromaufwärts der Turbine (18) und einem stromabwärtigen Gasdruck (P4) stromabwärts der Turbine (18),- a performance index (P_KW) is determined depending on egg ¬ ner turbine power (P_TUR), a mass flow (MF_TUR) by the turbine (18) and a gas temperature (T3), upstream of the turbine (18) and a downstream gas pressure (P4) downstream of the Turbine (18),
- ein Massenstromkennwert (MF_KW) ermittelt wird abhängig von dem Massenstrom (MF_TUR) durch die Turbine (18) und der Gas¬ temperatur (T3) stromaufwärts der Turbine (18) und einem stro¬ mabwärtigen Gasdruck (P4) stromabwärts der Turbine (18),- a mass flow characteristic (MF_KW) is determined depending on the mass flow (MF_TUR) by the turbine (18) and the gas ¬ temperature (T3), upstream of the turbine (18) and a stro ¬ mabwärtigen gas pressure (P4) downstream of the turbine (18) .
- abhängig von dem Leistungskennwert (P_KW) und dem Massen¬ stromkennwert (MF_KW) mittels eines Kennfeldes (KF_PSN_VTG) eine Stellerposition (PSN_VTG) des Stellantriebs (22) zum Ein¬ stellen der Turbinengeometrie ermittelt wird und- Depending on the power characteristic (P_KW) and the Massen¬ current characteristic (MF_KW) by means of a map (KF_PSN_VTG) an actuator position (PSN_VTG) of the actuator (22) for setting ¬ the turbine geometry is determined and
- abhängig von der Stellerposition (PSN_VTG) zum Einstellen der Turbinengeometrie ein Stellsignal (SSG_VTG) zum Ansteuern des Stellantriebs (22) zum Einstellen der Turbinengeometrie ermittelt wird.- Depending on the actuator position (PSN_VTG) for adjusting the turbine geometry, a control signal (SSG_VTG) for driving the actuator (22) for adjusting the turbine geometry is determined.
2. Verfahren zum Diagnostizieren eines Abgasturboladers mit einem Verdichter (20), einer Turbine (18) und einem Stellan¬ trieb (22) zum Einstellen einer Turbinengeometrie, bei dem2. A method for diagnosing an exhaust gas turbocharger with a compressor (20), a turbine (18) and a Stellan¬ drive (22) for setting a turbine geometry, in which
- ein Leistungskennwert (P_KW) ermittelt wird abhängig von ei¬ ner Turbinenleistung (P_TUR) , einem Massenstrom (MF_TUR) durch die Turbine (18) und einer Gastemperatur (T3) stromaufwärts der Turbine (18) und einem stromabwärtigen Gasdruck (P4) stromabwärts der Turbine (18),- a performance index (P_KW) is determined depending on egg ¬ ner turbine power (P_TUR), a mass flow (MF_TUR) by the turbine (18) and a gas temperature (T3), upstream of the turbine (18) and a downstream gas pressure (P4) downstream of the Turbine (18),
- ein Massenstromkennwert (MF_KW) ermittelt wird abhängig von dem Massenstrom (MF_TUR) durch die Turbine (18) und der Gas- temperatur (T3) stromaufwärts der Turbine (18) und einem stro- mabwärtigen Gasdruck (P4) stromabwärts der Turbine (18),a mass flow characteristic (MF_KW) is determined as a function of the mass flow (MF_TUR) through the turbine (18) and the gas flow temperature (T3) upstream of the turbine (18) and a downstream gas pressure (P4) downstream of the turbine (18),
- abhängig von dem Leistungskennwert (P_KW) und dem Massen- stromkennwert (MF_KW) mittels eines Kennfeldes (KF_PSN_VTG) eine Stellerposition (PSN_VTG) des Stellantriebs (22) zum Ein¬ stellen der Turbinengeometrie ermittelt wird und- depending on the performance index (P_KW) and the mass flow characteristic (MF_KW) by means of a characteristic field (KF_PSN_VTG) an adjuster position (PSN_VTG) of the actuator (22) for a ¬ the turbine geometry is determined and
- abhängig von der Stellerposition (PSN_VTG) zum Einstellen der Turbinengeometrie eine Diagnose des Abgasturboladers durchgeführt wird.- Depending on the actuator position (PSN_VTG) for adjusting the turbine geometry, a diagnosis of the exhaust gas turbocharger is performed.
3. Verfahren nach einem der vorstehenden Ansprüche, bei dem der Leistungskennwert (P_KW) ermittelt wird abhängig von der Turbinenleistung (P_TUR) dividiert durch den Massen¬ strom (MF_TUR) durch die Turbine (18) und dividiert durch die Gastemperatur (T4) stromaufwärts der Turbine (18) .3. The method according to any one of the preceding claims, wherein the performance index (P_KW) is determined depending on the turbine power (P_TUR) divided by the Massen¬ stream (MF_TUR) through the turbine (18) and divided by the gas temperature (T4) upstream of the Turbine (18).
4. Verfahren nach einem der vorstehenden Ansprüche, bei dem der Massenstromkennwert (MF_KW) ermittelt wird abhän¬ gig von der Turbinenleistung (P_TUR) , multipliziert mit der Quadratwurzel der Gastemperatur (T3) stromaufwärts der Turbine (18) und dividiert durch den stromabwärtigen Gasdruck (P4) .4. The method according to any one of the preceding claims, wherein the mass flow characteristic (MF_KW) is determined depen ¬ gig by the turbine power (P_TUR) multiplied by the square root of the gas temperature (T3), upstream of the turbine (18) and divided by the downstream gas pressure ( P4).
5. Verfahren nach einem der vorstehenden Ansprüche, bei dem das Kennfeld (KF_PSN_VTG) zum Ermitteln der Stellerpo¬ sition (PSN_VTG) als Eingangsgrößen nur den Leistungskennwert (P_KW) und den Massenstromkennwert (MF_KW) hat.5. The method according to any one of the preceding claims, wherein the characteristic field (KF_PSN_VTG) for determining the Stellerpo ¬ position (PSN_VTG) as input variables only the power parameter (P_KW) and the mass flow characteristic (MF_KW) has.
6. Verfahren nach einem der vorstehenden Ansprüche, bei dem der Leistungskennwert (P_KW) transformiert wird der¬ art, dass Kennfeldpunkten gleicher transformierter Leistungs¬ kennwerte (P_KW_TRANS) im wesentlichen die gleichen Werte der Stellerposition (PSN_VTG) zugeordnet sind, und bei dem die Stellerposition (PSN_VTG) zum Einstellen der Turbinengeometrie abhängig von den transformierten Leistungskennwerten (P_KW_TRANS) ermittelt wird.6. The method according to any one of the preceding claims, in which the performance characteristic (P_KW) is transformed art of ¬ that map points characteristics same transformed Leistungs¬ (P_KW_TRANS) are substantially associated with the same values of the actuator position (PSN_VTG), and wherein the actuator position (PSN_VTG) for setting the turbine geometry is determined depending on the transformed performance characteristics (P_KW_TRANS).
7. Verfahren nach einem der vorstehenden Ansprüche, bei dem abhängig von der Stellerposition (PSN_VTG) und dem Massenstromkennwert (MF_KW) mittels eines weiteren Kennfeldes (KF_PQ) und abhängig von dem stromabwärtigen Gasdruck (P4) ein stromaufwärtiger Gasdruck (P3) ermittelt wird, der stromauf¬ wärts der Turbine (18) herrscht.7. The method according to any one of the preceding claims, wherein depending on the actuator position (PSN_VTG) and the mass flow characteristic (MF_KW) by means of another map (KF_PQ) and depending on the downstream gas pressure (P4) an upstream gas pressure (P3) is determined, the upstream ¬ prevails Windwärts the turbine (18).
8. Verfahren nach einem der vorstehenden Ansprüche, bei dem der Gasdruck (P4) stromabwärts der Turbine (18) ermit¬ telt wird abhängig von einem Umgebungsdruck (P_AMB) und einem Staudruck, der abhängt von dem Massenstrom (MF_TUR) durch die Turbine (18) .8. The method according to any one of the preceding claims, wherein the gas pressure (P4) downstream of the turbine (18) ermit ¬ telt is dependent on an ambient pressure (P_AMB) and a back pressure, which depends on the mass flow (MF_TUR) through the turbine (18 ).
9. Verfahren nach einem der vorstehenden Ansprüche, bei dem abhängig von der Stellerposition (PSN_VTG) für die va¬ riable Turbinengeometrie ein Stellsignal (SSG_WG) zum Einstel¬ len einer Stellung eines Abblaseventils (26) ermittelt wird.9. The method according to any preceding claim, wherein the function of the actuator position (PSN_VTG) for the va¬ riable turbine geometry, a control signal (SSG_WG) for SET len ¬ a position of a blow-off valve (26) is determined.
10. Vorrichtung zum Steuern eines Abgasturboladers mit einem Verdichter (20), einer Turbine (18) und einem Stellantrieb10. An apparatus for controlling an exhaust gas turbocharger with a compressor (20), a turbine (18) and an actuator
(22) zum Einstellen einer Turbinengeometrie, wobei die Vor¬ richtung ausgebildet ist(22) for setting a turbine geometry, wherein the pre ¬ direction is formed
- zum Ermitteln eines Leistungskennwertes (P_KW) abhängig von einer Turbinenleistung (P_TUR) , einem Massenstrom (MF_TUR) durch die Turbine (18) und einer Gastemperatur (T3) stromauf¬ wärts der Turbine (18) und einem stromabwärtigen Gasdruck (P4) stromabwärts der Turbine (18),- For determining a performance index (P_KW) depending on a turbine power (P_TUR), a mass flow (MF_TUR) through the turbine (18) and a gas temperature (T3) upstream of the turbine ¬ turbine (18) and a downstream gas pressure (P4) downstream of the Turbine (18),
- zum Ermitteln eines Massenstromkennwertes (MF_KW) abhängig von dem Massenstrom (MF_TUR) durch die Turbine (18) und der Gastemperatur (T3) stromaufwärts der Turbine (18) und einem stromabwärtigen Gasdruck (P4) stromabwärts der Turbine (18),- For determining a mass flow characteristic (MF_KW) depending on the mass flow (MF_TUR) through the turbine (18) and the Gas temperature (T3) upstream of the turbine (18) and a downstream gas pressure (P4) downstream of the turbine (18),
- zum Ermitteln einer Stellerposition (PSN_VTG) des Stellan¬ triebs (22) zum Einstellen der Turbinengeometrie abhängig von dem Leistungskennwert (P_KW) und dem Massenstromkennwert- For determining an actuator position (PSN_VTG) of Stellan¬ drive (22) for adjusting the turbine geometry depending on the power rating (P_KW) and the mass flow characteristic
(MF_KW) mittels eines Kennfeldes (KF_PSN_VTG) und(MF_KW) by means of a map (KF_PSN_VTG) and
- zum Ermitteln eines Stellsignals (SSG_VTG) zum Ansteuern des Stellantriebs (22) zum Einstellen der Turbinengeometrie abhän¬ gig von der Stellerposition (PSN_VTG) zum Einstellen der Tur¬ binengeometrie.- for determining a control signal (SSG_VTG) for driving the actuator (22) for adjusting the turbine geometry ¬ depen gig of the actuator position (PSN_VTG) binengeometrie for adjusting the Tur¬.
11. Vorrichtung zum Diagnostizieren eines Abgasturboladers mit einem Verdichter (20), einer Turbine (18) und einem Stellan¬ trieb (22) zum Einstellen einer Turbinengeometrie, wobei die Vorrichtung ausgebildet ist11. An apparatus for diagnosing an exhaust gas turbocharger with a compressor (20), a turbine (18) and a Stellan¬ drive (22) for adjusting a turbine geometry, wherein the device is formed
- zum Ermitteln eines Leistungskennwertes (P_KW) abhängig von einer Turbinenleistung (P_TUR) , einem Massenstrom (MF_TUR) durch die Turbine (18) und einer Gastemperatur (T3) stromauf¬ wärts der Turbine (18) und einem stromabwärtigen Gasdruck (P4) stromabwärts der Turbine (18),- For determining a performance index (P_KW) depending on a turbine power (P_TUR), a mass flow (MF_TUR) through the turbine (18) and a gas temperature (T3) upstream of the turbine ¬ turbine (18) and a downstream gas pressure (P4) downstream of the Turbine (18),
- zum Ermitteln eines Massenstromkennwertes (MF_KW) abhängig von dem Massenstrom (MF_TUR) durch die Turbine (18) und der Gastemperatur (T3) stromaufwärts der Turbine (18) und einem stromabwärtigen Gasdruck (P4) stromabwärts der Turbine (18) ,- For determining a mass flow characteristic (MF_KW) depending on the mass flow (MF_TUR) through the turbine (18) and the gas temperature (T3) upstream of the turbine (18) and a downstream gas pressure (P4) downstream of the turbine (18),
- zum Ermitteln einer Stellerposition (PSN_VTG) des Stellan¬ triebs (22) zum Einstellen der Turbinengeometrie abhängig von dem Leistungskennwert (P_KW) und dem Massenstromkennwert- For determining an actuator position (PSN_VTG) of Stellan¬ drive (22) for adjusting the turbine geometry depending on the power rating (P_KW) and the mass flow characteristic
(MF_KW) mittels eines Kennfeldes (KF_PSN_VTG) und(MF_KW) by means of a map (KF_PSN_VTG) and
- zum Ermitteln eines Diagnostizieren des Abgasturboladers ab¬ hängig von der Stellerposition (PSN_VTG) zum Einstellen der Turbinengeometrie. - For determining a diagnose the exhaust gas turbocharger ab¬ depending on the position of the actuator (PSN_VTG) for adjusting the turbine geometry.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004051837A DE102004051837B4 (en) | 2004-10-25 | 2004-10-25 | Methods and apparatus for controlling and diagnosing an exhaust gas turbocharger |
PCT/EP2005/054646 WO2006045674A1 (en) | 2004-10-25 | 2005-09-19 | Method and device for the control and diagnosis of an exhaust gas turbocharger |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1805400A1 true EP1805400A1 (en) | 2007-07-11 |
Family
ID=35527467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05792105A Withdrawn EP1805400A1 (en) | 2004-10-25 | 2005-09-19 | Method and device for the control and diagnosis of an exhaust gas turbocharger |
Country Status (4)
Country | Link |
---|---|
US (1) | US7805940B2 (en) |
EP (1) | EP1805400A1 (en) |
DE (1) | DE102004051837B4 (en) |
WO (1) | WO2006045674A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008025549B4 (en) * | 2008-05-28 | 2010-07-01 | Continental Automotive Gmbh | Method and device for operating an internal combustion engine |
US20110154821A1 (en) * | 2009-12-24 | 2011-06-30 | Lincoln Evans-Beauchamp | Estimating Pre-Turbine Exhaust Temperatures |
US8418462B2 (en) * | 2010-05-18 | 2013-04-16 | Deere & Company | Method for maximizing transient variable geometry turbine response in an internal combustion engine |
FR2967220B1 (en) * | 2010-11-05 | 2013-01-04 | Commissariat Energie Atomique | GAS COMPRESSION SYSTEM |
US20130276443A1 (en) * | 2012-04-19 | 2013-10-24 | GM Global Technology Operations LLC | System and method for controlling an exhaust-braking engine maneuver |
FR2995356B1 (en) * | 2012-09-11 | 2018-04-13 | Renault Sas | METHOD FOR CONTROLLING A TURBOCHARGER OVERCURRENT COUPLED WITH AN ELECTRIC MACHINE AND WITH A DERIVATION VALVE, AND CORRESPONDING SUPER-POWERING DEVICE |
FR3002283B1 (en) * | 2013-02-18 | 2015-02-27 | Peugeot Citroen Automobiles Sa | METHOD FOR DETERMINING THE EXHAUST GAS PRESSURE BEYOND THE TURBOCHARGER AND THE FLOW THROUGH ITS TURBINE |
FR3063109B1 (en) * | 2017-02-17 | 2021-02-19 | Peugeot Citroen Automobiles Sa | PROCESS FOR DETERMINING THE PRESSURE OF THE EXHAUST GASES UPSTREAM OF THE TURBINE OF A TURBOCHARGER EQUIPPED WITH A THERMAL ENGINE |
FR3085430B1 (en) * | 2018-08-29 | 2021-05-21 | Psa Automobiles Sa | METHOD FOR CALCULATING A SETPOINT POSITION OF A THERMAL ENGINE TURBOCHARGER |
FR3111946A1 (en) * | 2020-06-29 | 2021-12-31 | Psa Automobiles Sa | PROCESS FOR DRIVING A VEHICLE ENGINE EQUIPPED WITH A TURBOCHARGER |
US11530656B2 (en) | 2020-08-31 | 2022-12-20 | Garrett Transportation I Inc. | Health conscious controller |
US11687071B2 (en) | 2021-08-19 | 2023-06-27 | Garrett Transportation I Inc. | Methods of health degradation estimation and fault isolation for system health monitoring |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4428199A (en) * | 1979-02-28 | 1984-01-31 | Semco Instruments, Inc. | Turbocharger control system |
FR2540557B1 (en) * | 1983-02-03 | 1987-03-20 | Onera (Off Nat Aerospatiale) | INTERNAL COMBUSTION ENGINE WITH TURBOCHARGER |
JP3237565B2 (en) * | 1997-04-02 | 2001-12-10 | 三菱自動車工業株式会社 | Supercharger control device |
DE19837834B4 (en) * | 1998-08-20 | 2005-12-15 | Daimlerchrysler Ag | Method for functional testing of an exhaust gas turbocharger with variable turbine geometry |
US6067800A (en) * | 1999-01-26 | 2000-05-30 | Ford Global Technologies, Inc. | Control method for a variable geometry turbocharger in a diesel engine having exhaust gas recirculation |
WO2002004799A1 (en) * | 2000-07-07 | 2002-01-17 | Siemens Aktiengesellschaft | Method for controlling a charge pressure in an internal combustion engine with an exhaust-gas turbocharger |
DE10049912A1 (en) | 2000-10-10 | 2002-04-11 | Daimler Chrysler Ag | Internal combustion engine with exhaust gas turbocharger and compound working turbine, has adjustable exhaust gas feedback device between exhaust system and induction system |
DE10152803A1 (en) * | 2001-10-25 | 2003-05-15 | Daimler Chrysler Ag | Internal combustion engine with an exhaust gas turbocharger and an exhaust gas recirculation device |
US6698203B2 (en) * | 2002-03-19 | 2004-03-02 | Cummins, Inc. | System for estimating absolute boost pressure in a turbocharged internal combustion engine |
DE10213529C1 (en) * | 2002-03-26 | 2003-07-03 | Siemens Ag | Turbine characteristics determination method for exhaust gas turbocharger using correction factors for linearisation of obtained characteristics |
US6996986B2 (en) * | 2002-07-19 | 2006-02-14 | Honeywell International, Inc. | Control system for variable geometry turbocharger |
US7047741B2 (en) * | 2002-08-08 | 2006-05-23 | The United States Of America As Represented By The Administrator Of The Environmental Protection Agency | Methods for low emission, controlled temperature combustion in engines which utilize late direct cylinder injection of fuel |
US6820600B1 (en) * | 2002-09-19 | 2004-11-23 | Detroit Deisel Corporation | Method for controlling an engine with an EGR system |
US6863058B2 (en) * | 2003-02-03 | 2005-03-08 | Ford Global Technologies, Llc | System and method for reducing NOx emissions during transient conditions in a diesel fueled vehicle |
DE10319330B4 (en) * | 2003-04-29 | 2010-07-08 | Continental Automotive Gmbh | System and method for influencing the intake gas temperature in the combustion chamber of an internal combustion engine |
DE10320977A1 (en) * | 2003-05-09 | 2004-12-09 | Siemens Ag | Procedure for monitoring the speed of a bi-turbocharger |
DE102004015742A1 (en) * | 2004-03-31 | 2005-10-27 | Robert Bosch Gmbh | Method and device for operating an internal combustion engine |
GB2434406A (en) * | 2005-08-25 | 2007-07-25 | Ford Global Tech Llc | I.c. engine exhaust gas recirculation (EGR) system with dual high pressure and low pressure EGR loops |
US7415389B2 (en) * | 2005-12-29 | 2008-08-19 | Honeywell International Inc. | Calibration of engine control systems |
-
2004
- 2004-10-25 DE DE102004051837A patent/DE102004051837B4/en not_active Expired - Fee Related
-
2005
- 2005-09-19 WO PCT/EP2005/054646 patent/WO2006045674A1/en active Application Filing
- 2005-09-19 EP EP05792105A patent/EP1805400A1/en not_active Withdrawn
- 2005-09-19 US US11/666,126 patent/US7805940B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO2006045674A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20080000227A1 (en) | 2008-01-03 |
US7805940B2 (en) | 2010-10-05 |
DE102004051837B4 (en) | 2006-11-09 |
WO2006045674A1 (en) | 2006-05-04 |
DE102004051837A1 (en) | 2006-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1805400A1 (en) | Method and device for the control and diagnosis of an exhaust gas turbocharger | |
DE102010027521B4 (en) | System for controlling a sequential turbocharger in two-stage series arrangement using a bypass valve leakage control | |
DE102006042872B4 (en) | Method for determining the exhaust gas backpressure upstream of a turbine of an exhaust gas turbocharger | |
DE102007045817B4 (en) | A method and apparatus for controlling engine operation during regeneration of an exhaust aftertreatment system | |
EP1815117A1 (en) | Apparatus for controlling an internal combustion engine having an exhaust-gas turbocharger and an exhaust-gas recirculation apparatus | |
DE102015205194A1 (en) | Regulating / control device | |
EP1623103A1 (en) | Method for monitoring the speed of a bi-turbocharger | |
EP3369896B1 (en) | Method for determining the load state of a particle filter and combustion engine | |
WO2008080843A1 (en) | Method and device for controlling an internal combustion engine | |
DE102007030233A1 (en) | Charged-air mass flow calculating method for intake pipe of e.g. diesel engine, involves detecting speed of turbine using speed sensor, and calculating effective charge-air mass flow in intake pipe using speed and compression ratio | |
DE102011079726A1 (en) | Method and system for controlling an engine | |
EP3507475A1 (en) | Method, control device and system for detecting a deviation of an actual activation time of a gas exchange valve of an internal combustion engine from a predefined activation time | |
DE102004038733A1 (en) | Method and device for operating an internal combustion engine | |
DE10356713B4 (en) | Method for controlling or controlling an internal combustion engine operating in a cyclic process | |
DE102005016392B3 (en) | Regulating process for exhaust gas supercharger involves taking reliable maximum revs figure as actual operating point of compressor or engine | |
DE10314677A1 (en) | Method for operating an internal combustion engine | |
WO2018046212A1 (en) | Method and device for controlling the residual gas mass remaining in the cylinder of an internal combustion engine after a gas exchange process and/or the purge air mass introduced into the exhaust manifold of the internal combustion engine during a gas exchange process | |
DE10300794A1 (en) | Method for operating an internal combustion engine | |
EP1614881B1 (en) | Method and device for operating an internal combustion engine with turbocharger | |
EP2733337A2 (en) | Method and device for controlling a boost pressure of a charged combustion engine | |
DE10162970B4 (en) | Method and device for determining the exhaust gas recirculation mass flow of an internal combustion engine | |
DE102018220391A1 (en) | Method for determining an air mass flow for an internal combustion engine | |
DE102015216501A1 (en) | Control device for an internal combustion engine | |
DE102017219175A1 (en) | Method for determining a cylinder charge of an internal combustion engine with a variable valve lift | |
DE102006041518A1 (en) | Exhaust gas pressure determination method for use in exhaust gas tract of e.g. diesel engine, involves determining input variables respectively correlated with gas reference temperature of turbo charger and differential pressure at filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20061023 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20070731 |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CONTINENTAL AUTOMOTIVE GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20100331 |