WO2002004799A1 - Method for controlling a charge pressure in an internal combustion engine with an exhaust-gas turbocharger - Google Patents

Method for controlling a charge pressure in an internal combustion engine with an exhaust-gas turbocharger Download PDF

Info

Publication number
WO2002004799A1
WO2002004799A1 PCT/DE2001/002328 DE0102328W WO0204799A1 WO 2002004799 A1 WO2002004799 A1 WO 2002004799A1 DE 0102328 W DE0102328 W DE 0102328W WO 0204799 A1 WO0204799 A1 WO 0204799A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
exhaust gas
compressor
determined
pressure
Prior art date
Application number
PCT/DE2001/002328
Other languages
German (de)
French (fr)
Inventor
Christian Birkner
Michael Nienhoff
Wolfgang Oestreicher
Wolfgang Stadler
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE50110631T priority Critical patent/DE50110631D1/en
Priority to EP01951425A priority patent/EP1299628B1/en
Publication of WO2002004799A1 publication Critical patent/WO2002004799A1/en
Priority to US10/334,332 priority patent/US6732523B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a method for regulating a boost pressure in an internal combustion engine with an exhaust gas turbocharger.
  • An exhaust gas turbocharger (ATL) consists of two turbomachines: a turbine and a compressor, which are mounted on a common shaft.
  • the turbine uses the energy contained in the exhaust gas to drive the compressor, which draws in fresh air and presses pre-compressed air into the cylinders of an internal combustion engine.
  • the exhaust gas turbocharger is fluidly coupled to the internal combustion engine through the air and exhaust gas mass flow.
  • Exhaust gas turbochargers are used in car, truck and large internal combustion engines. In the case of car exhaust gas turbochargers in particular, regulation of the exhaust gas turbocharger is necessary because of the large speed range in order to achieve an almost constant and precise boost pressure in a further speed range.
  • VTG variable turbine geometry
  • WASTEGATE boost pressure control valve
  • DE 197 09 955 A1 discloses a method for controlling an internal combustion engine, which is provided with a control device which has physical models of a charging device and an intake tract. With the help of these models, estimates for the boost pressure and for the air mass flow into the cylinders are determined, which are used to control the internal combustion engine.
  • the invention has for its object to provide a method for regulating the boost pressure with simple
  • the power or the torque of the compressor is determined in a first step in the method.
  • the compressor's output and torque are linked via the turbocharger speed, the torque being inversely proportional to the turbocharger speed and proportional to the output of the compressor.
  • the power or torque losses occurring during the transmission from the turbine to the compressor are determined in a second step. In particular, gap losses, friction losses of the shaft, etc. are taken into account.
  • To determine the power loss or the torque loss taken that the losses are dependent on the power or the torque of the compressor. The proportionality factor depends on the operating state and is determined using a characteristic curve.
  • the power or torque of the turbine is determined from the previously determined powers and torques.
  • the power or the torque of the compressor is determined using the isentropic compressor efficiency, the isentropic compressor efficiency being determined by a first map as a function of the pressure after the compressor and the fresh air mass flow as well as the ambient pressure and the ambient temperature becomes.
  • the isentropic compressor efficiency is stored as a first map dependent on the pressure ratio between the pressure after the compressor and the ambient pressure and the quotient of fresh air mass flow and ambient pressure multiplied by the root of the ambient temperature.
  • the value of the turbine speed is calculated by a second characteristic map depending on the mass flow through the compressor, the exhaust gas pressure after the compressor, ambient pressure and the exhaust gas temperature.
  • the second characteristic diagram can also depend on the value of the manipulated variable for the boost pressure. It is also possible that the turbine speed is measured directly on the turbine. A contactless measurement of the turbine speed, for example an inductive or optical measurement, is preferably carried out here.
  • the power or torque loss is determined as a function of the turbine speed using a predetermined characteristic curve.
  • the losses not recorded by the isentropic efficiency of the compressor are taken into account in the characteristic curve.
  • the losses are shown depending on the turbine speed.
  • the characteristic curve is preferably not shown directly as a function of the turbine speed, but rather as a function of the turbine speed normalized to the maximum turbine speed.
  • the manipulated variable is determined as a function of the pressure ratio of the turbine, which is calculated using a polytropic relationship as a function of the isentropic efficiency of the turbine, the isentropic efficiency of the turbine using a third map depending on the mass flow the turbine, the exhaust gas temperature and the exhaust gas pressure upstream of the turbine are determined.
  • the value of the manipulated variable for the boost pressure is taken into account in the third map.
  • the manipulated variable itself is determined via a fourth characteristic map depending on the exhaust gas mass flow, the exhaust gas pressure upstream of the turbine and the exhaust gas temperature, and the turbine pressure ratio, the turbine pressure ratio in turn being dependent on the calculated isotropic efficiency of the turbine.
  • the fourth map depends on the turbine pressure ratio, which simplifies the use of already known and compiled turbine indicators.
  • the manipulated variable it is also possible for the manipulated variable to be determined by a map as a function of the temperature ratio on the turbine, in which case the quantities of the exhaust gas mass flow, the exhaust gas pressure upstream of the turbine and the exhaust gas temperature are taken into account.
  • the map is dependent on the temperature ratio at the turbine, which means that the isentropic efficiency of the turbine can be omitted on the one hand, but on the other hand the fourth map must be set up as a function of temperature.
  • the boost pressure is set via a turbine with a variable turbine geometry or via a WASTEGATE with a valve.
  • the mass flow flowing through the WASTEGATE is formed as the difference between the exhaust gas mass flow and a maximum turbine mass flow in order to protect the turbine.
  • Fig. 1 shows a schematic structure of the controller structure
  • Fig. 2 three function blocks for the model of the turbocharger
  • Fig. 3 the determination of the performance of the compressor once depending on the pressures and once depending on the temperature
  • Fig. 4 the determination of setpoints for the Temperature ratio
  • FIG. 5 the calculation of the turbine power
  • FIG. 6 the calculation of the turbine torque in the event that the turbine speed is measured
  • FIG. 7 the calculation of the duty cycle for the actuator when the temperature ratio is used
  • Fig. 8 the calculation of the duty cycle, if that
  • the schematic structure of the control system shown in FIG. 1 has an activation unit 10 which, depending on the operating points of the internal combustion engine, either switches to a controlled (closed-loop) or controlled (open-loop) operation.
  • the activation conditions are dependent on the operating points of the internal combustion engine, which are determined either via a measurement or in the model of the air exhaust gas path 12.
  • the setpoint unit 14 determines setpoints which are dependent on the operating parameters of the internal combustion engine, the turbocharger, the ambient conditions and the calculated variables from the model 12. These setpoints are also dynamically corrected in order to optimally adapt the setpoint to transient operating conditions.
  • the setpoints are sent to a pilot control unit 16 and to a controller
  • the pilot control unit 16 can contain, for example, a VTG model in order to control the variable turbine geometry in accordance with the predetermined target values.
  • the non-measured states in the air exhaust gas path are determined and made available to the other units 10, 14, 16 and 18.
  • the controller can be designed as a conventional PI controller, which preferably has a parallel correction branch with DT3 behavior. The controller compensates for inaccuracies in the pilot control and the model unit 12 for the air and exhaust gas path.
  • the model structure is described in more detail with reference to FIG. 2 using the example of the current account.
  • the performance of the compressor is calculated in a compressor model element 20 via the thermodynamic conditions on the compressor.
  • POW_CMP power of the compressor
  • POW_TUR losses occurring on the shaft between the compressor and the turbine
  • the sum of the compressor output and power loss results in the turbine output (POW_TUR), which is applied to the turbine model element 24 as an input variable.
  • the turbine model element determines the duty cycle (BPAPWM) for the variable turbine geometry (VTG) or the WASTEGATE (WG). From the above it is clear that the same approach applies to the torques acting on the shaft.
  • FIG. 3 shows the calculation of the compressor output (POW_CMP).
  • the characteristic curve KLi calculates the following size:
  • CAPA_MAF denotes the isentropic exponent of air.
  • the fresh air mass flow (MAF) 34 and the ambient temperature (TIA) 32 are also taken into account in the map KFi.
  • the isentropic compressor efficiency (EFF_CMP) is determined in the map KFi 36. Taking into account the fresh air mass flow and the ambient temperature as well as the specific heat capacity of air, the performance of the compressor can be calculated. If the torque balance is to be considered instead of the power balance in FIG. 2, the power of the compressor calculated in FIG. 3 is to be divided by the turbo speed (N_TCHA) and the factor 2 ⁇ .
  • N_TCHA turbo speed
  • a Ne can be set via the temperature ratio on the compressor.
  • FIG. 4 illustrates that the compressor model explained with reference to FIG. 3 can also be used to derive the setpoint for the temperature from a setpoint for the pressure at the compressor (MAP_SP) 40 and from a setpoint for the fresh air mass flow (MAF_SP) 42 after the compressor (T UP CMP SP) 44 to calculate.
  • MAP_SP pressure at the compressor
  • MAF_SP fresh air mass flow
  • FIGS. 5 and 6. 5 shows the calculation of the power loss using the example of the power balance if the turbine speed is not measured.
  • the turbine speed (N_TCHA) 64 is determined with the aid of the map KF 2 depending on the pressure at the compressor (MAP) 56, the fresh air mass flow (MAF) 58, the ambient pressure (AMP) 60 and the ambient temperature (TIA) 62.
  • MAP pressure at the compressor
  • MAF fresh air mass flow
  • AMP ambient pressure
  • TIA ambient temperature
  • N_TCHA_NOM normalized turbine speed
  • FIG. 6 explains the calculation of the turbine torque in the event that the measured turbine speed (N_TCHA) 70 is known.
  • the suitably standardized turbine speed with the characteristic map KL 2 can be used directly.
  • An exemplary course for such a map is shown in the lower part of FIG. 6. It is shown that the non-isentropic losses of the turbocharger increase with the normalized turbine speed (N_TCHA / N_TCHA_NOM).
  • the fourth map KF has the following dependencies:
  • T_UP_TUR denotes the temperature after the turbine
  • T_EXH the exhaust gas temperature
  • M_EXH the exhaust gas mass flow through the turbine
  • PRS_EXH the exhaust gas pressure upstream of the turbine.
  • PRS_UP_TUR / PRS_EXH the fourth map has the following form:
  • the model shown in FIG. 7 enables a particularly simple switchover for a WASTEGATE control.
  • a switch is made between two states.
  • a VTG control takes place, in which the exhaust gas mass flow via the turbine (M_EXH) 76 is used.
  • M_WG exhaust gas mass flow via the turbine
  • M_WG mass flow via the WASTEGATE 80
  • M_TUR_MAX maximum mass flow over the turbine
  • KL, f (EFF_TUR; TTUR; T_EXH)
  • the values for the exhaust gas pressure upstream of the turbine (PRS_EXH) and the exhaust gas temperature (T_EXH) and the mass flow via EGR are estimated in the model from FIG. 8. It has been found that the sensitivity of the model to manipulated variable 72 (BPAPWM), which is the result of the model on the one hand and is included in the third map (KF 3 ) 88 on the other hand, is low, so that stable and accurate results are achieved . As an alternative to manipulated variable 72 (duty cycle) on the third map, a position feedback from the wastegate or the VTG position on the map can also be used.
  • BPAPWM manipulated variable 72
  • KF 3 third map
  • a position feedback from the wastegate or the VTG position on the map can also be used.

Abstract

The invention relates to a method for precisely controlling the charge pressure in an internal combustion engine with an exhaust-gas turbocharger. According to said method, the output or torque of the turbine is determined based on the outputs or torques of the compressor and the loss on the shaft and the selected set point for the correcting variable for adjusting the charge pressure is determined according to said output or said torque of the turbine.

Description

Beschreibungdescription
Verfahren zur Regelung eines Ladedrucks in einer Brennkraftmaschine mit einem AbgasturboladerMethod for regulating a boost pressure in an internal combustion engine with an exhaust gas turbocharger
Die Erfindung betrifft ein Verfahren zur Regelung eines Ladedrucks in einer Brennkraftmaschine mit einem Abgasturbolader.The invention relates to a method for regulating a boost pressure in an internal combustion engine with an exhaust gas turbocharger.
Ein Abgasturbolader (ATL) besteht aus zwei Strömungsmaschi- nen: einer Turbine und einem Verdichter, die auf einer gemeinsamen Welle angebracht sind. Die Turbine nutzt die im Abgas enthaltene Energie zum Antrieb des Verdichters, der Frischluft ansaugt und vorverdichtete Luft in die Zylinder einer Brennkraftmaschine drückt. Der Abgasturbolader ist durch den Luft- und Abgasmassenstrom strömungstechnisch mit der Brennkraftmaschine gekoppelt . Abgasturbolader werden bei Pkw-, Lkw- und Großbrennkraftmaschinen eingesetzt. Insbesondere bei Pkw-Abgasturboladern ist wegen des großen Drehzahl- bereichs eine Regelung des Abgasturboladers erforderlich, um einen nahezu konstanten und genauen Ladedruck in einem weiteren Drehzahlbereich zu erzielen.An exhaust gas turbocharger (ATL) consists of two turbomachines: a turbine and a compressor, which are mounted on a common shaft. The turbine uses the energy contained in the exhaust gas to drive the compressor, which draws in fresh air and presses pre-compressed air into the cylinders of an internal combustion engine. The exhaust gas turbocharger is fluidly coupled to the internal combustion engine through the air and exhaust gas mass flow. Exhaust gas turbochargers are used in car, truck and large internal combustion engines. In the case of car exhaust gas turbochargers in particular, regulation of the exhaust gas turbocharger is necessary because of the large speed range in order to achieve an almost constant and precise boost pressure in a further speed range.
Um einen bestimmten Soll-Ladedruck bereitzustellen, sind Regel- und Steuervorrichtungen bekannt. Dabei muß berücksich- tigt werden, daß der am Abgasturbolader erzeugte Ladedruck in der Regel vom Betriebspunkt der Brennkraftmaschine abhängt . Eine Möglichkeit, den Ladedruck eines Abgasturboladers zu beeinflussen, bieten Abgasturbolader mit variabler Turbinengeometrie (VTG) . Die Steuerung des Ladedrucks mit Hilfe der va- riablen Turbinengeometrie erfolgt durch einen VTG-Steller, der unter Vorgabe einer Stellgröße angesteuert wird. Zur Ladedruckregelung ist es ebenfalls möglich, ein abgasseitig angeordnetes Ladedruckregelventil (WASTEGATE) zu verwenden. Bei dieser abgasseitigen Regelung wird ein Teil der Abgase um die Turbine herumgeführt, so daß abhängig von dem herumgeführten Abgasstrom ein geringerer Abgasstrom durch die Turbine strömt . Aus DE 197 09 955 AI ist ein Verfahren zum Steuern einer Brennkraftmaschine bekannt, das mit einer Steuereinrichtung versehen ist, die physikalische Modelle einer Aufladeeinrich- tung und eines Ansaugtrakts aufweist. Mit Hilfe dieser Modelle werden Schätzwerte für den Ladedruck und für den Luftmassenstrom in die Zylinder ermittelt, die zur Steuerung der Brennkraftmaschine dienen.Regulating and control devices are known in order to provide a specific target boost pressure. It must be taken into account here that the boost pressure generated at the exhaust gas turbocharger generally depends on the operating point of the internal combustion engine. Exhaust gas turbochargers with variable turbine geometry (VTG) offer one way of influencing the boost pressure of an exhaust gas turbocharger. The boost pressure is controlled by means of the variable turbine geometry by a VTG actuator, which is controlled by specifying a manipulated variable. For boost pressure control, it is also possible to use a boost pressure control valve (WASTEGATE) on the exhaust side. With this exhaust-side regulation, a part of the exhaust gases is led around the turbine, so that a smaller exhaust gas flow flows through the turbine depending on the exhaust gas flow being carried around. DE 197 09 955 A1 discloses a method for controlling an internal combustion engine, which is provided with a control device which has physical models of a charging device and an intake tract. With the help of these models, estimates for the boost pressure and for the air mass flow into the cylinders are determined, which are used to control the internal combustion engine.
Aus der DE 42 14 648 AI ist ein Verfahren zum Steuern einer Brennkraftmaschine mit einem Turbolader und eine Abgasrückführung bekannt, bei dem durch Integration der Differenz zwischen den Leistungen des Verdichters und der Turbine des Turboladers die Drehzahl der Laderwelle bestimmt wird. Ausgehend von der Drehzahl der Laderwelle wird dann ein Ladedrucksignal berechnet. Das Ladedrucksignal wird dann zusammen mit weiteren Signalen zur Steuerung der Brennkraftmaschine verwendet.From DE 42 14 648 AI a method for controlling an internal combustion engine with a turbocharger and an exhaust gas recirculation is known, in which the speed of the supercharger shaft is determined by integrating the difference between the powers of the compressor and the turbine of the turbocharger. A boost pressure signal is then calculated based on the speed of the supercharger shaft. The boost pressure signal is then used together with further signals to control the internal combustion engine.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Regelung des Ladedrucks bereitzustellen, das mit einfachenThe invention has for its object to provide a method for regulating the boost pressure with simple
Mitteln eine genaue und zuverlässige Einstellung des Ladedrucks ermöglicht.Means an accurate and reliable setting of the boost pressure.
Die Aufgabe wird durch die Merkmale des Hauptanspruchs ge- löst.The task is solved by the features of the main claim.
Erfindungsgemäß wird in dem Verfahren in einem ersten Schritt die Leistung oder das Drehmoment des Verdichters bestimmt . Leistung und Drehmoment des Verdichters sind über die Turbo- laderdrehzahl miteinander verknüpft, wobei das Drehmoment umgekehrt proportional zur Turboladerdrehzahl und proportional zur Leistung des Verdichters ist. Erfindungsgemäß werden in einem zweiten Schritt die bei der Übertragung von der Turbine auf den Verdichter auftretenden Leistungs- oder Drehmoment- Verluste bestimmt. Hierbei werden insbesondere Spaltverluste, Reibungsverluste der Welle usw. berücksichtigt. Zur Ermittlung der Verlustleistung bzw. des Verlustdrehmoments wird an- genommen, daß die Verluste abhängig von der Leistung bzw. dem Drehmoment des Verdichters sind. Der Proportionalitätsfaktor ist abhängig von dem Betriebszustand und wird mit Hilfe einer Kennlinie bestimmt. In einem dritten Schritt wird aus den zu- vor bestimmten Leistungen und Drehmomenten die Leistung bzw. das Drehmoment der Turbine bestimmt. Dieses ergibt sich direkt als Summe der beiden zuvor bestimmten physikalischen Größen. Abhängig von der Leistung oder dem Drehmoment der Turbine wird nun nachfolgend eine Sollwertvorgabe für die Stellgröße zur Einstellung des Ladedrucks ermittelt. Hierbei ist vorteilhaft, daß nicht nur die Parameter, die die Be- triebszustände des Motors kennzeichnen, sondern auch die Zustände der Turbine berücksichtigt werden. Bei dem erfindungs- gemäßen Verfahren wird der eindeutige thermodynamische Zu- stand der Turbine beschrieben. Dies ermöglicht eine schnelle und sehr genaue Einstellung bzw. Regelung des Ladedrucks bei einer Brennkraftmaschine mit ATL.According to the invention, the power or the torque of the compressor is determined in a first step in the method. The compressor's output and torque are linked via the turbocharger speed, the torque being inversely proportional to the turbocharger speed and proportional to the output of the compressor. According to the invention, the power or torque losses occurring during the transmission from the turbine to the compressor are determined in a second step. In particular, gap losses, friction losses of the shaft, etc. are taken into account. To determine the power loss or the torque loss, taken that the losses are dependent on the power or the torque of the compressor. The proportionality factor depends on the operating state and is determined using a characteristic curve. In a third step, the power or torque of the turbine is determined from the previously determined powers and torques. This results directly as the sum of the two previously determined physical quantities. Depending on the power or the torque of the turbine, a setpoint specification for the manipulated variable for setting the boost pressure is now determined. It is advantageous here that not only the parameters which characterize the operating states of the engine, but also the states of the turbine are taken into account. In the method according to the invention, the unique thermodynamic state of the turbine is described. This enables the boost pressure to be set and regulated quickly and very precisely in an internal combustion engine with ATL.
In einer bevorzugten Ausgestaltung des Verfahrens wird die Leistung oder das Drehmoment des Verdichters unter Verwendung des isentropen Verdichterwirkungsgrades bestimmt, wobei der isentrope Verdichterwirkungsgrad durch ein erstes Kennfeld abhängig von dem Druck nach dem Verdichter und dem Frisch- luftmassenstrom sowie dem Umgebungsdruck und der Umgebungs- temperatur bestimmt wird. Der isentrope Verdichterwirkungsgrad ist als ein erstes Kennfeld abhängig von dem Druckverhältnis zwischen Druck nach dem Verdichter und dem Umgebungsdruck und dem Quotienten aus Frischluftmassenstrom und Umgebungsdruck multipliziert mit der Wurzel aus der Umgebungstem- peratur abgelegt.In a preferred embodiment of the method, the power or the torque of the compressor is determined using the isentropic compressor efficiency, the isentropic compressor efficiency being determined by a first map as a function of the pressure after the compressor and the fresh air mass flow as well as the ambient pressure and the ambient temperature becomes. The isentropic compressor efficiency is stored as a first map dependent on the pressure ratio between the pressure after the compressor and the ambient pressure and the quotient of fresh air mass flow and ambient pressure multiplied by the root of the ambient temperature.
Sofern an dem Abgasturbolader keine Meßeinrichtung zur Messung der Turbinendrehzahl vorgesehen ist, wird der Wert der Turbinendrehzahl durch ein zweites Kennfeld abhängig von dem Massenstrom über den Verdichter, dem Abgasdruck nach dem Verdichter, Umgebungsdruck und der Abgastemperatur berechnet. Zu einer genaueren Berechnung der Turbinendrehzahl, insbesondere bei einer variablen Turbinengeometrie kann das zweite Kennfeld zusätzlich von dem Wert der Stellgröße für den Ladedruck abhängen. Ebenfalls ist es möglich, daß die Turbinen- drehzahl direkt an der Turbine gemessen wird. Bevorzugt erfolgt hier eine kontaktlose Messung der Turbinendrehzahl, wie beispielsweise eine induktive oder optische Messung.If no measuring device for measuring the turbine speed is provided on the exhaust gas turbocharger, the value of the turbine speed is calculated by a second characteristic map depending on the mass flow through the compressor, the exhaust gas pressure after the compressor, ambient pressure and the exhaust gas temperature. For a more precise calculation of the turbine speed, in particular in the case of a variable turbine geometry, the second characteristic diagram can also depend on the value of the manipulated variable for the boost pressure. It is also possible that the turbine speed is measured directly on the turbine. A contactless measurement of the turbine speed, for example an inductive or optical measurement, is preferably carried out here.
Der Leistungs- oder der Drehmomentverlust wird abhängig von der Turbinendrehzahl über eine vorbestimmte Kennlinie ermittelt. Zur Ermittlung des Verlustes werden die nicht durch den isentropen Wirkungsgrad des Verdichters erfaßten Verluste in der Kennlinie berücksichtigt. Hierzu werden die Verluste abhängig von der Turbinendrehzahl dargestellt . Bevorzugt ist die Kennlinie nicht direkt abhängig von der Turbinendrehzahl dargestellt, sondern abhängig von der Turbinendrehzahl normiert auf die maximale Turbinendrehzahl .The power or torque loss is determined as a function of the turbine speed using a predetermined characteristic curve. To determine the loss, the losses not recorded by the isentropic efficiency of the compressor are taken into account in the characteristic curve. For this purpose, the losses are shown depending on the turbine speed. The characteristic curve is preferably not shown directly as a function of the turbine speed, but rather as a function of the turbine speed normalized to the maximum turbine speed.
In einer Weiterführung des Verfahrens wird die Stellgröße ab- hängig von dem Druckverhältnis der Turbine ermittelt, das ü- ber eine polytrope Beziehung abhängig vom isentropen Wirkungsgrad der Turbine berechnet wird, wobei der isentrope Wirkungsgrad der Turbine unter Verwendung eines dritten Kennfeldes abhängig von dem Massenstrom über die Turbine, der Ab- gastemperatur und dem Abgasdruck vor der Turbine ermittelt wird. Zusätzlich wird bei dem dritten Kennfeld der Wert der Stellgröße für den Ladedruck berücksichtigt. Die Stellgröße selber wird über ein viertes Kennfeld abhängig von dem Abgas- massenstrom, dem Abgasdruck vor der Turbine und der Abgastem- peratur, sowie dem Turbinendruckverhältnis ermittelt, wobei das Turbinendruckverhältnis wiederum von dem berechneten i- sentropen Wirkungsgrad der Turbine abhängt. Entscheidend ist hierbei, daß das vierte Kennfeld vom Turbinendruckverhältnis abhängt, was die Verwendung von bereits bekannten und zusam- mengestellten Turbinenkennfeidern vereinfacht. Alternativ hierzu ist es auch möglich, daß die Stellgröße durch ein Kennfeld abhängig von dem Temperaturverhältnis an der Turbine bestimmt wird, wobei dann die Größen des Abgas- massenstroms, des Abgasdrucks vor der Turbine und der Abgas- temperatur berücksichtigt werden. Bei dieser Bestimmung der Stellgröße ist das Kennfeld abhängig von dem Temperaturverhältnis an der Turbine, wodurch einerseits eine Berechnung des isentropen Wirkungsgrades der Turbine unterbleiben kann, andererseits jedoch das vierte Kennfeld temperaturabhängig aufgestellt werden muß.In a further development of the method, the manipulated variable is determined as a function of the pressure ratio of the turbine, which is calculated using a polytropic relationship as a function of the isentropic efficiency of the turbine, the isentropic efficiency of the turbine using a third map depending on the mass flow the turbine, the exhaust gas temperature and the exhaust gas pressure upstream of the turbine are determined. In addition, the value of the manipulated variable for the boost pressure is taken into account in the third map. The manipulated variable itself is determined via a fourth characteristic map depending on the exhaust gas mass flow, the exhaust gas pressure upstream of the turbine and the exhaust gas temperature, and the turbine pressure ratio, the turbine pressure ratio in turn being dependent on the calculated isotropic efficiency of the turbine. The decisive factor here is that the fourth map depends on the turbine pressure ratio, which simplifies the use of already known and compiled turbine indicators. As an alternative to this, it is also possible for the manipulated variable to be determined by a map as a function of the temperature ratio on the turbine, in which case the quantities of the exhaust gas mass flow, the exhaust gas pressure upstream of the turbine and the exhaust gas temperature are taken into account. When determining the manipulated variable, the map is dependent on the temperature ratio at the turbine, which means that the isentropic efficiency of the turbine can be omitted on the one hand, but on the other hand the fourth map must be set up as a function of temperature.
Mit dem erfindungsgemäßen Verfahren wird der Ladedruck über eine Turbine mit einer variablen Turbinengeometrie oder über ein WASTEGATE mit einem Ventil eingestellt.With the method according to the invention, the boost pressure is set via a turbine with a variable turbine geometry or via a WASTEGATE with a valve.
Bei der Verwendung eines WASTEGATEs wird der über das WASTEGATE fließende Massenstrom als die Differenz aus Abgas- massenstrom und einem maximalen Turbinenmassenstrom gebildet, um die Turbine zu schützen.When using a WASTEGATE, the mass flow flowing through the WASTEGATE is formed as the difference between the exhaust gas mass flow and a maximum turbine mass flow in order to protect the turbine.
Ausführungsbeispiele der Erfindung werden im folgenden unter Bezugnahme auf die Zeichnungen näher erläutert. Es zeigen:Exemplary embodiments of the invention are explained in more detail below with reference to the drawings. Show it:
Fig. 1 einen schematischen Aufbau der Reglerstruktur, Fig. 2 drei Funktionsblöcke für das Modell des Turboladers, Fig. 3 die Bestimmung der Leistung des Verdichters einmal abhängig von den Drücken und einmal abhängig von der Temperatur, Fig. 4 die Bestimmung von Sollwerten für das Temperaturverhältnis, Fig. 5 die Berechnung der Turbinenleistung, Fig. 6 die Berechnung des Turbinendrehmoments für den Fall, daß die Turbinendrehzahl gemessen wird, Fig. 7 die Berechnung des Tastverhältnisses für das Stellglied, wenn das Temperaturverhältnis verwendet wird, und Fig. 8 die Berechnung des Tastverhältnisses, wenn dasFig. 1 shows a schematic structure of the controller structure, Fig. 2 three function blocks for the model of the turbocharger, Fig. 3 the determination of the performance of the compressor once depending on the pressures and once depending on the temperature, Fig. 4 the determination of setpoints for the Temperature ratio, FIG. 5 the calculation of the turbine power, FIG. 6 the calculation of the turbine torque in the event that the turbine speed is measured, FIG. 7 the calculation of the duty cycle for the actuator when the temperature ratio is used, and Fig. 8, the calculation of the duty cycle, if that
Druckverhältnis an der Turbine der Berechnung des Tastverhältnisses zugrunde gelegt wird.Pressure ratio on the turbine the calculation of the duty cycle is used.
Der in Fig. 1 dargestellte schematische Aufbau der Regelung besitzt eine Aktivierungseinheit 10, die abhängig von den Betriebspunkten der Brennkraftmaschine entweder in einen geregelten (closed-loop) oder gesteuerten (open-loop) Betrieb schalten. Die Aktivierungsbedingungen sind abhängig von den Betriebspunkten der Brennkraftmaschine, die entweder über eine Messung oder in dem Modell des Luft-Abgaspfades 12 ermittelt werden.The schematic structure of the control system shown in FIG. 1 has an activation unit 10 which, depending on the operating points of the internal combustion engine, either switches to a controlled (closed-loop) or controlled (open-loop) operation. The activation conditions are dependent on the operating points of the internal combustion engine, which are determined either via a measurement or in the model of the air exhaust gas path 12.
Die Sollwerteinheit 14 bestimmt Sollwerte, die abhängig von den Betriebsparametern der Brennkraftmaschine, des Turboladers, den Umgebungsbedingungen und den berechneten Größen aus dem Modell 12 sind. Diese Sollwerte werden zusätzlich noch dynamisch korrigiert, um eine optimale Anpassung des Sollwertes an instationäre Betriebszustände zu erreichen. Die Soll- werte werden an eine Vorsteuereinheit 16 und an einen ReglerThe setpoint unit 14 determines setpoints which are dependent on the operating parameters of the internal combustion engine, the turbocharger, the ambient conditions and the calculated variables from the model 12. These setpoints are also dynamically corrected in order to optimally adapt the setpoint to transient operating conditions. The setpoints are sent to a pilot control unit 16 and to a controller
18 weitergeleitet. Die Vorsteuereinheit 16 kann beispielsweise ein VTG-Modell enthalten, um die variable Turbinengeometrie gemäß den vorgegebenen Sollwerten anzusteuern.18 forwarded. The pilot control unit 16 can contain, for example, a VTG model in order to control the variable turbine geometry in accordance with the predetermined target values.
In der Modelleinheit 12 für den Luft- und Abgaspfad werden die nicht gemessenen Zustände im Luft-Abgaspfad ermittelt und den übrigen Einheiten 10, 14, 16 und 18 zur Verfügung gestellt. Der Regler kann als ein konventioneller PI-Regler ausgebildet sein, der vorzugsweise einen parallelen Korrek- turzweig mit DT3.-Verhalten besitzt. Mit dem Regler werden Un- genauigkeiten der Vorsteuerung und der Modelleinheit 12 für den Luft- und Abgaspfad kompensiert.In the model unit 12 for the air and exhaust gas path, the non-measured states in the air exhaust gas path are determined and made available to the other units 10, 14, 16 and 18. The controller can be designed as a conventional PI controller, which preferably has a parallel correction branch with DT3 behavior. The controller compensates for inaccuracies in the pilot control and the model unit 12 for the air and exhaust gas path.
Die Modellstruktur wird mit Bezug auf Fig. 2 am Beispiel der Leistungsbilanz näher beschrieben. In einem Verdichter- Modellelement 20 wird die Leistung des Verdichters über die thermodynamischen Zustände am Verdichter berechnet. Um diese Leistung des Verdichters (POW_CMP) in die Leistung der Turbine (POW_TUR) umrechnen zu können, wird in einem Verlust- Modellelement 22 die an der Welle zwischen Verdichter und Turbine auftretenden Verluste berechnet . Die Summe aus Ver- dichterleistung und Verlustleistung ergibt die Turbinenleistung (POW_TUR) , die als Eingangsgröße an das Turbinen- Modellelement 24 anliegt. Das Turbinen-Modellelement bestimmt das Tastverhältnis (BPAPWM) für die variable Turbinengeometrie (VTG) oder das WASTEGATE (WG) . Aus dem Vorstehenden wird deutlich, daß dieselbe Betrachtungsweise für die an der Welle angreifenden Drehmomente gilt.The model structure is described in more detail with reference to FIG. 2 using the example of the current account. The performance of the compressor is calculated in a compressor model element 20 via the thermodynamic conditions on the compressor. Around To be able to convert the power of the compressor (POW_CMP) into the power of the turbine (POW_TUR), the losses occurring on the shaft between the compressor and the turbine are calculated in a loss model element 22. The sum of the compressor output and power loss results in the turbine output (POW_TUR), which is applied to the turbine model element 24 as an input variable. The turbine model element determines the duty cycle (BPAPWM) for the variable turbine geometry (VTG) or the WASTEGATE (WG). From the above it is clear that the same approach applies to the torques acting on the shaft.
Nachfolgend werden die einzelnen Modellelemente im Detail erläutert. Fig. 3 zeigt die Berechnung der Verdichterleistung (POW_CMP) . In die Verdichterleistung geht ein der Quotient aus Umgebungsdruck (AMP) 28 und Druck am Verdichter (MAP) 26, deren Quotient 30 an einer Kennlinie KLX anliegt. Die Kennlinie KLi berechnet die folgende Größe :The individual model elements are explained in detail below. 3 shows the calculation of the compressor output (POW_CMP). The quotient of the ambient pressure (AMP) 28 and the pressure at the compressor (MAP) 26, the quotient 30 of which is applied to a characteristic curve KL X, is included in the compressor capacity. The characteristic curve KLi calculates the following size:
Figure imgf000009_0001
Figure imgf000009_0001
wobei CAPA_MAF den isentropen Exponenten von Luft bezeichnet.where CAPA_MAF denotes the isentropic exponent of air.
Zusätzlich zu dem Umgebungsdruck (AMP) 28 wird in dem Kenn- feld KFi noch der Frischluftmassenstrom (MAF) 34 und die Umgebungstemperatur (TIA) 32 berücksichtigt. In dem Kennfeld KFi 36 wird der isentrope Verdichter-Wirkungsgrad (EFF_CMP) bestimmt. Unter Berücksichtigung des Frischluftmassenstroms und der Umgebungstemperatur sowie der spezifischen Wärmekapa- zität von Luft läßt sich so die Leistung des Verdichters berechnen. Soll statt der Leistungsbilanz in Fig. 2 die Drehmomentbilanz betrachtet werden, so ist die in Fig. 3 berechnete Leistung des Verdichters durch die Turbodrehzahl (N_TCHA) und den Faktor 2 π zu dividieren. Bei einem vorhandenen Sollwert der Temperatur nach dem Verdichter (T UP CMP) 38 ist auch ei- ne Sollwertvorgabe über das Temperaturverhältnis am Verdichter möglich.In addition to the ambient pressure (AMP) 28, the fresh air mass flow (MAF) 34 and the ambient temperature (TIA) 32 are also taken into account in the map KFi. The isentropic compressor efficiency (EFF_CMP) is determined in the map KFi 36. Taking into account the fresh air mass flow and the ambient temperature as well as the specific heat capacity of air, the performance of the compressor can be calculated. If the torque balance is to be considered instead of the power balance in FIG. 2, the power of the compressor calculated in FIG. 3 is to be divided by the turbo speed (N_TCHA) and the factor 2π. With an existing setpoint of the temperature after the compressor (T UP CMP) 38, a Ne can be set via the temperature ratio on the compressor.
Fig. 4 verdeutlicht, daß das mit Bezug auf Fig. 3 erläuterte Verdichtermodell ebenfalls dazu verwendet werden kann, um aus einem Sollwert für den Druck am Verdichter (MAP_SP) 40 und aus einem Sollwert für den Frischluftmassenstrom (MAF_SP) 42 den Sollwert für die Temperatur nach dem Verdichter (T UP CMP SP) 44 zu berechnen.FIG. 4 illustrates that the compressor model explained with reference to FIG. 3 can also be used to derive the setpoint for the temperature from a setpoint for the pressure at the compressor (MAP_SP) 40 and from a setpoint for the fresh air mass flow (MAF_SP) 42 after the compressor (T UP CMP SP) 44 to calculate.
Die beiden Möglichkeiten zur Berechnung der Verluste werden mit Bezug auf die Figuren 5 und 6 beschrieben. Fig. 5 zeigt am Beispiel der Leistungsbilanz die Berechnung der Verlustleistung, wenn keine Messung der Turbinendrehzahl erfolgt. In diesem Fall wird mit Hilfe des Kennfeldes KF2 abhängig von dem Druck am Verdichter (MAP) 56, dem Frischluftmassenstrom (MAF) 58, dem Umgebungsdruck (AMP) 60 und der Umgebungstemperatur (TIA) 62 die Turbinendrehzahl (N_TCHA) 64 bestimmt. Bezogen auf eine normierte Turbinendrehzahl (N_TCHA_NOM) 66 kann über die Kennlinie KL2 der nicht isentrope Verlust desThe two possibilities for calculating the losses are described with reference to FIGS. 5 and 6. 5 shows the calculation of the power loss using the example of the power balance if the turbine speed is not measured. In this case, the turbine speed (N_TCHA) 64 is determined with the aid of the map KF 2 depending on the pressure at the compressor (MAP) 56, the fresh air mass flow (MAF) 58, the ambient pressure (AMP) 60 and the ambient temperature (TIA) 62. Based on a normalized turbine speed (N_TCHA_NOM) 66 of the non-isentropic loss can on the characteristic of the KL 2
Turboladers (EFF_LOSS_TCHA) 68 berechnet werden. Die Verlustleistung des Abgasturboladers ergibt sich damit zu:Turbocharger (EFF_LOSS_TCHA) 68 can be calculated. The power loss of the exhaust gas turbocharger thus results in:
POW LOSS TCHA = (1-EFF LOSS TCHA) POW CMPPOW LOSS TCHA = (1-EFF LOSS TCHA) POW CMP
Fig. 6 erläutert die Berechnung des Turbinendrehmoments für den Fall, daß die gemessene Turbinendrehzahl (N_TCHA) 70 bekannt ist. Im Vergleich zu der mit Bezug auf Fig. 5 beschriebenen Berechnung kann hierbei direkt die geeignet normierte Turbinendrehzahl mit dem Kennfeld KL2 benutzt werden. Ein beispielhafter Verlauf für ein solches Kennfeld ist im unteren Teil der Fig. 6 wiedergegeben. Es ist dargestellt, daß die nicht isentropen Verluste des Turboladers mit der normierten Turbinendrehzahl (N_TCHA/N_TCHA_NOM) steigen.FIG. 6 explains the calculation of the turbine torque in the event that the measured turbine speed (N_TCHA) 70 is known. In comparison to the calculation described with reference to FIG. 5, the suitably standardized turbine speed with the characteristic map KL 2 can be used directly. An exemplary course for such a map is shown in the lower part of FIG. 6. It is shown that the non-isentropic losses of the turbocharger increase with the normalized turbine speed (N_TCHA / N_TCHA_NOM).
Die Figuren 7 und 8 erläutern die Berechnung des Tastverhältnisses (BPAPWM) 72 für das Stellglied. Beide Figuren erläu- tern die Berechnung der Stellgröße anhand des Turbinendrehmoments (TQ_TUR) 74. Jedoch kann die gleiche Berechnung auch ausgehend von der Turbinenleistung (POW_TUR) 74 ausgeführt werden. In der in Fig. 7 dargestellten Berechnung wird die Stellgröße 72 (BPAPWM) abhängig von dem Temperaturverhältnis (DIV_T_TUR = T_UP_TUR/T_EXH) berechnet. Das vierte Kennfeld KF hat die folgenden Abhängigkeiten:Figures 7 and 8 explain the calculation of the duty cycle (BPAPWM) 72 for the actuator. Both figures explain The calculation of the manipulated variable is based on the turbine torque (TQ_TUR) 74. However, the same calculation can also be carried out on the basis of the turbine power (POW_TUR) 74. In the calculation shown in FIG. 7, the manipulated variable 72 (BPAPWM) is calculated as a function of the temperature ratio (DIV_T_TUR = T_UP_TUR / T_EXH). The fourth map KF has the following dependencies:
KF4
Figure imgf000011_0001
KF 4
Figure imgf000011_0001
wobei T_UP_TUR die Temperatur nach der Turbine, T_EXH die Abgastemperatur, M_EXH den Abgasmassenstrom über die Turbine und PRS_EXH den Abgasdruck vor der Turbine bezeichnet .where T_UP_TUR denotes the temperature after the turbine, T_EXH the exhaust gas temperature, M_EXH the exhaust gas mass flow through the turbine and PRS_EXH the exhaust gas pressure upstream of the turbine.
Abhängig von dem Druckverhältnis (DIV_PRS_TUR =Depending on the pressure ratio (DIV_PRS_TUR =
PRS_UP_TUR/PRS_EXH) hat das vierte Kennfeld die folgende Gestalt:PRS_UP_TUR / PRS_EXH) the fourth map has the following form:
PRS_UP_TUR _M EXH | V HPRS_UP_TUR _ M EXH | VH
KF4 = BPAPWM = f PRS_EXH - PRS_EXHy KF 4 = BPAPWM = f PRS_EXH - PRS_EXH y
Das in Fig. 7 dargestellte Modell ermöglicht eine besonders einfache Umschaltung für eine WASTEGATE-Steuerung. Ansprechend auf ein Steuersignal (NC_WG) wird zwischen zwei Zuständen hin und her geschaltet. Bei der in Fig. 7 dargestellten Verbindung erfolgt eine VTG-Steuerung, bei der der Abgasmassenstrom über die Turbine (M_EXH) 76 verwendet wird. Bei ei- ner WASTEGATE-Steuerung wird ansprechend auf das Steuersignal 74 der Kontakt mit dem Anschluß 78 hergestellt, so daß der Massenstrom über das WASTEGATE 80 (M_WG) an die Stelle des Abgasstroms über die Turbine tritt. Der Massenstrom über das WASTEGATE ergibt sich als der Massenstrom über die Turbine minus einem maximalen Massenstrom über die Turbine (M_TUR_MAX) 82. Die Verwendung des maximalen Massenstroms ü- ber die Turbine 82 ermöglicht es, die Turbine vor einer Zerstörung durch einen zu großen Massenstrom zu schützen.The model shown in FIG. 7 enables a particularly simple switchover for a WASTEGATE control. In response to a control signal (NC_WG), a switch is made between two states. In the connection shown in FIG. 7, a VTG control takes place, in which the exhaust gas mass flow via the turbine (M_EXH) 76 is used. In the case of a WASTEGATE control, contact with the connection 78 is established in response to the control signal 74, so that the mass flow via the WASTEGATE 80 (M_WG) takes the place of the exhaust gas flow via the turbine. The mass flow over the WASTEGATE is the mass flow over the turbine minus a maximum mass flow over the turbine (M_TUR_MAX) 82. The use of the maximum mass flow over the turbine 82 makes it possible to protect the turbine from being destroyed by an excessive mass flow.
Fig. 8 zeigt die Berechnung der Stellgröße 72 abhängig von einem Kennfeld KF 84, das von dem Druckverhältnis (DIV_PRS_TUR) 86 an der Turbine abhängt. Zur Bestimmung des Druckverhältnisses 86 wird mit Hilfe des dritten Kennfeldes (KF3) 88 der isentrope Turbinenwirkungsgrad 90 berechnet. Dieser kann über die Kennlinie KL3 (polytropen Beziehung zwischen Temperatur- und Druckverhältnis) in das Druckverhältnis wie folgt umgerechnet werden:8 shows the calculation of the manipulated variable 72 as a function of a characteristic map KF 84, which depends on the pressure ratio (DIV_PRS_TUR) 86 on the turbine. To determine the pressure ratio 86, the isentropic turbine efficiency 90 is calculated using the third characteristic map (KF 3 ) 88. This can be converted into the pressure ratio using the characteristic curve KL 3 (polytropic relationship between temperature and pressure ratio):
KL, =f(EFF_TUR;TTUR;T_EXH)
Figure imgf000012_0001
KL, = f (EFF_TUR; TTUR; T_EXH)
Figure imgf000012_0001
Die Werte für den Abgasdruck vor der Turbine (PRS_EXH) und die Abgastemperatur (T_EXH) sowie den Massenstrom über EGR werden in dem Modell aus Fig. 8 geschätzt. Es hat sich her- ausgestellt, daß die Sensitivität des Modells auf die Stellgröße 72 (BPAPWM) , die einerseits Ergebnis des Modells ist, andererseits in dem dritten Kennfeld (KF3) 88 eingeht, gering ist, so daß stabile und genaue Ergebnisse erzielt werden. Alternativ zur Stellgröße 72 (Tastverhältnis) am dritten Kenn- feld kann auch eine Lagerückmeldung des Wastegates oder der VTG-Stellung an dem Kennfeld verwendet werden. The values for the exhaust gas pressure upstream of the turbine (PRS_EXH) and the exhaust gas temperature (T_EXH) and the mass flow via EGR are estimated in the model from FIG. 8. It has been found that the sensitivity of the model to manipulated variable 72 (BPAPWM), which is the result of the model on the one hand and is included in the third map (KF 3 ) 88 on the other hand, is low, so that stable and accurate results are achieved , As an alternative to manipulated variable 72 (duty cycle) on the third map, a position feedback from the wastegate or the VTG position on the map can also be used.

Claims

Patentansprüche claims
1. Verfahren zur Regelung eines Ladedrucks in einer Brennkraftmaschine mit einem Abgasturbolader bestehend aus einer Turbine und einem Ladeluftverdichter, bei dem eine Stellgröße zum Einstellen des vom Ladeluftverdichter abgegebenen Ladedrucks bestimmt wird, das folgende Verfahrensschritte aufweist :1. A method for regulating a boost pressure in an internal combustion engine with an exhaust gas turbocharger consisting of a turbine and a charge air compressor, in which a manipulated variable for setting the boost pressure delivered by the charge air compressor is determined, which comprises the following method steps:
- in einem ersten Schritt wird die Leistung oder das Drehmoment des Verdichters (POW_CMP, TQ_CMP) bestimmt, in einem zweiten Schritt wird der bei der Übertragung von der Turbine auf den Verdichter auftretende Leistungs- oder Drehmomentverlust (POW_LOSS_TCHA, TQ_LOSS_TCHA) bestimmt und in einem dritten Schritt wird die Leistung oder das Drehmoment der Turbine (POW_TUR, TQ_TUR) aus der Leistung oder dem Drehmoment des Verdichters und dem Leistungs- oder Drehmomentverlust bestimmt und abhängig von der Leistung oder dem Drehmoment der Turbine eine Sollwertvorgabe für die Stellgröße (BPAPWM) ermittelt.- In a first step, the power or the torque of the compressor (POW_CMP, TQ_CMP) is determined, in a second step the power or torque loss (POW_LOSS_TCHA, TQ_LOSS_TCHA) that occurs during the transfer from the turbine to the compressor is determined and in a third step Step, the power or torque of the turbine (POW_TUR, TQ_TUR) is determined from the power or torque of the compressor and the power or torque loss and, depending on the power or torque of the turbine, a setpoint specification for the manipulated variable (BPAPWM) is determined.
2 . Verfahren nach Anspruch 1 , d a d u r c h g e k e n n z e i c h n e t , daß die Leistung oder das Dreh- moment des Verdichters unter Verwendung eines isentropen Verdichterwirkungsgrades (EFF_CMP) bestimmt wird,2nd The method of claim 1, wherein the power or torque of the compressor is determined using an isentropic compressor efficiency (EFF_CMP),
wobei der isentrope Verdichterwirkungsgrad über ein erstes Kennfeld (KFi) abhängig von den folgenden Größen bestimmt wird:the isentropic compressor efficiency is determined via a first map (KFi) depending on the following variables:
Druck nach dem Verdichter (MAP) ,Pressure after the compressor (MAP),
der Brennkraftmaschine zugeführter Frischluftmassenstrom (MAF) ,fresh air mass flow (MAF) fed to the internal combustion engine,
Umgebungsdruck (AMP) und Umgebungstemperatur (TIA) .Ambient pressure (AMP) and Ambient temperature (TIA).
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß die Turbinendrehzahl (N_TCHA) berechnet wird,3. The method according to claim 1 or 2, d a d u r c h g e k e n n z e i c h n e t that the turbine speed (N_TCHA) is calculated,
wobei der Wert der Turbinendrehzahl durch ein zweites Kennfeld (KF2) abhängig von den folgenden Größen berechnet wird:wherein the value of the turbine speed is calculated by a second map (KF 2 ) depending on the following variables:
Massenstrom über dem Verdichter (MAF) ,Mass flow over the compressor (MAF),
Abgasdruck nach dem Verdichter, Umgebungsdruck (AMP) undExhaust gas pressure after the compressor, ambient pressure (AMP) and
Umgebungstemperatur (TIA) .Ambient temperature (TIA).
4. Verfahren nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, daß das zweite Kennfeld (KF2) zusätzlich von dem Wert der Stellgröße (BPAPWH) für den Lade- druck abhängt .4. The method according to claim 3, characterized in that the second map (KF 2 ) additionally depends on the value of the manipulated variable (BPAPWH) for the boost pressure.
5. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß die Turbinendrehzahl (N_TCHA) gemessen wird.5. The method of claim 1 or 2, d a d u r c h g e k e n n z e i c h n e t that the turbine speed (N_TCHA) is measured.
6. Verfahren nach einem der Ansprüche 3 bis 5, d a d u r c h g e k e n n z e i c h n e t, daß der Leistungs- oder der Drehmomentverlust abhängig von der Turbinendrehzahl (N_TCHA) mittels einer vorbestimmten Kennli- nie ermittelt wird.6. The method according to any one of claims 3 to 5, so that the power or torque loss is determined as a function of the turbine speed (N_TCHA) by means of a predetermined characteristic.
7. Verfahren nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t, daß die Stellgröße (BPAPWH) für den Ladedruck abhängig vom isentropen Wir- kungsgrad der Turbine ermittelt wird und der isentrope Wirkungsgrad der Turbine (EFF_TUR) unter Verwendung eines drit- ten Kennfeldes (KF3) abhängig von den folgenden Größen bestimmt wird:7. The method according to any one of claims 1 to 6, characterized in that the manipulated variable (BPAPWH) for the boost pressure is determined depending on the isentropic efficiency of the turbine and the isentropic efficiency of the turbine (EFF_TUR) using a third map (KF 3 ) is determined depending on the following sizes:
- Massenstrom über die Turbine (M_TUR) ,- mass flow via the turbine (M_TUR),
- Abgastemperatur (T_EXH) und- exhaust gas temperature (T_EXH) and
- Abgasdruck vor der Turbine (PRS_EXH) ,- exhaust gas pressure upstream of the turbine (PRS_EXH),
- wobei das dritte Kennfeld (KF3) zusätzlich von dem Wert der Stellgröße (BPAPWH) für den Ladedruck abhängt.- The third map (KF 3 ) additionally depends on the value of the manipulated variable (BPAPWH) for the boost pressure.
8. Verfahren nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t, daß die Stellgröße (BPAPWH) für den Ladedruck durch ein viertes Kennfeld (KF ) abhängig von den folgenden Größen berechnet wird:8. The method according to claim 7, so that the manipulated variable (BPAPWH) for the boost pressure is calculated by a fourth map (KF) depending on the following variables:
- Abgasmassenstrom (M_EXH) ,- exhaust gas mass flow (M_EXH),
- Abgasdruck vor der Turbine (PRS_EXH) und- exhaust gas pressure upstream of the turbine (PRS_EXH) and
- Abgastemperatur (T_EXH) ,- exhaust gas temperature (T_EXH),
sowie einem Turbinendruckverhältnis (DIV_PRS_TUR) , das von dem ermittelten isentropen Wirkungsgrad der Turbine abhängt.and a turbine pressure ratio (DIV_PRS_TUR), which depends on the determined isentropic efficiency of the turbine.
9. Verfahren nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t, daß die Stellgröße (BPAPWH) für den Ladedruck über ein Kennfeld (KF4) abhän- gig von dem Temperaturverhältnis an der Turbine (DIV_T_TUR) und den folgenden Größen bestimmt wird:9. The method according to any one of claims 1 to 6, so that the manipulated variable (BPAPWH) for the boost pressure is determined via a map (KF4) as a function of the temperature ratio on the turbine (DIV_T_TUR) and the following variables:
- Abgasmassenstrom (M_EXH) ,- exhaust gas mass flow (M_EXH),
- Abgasdruck vor der Turbine (PRS_EXH) und- exhaust gas pressure upstream of the turbine (PRS_EXH) and
- Abgastemperatur (T_EXH) . - Exhaust gas temperature (T_EXH).
10. Verfahren nach einem der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t, daß die Stellgröße (BPAPWH) für den Ladedruck auf eine variable Turbinengeo- metrie einwirkt .10. The method according to any one of claims 1 to 9, so that the control variable (BPAPWH) for the boost pressure acts on a variable turbine geometry.
11. Verfahren nach einem der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t, daß die Stellgröße (BPAPWH) für den Ladedruck auf ein abgasseitig angeordne- tes Ladedruckventil (WASTEGATE) einwirkt.11. The method according to any one of claims 1 to 9, that the control variable (BPAPWH) for the charge pressure acts on a charge pressure valve (WASTEGATE) arranged on the exhaust gas side.
12. Verfahren nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t, daß der Massenstrom über das Ladedruckventil (M_WG) sich als die Differenz zwischen Abgas- massenstrom (M_EXH) und einem maximalen Turbinenmassenstrom (M_TUR_MAX) ergibt . 12. The method of claim 11, d a d u r c h g e k e n n z e i c h n e t that the mass flow through the boost pressure valve (M_WG) results as the difference between exhaust gas mass flow (M_EXH) and a maximum turbine mass flow (M_TUR_MAX).
PCT/DE2001/002328 2000-07-07 2001-06-25 Method for controlling a charge pressure in an internal combustion engine with an exhaust-gas turbocharger WO2002004799A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE50110631T DE50110631D1 (en) 2000-07-07 2001-06-25 METHOD FOR CONTROLLING A LOAD PRINT IN AN INTERNAL COMBUSTION ENGINE WITH AN ABGASTURBOLADER
EP01951425A EP1299628B1 (en) 2000-07-07 2001-06-25 Method for controlling a charge pressure in an internal combustion engine with an exhaust-gas turbocharger
US10/334,332 US6732523B2 (en) 2000-07-07 2002-12-31 Method for controlling a charge pressure in an internal combustion engine with an exhaust gas turbocharger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10033114 2000-07-07
DE10033114.9 2000-07-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/334,332 Continuation US6732523B2 (en) 2000-07-07 2002-12-31 Method for controlling a charge pressure in an internal combustion engine with an exhaust gas turbocharger

Publications (1)

Publication Number Publication Date
WO2002004799A1 true WO2002004799A1 (en) 2002-01-17

Family

ID=7648168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/002328 WO2002004799A1 (en) 2000-07-07 2001-06-25 Method for controlling a charge pressure in an internal combustion engine with an exhaust-gas turbocharger

Country Status (4)

Country Link
US (1) US6732523B2 (en)
EP (1) EP1299628B1 (en)
DE (1) DE50110631D1 (en)
WO (1) WO2002004799A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1298512A2 (en) * 2001-09-26 2003-04-02 Coltec Industries Inc. Adaptive aero-thermodynamic engine model
EP1471234A2 (en) * 2003-04-23 2004-10-27 Robert Bosch Gmbh Method and device for operating an internal combustion engine
FR2854435A1 (en) * 2003-04-30 2004-11-05 Bosch Gmbh Robert Internal combustion engine management method, involves modeling set point position of activating unit as per predefined value of output quantity of driving unit of internal combustion engine
EP1505284A1 (en) * 2003-08-06 2005-02-09 Peugeot Motocycles Control system for an internal combustion engine in a two-wheeled vehicule
FR2921114A1 (en) * 2007-09-13 2009-03-20 Peugeot Citroen Automobiles Sa Turbine's average input pressure determining method for spark ignition engine, involves reading expansion ratio value of turbine from data table, and multiplying ratio value with pressure to determine average input pressure of turbine
FR3063108A1 (en) * 2017-02-17 2018-08-24 Peugeot Citroen Automobiles Sa METHOD FOR DETERMINING THE EXHAUST GAS TEMPERATURE BEYOND THE TURBINE OF A TURBOCHARGER COMPRISING A THERMAL ENGINE
DE102008054926B4 (en) * 2007-12-19 2019-08-14 Denso Corporation Device for controlling a forced-filled engine

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10145038A1 (en) * 2001-09-13 2003-04-03 Bosch Gmbh Robert Method and device for operating at least one supercharger of an internal combustion engine
DE10243268A1 (en) * 2002-09-18 2004-03-25 Robert Bosch Gmbh Control of vehicle engine supercharging, adapts limiting value by modification as function of second, characteristic operational magnitude
DE10320977A1 (en) * 2003-05-09 2004-12-09 Siemens Ag Procedure for monitoring the speed of a bi-turbocharger
DE102004015742A1 (en) * 2004-03-31 2005-10-27 Robert Bosch Gmbh Method and device for operating an internal combustion engine
DE102004016010A1 (en) * 2004-04-01 2005-10-20 Bosch Gmbh Robert Method and device for operating an internal combustion engine
DE102004051837B4 (en) * 2004-10-25 2006-11-09 Siemens Ag Methods and apparatus for controlling and diagnosing an exhaust gas turbocharger
FR2882576B1 (en) * 2005-02-28 2007-05-25 Renault Sas OPTIMIZED TRANSIENT PHASE CONTROL METHOD IN A TURBOCHARGER
DE102005054524A1 (en) * 2005-11-14 2007-05-16 Porsche Ag Method and control unit for controlling a turbocharger with controllable turbine flow cross section
US7668704B2 (en) * 2006-01-27 2010-02-23 Ricardo, Inc. Apparatus and method for compressor and turbine performance simulation
JP4673818B2 (en) * 2006-10-26 2011-04-20 トヨタ自動車株式会社 Control device for turbocharged internal combustion engine
FR2910055B1 (en) * 2006-12-15 2010-09-24 Peugeot Citroen Automobiles Sa METHOD FOR DETERMINING A PRESSURE INTO A TURBO-PRESSURE TURBINE EQUIPPED WITH A THERMAL ENGINE
FR2910059A1 (en) * 2006-12-19 2008-06-20 Renault Sas Exhaust gas pressure estimating method for oil engine of motor vehicle, involves estimating pressure of exhaust gas in upstream of turbine by choosing one of two formulas comprising parameters e.g. pressure of gas in downstream of turbine
US7730724B2 (en) * 2007-05-10 2010-06-08 Ford Global Technologies, Llc Turbocharger shaft over-speed compensation
FR2921691B1 (en) * 2007-09-28 2012-08-17 Inst Francais Du Petrole METHOD FOR CONTROLLING A TURBOCHARGER USING A PHYSICAL MODEL OF THE TURBOCHARGER REGIME
US7788922B2 (en) * 2007-10-04 2010-09-07 Delphi Technologies, Inc. System and method for model based boost control of turbo-charged engines
US7748217B2 (en) * 2007-10-04 2010-07-06 Delphi Technologies, Inc. System and method for modeling of turbo-charged engines and indirect measurement of turbine and waste-gate flow and turbine efficiency
FR2923538A3 (en) * 2007-11-12 2009-05-15 Renault Sas Turbine upstream pressure estimating system for supercharged oil engine of motor vehicle, has calculation units calculating expansion ratio of turbine from magnitude representing temperature variation to deduce upstream pressure of turbine
JP4853471B2 (en) * 2007-12-19 2012-01-11 株式会社デンソー Control device for an internal combustion engine with a supercharger
DE102008017164B3 (en) * 2008-04-03 2009-08-06 Continental Automotive Gmbh Device for controlling an exhaust gas turbocharging of an internal combustion engine and internal combustion engine
US8090456B2 (en) * 2008-11-03 2012-01-03 United Technologies Corporation System and method for design and control of engineering systems utilizing component-level dynamic mathematical model
FR2945318B1 (en) * 2009-05-06 2011-04-29 Renault Sas SYSTEM AND METHOD FOR CONTROLLING OVER-POWERING OF AN INTERNAL COMBUSTION ENGINE
US8302397B2 (en) * 2009-08-11 2012-11-06 GM Global Technology Operations LLC Mode transition systems and methods for a sequential turbocharger
US8315741B2 (en) * 2009-09-02 2012-11-20 United Technologies Corporation High fidelity integrated heat transfer and clearance in component-level dynamic turbine system control
US8668434B2 (en) * 2009-09-02 2014-03-11 United Technologies Corporation Robust flow parameter model for component-level dynamic turbine system control
DE102010050161A1 (en) * 2010-10-30 2012-05-03 Volkswagen Ag Method for determining a pressure at the outlet of an exhaust system
GB2511767B (en) * 2013-03-12 2017-04-26 Gm Global Tech Operations Method and system for controlling a boost pressure of a turbocharged internal combustion engine
US10584630B2 (en) * 2016-06-06 2020-03-10 Fca Us Llc Power-based turbocharger boost control techniques
FR3088371A1 (en) * 2018-11-08 2020-05-15 Psa Automobiles Sa METHOD FOR DETERMINING THE POSITION OF A VARIABLE GEOMETRIC TURBINE ADJUSTING MEMBER
US11454180B1 (en) 2021-06-17 2022-09-27 Cummins Inc. Systems and methods for exhaust gas recirculation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683308A2 (en) * 1994-05-20 1995-11-22 Robert Bosch Gmbh System for the open or closed loop control of a turbocharged engine
EP1026378A2 (en) * 1999-02-02 2000-08-09 Waukesha Engine Division, Dresser Equipment Group, Inc. Turbocharger control management system and throttle reserve control

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426982A (en) * 1980-10-08 1984-01-24 Friedmann & Maier Aktiengesellschaft Process for controlling the beginning of delivery of a fuel injection pump and device for performing said process
US5186081A (en) * 1991-06-07 1993-02-16 General Motors Corporation Method of regulating supercharger boost pressure
DE4214648A1 (en) 1992-05-02 1993-11-04 Bosch Gmbh Robert SYSTEM FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE
DE19655090C2 (en) * 1996-03-01 2000-04-27 Bosch Gmbh Robert Electromagnetically operated directional valve
DE19709955C2 (en) 1997-03-11 2003-10-02 Siemens Ag Method and device for controlling an internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683308A2 (en) * 1994-05-20 1995-11-22 Robert Bosch Gmbh System for the open or closed loop control of a turbocharged engine
EP1026378A2 (en) * 1999-02-02 2000-08-09 Waukesha Engine Division, Dresser Equipment Group, Inc. Turbocharger control management system and throttle reserve control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HACK, LANGKABEL: "Turbo und kompressormotoren: entwicklung, technik, typen.", 1999, MOTOR BUCH VERLAG, STUTTGART, XP002182911 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1298512A2 (en) * 2001-09-26 2003-04-02 Coltec Industries Inc. Adaptive aero-thermodynamic engine model
EP1298512A3 (en) * 2001-09-26 2003-07-30 Coltec Industries Inc. Adaptive aero-thermodynamic engine model
US7058556B2 (en) 2001-09-26 2006-06-06 Goodrich Pump & Engine Control Systems, Inc. Adaptive aero-thermodynamic engine model
EP1471234A2 (en) * 2003-04-23 2004-10-27 Robert Bosch Gmbh Method and device for operating an internal combustion engine
EP1471234A3 (en) * 2003-04-23 2006-07-19 Robert Bosch Gmbh Method and device for operating an internal combustion engine
FR2854435A1 (en) * 2003-04-30 2004-11-05 Bosch Gmbh Robert Internal combustion engine management method, involves modeling set point position of activating unit as per predefined value of output quantity of driving unit of internal combustion engine
EP1505284A1 (en) * 2003-08-06 2005-02-09 Peugeot Motocycles Control system for an internal combustion engine in a two-wheeled vehicule
FR2858659A1 (en) * 2003-08-06 2005-02-11 Peugeot Motocycles Sa SYSTEM FOR MONITORING THE OPERATION OF A MOTOR OF A TWO-WHEEL VEHICLE OF THE SCOOTER TYPE.
FR2921114A1 (en) * 2007-09-13 2009-03-20 Peugeot Citroen Automobiles Sa Turbine's average input pressure determining method for spark ignition engine, involves reading expansion ratio value of turbine from data table, and multiplying ratio value with pressure to determine average input pressure of turbine
DE102008054926B4 (en) * 2007-12-19 2019-08-14 Denso Corporation Device for controlling a forced-filled engine
FR3063108A1 (en) * 2017-02-17 2018-08-24 Peugeot Citroen Automobiles Sa METHOD FOR DETERMINING THE EXHAUST GAS TEMPERATURE BEYOND THE TURBINE OF A TURBOCHARGER COMPRISING A THERMAL ENGINE

Also Published As

Publication number Publication date
EP1299628B1 (en) 2006-08-02
US20030101723A1 (en) 2003-06-05
DE50110631D1 (en) 2006-09-14
US6732523B2 (en) 2004-05-11
EP1299628A1 (en) 2003-04-09

Similar Documents

Publication Publication Date Title
EP1299628B1 (en) Method for controlling a charge pressure in an internal combustion engine with an exhaust-gas turbocharger
DE102008017164B3 (en) Device for controlling an exhaust gas turbocharging of an internal combustion engine and internal combustion engine
EP1247016B1 (en) Method and device for controlling an internal combustion engine that is provided with an air system
EP1427929B1 (en) Method and device for operating at least one turbocharger on an internal combustion engine
EP1440231B1 (en) Method and device for controlling an electrically driven charger
DE10329763B4 (en) Coordinated control of an electronic throttle and a variable geometry turbocharger in supercharged and stoichiometric gasoline engines
DE102005013977B4 (en) Exhaust gas recirculation system for a motor vehicle and method for setting the exhaust gas recirculation rate in a gas recirculation system
EP1623103B1 (en) Method for monitoring the speed of a bi-turbocharger
EP1179128A1 (en) Method and device for regulating the boost pressure of an internal combustion engine
DE102012207124B4 (en) Method for operating an internal combustion engine, device for controlling and / or regulating an internal combustion engine, internal combustion engine and use of the device for operating an internal combustion engine
DE102014213631A1 (en) Control device for internal combustion engines in a turbocharger
DE3438176C2 (en) Device for regulating the boost pressure of an internal combustion engine
DE19814572B4 (en) Method and braking device for a turbocharger with variable turbine geometry
DE19620778C1 (en) Method of pressure control for intake port of vehicle IC engine operating with turbocharger
DE102015216261A1 (en) Method and device for determining a manipulated variable for a supercharger of an exhaust-driven charging device
DE102010038326B4 (en) Increasing the exhaust gas recirculation flow or the exhaust gas recirculation rate with the exhaust gas recirculation valve already open
DE60114979T2 (en) Control system for a turbocharger of variable geometry
EP3594480B1 (en) Method for controlling a charging system
DE3411496A1 (en) Device for control of the supercharging in an internal combustion engine
DE102020208938A1 (en) Method for operating a two-stage charging system, control device and a motor vehicle
DE69816734T2 (en) control method
DE60215903T2 (en) Method for controlling an exhaust gas turbocharger with adjustable turbine geometry
DE102006005504B4 (en) Method for regulating an actual size of an internal combustion engine
DE10224686A1 (en) Charging pressure regulation method for IC engine turbochargers, uses cascade regulation device for providing 2-stage regulation
EP0728922B1 (en) Controller with adapted integral part for the air mass flow of a turbocharged internal combustion engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001951425

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10334332

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001951425

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001951425

Country of ref document: EP