EP1805331A1 - Mechanically-stressed actuator or bearing component made from mechanically-hardened steel - Google Patents

Mechanically-stressed actuator or bearing component made from mechanically-hardened steel

Info

Publication number
EP1805331A1
EP1805331A1 EP05804438A EP05804438A EP1805331A1 EP 1805331 A1 EP1805331 A1 EP 1805331A1 EP 05804438 A EP05804438 A EP 05804438A EP 05804438 A EP05804438 A EP 05804438A EP 1805331 A1 EP1805331 A1 EP 1805331A1
Authority
EP
European Patent Office
Prior art keywords
functional surface
temperature
component
mechanically
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05804438A
Other languages
German (de)
French (fr)
Inventor
Ernst Strian
Werner Trojahn
Karl-Ludwig Grell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler KG filed Critical Schaeffler KG
Publication of EP1805331A1 publication Critical patent/EP1805331A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials

Definitions

  • Mechanically load-bearing actuator or bearing component made of mechanically hardened steel
  • the invention relates to a mechanically load-bearing adjusting or bearing component, be ⁇ standing of an alloyed steel with an alloying content of at least 7% and a carbon content of 0.5 - 2.2%, with at least one mechanically charged in Ein ⁇ rate surface.
  • actuator or bearing components are known in different designs and are used in a variety of applications.
  • Engine elements such as towing or rocker arms, in particular mechanical actuated components which in turn provide other components, should be mentioned as the actuating element.
  • a bearing component for example, a rolling bearing or its parts or a plain bearing and its parts such as bearing bush, bearing ring, etc. may be mentioned.
  • actuating or bearing components have in common that they have at least one functionally mechanically loaded functional surface, via which, for example, an actuating element in the form of a rocker arm acts on a tappet or the like, or on which, in the case of a roller bearing, the rolling elements run ,
  • the components are exposed to high mechanical and tribological stresses, which is why it is necessary to harden these components after mechanical processing.
  • finishing such as grinding or hard turning is performed.
  • the heat treatment itself takes place once, depending on the steel quality, through hardening, for example at 100Cr6, or through case hardening, eg at 16MnCr5, or through various variants of nitriding treatments or Stratifications.
  • the main drawback of most such treatments is the so-called hardening distortion and the resulting dimensional change.
  • the component dimension therefore varies as a result of the different, in particular thermal treatments, between the shape or dimensioning originally present before the treatment and the parameters finally given after the implementation of the respective treatments.
  • the components are machined or chipless in the best possible microstructural and hardening state, subsequently hardened at high temperature and finally finished mechanically, ie by machining, and work-hardened, for example by shot blasting or rolling.
  • the implementation of the separate hardening step is also time-consuming and cost-consuming.
  • the invention is therefore based on the problem to provide a control or bearing element of the type mentioned that is easy to make and without the problems mentioned in terms of dimensional and shape retention.
  • a mechanically loadable actuator or bearing element consisting of the above-mentioned steel that at least in the region of a functional surface a metastable Austenite with a microstructure of at least 80% is present, which by machining the functional surface at least partly converted into martensite.
  • a steel which forms a metastable austenite phase is used to produce the positioning or bearing component.
  • This metastable Austenitphase can by a mechanical treatment of the Fu surface itself, so for example, the bearing surface of a towing or rocker arm or the tread of a plain bearing due to the mechanically induced Energy can be converted locally into martensite.
  • the mechanically induced structural change and thus hardening directly in the area of the functional surface is a mechanically induced structural change and thus hardening directly in the area of the functional surface.
  • steels with 0.5 to 2.2% carbon an alloy content of chromium between 5 to 20%, a manganese content of 2 to 8% and a nickel content of not more than 6% are used.
  • the fine granularity and corresponding microstructural characteristics are to be ensured by addition of, for example, molybdenum, aluminum, titanium or other alloying elements.
  • Conventional tool steels such as e.g. X210Cr12 or X165CrMoVI 21, as used in particular in Motoren ⁇ elements such as towing or rocker arms.
  • a second class of materials is the field of charge and tempering steels.
  • These high-alloyed case hardening steels such as 14NiCrMo14 or even higher alloying constituents with total values nickel-manganese chromium greater 7% and an edge carbon content / edge nitrogen content, produced by the usual case hardening or carbonization , of 0.5-1.5% of carbon or 0.1-0.6% of nitrogen also form a metastable austenite phase, which can be converted locally into mechanical stress by mechanical energy input.
  • the prerequisite is that the alloying elements must be adjusted so that the martensite formation temperature after carburization and / or nitriding during quenching is not or only marginally is followed, so that an intermediate stage conversion or a Perlitzer case is omitted.
  • Said materials are thus in principle able to operate at high hardening curing temperatures (direct orRockhärtung), for example more than 1000 0 C and a rapid quenching form a quasi of 80% or even higher austenite structure in the carbon-rich surface zone, wherein the aforementioned At least in this marginal zone, the carbon atom I is present; in the case of an attachment, the sum of nitrogen and carbon should likewise be in this range.
  • the metastable austenite formed is therefore also present at room temperature, but can be converted into martensite with sufficient energy supply, the conversion capacity according to the invention depending on the mechanical processing.
  • the mechanical finishing of the already formed, but me ⁇ unstable austenite component by turning, milling or slaving takes place.
  • a mechanically induced martensitic transformation of the metastable austenite arises in the corresponding action depths.
  • the depth of the transformation zone depends on the tool contact geometry (eg rake angle adjustment), the contour to be generated, the duration and the magnitude of the applied force and the prevailing temperature in the mechanical processing.
  • the forming of the steel used for component production preferably takes place during the heat treatment for high-temperature austenitization.
  • An additional high-temperature step for hardening the material, as provided in the prior art, is omitted after curing by martensitic transformation takes place in the component according to the invention solely by the mechanically induced energy.
  • the functional surface should have a martensitic hardness of at least 55 HRC, in particular of at least 58 HRC, for which purpose a sufficiently high carbon content, which is in the range claimed according to the invention, is necessary.
  • the steel itself may, as described, be a fusible alloy which exhibits the metastable austenite, but it may also be produced by a separate nitration, ie in the context of an electrochemical treatment.
  • the invention itself is a process for producing such a Stel I or bearing component, which is characterized in that the component first of an alloyed steel with an alloy content of at least 7% and a carbon content of 0 , 5-2.2%, during or after which the component is subjected to a temperature treatment, and then the component is subsequently quenched so that at least in the area of a functional surface of the component a metastable austenite with a microstructure proportion of at least 80 % forms, after which the functional surface is machined so that forms a marginal zone having at least partially martensite.
  • the mechanical processing for martensite formation temperature may preferably up to about 500 0 C, at room temperature or at a reduced temperature of preferably up to a maximum at elevated Tempe ⁇ - 200 ° C carried out.
  • the Tief ⁇ temperature treatment is advantageous for martensite formation. If the mechanical treatment takes place at elevated temperature or at room temperature, it is expedient to connect a deep-freeze treatment, preferably a maximum of -20 ° C., to improve the formation of martensite. In general, after a deep-freeze treatment, a temperature treatment for starting the component can take place up to a maximum of 600 ° C.
  • the functional surface as well as the remaining component surfaces can be mechanically post-treated after the mechanical treatment for martensite formation, in particular by shot peening or rolling.
  • a final finish such as grinding or honing can optionally also be provided.
  • the method according to the invention offers the advantage that the hardening distortion is canceled once by the processing state and a double machining is not required, as in the conventional method by soft machining and hard machining.
  • the figure shows an inventive control element 1 in the form of a tiltable about its bearing eye rocker arm 2, on the front arm 3 ons simulation 4 funkti ⁇ is provided over which the rocker arm engages, for example on a plunger.
  • the rocker arm was produced from a material which forms a metastable austenite phase after the high-temperature austenitization during which temperature treatment of the rocker arm was worked out during the subsequent ab initiation.
  • a mechanical processing of the functional surface takes place in the context of which processing, which is represented by the arrow B, directly on the function, unlike in the prior art If mechanical energy is introduced, this induces the folding-over processes, ie the conversion of the metastable austenite into martensite. As is indicated by the dashed line, an area M is formed in which a high content of martensite is present, while metastable austenite is present in the remaining component body. As a result of the mechanically induced martensite formation so no further temperature treatment for curing of the component, which would adversely affect the dimensional and dimensional accuracy. Rather, the component retains the exact shape and dimensions given in the course of its original forming.
  • the mechanical treatment for the formation of martensite can be as beschrie ⁇ ben subzero treatment connect, under which the Bau ⁇ part, for example, -200 0 C cooled, whereby the formation of the martensitic structure in the edge zone part M is further promoted.
  • the processing can be carried out even at a reduced temperature, so that a separate freezing is not necessary. In the context of a subsequent start, any tensions can be reduced.
  • the rocker arm 2 shown in Fig. 1 is only a Ausdust! example. It is conceivable to harden other actuating or bearing components by mechanically induced martensite formation. Mention may be made here, for example, of sliding bearings in which the running surfaces of the sliding bearings, which are also formed of metastable austenite, are mechanically induced to be converted into martensite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

The invention relates to a mechanically-stressed actuator or bearing component, made from steel alloy, with an alloy component of less than 7 % and a carbon content of 0.5 - 2.2 %, with at least one mechanically-stressed functional area in use, whereby at least in the region of a functional surface (4) a metastable austenite is present, having a structural content of at least 80 %, which is at least partly transformed into martensite by a mechanical processing of the functional surface (4).

Description

Bezeichnung der Erfindung Name of the invention
Mechanisch belastbares Stell- oder Lagerbauteil aus mechanisch gehärtetem StahlMechanically load-bearing actuator or bearing component made of mechanically hardened steel
Gebiet der ErfindungField of the invention
Die Erfindung betrifft ein mechanisch belastbares Stell- oder Lagerbauteil, be¬ stehend aus einem legierten Stahl mit einem Legierungsanteil von wenigstens 7% und einem Kohlenstoffgehalt von 0,5 - 2,2%, mit wenigstens einer im Ein¬ satz mechanisch belasteten Fläche.The invention relates to a mechanically load-bearing adjusting or bearing component, be¬ standing of an alloyed steel with an alloying content of at least 7% and a carbon content of 0.5 - 2.2%, with at least one mechanically charged in Ein¬ rate surface.
Hintergrund der ErfindungBackground of the invention
Solche Stell- oder Lagerbauteile sind in unterschiedlicher Bauweise bekannt und kommen in verschiedenartigsten Anwendungen zum Einsatz. Als Stellele¬ ment sind insbesondere Motoreneiemente wie Schlepp- oder Kipphebel zu nennen, also mechanisch betätigte Bauteile, die ihrerseits andere Bauteile stel¬ len. Als Lagerbauteil ist beispielsweise ein Wälzlager beziehungsweise dessen Teile oder ein Gleitlager und dessen Teile wie Lagerbüchse, Lagerring etc. zu nennen. All diesen Stell- oder Lagerbauteilen ist gemeinsam, dass sie wenigs¬ tens eine im Einsatz mechanisch belastete Funktionsfläche aufweisen, über die beispielsweise ein Stellelement in Form eines Kipphebels an einem Stößel oder dergleichen angreift, oder auf der im Falle eines Wälzlagers die Wälzkör¬ per laufen. Die Bauteile sind dabei hohen mechanischen und tribologischen Belastungen ausgesetzt, weshalb es nötig ist, diese Bauteile nach der mecha¬ nischen Bearbeitung zu härten. Um die Maß- und Formgenauigkeit zu errei¬ chen, wird eine Endbearbeitung wie Schleifen oder Hartdrehen durchgeführt. Die Wärmebehandlung selbst erfolgt einmal je nach Stahlqualität durchhär¬ tend, z.B. bei 100Cr6, oder mittels Einsatzhärtung, z.B. bei 16MnCr5, oder durch verschiedene Varianten von Nitrierbehandlungen beziehungsweise Be- Schichtungen.Such actuator or bearing components are known in different designs and are used in a variety of applications. Engine elements such as towing or rocker arms, in particular mechanical actuated components which in turn provide other components, should be mentioned as the actuating element. As a bearing component, for example, a rolling bearing or its parts or a plain bearing and its parts such as bearing bush, bearing ring, etc. may be mentioned. All these actuating or bearing components have in common that they have at least one functionally mechanically loaded functional surface, via which, for example, an actuating element in the form of a rocker arm acts on a tappet or the like, or on which, in the case of a roller bearing, the rolling elements run , The components are exposed to high mechanical and tribological stresses, which is why it is necessary to harden these components after mechanical processing. To achieve dimensional and dimensional accuracy, finishing such as grinding or hard turning is performed. The heat treatment itself takes place once, depending on the steel quality, through hardening, for example at 100Cr6, or through case hardening, eg at 16MnCr5, or through various variants of nitriding treatments or Stratifications.
Der Hauptnachteil der meisten derartigen Behandlungen ist der sogenannte Härteverzug und die sich einstellende Maßänderung. Die Bauteildimension variiert also in Folge der verschiedenen insbesondere thermischen Behandlun¬ gen zwischen der ursprünglich vor der Behandlung vorhandenen Form bezie¬ hungsweise Bemaßung und der letztendlich nach der Durchführung der jeweili¬ gen Behandlungen gegebenen Parameter. Dabei werden die Bauteile in best¬ möglichen Gefüge- und Härtezustand spanend oder spanlos bearbeitet, an¬ schließend bei hoher Temperatur gehärtet und schließlich mechanisch, also spanend endbearbeitet und beispielsweise durch Kugelstrahlen oder Rollieren kaltverfestigt. Neben dem in Folge der thermischen Härtebehandlung sich ein¬ stellenden Maß- und Härteverzug ist die Durchführung des separaten Härte¬ schrittes darüber hinaus auch zeit- und kostenaufwendig.The main drawback of most such treatments is the so-called hardening distortion and the resulting dimensional change. The component dimension therefore varies as a result of the different, in particular thermal treatments, between the shape or dimensioning originally present before the treatment and the parameters finally given after the implementation of the respective treatments. In this case, the components are machined or chipless in the best possible microstructural and hardening state, subsequently hardened at high temperature and finally finished mechanically, ie by machining, and work-hardened, for example by shot blasting or rolling. In addition to the dimensional and hardness distortion occurring as a result of the thermal hardening treatment, the implementation of the separate hardening step is also time-consuming and cost-consuming.
Zusammenfassung der ErfindungSummary of the invention
Der Erfindung liegt daher das Problem zugrunde, ein Stell- oder Lagerelement der eingangs genannten Art anzugeben das einfach und ohne die eingangs genannten Probleme hinsichtlich der Maß- und Formhaltigkeit herzustellen ist.The invention is therefore based on the problem to provide a control or bearing element of the type mentioned that is easy to make and without the problems mentioned in terms of dimensional and shape retention.
Zur Lösung dieses Problems ist bei einem mechanisch belastbaren Stell- oder Lagerelement bestehend aus dem oben genannten Stahl erfindungsgemäß vorgesehen, dass wenigstens im Bereich einer Funktionsfläche ein metastabi¬ ler Austenit mit einem Gefügeanteil von wenigstens 80% vorliegt, der durch eine mechanische Bearbeitung der Funktionsfläche zumindest teil weise in Mar- tensit überführt ist.To solve this problem is provided according to the invention in a mechanically loadable actuator or bearing element consisting of the above-mentioned steel that at least in the region of a functional surface a metastable Austenite with a microstructure of at least 80% is present, which by machining the functional surface at least partly converted into martensite.
Zur Herstellung des Stell- oder Lagerbauteils wird erfindungsgernäß ein Stahl verwendet, der eine metastabile Austenitphase ausbildet. Diese metastabile Austenitphase kann durch eine mechanische Bearbeitung der Fu nktionsfläche selbst, also beispielsweise der Auflagefläche eines Schlepp- oder Kipphebels oder der Lauffläche eines Gleitlagers aufgrund der mechanisch induzierten Energie lokal in Martensit gewandelt werden. Es erfolgt also eine mechanisch induzierte Gefügeveränderung und damit Härtung unmittelbar im Bereich der Funktionsfläche.According to the invention, a steel which forms a metastable austenite phase is used to produce the positioning or bearing component. This metastable Austenitphase can by a mechanical treatment of the Fu surface itself, so for example, the bearing surface of a towing or rocker arm or the tread of a plain bearing due to the mechanically induced Energy can be converted locally into martensite. Thus, there is a mechanically induced structural change and thus hardening directly in the area of the functional surface.
Diese Eigenschaften werden bei Verwendung eines legierten Stahls mit einem Legierungsanteil von wenigstens 7% und einem Kohlenstoffgehalt von 0,5 - 2,2% ermöglicht, wobei der konkret verwendete Stahl zum einen einen hinrei¬ chend hohen Kohlenstoff aufweisen muss, um eben eine hohe martensitische Härte von über 55 HRC, insbesondere von über 58 HRC zu erzielen. Ferner muss ein entsprechendes „Mangan-Nickel-Äquivalent" (Cr-Ni) zur Erzeugung des metastabilen Austenit bei entsprechend hohen Wärmebehandlungstempe¬ raturen gegeben sein, und schließlich muss eine hinreichende Feinkörnigkeit des Gefüges realisiert werden können.These properties are made possible with the use of an alloyed steel with an alloying fraction of at least 7% and a carbon content of 0.5-2.2%, wherein the steel used on the one hand must have a sufficiently high carbon to produce a high martensitic one Hardness of over 55 HRC, in particular to achieve over 58 HRC. Furthermore, a corresponding "manganese nickel equivalent" (Cr-Ni) must be present for producing the metastable austenite at correspondingly high heat treatment temperatures, and finally a sufficient fine graininess of the structure must be able to be realized.
Hierzu werden wie beschrieben vorzugsweise Stähle mit 0,5 - 2,2% Kohlen¬ stoff, einem Legierungsanteil von Chrom zwischen 5 - 20%, einem Mangan- Anteil von 2 - 8% sowie einem Nickel-Anteil von maximal 6% verwendet. Die Feinkörnigkeit und entsprechende Gefügemerkmale sind von Zugabe von bei¬ spielsweise Molybdän, Aluminium, Titan oder sonstiger Legierungselemente zu gewährleisten. Verwendet werden können auch herkömmliche Werkzeugstähle wie z.B. X210Cr12 oder X165CrMoVI 21 , wie sie insbesondere bei Motoren¬ elementen wie Schlepp- oder Kipphebel verwendet werden.For this purpose, as described preferably steels with 0.5 to 2.2% carbon, an alloy content of chromium between 5 to 20%, a manganese content of 2 to 8% and a nickel content of not more than 6% are used. The fine granularity and corresponding microstructural characteristics are to be ensured by addition of, for example, molybdenum, aluminum, titanium or other alloying elements. Conventional tool steels such as e.g. X210Cr12 or X165CrMoVI 21, as used in particular in Motoren¬ elements such as towing or rocker arms.
Eine zweite Werkstoffklasse stellt der Bereich der Einsatz- und Vergütungs¬ stähle dar. Diese hochlegierten Einsatzstähle wie z.B. 14NiCrMo14 oder noch höhere Legierungsbestandteile mit Summenwerten Nickel-Mangan- Chrom grö¬ ßer 7% und einem Randkohlenstoffgehalt/Randstickstoffgehalt, erzeugt durch die übliche Einsatzhärtung beziehungsweise Carbonisierung, von 0,5 - 1 ,5% Kohlenstoff beziehungsweise 0,1 - 0,6% Stickstoff bilden ebenfalls eine meta¬ stabile Austenitphase, die durch mechanischen Energieeintrag lokal in Marten¬ sit gewandelt werden kann. Voraussetzung ist, dass die Legierungselemente so eingestellt werden müssen, dass die Martensitbildungstemperatur nach der Aufkohlung und/oder Aufstickung beim Abschrecken nicht oder nur knapp un- terschritten wird, so dass eine Zwischenstufenumwandlung oder ein Perlitzer- fall unterbleibt.A second class of materials is the field of charge and tempering steels. These high-alloyed case hardening steels such as 14NiCrMo14 or even higher alloying constituents with total values nickel-manganese chromium greater 7% and an edge carbon content / edge nitrogen content, produced by the usual case hardening or carbonization , of 0.5-1.5% of carbon or 0.1-0.6% of nitrogen also form a metastable austenite phase, which can be converted locally into mechanical stress by mechanical energy input. The prerequisite is that the alloying elements must be adjusted so that the martensite formation temperature after carburization and / or nitriding during quenching is not or only marginally is followed, so that an intermediate stage conversion or a Perlitzer case is omitted.
Die genannten Werkstoffe sind also prinzipiell in der Lage, bei hohen Einsatz- härtetemperaturen (Direkt- oder Einfachhärtung), z.B. über 10000C und einem schnellen Abschrecken ein quasi 80%iges oder noch höheres Austenitgefüge in der kohlenstoffreichen Randzone ausbilden, wobei der eingangs genannte Kohlenstoff antei I zumindest in dieser Randzone vorliegt, im Falle einer Aufsti¬ ckung sollte die Summe an Stickstoff und Kohlenstoff ebenfalls in diesem Be¬ reich liegen. Der gebildete metastabile Austenit liegt damit auch bei Raumtem¬ peratur vor, ist jedoch bei hinreichender Energiezcufuhr in Martensit umwandel¬ bar, wobei die Umwandlungsfähigkeit erfindungsgemäß von der mechanischen Bearbeitung abhängt.Said materials are thus in principle able to operate at high hardening curing temperatures (direct or Einfachhärtung), for example more than 1000 0 C and a rapid quenching form a quasi of 80% or even higher austenite structure in the carbon-rich surface zone, wherein the aforementioned At least in this marginal zone, the carbon atom I is present; in the case of an attachment, the sum of nitrogen and carbon should likewise be in this range. The metastable austenite formed is therefore also present at room temperature, but can be converted into martensite with sufficient energy supply, the conversion capacity according to the invention depending on the mechanical processing.
Die Wärmebehandlung bei durchhärtenden Stäh len, im Rahmen welcher be¬ vorzugt bereits die Umformung zum fertigen Endbsuteil erfolgt, sieht zum einen die Hochtemperaturaustenitisierung und gegebenenfalls Aufkohlung bei ca. 1000 - 1250°C und anschließend ein Abschrecken im Salzbad bis ca. 1500C oder auf Raumtemperatur vor. Anschließend kann eine weitere Abkühlung auf Raumtemperatur an Luft erfolgen, sofern noch erforderlich. Im Ergebnis bildet sich in den Randzonen (sofern nur dort der hinreichend hohe Kohlenstoffgehalt vorliegt) beziehungsweise im gesamten Querschnitt ein Austenitanteil von über 80%, bevorzugt von über 90% aus, wobei gegebenenfalls Karbide ausgeschie¬ den sind und gegebenenfalls Spuren von Martensit vorliegen. Anschließend erfolgt die mechanische Endbearbeitung des bereits umgeformten, jedoch me¬ tastabilen Austenit-Bauteils durch Drehen, Fräsen oder Schliefen. Durch diese Art der Gefügebeanspruchung an der Funktionsfläche entsteht in den entspre¬ chenden Wirktiefen eine mechanisch induzierte martensitische Umwandlung des metastabilen Austenits. Grundsätzlich ist die Tiefe der Umwandlungszone abhängig von der Werkzeug- Kontaktgeometrie (z.B. Spanwinkelverstellung), der zu erzeugenden Kontur, der Dauer sowie der Höhe der aufgebrachten Kraft und der herrschenden Temperatur bei der mechanischen Bearbeitung. Insgesamt kann auf diese Weise ein sehr maßhaltiges Bauteil mit einer hinrei¬ chenden Härte im relevanten Bauteil bereich erreicht werden. Die Umformung des verwendeten Stahls zur Bauteilherstellung erfolgt bevorzugt während der Wärmebehandlung zur Hochtemperaturaustenitisierung. Ein zusätzlicher Hoch- temperaturschritt zur Härtung des Materials, wie im Stand der Technik vorge¬ sehen, entfällt, nachdem die Härtung durch martensitische Umwandlung bei dem erfindungsgemäßen Bauteil allein durch die mechanisch induzierte Ener¬ gie erfolgt.The heat treatment in the case of through-hardening steels, within which be¬ preferably already the transformation takes place to finished final part, sees the one Hochtemperaturaustenitisierung and optionally carburizing at about 1000 - 1250 ° C and then quenching in a salt bath to about 150 0 C or to room temperature. Subsequently, a further cooling to room temperature in air, if still necessary. As a result, an austenite content of more than 80%, preferably more than 90%, is formed in the edge zones (if only the sufficiently high carbon content is present there) or in the entire cross section, where appropriate carbides are precipitated and, if appropriate, traces of martensite are present. Subsequently, the mechanical finishing of the already formed, but me¬ unstable austenite component by turning, milling or slaving takes place. As a result of this type of structural stress on the functional surface, a mechanically induced martensitic transformation of the metastable austenite arises in the corresponding action depths. In principle, the depth of the transformation zone depends on the tool contact geometry (eg rake angle adjustment), the contour to be generated, the duration and the magnitude of the applied force and the prevailing temperature in the mechanical processing. Overall, a very dimensionally stable component with a sufficient hardness in the relevant component area can be achieved in this way. The forming of the steel used for component production preferably takes place during the heat treatment for high-temperature austenitization. An additional high-temperature step for hardening the material, as provided in the prior art, is omitted after curing by martensitic transformation takes place in the component according to the invention solely by the mechanically induced energy.
Die Funktionsfläche sollte eine martensitische Härte von wenigstens 55 HRC, insbesondere von wenigstens 58 HRC aufweisen, wozu ein hinreichend hoher Kohlenstoffgehalt, der im erfindungsgemäß beanspruchten Bereich liegt, nötig ist. Der Stahl selbst kann wie beschrieben eine den metastabilen Austenit auf¬ weisende Schmelzlegierung sein, er kann aber auch durch eine separate Nit¬ rierung erzeugt werden, also im Rahmen einer elektro-chemischen Behand¬ lung.The functional surface should have a martensitic hardness of at least 55 HRC, in particular of at least 58 HRC, for which purpose a sufficiently high carbon content, which is in the range claimed according to the invention, is necessary. The steel itself may, as described, be a fusible alloy which exhibits the metastable austenite, but it may also be produced by a separate nitration, ie in the context of an electrochemical treatment.
Neben dem Stell- oder Lagerbauteil selbst trifft die Erfindung selber ein Verfah¬ ren zur Herstellung eines solchen Stel I- oder Lagerbauteils, das sich dadurch auszeichnet, dass das Bauteil zunächst aus einem legierten Stahl mit einem Legierungsanteil von wenigstens 7% und einem Kohlenstoffgehalt von 0,5 - 2,2% geformt wird, während oder wonach das Bauteil einer Temperaturbe¬ handlung unterzogen wird, und wonach das Bauteil anschließend abgeschreckt wird, so dass es sich wenigstens im Bereich einer Funktionsfläche des Bauteils ein metastabiler Austenit mit einem Gefügeanteil von wenigstens 80% bildet, wonach die Funktionsfläche mechanisch bearbeitet wird, so dass sich eine Randzone bildet, die zumindest teilweise Martensit aufweist.In addition to the positioning or bearing component itself, the invention itself is a process for producing such a Stel I or bearing component, which is characterized in that the component first of an alloyed steel with an alloy content of at least 7% and a carbon content of 0 , 5-2.2%, during or after which the component is subjected to a temperature treatment, and then the component is subsequently quenched so that at least in the area of a functional surface of the component a metastable austenite with a microstructure proportion of at least 80 % forms, after which the functional surface is machined so that forms a marginal zone having at least partially martensite.
Die mechanische Bearbeitung zur Martensitbildung kann bei erhöhter Tempe¬ ratur bis vorzugsweise ca. 5000C, bei Raumtemperatur oder bei erniedrigter Temperatur bis vorzugsweise maximal — 200°C erfolgen. Insbesondere die Tief¬ temperaturbehandlung ist für die Martensitbildung vorteilhaft. Sofern die mechanische Behandlung bei erhöhter Temperatur oder bei Raum¬ temperatur erfolgt, ist es zweckmäßig, zur Verbesserung der Martensitbildung eine Tiefkühlbehandlung bis vorzugsweise maximal -20O°C anzuschließen. Generell kann nach einer Tiefkühlbehandlung eine Temperaturbehandlung zum Anlassen des Bauteils bis maximal 6000C erfolgen.The mechanical processing for martensite formation temperature may preferably up to about 500 0 C, at room temperature or at a reduced temperature of preferably up to a maximum at elevated Tempe¬ - 200 ° C carried out. In particular, the Tief¬ temperature treatment is advantageous for martensite formation. If the mechanical treatment takes place at elevated temperature or at room temperature, it is expedient to connect a deep-freeze treatment, preferably a maximum of -20 ° C., to improve the formation of martensite. In general, after a deep-freeze treatment, a temperature treatment for starting the component can take place up to a maximum of 600 ° C.
Auch ist es denkbar, unmittelbar nach der Bauteilformung, also vor der mecha¬ nischen Bearbeitung zur Martensitbildung, eine Tiefkühlbehandlung bis vor¬ zugsweise maximal -2000C gegebenenfalls danach eine Anf assbehandlung bis maximal 6000C zwischenzuschalten.It is also conceivable, immediately after the component shaping, before the mecha¬ African processing for martensite formation, a deep chill treatment to vor¬ preferably at most -200 0 C, optionally followed by a Req assbehandlung up to 600 0 C interpose.
Des Weiteren kann zur weiteren Festigkeitssteigerung die Funktionsfläche wie auch die übrigen Bauteilflächen nach der mechanischen Behandlung zur Martensitbildung mechanisch nach¬ behandelt werden, insbesondere durch Kugelstrahlen oder Rollieren. Auch ein finales Feinbearbeiten wie Einschleifen oder Honen kann gegebenenfalls vor¬ gesehen sein.Furthermore, for further increase in strength, the functional surface as well as the remaining component surfaces can be mechanically post-treated after the mechanical treatment for martensite formation, in particular by shot peening or rolling. A final finish such as grinding or honing can optionally also be provided.
Insgesamt bietet das erfindungsgemäße Verfahren wie auch das erfindungs¬ gemäße Stell- oder Lagerbauteil den Vorteil, dass der Härteverzug durch den Bearbeitungszustand einmalig aufgehoben wird und nicht wie im üblichen Ver¬ fahren durch Weichbearbeitung und Hartbearbeitung eine doppelte Bearbei¬ tung erforderlich ist.Overall, the method according to the invention, as well as the adjusting or bearing component according to the invention, offers the advantage that the hardening distortion is canceled once by the processing state and a double machining is not required, as in the conventional method by soft machining and hard machining.
Kurze Beschreibung der ZeichnungenBrief description of the drawings
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus dem im Folgenden beschriebenen Ausführungsbeispiel sowie anhand der Zeichnung. Diese zeigt eine Prinzipdarstellung eines mechanischen Stellele¬ ments in Form eines Kipphebels. Detaillierte Beschreibung der ZeichnungFurther advantages, features and details of the invention will become apparent from the embodiment described below and from the drawing. This shows a schematic diagram of a mechanical Stellele¬ management in the form of a rocker arm. Detailed description of the drawing
Die Figur zeigt ein erfindungsgemäßes Stellelement 1 in Form eines um sein Lagerauge kippbaren Kipphebels 2, an dessen vorderem Arm 3 eine Funkti¬ onsfläche 4 vorgesehen ist, über die der Kipphebel beispielsweise an einem Stößel angreift. Der Kipphebel wurde aus einem Material hergestellt, das nach der Hochtemperaturaustenitisierung, im Rahmen welcher Temperaturbehand¬ lung der Kipphebel herausgearbeit wurde, im Rahmen der nachfolgenden Ab¬ schreckung eine metastabile Austenitphase bildet.The figure shows an inventive control element 1 in the form of a tiltable about its bearing eye rocker arm 2, on the front arm 3 onsfläche 4 funkti¬ is provided over which the rocker arm engages, for example on a plunger. The rocker arm was produced from a material which forms a metastable austenite phase after the high-temperature austenitization during which temperature treatment of the rocker arm was worked out during the subsequent ab initiation.
Um die Funktionsfläche 4 zu härten erfolgt nun, anders als irn Stand der Tech¬ nik, allein eine mechanische Bearbeitung der Funktionsfläche, beispielsweise durch Drehen, Fräsen oder Schleifen, im Rahmen welcher Bearbeitung, die durch den Pfeil B dargestellt ist, unmittelbar an der Funktion sf lache mechani¬ sche Energie eingetragen wird, die die Umklappvorgänge, also die Umwand¬ lung des metastabilen Austenits in Martensit induziert. Es bildet sich, wie durch die gestrichelte Linie angedeutet ist, ein Bereich M aus, in dem ein hoher Ge¬ halt an Martensit vorliegt, während im restlichen Bauteilkörper metastabiler Austenit vorliegt. Infolge der mechanisch induzierten Martensitbildung erfolgt also keine weitere Temperaturbehandlung zur Härtung des Bauteils, die sich nachteilig auf die Maß- und Formgenauigkeit auswirken würde. Vielmehr behält das Bauteil die im Rahmen seiner ursprünglichen Umformung gegebenen Form und Maße sehr exakt.In order to harden the functional surface 4, a mechanical processing of the functional surface, for example by turning, milling or grinding, takes place in the context of which processing, which is represented by the arrow B, directly on the function, unlike in the prior art If mechanical energy is introduced, this induces the folding-over processes, ie the conversion of the metastable austenite into martensite. As is indicated by the dashed line, an area M is formed in which a high content of martensite is present, while metastable austenite is present in the remaining component body. As a result of the mechanically induced martensite formation so no further temperature treatment for curing of the component, which would adversely affect the dimensional and dimensional accuracy. Rather, the component retains the exact shape and dimensions given in the course of its original forming.
Der mechanischen Behandlung zur Martensitbildung kann sich wie beschrie¬ ben eine Tieftemperaturbehandlung anschließen, im Rahmen welcher das Bau¬ teil auf beispielsweise -2000C abgekühlt wird, wodurch die Ausbildung der martensitischen Struktur in der Bauteil randzone M noch weiter gefördert wird. Alternativ kann die Bearbeitung selbst bei erniedrigter Temperatur erfolgen, so dass eine separate Tiefkühlung nicht nötig ist. Im Rahmen ei nes nachfolgen¬ den Anlassens können etwaige Spannungen abgebaut werden.The mechanical treatment for the formation of martensite can be as beschrie¬ ben subzero treatment connect, under which the Bau¬ part, for example, -200 0 C cooled, whereby the formation of the martensitic structure in the edge zone part M is further promoted. Alternatively, the processing can be carried out even at a reduced temperature, so that a separate freezing is not necessary. In the context of a subsequent start, any tensions can be reduced.
Der in Fig. 1 gezeigte Kipphebel 2 stellt lediglich ein Ausführt! ngsbeispiel dar. Denkbar ist es, auch andere Stell- oder Lagerbauteile durch mechanisch indu¬ zierte Martensitbildung zu härten. Zu nennen sind hier beispielsweise Gleitla¬ ger, bei denen die Laufflächen der GleitI ager, die ebenfalls aus metastabilem Austenit gebildet sind, mechanisch induziert in Martensit gewandelt werden. The rocker arm 2 shown in Fig. 1 is only a Ausführt! example. It is conceivable to harden other actuating or bearing components by mechanically induced martensite formation. Mention may be made here, for example, of sliding bearings in which the running surfaces of the sliding bearings, which are also formed of metastable austenite, are mechanically induced to be converted into martensite.
Bezugszahlenreference numerals
Stellelement Kipphebel Arm Funktionsfläche Actuator Rocker Arm Functional surface

Claims

Patentansprüche claims
1. Mechanisch belastbares Stell- oder Lagerbauteil, bestehend aus einem legierten Stahl mit einem Legierungsanteil von wenigstens 7% und ei¬ nem Kohlenstoffgehalt von 0,5 - 2,2%, mit wenigstens einer im Einsatz mechanisch belasteten Funktionsfläche, dadurch gekennzeichnet, dass wenigstens im Bereich einer Funktionsfläche (4) ein metastabiler Auste- nit mit einem Gefügeanteil von wenigstens 80% vorl iegt, der durch eine mechanische Bearbeitung der Funktionsfläche (4) zu mindest teilweise in Martensit überführt ist.1. Mechanically resilient actuator or bearing component, consisting of an alloyed steel with an alloy content of at least 7% and ei¬ nem carbon content of 0.5 - 2.2%, with at least one mechanically loaded in use functional surface, characterized in that at least in the region of a functional surface (4), a metastable austenite with a microstructural proportion of at least 80% is present, which is at least partially converted into martensite by a mechanical treatment of the functional surface (4).
2. Stell- oder Lagerbauteil nach Anspruch 1 , dadurch gekennzeichnet, dass die Funktionsfläche (4) eine martensitische Härte von wenigstens 55 HRC, insbesondere von wenigstens 58 HRC aufweist.Second actuator or bearing component according to claim 1, characterized in that the functional surface (4) has a martensitic hardness of at least 55 HRC, in particular of at least 58 HRC.
3. Stell- oder Lagerbauteil nach Anspruch 1 oder 2, dadurch gekennzeich¬ net, dass der Stahl eine den metastabilen Austenit aufweisende Schmelzlegierung ist, oder dass der metastabile Austenit durch eine se¬ parate Nitrierung erzeugt ist.3. actuator or bearing component according to claim 1 or 2, characterized gekennzeich¬ net, that the steel is a metastable austenite having fusible alloy, or that the metastable austenite is produced by a se¬ parate nitration.
4. Verfahren zur Herstellung eines Stell- oder Lagerbauteils nach einem der vorangehenden Ansprüche, dadurch gekennzeichi net, dass das Bau¬ teil zunächst aus einem legierten Stahl mit einem Legierungsanteil von wenigstens 7% und einem Kohlenstoffgehalt von 0,5 - 2,2% geformt wird, während oder wonach das Bauteil einer Temperaturbehandlung unterzogen wird und wonach das Bauteil anschließend abgeschreckt wird, so dass sich wenigstens im Bereich einer Funktionsfläche des Bau¬ teils ein metastabiler Austenit mit einem Gefügeanteil von wenigstens 80% bildet, wonach die Funktionsfläche mechanisch bearbeitet wird, so4. A method for producing a control or bearing component according to one of the preceding claims, characterized gekennzeichi net that the Bau¬ part initially formed from an alloy steel with an alloy content of at least 7% and a carbon content of 0.5 - 2.2% is, during or after which the component is subjected to a temperature treatment and then the component is quenched, so that at least in the region of a functional surface of the Bau¬ part metastable austenite forms with a microstructure of at least 80%, after which the functional surface is machined, so
.dass sich eine Randzone bildet, die zumindest teilweise Martensit auf¬ weist. in that an edge zone is formed which at least partly has martensite.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die mecha¬ nische Bearbeitung bei erhöhter Temperatur bis 5000C, bei Raumtempe¬ ratur oder bei erniedrigter Temperatur bis maximal -2000C erfolgt.5. The method according to claim 4, characterized in that the mecha¬ African processing at elevated temperature to 500 0 C, at Raumtempe¬ carried temperature or at a reduced temperature up to -200 0 C.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass nach einer mechanischen Bearbeitung bei erhöhter "Temperatur oder bei Raumtem¬ peratur eine Tiefkühlbehandlung bis maximal -200 0C erfolgt.6. The method according to claim 5, characterized in that, after mechanical working at elevated "temperature or at a temperature Raumtem¬ deep chill treatment up to -200 0 C.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass nach einer Tiefkühlbehandlung eine Temperaturbehandlung zum Anlassen des Bauteils bis maximal 6000C erfolgt.7. The method according to claim 5 or 6, characterized in that after a deep-freezing treatment, a temperature treatment for tempering of the component to a maximum of 600 0 C.
8. Verfahren nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass nach der Bauteilformung eine Tiefkühlbehandlung bis maximal -2000C, und gegebenenfalls danach eine> Temperaturbehandlung zum Anlassen des Bauteils bis maximal 600°C erfolgt.8. The method according to any one of claims 4 to 7, characterized in that after the component forming a deep-freezing treatment to a maximum of -200 0 C, and optionally thereafter a> temperature treatment for tempering of the component to a maximum of 600 ° C.
9. Verfahren nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, dass zur weiteren Festigkeitssteigerung die Funktionsfläche mechanisch nachbehandelt wird, insbesondere durch Kugelstrahlen oder Rollieren. 9. The method according to any one of claims 4 to 8, characterized in that for further increase in strength, the functional surface is mechanically treated, in particular by shot peening or rolling.
EP05804438A 2004-10-26 2005-10-15 Mechanically-stressed actuator or bearing component made from mechanically-hardened steel Withdrawn EP1805331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004051885A DE102004051885A1 (en) 2004-10-26 2004-10-26 Mechanically load-bearing actuator or bearing component made of mechanically hardened steel
PCT/EP2005/011094 WO2006045461A1 (en) 2004-10-26 2005-10-15 Mechanically-stressed actuator or bearing component made from mechanically-hardened steel

Publications (1)

Publication Number Publication Date
EP1805331A1 true EP1805331A1 (en) 2007-07-11

Family

ID=35744809

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05804438A Withdrawn EP1805331A1 (en) 2004-10-26 2005-10-15 Mechanically-stressed actuator or bearing component made from mechanically-hardened steel

Country Status (3)

Country Link
EP (1) EP1805331A1 (en)
DE (1) DE102004051885A1 (en)
WO (1) WO2006045461A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009036718A1 (en) 2009-08-08 2010-03-25 Daimler Ag Process to enhance the strength of forged or cast automotive e.g. suspension components by milling or turning and shot blasting
DE102012003791B3 (en) * 2012-02-25 2013-08-14 Technische Universität Bergakademie Freiberg Manufacturing high strength moldings, comprises smelting molten steel, and casting in mold, where unprocessed cast parts with predominant martensitic microstructure are subjected to a final assembly by cold forming in specific temperature
CN113667810B (en) * 2021-08-18 2023-02-03 江苏大学 Method for improving dimensional stability of steel cold-working die

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE301332B (en) * 1958-04-04 1968-06-04 Ford Motor Co
FR2666352B1 (en) * 1990-08-30 1992-12-11 Ugine Savoie Sa PROCESS FOR THE PRODUCTION OF HIGHLY LOADED RUPTURE PRODUCTS FROM UNSTABLE AUSTHENIC STEEL, AND PRODUCTS THEREFROM.
JP3665876B2 (en) * 1992-01-24 2005-06-29 光洋精工株式会社 Manufacturing method of bearing parts
US6221183B1 (en) * 1992-11-16 2001-04-24 Hitachi Metals, Ltd. High-strength and low-thermal-expansion alloy, wire of the alloy and method of manufacturing the alloy wire
DE4323167C1 (en) * 1993-07-10 1994-05-19 Leifeld Gmbh & Co Producing steel hollow bodies by rolling - combined with austenitic heat treatment
DE19633789C2 (en) * 1995-10-10 1999-12-16 Rasmussen Gmbh Method of manufacturing a spring band clamp
DE69713446T2 (en) * 1996-04-26 2003-08-07 Denso Corp., Kariya Process for stress-induced transformation of austenitic stainless steels and process for producing composite magnetic parts
US5865385A (en) * 1997-02-21 1999-02-02 Arnett; Charles R. Comminuting media comprising martensitic/austenitic steel containing retained work-transformable austenite
JP2000018256A (en) * 1998-07-02 2000-01-18 Ntn Corp Gear shaft supporting device of vehicle differential device
JP3975314B2 (en) * 1999-08-27 2007-09-12 株式会社ジェイテクト Bearing part material and rolling bearing raceway manufacturing method
AU2001245704A1 (en) * 2000-03-14 2001-09-24 The Timken Company High performance carburizing stainless steel for high temperature use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006045461A1 *

Also Published As

Publication number Publication date
DE102004051885A1 (en) 2006-04-27
WO2006045461A1 (en) 2006-05-04

Similar Documents

Publication Publication Date Title
EP1276915B1 (en) Rolling bearing component
DE102005060113B4 (en) Wheel bearing and method for producing the same
EP1831410A1 (en) Method for thermally treating a component consisting of a fully hardenable, heat-resistant steel and a component consisting of said steel
DE3919199C2 (en)
EP3536812A1 (en) Bi-metal screw with martensitic hardenable steel
EP3421623A1 (en) Martensitic hardening steel and its use, in particular for producing a screw
EP2427666B1 (en) Large roller bearing
DE112015003015T5 (en) Method and metal component
EP3591081B1 (en) Method for producing a case-hardened steel component
EP1805331A1 (en) Mechanically-stressed actuator or bearing component made from mechanically-hardened steel
DE102004039926A1 (en) Process for producing a temperature and corrosion resistant fuel injector body
DE10361739B4 (en) Method for machining crankshaft radii
DE2165105A1 (en) Method of manufacturing ball head studs
DE102005053047B3 (en) Roller holding component for e.g. diesel injection system, has side units connected with disk-shaped base unit, where component is manufactured from steel with preset percentages of carbon and chromium contents
EP3060692B1 (en) Method for producing a locally boronized or chromized component
DE10243179A1 (en) Case hardening steel used in the manufacture of workpieces e.g. for the construction of vehicles contains alloying additions of chromium, niobium and titanium
DE102018123505A1 (en) Slewing ring and method for manufacturing a slewing ring
DE4406896C1 (en) Martensitic age-hardening process for esp. alloyed steel inlet valves
DE102017209881A1 (en) Process for producing a hardened transmission component and forming tool with cooled die used therefor
EP1753887B1 (en) Heavy-duty engine component
DE102021132703A1 (en) Process for manufacturing a rolling bearing component
WO2022148510A1 (en) Method for producing a rolling bearing component
DE102021205629A1 (en) Process for heat treating a steel component
DE102008050319A1 (en) Method of case-hardening steel gear wheels or other components used in e.g. automobile industry, work-hardens before carburization and heat treatment
DE102005029404A1 (en) Pre-stressed roller bearing e.g. grooved ball bearing, has inner and outer bearing units, where one unit consists of hardened steel with locally different residual austenite content that is adjusted, so that pre-stressing remains constant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070329

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 20110905

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160503

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523