EP3060692B1 - Method for producing a locally boronized or chromized component - Google Patents

Method for producing a locally boronized or chromized component Download PDF

Info

Publication number
EP3060692B1
EP3060692B1 EP14777331.1A EP14777331A EP3060692B1 EP 3060692 B1 EP3060692 B1 EP 3060692B1 EP 14777331 A EP14777331 A EP 14777331A EP 3060692 B1 EP3060692 B1 EP 3060692B1
Authority
EP
European Patent Office
Prior art keywords
component
temperature
powder
method step
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14777331.1A
Other languages
German (de)
French (fr)
Other versions
EP3060692A1 (en
Inventor
Karl-Otto Englert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3060692A1 publication Critical patent/EP3060692A1/en
Application granted granted Critical
Publication of EP3060692B1 publication Critical patent/EP3060692B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/60After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • C23C10/32Chromising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/68Boronising
    • C23C8/70Boronising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Definitions

  • the invention relates to a method for producing a component from a low-alloyed steel material which is subjected to pressure and wear at least in a locally limited area.
  • the field of the invention extends to components of an injection system of an internal combustion engine.
  • the components are made of an alloyed material.
  • the necessary geometric precision of these components is achieved by a machining hard machining, such as by grinding.
  • the surface of the components is coated to further increase the resistance to wear.
  • nitriding, carbon and electroplated layers are suitable for this purpose. These layers are usually applied after a microstructural heat treatment.
  • the toughness of the components is increased in the context of a further heat treatment. However, at the same time the hardness is reduced.
  • the method comprises the following method steps.
  • milling is suitable for cutting production or, in the case of rotationally symmetrical components, turning.
  • the component consists of a low-alloyed steel material which is not heat-treated and therefore in the soft state, the production is particularly gentle on tools and saves time.
  • the component is locally covered with a powder having essentially either boron or chromium.
  • the cooling of the component to room temperature and the removal of the powder from the surface of the body follows. Due to the powder properties and the coating process, the removal of the powder is particularly easy because it can be blown off, for example, with compressed air.
  • a renewed heat treatment of the body takes place for the adjustment of either a martensitic or a bainitic structure at a second temperature, which is lower than the first temperature.
  • a bainitic structure is set, since this compared to the martensitic structure has a higher toughness and in the edge region, in other words both on the non-borated or chromed surfaces, as well as below the boron or chromium layer, compressive stresses.
  • a conversion treatment of the martensitic microstructure of at least one hour at a temperature of over 200 ° C is carried out.
  • the conversion treatment leads to a considerable increase in toughness.
  • a fine machining of the component for the final shaping takes place.
  • the grinding is suitable because the removal of very hard material is relatively low.
  • the fine machining system precisely adjusts the geometry of the component and compensates for the distortion due to the heat treatment.
  • the first temperature is at least 890 ° C up to a maximum of 950 ° C. This temperature causes the boron atoms or the chromium atoms to diffuse into the surface layer of the body.
  • the second temperature is temperature at least 840 ° C up to a maximum of 870 ° C. The temperature difference between the first and the second temperature causes the heat treatment has no influence on the borated or chromed edge layer of the component.
  • surface refinement of the borated or chromated locally limited regions to increase the crack resistance is particularly preferably carried out.
  • mechanical polishing of the borated or chromed regions is particularly suitable.
  • a valve body for an injection system of an internal combustion engine is machined in a first method step.
  • a holding body for an injection system of an internal combustion engine is machined in a first method step.
  • valve bodies In the case of the valve bodies, it is in particular the valve seats and, in the case of the holding bodies, in particular the guides which are exposed to high pressure and high wear and to a particle impact.
  • the remaining areas of the valve body or the holding body are essentially exposed only to a compressive load, so that it is particularly advantageous here if stresses can be reduced by plastic deformation.
  • areas with a ductile and tough structure are suitable for this purpose.
  • an iron boride or iron chromium layer having a layer thickness of at least 30 ⁇ m to at most 100 ⁇ m is preferably produced at the surface layer of the component.
  • This layer which is considerably thicker than the layer thickness of high-alloy steels, is caused by a low content of alloying elements of the low-alloyed steels.
  • the boron atoms, when entering the surface layer of the body, essentially form Fe 2 B iron boride with a hardness of 1500 to 2000HV.
  • 100Cr6 is used as the low-alloyed steel material.
  • FIG. 1 begins the inventive method with a first process step a, a machining production of a valve body 1 of the material 100Cr6 in a non-heat-treated state.
  • the valve body 1 is covered locally with a powder 2 having essentially boron.
  • the local coverage with powder is limited to the valve seat. 3
  • a heat treatment of the locally covered with the powder 2 valve body 1 at a first temperature of 910 ° C is made. This results in the localized diffusion of boron atoms from the powder 2 having boron into the surface layer of the valve body 1, in particular into the surface layer of the valve seat 3 to be borated. This results in an iron boride layer 5 with a layer thickness of up to 100 .mu.m at the surface layer of the valve body Valve seat 3 generated.
  • valve body 1 is cooled to room temperature and the powder is removed.
  • a second temperature is 840 ° C and is thus lower than the temperature required for boriding.
  • a six hour conversion treatment is carried out at a temperature of 220 ° C to 260 ° C. This increases the toughness of the bainitic structure 4 to a greater degree than the hardness is lowered.
  • a fine machining is performed by grinding the valve body 1 for final shaping.
  • the valve body 1 produced by the method according to the invention has a tempered and thus tough bainitic base structure 4.
  • the valve seat 3 of the valve body 1 is borated and has an iron boride layer 5 with a layer thickness of up to 100 ⁇ m.
  • the valve body 1 has a first region, in the valve seat 3, with a high hardness, resistance to wear and corrosion as well as a second region with a relatively high toughness and ductility on the other hand.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Bauteils aus einem niedriglegierten Stahlwerkstoff, das zumindest in einem lokal begrenzten Bereich einem Druck und einem Verschleiß ausgesetzt wird.The invention relates to a method for producing a component from a low-alloyed steel material which is subjected to pressure and wear at least in a locally limited area.

Das Gebiet der Erfindung erstreckt sich auf Bauteile eines Einspritzsystems einer Verbrennungskraftmaschine.The field of the invention extends to components of an injection system of an internal combustion engine.

Stand der TechnikState of the art

Aus dem allgemein bekannten Stand der Technik geht hervor, das Bauteile, die einem Druck und einem Verschleiß ausgesetzt sind zur Steigerung der Hochdruckfestigkeit eine bainitische oder martensitische Wärmebehandlung erfahren. In der Regel werden die Bauteile aus einem legierten Werkstoff hergestellt. Die notwendige geometrische Präzision dieser Bauteile wird durch eine spanabhebende Hartbearbeitung, wie beispielsweise durch Schleifen erreicht. Sofern der durch die Wärmebehandlung eingestellte Werkstoffzustand gegenüber Verschleiß nicht ausreicht, wird zur weiteren Beanspruchbarkeitssteigerung gegen Verschleiß die Oberfläche der Bauteile beschichtet. Dazu eignen sich insbesondere Nitrier-, Kohlenstoff- und galvanische Schichten. Diese Schichten werden in der Regel nach einer Gefüge einstellenden Wärmebehandlung aufgetragen. Zur Verbesserung der Hochdruckfestigkeit wird die Zähigkeit der Bauteile im Rahmen einer weiteren Wärmebehandlung erhöht. Jedoch wird dabei gleichzeitig die Härte reduziert. Die Nachteile des zuvor beschriebenen Standes der Technik erwachsen insbesondere durch die hohen Temperaturen beim Beschichten, die die Bauteilfestigkeit im Grundmaterial herabsetzen. Durch die hohen Temperaturen wird nämlich das zuvor durch die Wärmebehandlung eingestellte Gefüge verändert. Aufgrund der hoch legierten Stahlwerkstoffe beträgt die erzeugte Schichtdicke in der Regel weniger als 25µm. Dies liegt insbesondere an der eingeschränkten Diffusion der Beschichtungsatome in den Grundwerkstoff. Daher bieten diese dünnen Schichten keinen ausreichenden Schutz bei lokaler Belastung, wie beispielsweise bei einem Partikeleinschlag. Bei einem weichen Grundgefüge entstehen demnach Dellen im Grundmaterial. Ferner muss die geometrische Präzision vor der Beschichtung hergestellt werden, da die Schichten sehr dünn sind und eine Nachbearbeitung daher nur sehr schwer möglich ist.It is apparent from the well-known state of the art that components which are subjected to pressure and wear experience a bainitic or martensitic heat treatment to increase the high-pressure resistance. As a rule, the components are made of an alloyed material. The necessary geometric precision of these components is achieved by a machining hard machining, such as by grinding. If the set by the heat treatment material condition is not sufficient against wear, the surface of the components is coated to further increase the resistance to wear. In particular, nitriding, carbon and electroplated layers are suitable for this purpose. These layers are usually applied after a microstructural heat treatment. To improve the high pressure resistance, the toughness of the components is increased in the context of a further heat treatment. However, at the same time the hardness is reduced. The disadvantages of the prior art described above arise in particular due to the high temperatures during coating, which reduce the component strength in the base material. Due to the high temperatures namely the previously set by the heat treatment structure is changed. Due to the high-alloyed steel materials, the layer thickness produced is generally less than 25 μm. This is especially due to the limited diffusion of the coating atoms into the base material. Therefore, these thin layers do not provide sufficient protection under local load, such as particle impact. In the case of a soft basic structure, there are dents in the base material. Furthermore, the geometric precision must be prepared before the coating, since the layers are very thin and post-processing is therefore very difficult.

Offenbarung der ErfindungDisclosure of the invention

Es ist daher die Aufgabe der vorliegenden Erfindung ein Verfahren zur Herstellung eines Bauteils eines Einspritzsystems einer Verbrennungskraftmaschine bereitzustellen, wodurch das Bauteil Bereiche mit einer relativ hohen Härte, Verschleiß- und Korrosionsbeständigkeit als auch Bereiche mit einer demgegenüber relativ hohen Zähigkeit und Duktilität aufweist.It is therefore an object of the present invention to provide a method for producing a component of an injection system of an internal combustion engine, whereby the component has areas with a relatively high hardness, wear and corrosion resistance as well as areas with a relatively high toughness and ductility.

Die Aufgabe wird ausgehend von einem Verfahren gemäß dem Oberbegriff von Anspruch 1 in Verbindung mit dessen kennzeichnenden Merkmalen gelöst. Vorteilhafte Weiterbildungen der Erfindung gehen aus den nachfolgenden abhängigen Ansprüchen hervor.The object is achieved on the basis of a method according to the preamble of claim 1 in conjunction with its characterizing features. Advantageous developments of the invention will become apparent from the following dependent claims.

Erfindungsgemäß weist das Verfahren die nachfolgenden Verfahrensschritte auf. Zunächst erfolgt gemäß Verfahrensschritt a) eine spanabhebende Fertigung des Bauteils in einem nicht wärmebehandelten Zustand. Zur spanabhebenden Fertigung eignet sich insbesondere das Fräsen oder bei rotationssymmetrischen Bauteilen das Drehen. Dadurch das das Bauteil aus einem niedrig legierten Stahlwerkstoff, der nicht wärmebehandelt ist und somit im weichen Zustand vorliegt, besteht, ist die Fertigung besonders werkzeugschonend und zeitsparend.According to the invention, the method comprises the following method steps. First, according to method step a), a machining of the component takes place in a non-heat-treated state. In particular, milling is suitable for cutting production or, in the case of rotationally symmetrical components, turning. As a result of which the component consists of a low-alloyed steel material which is not heat-treated and therefore in the soft state, the production is particularly gentle on tools and saves time.

In einem weiteren Verfahrensschritt b) wird das Bauteil mit einem im Wesentlichen entweder Bor oder Chrom aufweisenden Pulver lokal bedeckt.In a further method step b), the component is locally covered with a powder having essentially either boron or chromium.

Danach erfolgt nach Verfahrensschritt c) die Wärmebehandlung des lokal mit Pulver bedeckten Bauteils. Dadurch kommt es zur lokal begrenzten Diffusion an den mit Pulver bedeckten Bereichen, wobei entweder Boratome aus dem Bor aufweisenden Pulver oder Chromatome aus dem Chrom aufweisenden Pulver in die Randschicht des Bauteils diffundieren. Dies erfolgt bei einer ersten Temperatur, die größer ist als die Austenitisierungstemperatur des niedrig legierten Stahlwerkstoffs. Mit anderen Worten wird das Bauteil in einem lokal begrenzten Bereich entweder boriert oder chromiert. Dadurch wird an der Randschicht des Körpers eine Eisenborid- oder Eisenchromidschicht ausgebildet.This is followed after process step c), the heat treatment of the locally covered with powder component. This leads to localized diffusion at the powder-covered areas, either boron atoms from the boron Diffusing powder or chromium atoms from the chromium-containing powder in the surface layer of the component diffuse. This is done at a first Temperature greater than the austenitizing temperature of the low alloy steel material. In other words, the component is either borated or chromated in a localized area. As a result, an iron boride or iron chromium layer is formed on the surface layer of the body.

Daraufhin folgt gemäß Verfahrensschritt d) die Abkühlung des Bauteils auf Raumtemperatur und die Entfernung des Pulvers von der Oberfläche des Körpers. Aufgrund der Pulvereigenschaften und dem Beschichtungsprozess ist die Entfernung des Pulvers besonders einfach, da es beispielsweise mit Druckluft weggeblasen werden kann.Thereafter, according to method step d), the cooling of the component to room temperature and the removal of the powder from the surface of the body follows. Due to the powder properties and the coating process, the removal of the powder is particularly easy because it can be blown off, for example, with compressed air.

Gemäß Verfahrensschritt e) erfolgt eine erneute Wärmebehandlung des Körpers zur Einstellung entweder eines martensitischen oder eines bainitischen Gefüges bei einer zweiten Temperatur, die geringer ist als die erste Temperatur. Dadurch, dass die zweite Temperatur geringer ist als die erste Temperatur wird die erzeugte Randschicht nicht verändert sondern lediglich das Grundgefüge. Besonders bevorzugt wird ein bainitisches Gefüge eingestellt, da dieses im Vergleich zum martensitischen Gefüge eine höhere Zähigkeit und im Randbereich, mit anderen Worten sowohl an den nicht borierten oder chromierten Oberflächen, als auch unterhalb der Bor- oder Chromschicht, DruckEigenspannungen aufweist.In accordance with process step e), a renewed heat treatment of the body takes place for the adjustment of either a martensitic or a bainitic structure at a second temperature, which is lower than the first temperature. The fact that the second temperature is lower than the first temperature, the generated boundary layer is not changed but only the basic structure. Particularly preferred is a bainitic structure is set, since this compared to the martensitic structure has a higher toughness and in the edge region, in other words both on the non-borated or chromed surfaces, as well as below the boron or chromium layer, compressive stresses.

Vorzugsweise wird nach Verfahrensschritt e) eine Umwandlungsbehandlung des martensitischen Gefüges von mindestens einer Stunde bei einer Temperatur von über 200°C vorgenommen. Des weiteren bevorzugt wird nach Verfahrensschritt e) eine Umwandlungsbehandlung des bainitischen Gefüges von mindestens zwei bis zu höchstens sechs Stunden bei einer Temperatur von mindestens 220°C bis zu höchstens 260°C vorgenommen wird. Die Umwandlungsbehandlung führt zu einem beträchtlichen Anstieg der Zähigkeit.Preferably, after process step e), a conversion treatment of the martensitic microstructure of at least one hour at a temperature of over 200 ° C is carried out. Furthermore, after process step e), preference is given to carrying out a conversion treatment of the bainitic structure of at least two to at most six hours at a temperature of at least 220 ° C. up to at most 260 ° C. The conversion treatment leads to a considerable increase in toughness.

Gemäß einem abschließenden Verfahrensschritt erfolgt eine Feinbearbeitung des Bauteils zur finalen Formgebung. Dazu eignet sich insbesondere das Schleifen, da der Abtrag von sehr hartem Material relativ gering ist. Die Feinbearbeitung stellt die Geometrie des Bauteils präzise ein und kompensiert den Verzug aufgrund der Wärmebehandlung.According to a final process step, a fine machining of the component for the final shaping takes place. In particular, the grinding is suitable because the removal of very hard material is relatively low. The fine machining system precisely adjusts the geometry of the component and compensates for the distortion due to the heat treatment.

Die erste Temperatur beträgt mindestens 890°C bis zu höchstens 950°C. Diese Temperatur führt dazu, dass die Boratome oder die Chromatome in die Randschicht des Körpers eindiffundieren können. Die zweite Temperaratur beträgt Temperatur mindestens 840°C bis zu höchstens 870°C. Die Temperaturdifferenz zwischen der ersten und der zweiten Temperatur führt dazu, dass die Wärmebehandlung keinen Einfluss auf die borierte oder chromierte Randschicht des Bauteils nimmt.The first temperature is at least 890 ° C up to a maximum of 950 ° C. This temperature causes the boron atoms or the chromium atoms to diffuse into the surface layer of the body. The second temperature is temperature at least 840 ° C up to a maximum of 870 ° C. The temperature difference between the first and the second temperature causes the heat treatment has no influence on the borated or chromed edge layer of the component.

Besonders bevorzugt wird nach Verfahrensschritt f) eine Oberflächenveredelung der entweder borierten oder chromierten lokal begrenzten Bereiche zur Erhöhung der Rissbeständigkeit vorgenommen. Zur Oberflächenveredelung eignet sich insbesondere das mechanische polieren der borierten oder chromierten Bereiche.After process step f), surface refinement of the borated or chromated locally limited regions to increase the crack resistance is particularly preferably carried out. For surface refinement, mechanical polishing of the borated or chromed regions is particularly suitable.

Gemäß einer bevorzugten Ausführungsform wird in einem ersten Verfahrensschritt ein Ventilkörper für ein Einspritzsystem einer Verbrennungskraftmaschine spanabhebend gefertigt. Gemäß einem weiteren bevorzugten Ausführungsbeispiel wird in einem ersten Verfahrensschritt ein Haltekörper für ein Einspritzsystem einer Verbrennungskraftmaschine spanabhebend gefertigt.According to a preferred embodiment, a valve body for an injection system of an internal combustion engine is machined in a first method step. According to a further preferred embodiment, a holding body for an injection system of an internal combustion engine is machined in a first method step.

Bei dem Ventilkörpern sind es insbesondere die Ventilsitze und bei den Haltekörper insbesondere die Führungen, die einem hohen Druck und einem hohen Verschleiß sowie einem Partikeleinschlag ausgesetzt sind. Die restlichen Bereiche des Ventilkörpers oder des Haltekörpers sind im Wesentlichen nur einer Druckbelastung ausgesetzt, so dass es hier besonders vorteilhaft ist wenn durch plastische Verformung Spannungen abgebaut werden können. Dazu eignen sich insbesondere Bereiche mit einem duktilen und zähen Gefüge.In the case of the valve bodies, it is in particular the valve seats and, in the case of the holding bodies, in particular the guides which are exposed to high pressure and high wear and to a particle impact. The remaining areas of the valve body or the holding body are essentially exposed only to a compressive load, so that it is particularly advantageous here if stresses can be reduced by plastic deformation. In particular, areas with a ductile and tough structure are suitable for this purpose.

Des Weiteren bevorzugt wird gemäß Verfahrensschritt c) eine Eisenborid- oder Eisenchromidschicht mit einer Schichtdicke von mindestens 30µm bis zu höchstens 100µm an der Randschicht des Bauteils erzeugt. Diese, gegenüber der Schichtdicke von hochlegierten Stählen, erheblich dickere Schicht wird aufgrund eines geringen Gehalts von Legierungselementen der niedrig legierten Stähle hervorgerufen. Die Boratome bilden beim Eintritt in die Randschicht des Körpers im Wesentlichen Eisenborid vom Typ Fe2B mit einer Härte von 1500 bis 2000HV. Vorzugsweise wird als niedrig legierter Stahlwerkstoff 100Cr6 verwendet.Furthermore, according to method step c), an iron boride or iron chromium layer having a layer thickness of at least 30 μm to at most 100 μm is preferably produced at the surface layer of the component. This layer, which is considerably thicker than the layer thickness of high-alloy steels, is caused by a low content of alloying elements of the low-alloyed steels. The boron atoms, when entering the surface layer of the body, essentially form Fe 2 B iron boride with a hardness of 1500 to 2000HV. Preferably, 100Cr6 is used as the low-alloyed steel material.

Weitere, die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung der bevorzugten Ausführungsbeispiele der Erfindung anhand von Figuren näher dargestellt.Further measures improving the invention will be described in more detail below together with the description of the preferred embodiments of the invention with reference to figures.

Ausführungsbeispieleembodiments

Es zeigen:

Figur 1
eine vereinfachte schematische Schnittansicht eines Ventilkörpers, das die jeweiligen erfindungsgemäßen Verfahrensschritte durchläuft, und
Figur 2
ein nach dem Verfahren gemäß Figur 1 hergestellten Ventilkörper.
Show it:
FIG. 1
a simplified schematic sectional view of a valve body, which undergoes the respective process steps according to the invention, and
FIG. 2
a according to the method according to FIG. 1 manufactured valve body.

Nach Figur 1 beginnt das erfindungsgemäße Verfahren mit einem ersten Verfahrensschritt a, einer spanabhebenden Fertigung eines Ventilkörpers 1 aus dem Werkstoff 100Cr6 in einem nicht wärmebehandelten Zustand.To FIG. 1 begins the inventive method with a first process step a, a machining production of a valve body 1 of the material 100Cr6 in a non-heat-treated state.

Gemäß einem Verfahrensschritt b wird der Ventilkörper 1 lokal mit einem im Wesentlichen Bor aufweisenden Pulver 2 bedeckt. Die lokale Bedeckung mit Pulver beschränkt sich dabei auf den Ventilsitz 3.According to a method step b, the valve body 1 is covered locally with a powder 2 having essentially boron. The local coverage with powder is limited to the valve seat. 3

In einem Verfahrensschritt c wird eine Wärmebehandlung des lokal mit dem Pulver 2 bedeckten Ventilkörpers 1 bei einer ersten Temperatur von 910°C vorgenommen. Dabei kommt es zur lokal begrenzten Diffusion von Boratomen aus dem Bor aufweisenden Pulver 2 in die Randschicht des Ventilkörpers 1, insbesondere in die Randschicht der zu borierenden Fläche des Ventilsitzes 3. Dadurch wird eine Eisenboridschicht 5 mit einer Schichtdicke von bis zu 100µm an der Randschicht des Ventilsitzes 3 erzeugt.In a method step c, a heat treatment of the locally covered with the powder 2 valve body 1 at a first temperature of 910 ° C is made. This results in the localized diffusion of boron atoms from the powder 2 having boron into the surface layer of the valve body 1, in particular into the surface layer of the valve seat 3 to be borated. This results in an iron boride layer 5 with a layer thickness of up to 100 .mu.m at the surface layer of the valve body Valve seat 3 generated.

Gemäß eines nächsten Verfahrensschrittes d wird der Ventilkörper 1 auf Raumtemperatur abgekühlt und das Pulvers wird entfernt.According to a next method step d, the valve body 1 is cooled to room temperature and the powder is removed.

Nach einem Verfahrensschritt e wird der Ventilkörper 1 zur Einstellung eines bainitischen Gefüges 4 erneut wärmebehandelt. Dabei beträgt eine zweite Temperatur 840°C und ist somit geringer als die zum Borieren benötigte Temperatur.After a method step e, the valve body 1 is heat treated again to adjust a bainitic structure 4. In this case, a second temperature is 840 ° C and is thus lower than the temperature required for boriding.

Gemäß einem Verfahrensschritt f wird eine Umwandlungsbehandlung von sechs Stunden bei einer Temperatur von 220°C bis 260°C vorgenommen. Dies erhöht die Zähigkeit des bainitischen Gefüges 4 in einem höherem Maße als die Härte abgesenkt wird.According to a process step f, a six hour conversion treatment is carried out at a temperature of 220 ° C to 260 ° C. This increases the toughness of the bainitic structure 4 to a greater degree than the hardness is lowered.

In einem Verfahrensschritt g wird eine spanabhebende Feinbearbeitung durch Schleifen des Ventilkörpers 1 zur finalen Formgebung vorgenommen.In a method step g, a fine machining is performed by grinding the valve body 1 for final shaping.

Abschließend wird nach Verfahrensschritt h eine Oberflächenveredelung der lokal begrenzten, borierten Bereiche vorgenommen. Dabei wird die Oberflächenveredelung durch mechanische Bearbeitung erzeugt.Finally, after process step h, a surface refinement of the locally delimited, borated regions is carried out. The surface refinement is produced by mechanical processing.

Gemäß Figur 2 weist der nach dem erfindungsgemäßen Verfahren hergestellte Ventilkörper 1 ein angelassenes und somit zähes bainitisches Grundgefüge 4 auf. Der Ventilsitz 3 des Ventilkörpers 1 ist boriert und weist eine Eisenboridschicht 5 mit einer Schichtdicke von bis zu 100µm auf. Dadurch weist der Ventilkörper 1 einen ersten Bereich, im Ventilsitz 3, mit einer hohen Härte, Verschleiß- und Korrosionsbeständigkeit als auch einen zweiten Bereich mit einer demgegenüber relativ hohen Zähigkeit und Duktilität auf.According to FIG. 2 For example, the valve body 1 produced by the method according to the invention has a tempered and thus tough bainitic base structure 4. The valve seat 3 of the valve body 1 is borated and has an iron boride layer 5 with a layer thickness of up to 100 μm. As a result, the valve body 1 has a first region, in the valve seat 3, with a high hardness, resistance to wear and corrosion as well as a second region with a relatively high toughness and ductility on the other hand.

Die Erfindung ist nicht beschränkt auf das vorstehend beschriebene bevorzugte Ausführungsbeispiel. Es sind vielmehr auch Abwandlungen hiervon denkbar, welche vom Schutzbereich der nachfolgenden Ansprüche mit umfasst sind. So ist es beispielsweise auch möglich, anstelle eines Ventilkörpers 1 auch andere Bauteile, insbesondere für ein Einspritzsystem einer Verbrennungskraftmaschine, herzustellen. Denkbar ist beispielsweise auch die Herstellung eines Haltekörpers. Ferner ist es auch denkbar die Bauteile anstatt zu borieren, zu chromieren. Dazu wird ein Chrom aufweisendes Pulver verwendet, das während der Wärmebehandlung des Bauteils eine Eisenchromidschicht erzeugt.The invention is not limited to the preferred embodiment described above. On the contrary, modifications are conceivable which are included in the scope of protection of the following claims. For example, it is also possible to produce other components instead of a valve body 1, in particular for an injection system of an internal combustion engine. It is also conceivable, for example, the production of a holding body. Furthermore, it is also conceivable to borate the components instead of chrome, to chromate. For this purpose, a chromium-containing powder is used which generates an iron chromium layer during the heat treatment of the component.

Ergänzend ist darauf hinzuweisen, dass "umfassend" keine anderen Elemente oder Schritte ausschließt und "eine" oder "ein" keine Vielzahl ausschließt. Ferner sei darauf hingewiesen, dass Merkmale oder Schritte, die mit Verweis auf eines der obigen Ausführungsbeispiele beschrieben worden sind, auch in Kombination mit anderen Merkmalen oder Schritten anderer oben beschriebener Ausführungsbeispiele verwendet werden können.In addition, it should be noted that "encompassing" does not exclude other elements or steps, and "a" or "an" does not exclude a multitude. Further It should be understood that features or steps described with reference to any of the above embodiments may also be used in combination with other features or steps of other embodiments described above.

Claims (8)

  1. Method for producing a component (1) of an injection system of an internal combustion engine of a low-alloy steel material that is exposed to pressure and wear at least in a localized region, comprising the following method steps:
    a) machining the component (1) in a state in which it has not been heat-treated, characterized by
    b) subsequently locally covering the component (1) with a powder (2) comprising essentially either boron or chromium,
    c) subsequently heat-treating the component (1) covered locally with powder (2) for the localized diffusion either of boron atoms from the boron-comprising powder (2) or of chromium atoms from the chromium-comprising powder (2) into the outer layer of the component (1) at a first temperature, which is greater than the austenitization temperature of the low-alloy steel material, the first temperature being at least 890°C to at most 950°C,
    d) subsequently cooling the component (1) to room temperature and removing the powder (2), and
    e) subsequently heat-treating the component (1) once again to set either a martensitic or a bainitic microstructure (4) at a second temperature, which is lower than the first temperature, the second temperature being at least 840°C to at most 870°C.
  2. Method according to Claim 1, characterized in that, after method step e), a transformation treatment of the martensitic microstructure of at least one hour at a temperature of over 200°C is performed.
  3. Method according to Claim 1, characterized in that, after method step e), a transformation treatment of the bainitic microstructure of at least two to at most six hours at a temperature of at least 220°C to at most 260°C is performed.
  4. Method according to Claim 1, characterized in that, after method step e), to complete the method a precision machining of the component (1) for the final shaping is performed.
  5. Method according to Claim 1, characterized in that, according to method step a), a valve body (1) for an injection system of an internal combustion engine is produced by machining.
  6. Method according to Claim 1, characterized in that, according to method step a), a holding body (1) for an injection system of an internal combustion engine is produced by machining.
  7. Method according to Claim 1, characterized in that, according to method step c), an iron-boride or iron-chromide layer (5) with a layer thickness of at least 30 µm to at most 100 µm is produced on the outer layer of the component (1).
  8. Method according to Claim 1, characterized in that a 100Cr6 is used as the low-alloy steel material.
EP14777331.1A 2013-10-22 2014-09-30 Method for producing a locally boronized or chromized component Active EP3060692B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201310221403 DE102013221403A1 (en) 2013-10-22 2013-10-22 Process for producing a locally borated or chromated component
PCT/EP2014/070881 WO2015058932A1 (en) 2013-10-22 2014-09-30 Method for producing a locally boronized or chromized component

Publications (2)

Publication Number Publication Date
EP3060692A1 EP3060692A1 (en) 2016-08-31
EP3060692B1 true EP3060692B1 (en) 2018-11-14

Family

ID=51628138

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14777331.1A Active EP3060692B1 (en) 2013-10-22 2014-09-30 Method for producing a locally boronized or chromized component

Country Status (3)

Country Link
EP (1) EP3060692B1 (en)
DE (1) DE102013221403A1 (en)
WO (1) WO2015058932A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107448254A (en) * 2017-06-20 2017-12-08 扬州光辉汽车零部件有限公司 A kind of boronising wear-resistant coating valve

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922038A (en) * 1973-08-10 1975-11-25 Hughes Tool Co Wear resistant boronized surfaces and boronizing methods
GB1569701A (en) * 1976-03-06 1980-06-18 Ovako Oy High strength steels
FR2514032A1 (en) * 1981-10-06 1983-04-08 Nicolas Guy CHROME-BASED COATING FOR WEAR-RESISTANT STEEL AND PROCESS FOR PREPARING THE SAME
EP0438268A1 (en) * 1990-01-18 1991-07-24 Taiho Kogyo Co., Ltd. Boronized sliding material having high strength and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102013221403A1 (en) 2015-04-23
WO2015058932A1 (en) 2015-04-30
EP3060692A1 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
EP1642992B1 (en) Non-machined thin walled rust-free bearing component, particularly rolling bearing component
EP2045339B1 (en) Workpiece for rolling wear stress made of through hardened steel and method of heat treatment
WO2012130552A1 (en) Method for producing a hardened, coated metal component
DE102007023087A1 (en) Manufacturing cam for built-up cam shaft used in vehicle engine, employs steel of specified carbon content, hot or cold deformation, tempering and hardening operations
DE102006025008B4 (en) Process for hardening running surfaces of roller bearing components
DE102015102651A1 (en) Flexible externally toothed gear for a wave generating gear and method of making the same
DE102016120608A1 (en) High core hardness alloy suitable for fast nitriding
EP2623617A2 (en) Method for producing an armouring component and armouring component
EP3591081B1 (en) Method for producing a case-hardened steel component
EP3060692B1 (en) Method for producing a locally boronized or chromized component
WO2008055477A2 (en) Method for the production of a rolling bearing ring, and rolling bearing ring
DE202014007106U1 (en) Stainless steel drilling screw made of duplex steel
EP3538678B1 (en) Method for producing a rolling bearing ring having an improved robustness against the formation of white etching cracks (wec)
DE112019001853T5 (en) Method for manufacturing a machine component
DE102015204656A1 (en) Layer formation for rolling bearing components
DE102015006079A1 (en) Component, in particular for a vehicle, and method for producing such a component
DE2165105C3 (en) Process for the production of ball head bolts
WO2018036590A1 (en) Method for processing a case-hardening steel to form a component
DE102010048134A1 (en) tempering steel
EP1805331A1 (en) Mechanically-stressed actuator or bearing component made from mechanically-hardened steel
DE102020004685A1 (en) Process for producing a surface-treated solid component from a steel material and such a component
DE102016201753B3 (en) Method for producing a rolling bearing component from an austenitic steel
DE102018123505A1 (en) Slewing ring and method for manufacturing a slewing ring
Catteau et al. New Steel Grades for Deep Carburizing of Windmill Transmission Components
EP2949766B1 (en) Method for producing a valve for an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160523

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170510

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180813

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1064921

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014010092

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181114

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190314

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190314

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190215

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014010092

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1064921

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230918

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230929

Year of fee payment: 10

Ref country code: DE

Payment date: 20231124

Year of fee payment: 10