EP1797484A1 - Feldbusanwendung mit mehreren feldgeräten - Google Patents

Feldbusanwendung mit mehreren feldgeräten

Info

Publication number
EP1797484A1
EP1797484A1 EP05789544A EP05789544A EP1797484A1 EP 1797484 A1 EP1797484 A1 EP 1797484A1 EP 05789544 A EP05789544 A EP 05789544A EP 05789544 A EP05789544 A EP 05789544A EP 1797484 A1 EP1797484 A1 EP 1797484A1
Authority
EP
European Patent Office
Prior art keywords
field
fieldbus
field devices
network
wap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05789544A
Other languages
English (en)
French (fr)
Inventor
Eugenio Ferreira Da Silva Neto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Process Solutions AG
Original Assignee
Endress and Hauser Process Solutions AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Process Solutions AG filed Critical Endress and Hauser Process Solutions AG
Publication of EP1797484A1 publication Critical patent/EP1797484A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0421Multiprocessor system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25428Field device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31121Fielddevice, field controller, interface connected to fieldbus
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31133Contactless connector, identify module wirelessly, short distance like less than twenty cm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to a fieldbus application with a plurality of field devices according to the preamble of claim 1.
  • field devices are often used which serve to detect and / or influence process variables.
  • Examples of such field devices are level gauges, mass flow meters, pressure and temperature measuring devices, etc., which detect the corresponding process variable level, flow, pressure or temperature as sensors.
  • actuators the z. B. as valves the flow of a liquid in a pipe section or as pumps can change the level in a container.
  • Field devices are in principle all devices that are used on a process component and that provide, process or store process-relevant information.
  • field devices in modern industrial plants are connected via bus systems (Profibus, Foundation Fieldbus, etc.) to higher-level units (control systems or control units).
  • higher-level units serve, among other things, for process control, process visualization, process monitoring and commissioning of the field devices.
  • An exchange of digital information between the field devices and the higher-level units is possible via the fieldbus systems.
  • Today's fieldbus systems are essentially designed for the tasks of communication of measurement data and control data. The protocols and services used are adapted to these tasks. For other tasks, fieldbus systems are sometimes not or only partially suitable. Thus, the commissioning of a fieldbus, in particular the configuration and parameterization of the individual field devices is very time-consuming.
  • the corresponding data must be transmitted to each individual field device via the fieldbus, which usually allows only a low data transmission rate.
  • Another disadvantage of the known systems is that at a Prozes ⁇ skomponente, z. B. a storage tank, no information about the Prozes ⁇ skomponente or the application are present. Furthermore, none of the field devices on a process component has information about the further field devices arranged in its immediate vicinity.
  • the object of the invention is therefore to provide a field bus application with a plurality of field devices, which does not have the abovementioned disadvantages, which in particular enables improved communication between the field devices.
  • the essential idea of the invention is that a second wireless radio network is provided between the field devices in addition to the field bus system as the first communication network. Via this wireless network, additional data can be exchanged between the field devices independent of the wired network of the fieldbus.
  • the field devices have corresponding radio modules for communication via the radio network.
  • the radio network is limited only to the immediate environment of a process component.
  • a field device is formed on the process component as a network node with sufficient storage space, in particular for configuration data.
  • the radio modules are designed so that they enable an automatic organization of the radio network.
  • the radio network is implemented in mesh technology.
  • FIG. 2 shows several field devices of a fieldbus system.
  • FIG. 1 shows a detail of a fieldbus system of automation technology.
  • a data bus Dl To a data bus Dl several computer units workstations WSL, WS2, WS3 are closed an ⁇ . These computer units serve as higher-level units z. For process visualization, process monitoring, process control, engineering or plant monitoring.
  • the data bus D1 operates, for example, according to the Profibus DP standard or according to the HSE (High Speed Ethernet standard) of the Foundation Fieldbus.
  • Via a connection unit V of the data bus Dl is connected to a field bus segment SMl.
  • the connection unit V can be a simple network bridge (eg gateway, linking device, segment coupler) or else a more sophisticated control (eg PLC or control system).
  • the field bus segment SMl consists essentially of several arranged on a storage tank T field devices Fl, F2, F3, WAP, which are connected to each other via a field bus FB. Both Field devices Fl, F2, F3 are both sensors and actuators. In the case shown, the field device WAP is not used directly for process control.
  • the fieldbus operates according to one of the known communication standards of automation technology Profibus, Foundation Fieldbus or HART.
  • the field devices Fl, F2, F3 communicate via the fieldbus FB in a conventional manner (wired) to one another or via the connection unit V to the computer units WS1, WS2 or WS3.
  • measured data recorded by the sensors and control data for the actuators are communicated via the fieldbus FB.
  • the field bus FB serves as a wired first communication network K1.
  • the field devices F1, F2, F3, WAP are still connected to one another via a further communication network, a radio network, KN2.
  • the field devices Fl, F2, F3, WAP ent speaking radio modules FM.
  • This radio network KN2 essentially serves for the transmission of additional information, such as eg. B. configuration data and parameterization data in the vicinity of a Pro ⁇ zesskomponente. Therefore, the radio network KN2 is limited to the near range by one process component. Data in the radio network KN2 must also be able to be transmitted if the fieldbus FB is not or not yet working or if a new field device is used on a process component, the storage tank T, and this new field device can not yet communicate via the fieldbus.
  • additional information such as eg. B. configuration data and parameterization data in the vicinity of a Pro ⁇ zesskomponente. Therefore, the radio network KN2 is limited to the near range by one process component. Data in the radio network KN2 must also be able to be transmitted if the fieldbus FB is not or not yet working or if a new field device is used on a process component, the storage tank T, and this new field device can not yet communicate via the fieldbus.
  • the radio modules FM are designed so that they allow automatic organization of the radio network KN2.
  • Such ad hoc radio networks are already known. In such networks, a new participant d. H. a new field device is automatically detected and integrated into the network.
  • the field device WAP serves as a network node and thus central unit in the wireless network KN2.
  • the field device WAP by polling the individual radio modules FM u. a. recognize which field devices are located in its immediate vicinity.
  • the field device WAP through intelligent software also independently from the information field devices F1 is a fill level sensor, field device F2 a valve and field device F3 a flow meter, conclude that the application is an overfill protection on a storage tank.
  • the field device WAP also a more complex application z. B. to execute an expert system for diagnosis.
  • the most diverse information z. B. of several field devices need to expire.
  • the field device WAP is also very well suited for condition monitoring of the field devices at the storage tank T.
  • a GPS system can be installed in the field device WAP, which provides a real-time clock to z. B. events and alarms on a Prozes ⁇ skomponente, to be able to determine very precisely in terms of time.
  • the field device WAP can also generate a list of field devices connected to the fieldbus segment SIM1 (Lifelist). As a result of the deviation of this fieldbus-based lifelist from a subscriber list of the radio network KN2, it can be easily established in the field device WAP that a new field device has been connected to the field bus segment SIM1.
  • the field device WAP can also communicate by radio with a higher-level unit WS1, WS2, WS3 or with the connection unit V or a field device provided on another process component, which is accordingly the field device WAP.
  • the field device WAP has no connection to the fieldbus FB.
  • Fig. 2 is again for clarity as the field devices Fl, F2, F3 and WAP communicate via the two communication networks KNL and KN2 independently.
  • the wireless network KN2 can be much easier and faster adapted to the corresponding tasks.
  • the wireless network KN2 is not specifically designed for the transmission of measurement and control data.
  • the field device WAP essentially serves as a network node (wireless access point) on a process component. Above all, it allows, without much effort, the automatic querying and detection of field devices in its immediate vicinity. It facilitates and supports the commissioning of field devices on a process component.
  • the radio network KN2 allows functionalities that a field bus system not possible.
  • the field device Fl in a simple manner by a portable computer unit (laptop, notebook, Palm), which has a ent-speaking radio interface, configured or parameterized or status information or process values are displayed.
  • the user only has to go with his computer unit into the area of the radio network KN2, d. H. in the vicinity of the storage tank T, go. Without having to establish a cable connection between computer unit and field device or field bus, the user can operate individual field devices.

Abstract

Bei einer Feldbusanwendung mit mehreren Feldgeräten ist neben einem Feldbus als drahtgebundenes Kommunikationsnetzwerk KNl ein Funknetzwerk KN2 vorgesehen, das eine vom Kommunikationsnetzwerk KNl unabhängige Datenkommunikation zwischen den einzelnen Feldgeräten Fl, F2, F3, WAP ermöglicht.

Description

Beschreibung Feldbusanwendung mit mehreren Feldgeräten
Die Erfindung betrifft eine Feldbusanwendung mit mehreren Feldgeräten gemäß dem Oberbegriff des Anspruchs 1.
In der Automatisierungstechnik werden vielfach Feldgeräte eingesetzt, die zur Erfassung und/oder Beeinflussung von Prozessvariablen dienen. Beispiele für derartige Feldgeräte sind Füllstandsmessgeräte, Massedurchflussmessgeräte, Druck- und Tem¬ peraturmessgeräte etc., die als Sensoren die entsprechenden Prozess variablen Füllstand, Durchfluss, Druck bzw. Temperatur erfassen.
Zur Beeinflussung von Prozessvariablen dienen Aktoren, die z. B. als Ventile den Durchfluss einer Flüssigkeit in einem Rohrleitungsabschnitt oder als Pumpen den Füllstand in einem Behälter ändern können.
Als Feldgeräte werden im Prinzip alle Geräte bezeichnet, die an einer Prozes¬ skomponente eingesetzt werden und die prozessrelevante Informationen liefern, verarbeiten oder speichern.
Eine Vielzahl solcher Feldgeräte wird von der Firma Endress+Hauser hergestellt und vertrieben.
In der Regel sind Feldgeräte in modernen Industrieanlagen über Bussysteme (Profibus, Foundation Fieldbus, etc.) mit übergeordneten Einheiten (Leitsystemen oder Steuereinheiten) verbunden. Diese übergeordneten Einheiten dienen unter anderem zur Prozesssteuerung, Prozessvisualisierung, Prozessüberwachung sowie zur Inbe¬ triebnahme der Feldgeräte. Über die Feldbussysteme ist ein Austausch von digitalen Informationen zwischen den Feldgeräten und den übergeordneten Einheiten möglich.
Die heutigen Feldbussysteme sind im Wesentlichen für die Aufgaben Kom¬ munikation von Messdaten und Steuerdaten konzipiert. Die verwendeten Protokolle und Dienste sind diesen Aufgaben entsprechend angepasst. Für weitere Aufgaben sind Feldbussysteme teilweise gar nicht oder nur bedingt geeignet. So ist die Inbe¬ triebnahme eines Feldbusses, insbesondere die Konfigurierung und Parametrierung der einzelnen Feldgeräte sehr zeitaufwendig.
Die entsprechenden Daten müssen über den Feldbus, der meist nur eine geringe Da¬ tenübertragungsrate erlaubt, zu jedem einzelnen Feldgerät übertragen werden.
Ein weiterer Nachteil der bekannten Systeme besteht darin, dass an einer Prozes¬ skomponente, z. B. einem Lagertank, keinerlei Informationen über die Prozes¬ skomponente bzw. die Anwendung vorliegen. Weiterhin besitzt keines der Feldgeräte an einer Prozesskomponente Informationen über die in seiner nächsten Umgebung an¬ geordneten weiteren Feldgeräte. Aufgabe der Erfindung ist es deshalb eine Feldbusanwendung mit mehreren Feldgeräten zu schaffen, die die oben genannten Nachteile nicht aufweist, die ins¬ besondere eine verbesserte Kommunikation zwischen den Feldgeräten ermöglicht.
Gelöst wird diese Aufgabe durch die im Anspruch 1 angegebenen Merkmale.
Weiterentwicklungen der Erfindung sind in den Unteransprüchen angegeben.
Die wesentliche Idee der Erfindung besteht darin, dass neben dem Feldbussystem als erstes Kommunikationsnetzwerk ein zweites drahtlos arbeitendes Funknetzwerk zwischen den Feldgeräten vorgesehen ist. Über dieses Funknetzwerk können unabhängig vom drahtgebunden Netzwerk des Feldbusses zusätzliche Daten zwischen den Feldgeräten ausgetauscht werden. Die Feldgeräte weisen für die Kommunikation über das Funknetzwerk entsprechende Funkmodule auf.
In einfacher Weise ist das Funknetzwerk nur auf die unmittelbare Umgebung einer Prozesskomponente beschränkt.
Um die Inbetriebnahme des Feldbußsystems zu erleichtern, ist ein Feldgerät an der Prozesskomponente als Netzknoten mit ausreichendem Speicherplatz, insbesondere für Konfigurationsdaten, ausgebildet.
Die Inbetriebnahme des Funknetzwerkes sollte so einfach wie möglich durchzuführen sein. Deshalb sind die Funkmodule so ausgebildet, dass sie eine au¬ tomatische Organisation des Funknetzwerkes ermöglichen.
In einer Weiterentwicklung der Erfindung ist das Funknetzwerk in Mesh- Technologie ausgeführt.
Nachfolgend ist die Erfindung anhand eines in der Zeichnung dargestellten Ausfüh¬ rungsbeispiels näher erläutert.
Es zeigen:
Fig. 1 Feldbussystem;
Fig. 2 mehrere Feldgeräte eines Feldbussystems.
In Fig. 1 ist ein Feldbussystem der Automatisierungstechnik näher dargestellt. An einen Datenbus Dl sind mehrere Rechnereinheiten Workstations WSl, WS2, WS3 an¬ geschlossen. Diese Rechnereinheiten dienen als übergeordnete Einheiten z. B. zur Pro¬ zessvisualisierung, zur Prozessüberwachung, zur Prozesssteuerung, zum Engineering oder zur Anlagenüberwachung. Der Datenbus Dl arbeitet zum Beispiel nach dem Profibus DP-Standard oder nach dem HSE (High Speed Ethernet-Standard) der Foundation Fieldbus. Über eine Verbindungseinheit V ist der Datenbus Dl mit einem Feldbus segment SMl verbunden. Die Verbindungseinheit V kann ein einfache Netz¬ werkbrücke (z. B. Gateway, Linking Device, Segmentkoppler) sein oder aber eine auf¬ wendigere Steuerung (z. B. SPS oder Leitsystem). Das Feldbus segment SMl besteht im Wesentlichen aus mehreren an einem Lagertank T angeordneten Feldgeräten Fl, F2, F3, WAP, die über einen Feldbus FB miteinander verbunden sind. Bei den Feldgeräten Fl, F2, F3 handelt es sich sowohl um Sensoren wie auch um Aktoren. Im dargestellten Fall wird das Feldgerät WAP nicht unmittelbar zur Prozesssteuerung eingesetzt. Der Feldbus arbeitet nach einem der bekannten Kommunikationsstandards der Automatisierungstechnik Profibus, Foundation Fieldbus oder HART.
Nachfolgend ist die Funktionsweise der Erfindung näher erläutert.
Die Feldgeräte Fl, F2, F3 kommunizieren über den Feldbus FB in herkömmlicher Weise (drahtgebunden) untereinander bzw. über die Verbindungseinheit V mit den Rechnereinheiten WSl, WS2 oder WS3. In der Regel werden über den Feldbus FB Messdaten, die von den Sensoren aufgenommen werden, und Steuerdaten für die Aktoren kommuniziert. Der Feldbus FB dient als drahtgebundenes erstes Kommunika¬ tionsnetzwerk Kl.
Neben diesem drahtgebundenen Kommunikationsnetzwerk KNl sind die Feldgeräte Fl, F2, F3, WAP noch über ein weiteres Kommunikationsnetzwerk, ein Funknetzwerk, KN2 miteinander verbunden. Hierfür weisen die Feldgeräte Fl, F2, F3, WAP ent¬ sprechende Funkmodule FM auf.
Dieses Funknetzwerk KN2 dient im Wesentlichen zur Übertragung von Zusatzin¬ formationen, wie z. B. Konfigurierdaten und Parametrierdaten in der Nähe einer Pro¬ zesskomponente. Deshalb ist das Funknetzwerk KN2 auf den Nahbereich um eine Pro¬ zesskomponente beschränkt. Daten im Funknetzwerk KN2 müssen auch übertragen werden können, wenn der Feldbus FB nicht oder noch nicht arbeitet, bzw. wenn ein neues Feldgerät an einer Prozesskomponente, dem Lagertank T, eingesetzt wird und dieses neue Feldgerät noch nicht über den Feldbus kommunizieren kann.
Auch sollte kein Fachpersonal für die Konfigurierung des Funknetzwerkes KN2 notwendig sein.
Deshalb sind die Funkmodule FM so ausgebildet, dass sie eine automatische Or¬ ganisation des Funknetzwerkes KN2 ermöglichen. Solche Ad-hoc Funknetzwerke sind bereits bekannt. In solchen Netzwerken wird ein neuer Teilnehmer d. h. ein neues Feldgerät automatisch erkannt und in das Netzwerk integriert.
Das Feldgerät WAP dient als Netzknoten und somit zentrale Einheit im Fun¬ knetzwerk KN2. So kann das Feldgerät WAP durch Abfrage der einzelnen Funkmodule FM u. a. erkennen, welche Feldgeräte in seiner näheren Umgebung angeordnet sind.
Wenn das Feldgerät WAP Informationen über die Prozesskomponente hier Lagertank und über die entsprechende Applikation z. B. „Überfüllsicherung" besitzt, können entsprechende Konfigurier- und Parametrierwerte aus einem vorgegebenen Datensatz, der im Feldgerät WAP gespeichert ist, ausgewählt werden und per Funk an die Felgeräte Fl, F2, F3 übertragen werden.
Gegebenenfalls kann das Feldgerät WAP, durch eine intelligente Software auch selbständig aus den Informationen Feldgeräte Fl ist ein Füllstandsensor, Feldgerät F2 ein Ventil und Feldgerät F3 ein Durchflussmesser, schließen dass es sich bei der Ap¬ plikation um eine Überfüllsicherung an einem Lagertank handelt.
Im Feldgerät WAP sind genügend Speicherkapazitäten vorhanden um eine Vielzahl von Daten (Applikations-, Inbetriebnahmedaten etc.) sowie auch aufwendigere Pro¬ grammroutinen speichern zu können.
Weiterhin besteht die Möglichkeit im Feldgerät WAP auch eine komplexere Anwendung z. B. ein Expertensystem für Diagnose auszuführen. Hier können dann auch aufwendige Diagnoseverfahren, die die unterschiedlichsten Informationen z. B. von mehreren Feldgeräten benötigen ablaufen. Das Feldgerät WAP ist auch sehr gut für eine Zustandsüberwachung (Condition Monitoring) der Feldgeräte am Lagertank T geeignet.
Zusätzlich kann im Feldgerät WAP ein GPS System installiert sein, das eine Echtzeituhr zur Verfügung stellt um z. B. Ereignisse und Alarme an einer Prozes¬ skomponente, zeitlich sehr genau bestimmen zu können.
Das Feldgerät WAP kann auch eine Liste der an das Feldbus segment SIMl ange¬ schlossenen Feldgeräte (Lifelist) erzeugen. Durch die Abweichung dieser feldbusba- sierenden Lifelist von einer Teilnehmerliste des Funknetzwerks KN2, kann im Feldgerät WAP einfach festgestellt werden, dass ein neues Feldgerät an das Feld¬ bussegment SIMl angeschlossen wurde.
In einer Weiterentwicklung der Erfindung kann das Feldgerät WAP auch per Funk mit einer übergeordneten Einheit WSl, WS2, WS3 oder mit der Verbindungseinheit V oder einem an einer anderen Prozesskomponente vorgesehenen Feldgerät, das ent¬ sprechend dem Feldgerät WAP, ausgebildet ist, kommunizieren.
In einer sehr einfacheren Ausgestaltung besitzt das Feldgerät WAP keine Verbindung mit dem Feldbus FB.
In Fig. 2 ist noch einmal zur Verdeutlichung wie die Feldgeräte Fl, F2, F3 und WAP über die beiden Kommunikationsnetzwerke KNl und KN2 unabhängig voneinander kommunizieren. Das Funknetzwerk KN2 kann dabei erheblich leichter und schneller an die entsprechenden Aufgaben angepasst werden. Das Funknetzwerk KN2 ist nicht speziell für die Übertragung von Mess- und Steuerdaten ausgelegt.
Das Feldgerät WAP dient im Wesentlichen als Netzknoten (Wireless Access Point) an einer Prozesskomponente. Vor allem erlaubt es, ohne großen Aufwand, das au¬ tomatische Abfragen und Erkennen von Feldgeräten in seiner unmittelbaren Umgebung. Es erleichtert und unterstützt die Inbetriebnahme von Feldgeräten an einer Prozesskomponente. Das Funknetzwerk KN2 erlaubt Funktionalitäten, die ein Feld- bussystem nicht ermöglicht.
Über das Funknetzwerk KN2 können Feldgeräte z. B. das Feldgerät Fl in einfacher Weise von einer tragbaren Rechnereinheit (Laptop, Notebook, Palm), die eine ent¬ sprechende Funkschnittstelle aufweist, konfiguriert bzw. parametriert werden bzw. Status Information oder aber Process Werte angezeigt werden. Der Anwender muss sich dabei nur mit seiner Rechnereinheit in den Bereich des Funknetzwerks KN2, d. h. in die Nähe des Lagertanks T, begeben. Ohne dass eine Kabelverbindung zwischen Rechnereinheit und Feldgerät bzw. Feldbus hergestellt werden muss, kann der Anwender einzelne Feldgeräte bedienen.

Claims

Ansprüche
1. Feldbus an wendung mit mehreren Feldgeräten, die mit einem Feldbus FB der Automatisierungstechnik verbunden sind, der als drahtgebundenes Kommunika¬ tionsnetzwerk KNl dient, dadurch gekennzeichnet, dass die Feldgeräte Funkmodule FM aufweisen, die ein Funknetzwerk KN2 bilden, das eine vom Kommunikationsnetzwerk KNl unabhängige Datenkommunikation zwischen den einzelnen Feldgeräten Fl, F2, F3, WAP ermöglicht.
2. Feldbus an wendung nach Anspruch 1, dadurch gekennzeichnet, dass das Fun¬ knetzwerk auf den Nahbereich um eine Prozesskomponente ( z. B. Lagertank T) beschränkt ist.
3. Feldbus an wendung nach Anspruch 2, dadurch gekennzeichnet, dass an der Prozesskomponente ein als Netzknoten des Funknetzwerkes KN2 ausgebildetes Feldgerät WAP vorgesehen ist.
4. Feldbus an wendung nach einem der vorhergehenden Ansprüche, dadurch ge¬ kennzeichnet, dass die Funkmodule FM so ausgebildet sind, dass die Or¬ ganisation des Funknetzwerkes automatisch erfolgt.
5. Feldbus an wendung nach dem vorhergehenden Anspruch, dadurch ge¬ kennzeichnet, dass das Funknetzwerk KN2 in Mesh-Technik aufgebaut ist.
EP05789544A 2004-10-05 2005-10-05 Feldbusanwendung mit mehreren feldgeräten Withdrawn EP1797484A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004048766A DE102004048766A1 (de) 2004-10-05 2004-10-05 Feldbusanwendung mit mehreren Feldgeräten
PCT/EP2005/054997 WO2006037784A1 (de) 2004-10-05 2005-10-05 Feldbusanwendung mit mehreren feldgeräten

Publications (1)

Publication Number Publication Date
EP1797484A1 true EP1797484A1 (de) 2007-06-20

Family

ID=35423692

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05789544A Withdrawn EP1797484A1 (de) 2004-10-05 2005-10-05 Feldbusanwendung mit mehreren feldgeräten

Country Status (4)

Country Link
US (1) US20090016462A1 (de)
EP (1) EP1797484A1 (de)
DE (1) DE102004048766A1 (de)
WO (1) WO2006037784A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1995653A1 (de) * 2007-05-22 2008-11-26 Abb Research Ltd. System zur Steuerung eines Automatisierungsprozesses
DE102007039531A1 (de) * 2007-08-21 2009-02-26 Endress + Hauser Process Solutions Ag Verfahren zum Beschaffen von instandhaltungsrelevanten Informationen zu einer Anlage
DE102008003574A1 (de) * 2008-01-09 2009-07-16 Endress + Hauser Process Solutions Ag Verfahren zur Integration eines Feldgerätes in ein Netzwerk der Prozessautomatisierungstechnik
DE102009026430A1 (de) * 2009-05-25 2010-12-09 Robert Bosch Gmbh Fahrzeugsensor, System mit einem Steuergerät zur Fahrzeugzustandsbestimmung und wenigstens zwei Fahrzeugsensoren und Verfahren zum Betreiben eines Systems mit einem Steuergerät zur Fahrzeugzustandsbestimmung und wenigstens zwei Fahrzeugsensoren
DE102009046503A1 (de) * 2009-11-06 2011-05-26 Endress + Hauser Process Solutions Ag Verfahren zum Bedienen eines Feldgeräts der Automatisierungstechnik in ein Funknetzwerk
DE102010024210B4 (de) * 2010-06-17 2012-09-20 Abb Technology Ag Feldgerät mit Echtzeituhr
JP5892117B2 (ja) * 2013-07-17 2016-03-23 横河電機株式会社 フィールド機器及び通信システム
DE102014004478A1 (de) * 2014-03-28 2015-10-01 Abb Technology Ag Verfahren und Einrichtung zur Verwaltung und Konfiguration von Feldgeräten einer Automatisierungsanlage (l)
US10788402B2 (en) * 2016-10-25 2020-09-29 Fisher-Rosemout Systems, Inc. Field maintenance tool for device commissioning
JP6772899B2 (ja) * 2017-03-06 2020-10-21 横河電機株式会社 管理装置、中継装置、フィールド無線システム、設定方法、プログラム及び記録媒体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793963A (en) * 1994-10-24 1998-08-11 Fisher Rosemount Systems, Inc. Apparatus for providing non-redundant secondary access to field devices in a distributed control system
EP0999717A2 (de) * 1998-11-05 2000-05-10 Caly, Inc. Breitband - Drahtlosennetz
DE19915294C2 (de) * 1999-04-03 2002-03-28 Webasto Thermosysteme Gmbh Bus-System
DE10032774A1 (de) * 2000-07-06 2002-01-17 Endress Hauser Gmbh Co Feldgerät
DE20013896U1 (de) * 2000-08-11 2002-01-03 Waldherr Karl H Meßanordnung
DE20021740U1 (de) * 2000-12-21 2001-03-01 I For T Gmbh Vorrichtung zur dezentralen Erfassung und Auswertung von physikalischen Ereignissen
DE10157764A1 (de) * 2001-11-27 2003-07-17 Endress & Hauser Process Solut Verfahren zum Datenaustausch zwischen einem Feldgerät und einem Funktelefon
DE10243619A1 (de) * 2002-09-19 2004-04-01 Endress + Hauser Process Solutions Ag Verfahren zum Datenaustausch zwischen Feldgeräten
DE20217335U1 (de) * 2002-11-11 2003-01-16 Abb Patent Gmbh Kommunikationsanordnung zur Bedienung von Feldgeräten
US7388869B2 (en) * 2002-11-19 2008-06-17 Hughes Network Systems, Llc System and method for routing among private addressing domains

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006037784A1 *

Also Published As

Publication number Publication date
DE102004048766A1 (de) 2006-04-06
WO2006037784A1 (de) 2006-04-13
US20090016462A1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
EP1797484A1 (de) Feldbusanwendung mit mehreren feldgeräten
EP1525518B9 (de) Verfahren zum aktualisieren von gerätebeschreibungen für feldgeräte der prozessautomatisierungstechnik
EP1966658B1 (de) Verfahren zur anlagenüberwachung mit einem feldbus der prozessautomatisierungstechnik
EP1558975B1 (de) Verfahren zur offline-parametrierung eines feldgerätes der prozessautomatisierungstechnik
WO2006053828A1 (de) Funkeinheit für ein feldgerät der automatisierungstechnik
WO2008080855A1 (de) Funkfeldgerät der automatisierungstechnik mit integrierter energieversorgung
WO2009074544A1 (de) Verfahren zum betreiben eines systems aufweisend ein feldgerät und ein bediensystem
EP1636657B1 (de) Feldbusverteilereinheit
EP2523059B1 (de) Verfahren und Einrichtung zur einheitlichen Benennung von gleichen Parametern unterschiedlicher Feldgeräte eines Automatisierungssystems
EP1481479B1 (de) Verfahren und vorrichtung zum reduzieren einer zu übertragenden datenmenge von prozessdaten
DE102007054925B4 (de) Verfahren zur Überwachung eines Netzwerkes der Prozessautomatisierungstechnik
EP3652595B1 (de) Verfahren und system zum überwachen einer anlage der automatisierungstechnik
EP3391158A1 (de) Verfahren zum bereitstellen eines generischen diagnosemodells
EP1456685A1 (de) Feldgerät mit einem gps-modul
EP3821310B1 (de) Verfahren zum kompensieren einer fehlfunktion eines feldgeräts in einer anlage der automatisierungstechnik
WO2011042258A2 (de) Verfahren zum betreiben eines feldbus-interface
EP1319171B1 (de) Verfahren zur bereitstellung von messwerten für endkunden
EP2095193B1 (de) Verfahren zum betreiben eines nach dem blockmodell arbeitenden feldgerätes für ein verteiltes automatisierungssystem
EP1478990A2 (de) Verfahren zum bertragen von feldger tedaten an eine externe datenbank
DE102004009563A1 (de) Vorrichtung zum Übertragen von Daten zwischen einer Rechnereinheit und einem Feldgerät der Automatisierungstechnik
DE10217646A1 (de) Verfahren zur Bestimmung einer charakteristischen Größe eines Prozessmediums
WO2009083426A2 (de) Feldgerät, system der prozessautomatisierungstechnik und verfahren zum auslesen von profilparametern des feldgeräts
DE102006028006A1 (de) Feldgerät und Verfahren zum Verarbeiten mindestens einer Messgröße in einem Feldgerät
EP1731980A1 (de) Verfahren zur Reduktion des Datentransfers zwischen einem Feldgerät der Automatisierungstechnik und einer Steuereinheit
DE102015122437A1 (de) Energierelevante Messstelle in einer Automatisierungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070314

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070907

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ENDRESS + HAUSER PROCESS SOLUTIONS AG

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100504