EP1792164A1 - Reflektormodul für einen photometrischen gassensor - Google Patents

Reflektormodul für einen photometrischen gassensor

Info

Publication number
EP1792164A1
EP1792164A1 EP05767949A EP05767949A EP1792164A1 EP 1792164 A1 EP1792164 A1 EP 1792164A1 EP 05767949 A EP05767949 A EP 05767949A EP 05767949 A EP05767949 A EP 05767949A EP 1792164 A1 EP1792164 A1 EP 1792164A1
Authority
EP
European Patent Office
Prior art keywords
reflector
gas sensor
infrared
sensor according
photometric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP05767949A
Other languages
English (en)
French (fr)
Inventor
Michael Arndt
Gerd Lorenz
Johann Wehrmann
Ronny Ludwig
Hans Lubik
Thomas Sperlich
Vincent Thominet
Maximilian Sauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1792164A1 publication Critical patent/EP1792164A1/de
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment

Definitions

  • Reflector module for a photometric gas sensor
  • the invention relates to a photometric gas sensor for determining a
  • Radiometry Sensors based on spectroscopy (photometry).
  • radiation from one or more radiation sources in particular in the infrared wavelength range
  • a detector element which converts the incoming radiation intensity into electrical voltage and current.
  • the radiation emitted by the source must Radiation as directly as possible and bundled to be guided to the detector element. This can be achieved either by the fact that the radiation source and the detector element are directly opposite ("face-to-face arrangement") or by the use of reflector modules, which redirect the radiation and additionally bundle.
  • a device for the detection of radiation signals and a device for measuring the concentration of a substance is known.
  • a first detector and a second detector are provided on a first chip and a provided first filter and a second filter on a second chip, wherein the first chip and the second chip are hermetically sealed together.
  • the invention relates to a photometric gas sensor for determining a
  • Gas concentration or the concentration value of a gas or a gas concentration descriptive size comprising an infrared radiation source, a first reflector for deflecting a coming from an infrared radiation source infrared radiation to a second reflector, a second reflector for deflecting the radiation coming from the first reflector to one Infrared detector and an infrared detector.
  • Part of a housing component made of plastic.
  • the use of plastic components allows a cost-effective design.
  • An advantageous embodiment of the invention is characterized in that the first and second reflector are formed as mirrored surfaces of the plastic.
  • An advantageous embodiment of the invention is characterized in that the infrared radiation source and the infrared detector are mounted on a common circuit board.
  • An advantageous embodiment of the invention is characterized in that the housing component is the cover of the sensor.
  • the integration of the reflectors in the cover a particularly compact design is achieved.
  • An advantageous embodiment of the invention is characterized in that the cover has at least one füröffiiitch, through which the gas can flow into the interior of the gas sensor.
  • Reflector and the second reflector are arranged such that the beam direction of the deflected from the first reflector to the second reflector infrared radiation is substantially parallel to the surface of the circuit board.
  • An advantageous embodiment of the invention is characterized in that two infrared detectors are present or an infrared detector with two sensor elements is present, that the second reflector consists of two partial reflectors, which divides the radiation coming from the first reflector into two partial beams going in different directions, that the two partial reflectors are arranged such that each of the two partial beams impinges on a different one of the two infrared detectors.
  • a second infrared detector a comparative measurement is possible.
  • the use of a second infrared detector also allows the measurement of the concentration of a second or other instead of a comparison measurement
  • An advantageous embodiment of the invention is characterized in that in that in that the second reflector consists of two reflectors or partial reflectors arranged side by side and is arranged in such a way that the radiation coming from the first reflector impinges on the boundary between the two partial reflectors so that part of the radiation impinges on each of the two partial reflectors.
  • An advantageous embodiment of the invention is characterized in that mounted on the housing component receptacles for mounting the infrared source and the infrared detector. This allows a very precise arrangement of the components relative to each other.
  • the drawing consists of the figures 1 to S.
  • FIG. 1 shows a view from the outside onto a first embodiment of the reflector module.
  • Figure 2 shows a view into the interior of a first ⁇ usbowungsform of the reflector module.
  • FIG. 3 shows a view from the outside onto a second embodiment of the reflector module.
  • FIG. 4 shows a view into the interior of a second embodiment of the reflector module.
  • FIG. 5 shows a section with recordings for the radiation source and the detector.
  • the invention serves to optimally bundle the radiation power of a radiation source with the aid of one or more optical reflector modules and to guide it via the absorption path to the detector element. It will be two or three
  • This optical reflector module can be used for a photometric gas sensor.
  • FIGS. 1, 2, 3 and 4 show two embodiments of the reflector module.
  • the module is designed with respect to the beam path from the radiation source a to the radiation detector b such that the reflector Rl bundles the radiation received by the radiation source a and parallel to the bottom part 53 (on which the radiation source and the radiation receiver are mounted) to the reflector R3 directs and reflector R3 re-focuses the radiation and steers vertically down to the detector (s).
  • Fig. 1 and Fig. 2 show an embodiment as a deep-drawn metal construction
  • Fig. 3 and Fig. 4 show an embodiment of plastic.
  • FIGS. 1 to 4 This arrangement is shown in FIGS. 1 to 4. This is a closed reflector module, under which the radiation source a and the detector element b are located.
  • the reflector module includes the reflector Rl for focusing and deflection of the beam path of the
  • Radiation source the component R2, which represents a cover for the reflector module, and one or two partial reflectors R3a and R3b, which concentrate and deflect the radiation onto the detector element or the detector elements.
  • the reflector module is a single one
  • the reflector module can be constructed of an internally mirrored plastic or designed as a metal construction.
  • the metal construction may e.g. be produced by a deep drawing process. The supply of the gas to be analyzed in the
  • the component R2 is omitted.
  • the region of the plane-parallel beam guidance between the reflector part Rl and the reflector part R3 is open.
  • the design of the reflectors Rl and R3 remains unchanged in this arrangement. These can be designed as a coherent module or as individual reflectors.
  • the omission of the reflector part R2 creates an open system in which the gas to be measured can be detected directly in the ambient atmosphere.
  • the advantage of this design is the faster detection of the sample gas in the ambient atmosphere. This is made possible by the lack of a housing part, through which the sample gas must first diffuse.
  • Both the open-path and closed-path arrangements can use the same reflectors with the same spacing. Both arrangements are independent of the optical bandwidth of the detector element and the
  • Frequency range of the infrared radiation and can therefore be used universally for all photometric gas sensors of the present type.
  • Another decisive factor for the performance of an optical sensor system is the most accurate possible positioning of detector, reflector and radiation source relative to each other. Only in this way can it be ensured that the largest possible part of the radiation power is supplied to the detector and thus leads to a maximum signal yield. This means a minimization of the tolerance chain
  • Radiation source reflector module detector and can be achieved by constructive measures on the reflector.
  • recordings are provided in the reflector, which ensure the alignment of the lamp and the detector with respect to the reflector module or the housing component during assembly.
  • the manufacturing tolerances of the reflector are the only relevant in the assembly of the overall system. This has the following two advantages: the beam directed from the second reflector onto the sensor element can be bundled more strongly, since the position of the sensor relative to the reflector is fixed by the orientation of the sensor element or detector on the reflector. The resulting smaller focus spot results in a higher radiation density, which in the
  • Sensor element generates a higher electrical absolute signal
  • the mounting of the three components reflector module, detector and radiation source is substantially simplified by the exact positioning to each other, it is avoided that the focus spot of the infrared radiation, the sensor element eckeh not, or located next to the photosensitive part of the sensor element.
  • a possible assembly sequence of the three components reflector, detector and radiation source is described below: - Pressing the detector into a receptacle of the reflector.
  • the reflector-detector unit Equipping the reflector-detector unit.
  • SMD surface mounted device
  • the radiation source is introduced through an over-drilled hole in a guide of the reflector and then soldered in SMD technology.
  • the printed circuit board can first be equipped with the detector.
  • Alignment of the reflector and the lamp then takes place via the permanently integrated detector.
  • alignment of all three components is also possible via the radiation source as a reference.
  • the radiation source can be equipped from above. In both cases, however, the alignment of all three components must always be ensured by appropriate design measures on the reflector.
  • receptacles 51 and 52 for the lamp a and the detector element b are shown.
  • 51 is a guide for the lamp a (i.e., lamp guide)
  • 52 is a guide for the reflector b (i.e.
  • the second reflector may also include two adjacent subreflectors R3a and R3b.
  • the focal point of the incoming from the first reflector infrared beam falls on the boundary line between the partial reflectors R3a and R3b.
  • the halves of the focus point falling on R3a and R3b are deflected in two different directions.
  • the infrared detector b is designed as a two-channel detector, e.g. with a measuring channel and a reference channel.
  • One of the two partial beams impinges on the sensor element assigned to the measuring channel and the other partial beam impinges on the sensor element assigned to the reference channel.
  • the two sensor elements can be used as e.g. adjacent chips may be realized in a common housing or even side by side on a chip.
  • the gas sensor is suitable because of its small size for use in a motor vehicle, in particular for determining the carbon dioxide concentration in the air in

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Die Erfindung betrifft einen photometrischen Gassensor, enthaltend wenigstens eine infrarote Strahlungsquelle (a) - einen ersten Reflektor (R1) zur Umlenkung einer von einer infraroten Strahlungsquelle (a) - herkommenden Infrarotstrahlung zu einem zweiten Reflektor (R3a, R3b), welcher die vom ersten Reflektor herkommende Strahlung zu einem Infrarotdetektor (b) umlenkt.

Description

Reflektormodul für einen photometrischen Gassensor
Stand der Technik
Die Erfindung betrifft einen photometrischen Gassensor zur Ermittlung einer
Gaskonzentration.
In der analytischen Gassensorik wird zwischen chemischen und physikalischen Sensoren unterschieden. Während die chemischen Gassensoren mit chemischen Indikatoren wie widerstandsveränderlichen Pasten aufgebaut sind, funktionieren die physikalischen
Sensoren auf der Grundlage der Spektroskopie (Photometrie). Dabei wird von einer oder mehreren Strahlungsquellen (insbesondere im Infrarotwellenlängenbereich) Strahlung über eine sogenannte Absorptionsstrecke zu einem Detektorelement geleitet, welches die ankommende Strahlungsintensität in elektrische Spannung und Strom umwandelt Um einen möglichst hohen Signalhub bei der ankommenden Strahlungsleistung zu erhalten, muss die von der Quelle abgegebene Strahlung möglichst direkt und gebündelt zum Detektorelement geleitet werden. Dies lässt sich entweder dadurch erreichen, dass sich die Strahlungsquelle und das Detektorelement direkt gegenüberstehen („face-to-face- Anordnung") oder durch den Einsatz von Reflektormodulen, welche die Strahlung umlenken und zusätzlich bündeln.
Aus der DE 10243 014 Al ist eine Vorrichtung zur Detektion von Strahlungssignalen und eine Vorrichtung zur Messung der Konzentration eines Stoffes bekannt. Dabei sind ein erster Detektor und ein zweiter Detektor auf einem ersten Chip vorgesehen und ein erster Filter und ein zweiter Filter auf einem zweiten Chip vorgesehen, wobei der erste Chip und der zweite Chip hermetisch dicht miteinander verbunden sind.
Vorteile der Erfindung
Die Erfindung betrifft einen photometrischen Gassensor zur Ermittlung einer
Gaskonzentration bzw. des Konzentrationswertes eines Gases bzw. einer eine Gaskonzentration beschreibenden Größe, enthaltend eine infrarote Strahlungsquelle, einen ersten Reflektor zur Umlenkung einer von einer infraroten Strahlungsquelle herkommenden Infrarotstrahlung zu einem zweiten Reflektor, einen zweiten Reflektor zur Umlenkung der vom ersten Reflektor herkommenden Strahlung zu einem Infrarotdetektor sowie einen Infrarotdetektor.
Durch die Verwendung von Reflektoren ist eine besonders kompakte Bauweise des
Gassensors möglich.
Eine vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass der erste und der zweite Reflektor im wesentlichen aus Kunststoff bestehen und in ein Gehäusebauelement aus
Kunststoff eingebaut sind oder
Teil eines Gehäusebauelements aus Kunststoff sind. Der Einsatz von Kunststoffbauelementen ermöglicht einen kostengünstigen Aufbau.
Eine vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass der erste und zweite Reflektor als verspiegelte Flächen des Kunststoffs ausgebildet sind.
Eine vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass der erste und der zweite Reflektor im wesentlichen aus Metall bestehen und in ein Gehäusebauelement aus Metall eingebaut sind oder
Teil eines Gehäusebauelements aus Metall sind. Eine vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass die infrarote Strahlungsquelle und der Infrarotdetektor auf einer gemeinsamen Leiterplatte angebracht sind.
Eine vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass es sich bei dem Gehäusebauelement um die Abdeckung des Sensors handelt. Durch die Integration der Reflektoren in die Abdeckung wird eine besonders kompakte Bauweise erreicht.
Eine vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass die Abdeckung wenigstens eine Durchlassöffiiungen aufweist, durch welche das Gas in den Innenraum des Gassensors strömen kann.
Eine vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass der erste
Reflektor und der zweite Reflektor derart angeordnet sind, dass die Strahlrichtung der vom ersten Reflektor zum zweiten Reflektor umgelenkten Infrarotstrahlung im wesentlichen parallel zur Oberfläche der Leiterplatte ist.
Eine vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass zwei Infrarotdetektoren vorhanden sind bzw. ein Infrarotdetektor mit zwei Sensorelementen vorhanden ist, dass der zweite Reflektor aus zwei Teilreflektoren besteht, welche die vom ersten Reflektor herkommende Strahlung in zwei in verschiedene Richtungen gehende Teilstrahlen aufteilt, dass die beiden Teilreflektoren so angeordnet sind, dass jeder der beiden Teilstrahlen auf einen unterschiedlichen der beiden Infrarotdetektoren trifft. Durch die Verwendung eines zweiten Infrarotdetektors ist eine Vergleichsmessung möglich. Die Verwendung eines zweiten Infrarotdetektors ermöglicht anstelle einer Vergleichsmessung auch die Messung der Konzentration eines zweiten bzw. anderen
Gases.
Eine vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass der zweite Reflektor aus zwei nebeneinander angeordneten Reflektoren bzw. Teilreflektoren besteht und derart angeordnet ist, dass die vom ersten Reflektor herkommende Strahlung an der Grenze zwischen beiden Teilreflektoren auftrifft, so dass auf jeden der beiden Teilreflektoren ein Teil der Strahlung auftrifft.
Eine vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass am Gehäusebauelement Aufnahmen zur Anbringung der Infrarotquelle und des Infrarotdetektors angebracht sind. Dies ermöglicht eine sehr präzise Anordnung der Bauelemente relativ zueinander.
Eine vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass es sich bei den Aufnahmen um Führungen handelt
Zeichnung
Die Zeichnung besteht aus den Figuren 1 bis S.
Figur 1 zeigt eine Sicht von außen auf eine erste Λusführungsform des Reflektormoduls.
Figur 2 zeigt eine Sicht in den Innenraum einer ersten Λusfuhrungsform des Reflektormoduls.
Figur 3 zeigt eine Sicht von außen auf eine zweite Ausführungsform des Reflektormoduls.
Figur 4 zeigt eine Sicht in den Innenraum einer zweiten Ausführungsform des Reflektormoduls.
Figur 5 zeigt einen Schnitt mit Aufnahmen für die Strahlungsquelle und den Detektor. Ausführungsbeispiele
Die Erfindung dient dazu, die Strahlungsleistung einer Strahlungsquelle mit Hilfe eines oder mehrerer optischer Reflektormodule optimal zu bündeln und über die Absorptionsstrecke zum Detektorelement zu leiten. Dabei werden zwei oder drei
Reflektoren verwendet. Diese Reflektoren können aus einem zusammenhängenden Modul oder aus einzelnen optischen Elementen bestehen. Dabei wird zwischen einem geschlossenen Reflektormodul und einem sogenannten „Open-Path-Modul" unterschieden. Bei der „Open-Path"-Anordnung entfällt das mittlere Reflektormodul und wird durch die dabei entstehende offene Strahlstrecke ersetzt.
Dieses optische Reflektormodul kann für einen photometrischen Gassensor eingesetzt werden. In den Figuren 1, 2, 3 und 4 sind zwei Ausführungsformen des Reflektormoduls dargestellt. Das Modul ist bzgl. des Strahlengangs von der Strahlungsquelle a an den Strahlungsdetektor b derart ausgestaltet, dass der Reflektor Rl die von der Strahlungsquelle a empfangene Strahlung bündelt und parallel zum Bodenteil 53 (auf welchem die Strahlungsquelle und der Strahlungsempfänger angebracht sind) zum Reflektor R3 lenkt und der Reflektor R3 die Strahlung nochmals bündelt und vertikal nach unten zu dem Detektor bzw. den Φetektoren lenkt.
Für den Reflektor sind in den Figuren zwei Λusführungsformen dargestellt:
Fig. 1 und Fig. 2 zeigen eine Ausführungsform als tiefgezogene Metallkonstruktion Fig. 3 und Fig. 4 zeigen eine Ausführungsform aus Kunststoff.
Für jede dieser beiden Ausführungsformen ist eine Ausgestaltung als „Closed-Path-
Λnordnung" und „Open-Path- Anordnung" möglich.
Closed-Path- Anordnung: Diese Anordnung ist in den Figuren 1 bis 4 dargestellt. Dabei handelt es sich um ein geschlossenes Reflektormodul, unter welchem sich die Strahlungsquelle a und das Detektorelement b befinden. Das Reflektormodul beinhaltet den Reflektor Rl zur Bündelung und Umlenkung des Strahlengangs der
Strahlungsquelle, die Komponente R2, welches eine Abdeckung für das Reflektormodul darstellt sowie einen oder zwei Teilreflektoren R3a und R3b, welche die Strahlung auf das Detektorelement bzw. die Detektorelemente bündeln und umlenken.
Bei dieser Anordnung handelt es sich bei dem Reflektormodul um ein einziges
Bauelement, welches die Komponenten Rl, R2 und R3 beinhaltet.
Das Reflektormodul kann dabei aus einem innenverspiegelten Kunststoff aufgebaut sein oder als Metallkonstruktion ausgeführt sein. Die Metallkonstruktion kann z.B. durch ein Tiefziehverfahren erzeugt werden. Die Zuführung des zu analysierenden Gases in den
Innenraum des Reflektormoduls wird durch Schlitze c in der Komponente R2 ermöglicht.
Die Komponente bzw. das Bauteil R2 kann z.B. auch als elektrische Abschirmung zur Sicherstellung günstiger EMV-Eigenschaften eingesetzt werden (EMV = elektromagnetische Verträglichkeit)
Open-Path- Anordnung:
Bei der Open-Path-Anordnung entfällt die Komponente R2. Dadurch liegt der Bereich der planparallelen Strahlführung zwischen dem Reflektorteil Rl und dem Reflektorteil R3 Offen. Die Ausführung der Reflektoren Rl und R3 bleibt bei dieser Anordnung unverändert. Diese können als zusammenhängendes Modul oder als Einzelreflektoren ausgeführt sein. Durch das Wegfallen des Reflektorteils R2 entsteht ein offenes System, bei welchem das zu messende Gas direkt in der Umgebungsatmosphäre erfasst werden kann. Der Vorteil dieses Aufbaus liegt bei der schnelleren Erfassung des Messgases in der Umgebungsatmosphäre. Ermöglicht wird dies durch das Fehlen eine Gehäuseteils, durch welches das Messgas erst diffundieren muss.
Sowohl für die Open-Path-Anordnung als auch für die Closed-Path-Λnordnung können dieselben Reflektoren mit denselben Abständen eingesetzt werden. Beide Anordnungen sind unabhängig von der optischen Bandbreite des Detektorelements und dem
Frequenzbereich der infraroten Strahlung und können daher universell für alle photometrischen Gassensoren der vorliegenden Bauart eingesetzt werden. Weiter entscheidend für das Leistungsvermögen eines optischen Sensorsystems ist die möglichst exakte Positionierung von Detektor, Reflektor und Strahlungsquelle relativ zueinander. Nur so kann gewährleistet werden, dass ein möglichst großer Teil der Strahlungsleistung dem Detektor zugeführt wird und somit zu einer maximalen Signalausbeute führt. Dies bedeutet eine Minimierung der Toleranzkette
Strahlungsquelle-Reflektormodul-Detektor und kann durch konstruktive Maßnahmen am Reflektor erreicht werden. Hierfür werden im Reflektor Aufnahmen vorgesehen, welche bei der Montage die Ausrichtung der Lampe und des Detektors bzgl. des Reflektormoduls bzw. des Gehäusebauelements sichern. Somit sind die Fertigungstoleranzen des Reflektors die einzig maßgebenden bei der Montage des Gesamtsystems. Dies hat die folgenden beiden Vorteile: der vom zweiten Reflektor auf das Sensorelement gerichtete Strahl kann stärker gebündelt werden, da durch die Ausrichtung des Sensorelements bzw. Detektors auf den Reflektor die Position des Sensors relativ zum Reflektor feststeht. Der dadurch mögliche kleinere Fokusfleck resultiert in einer höheren Strahlungsdichte, welche im
Sensorelement ein höheres elektrisches Absolutsignal erzeugt, die Montage der drei Bauelemente Reflektormodul, Detektor und Strahlungsquelle wird durch die exakte Positionierung zueinander wesentlich vereinfacht, es wird vermieden, dass der Fokusfleck der Infrarotstrahlung das Sensorelement nicht ecreicht, bzw. sich neben dem lichtempfindlichen Teil des Sensorelementsbefindet.
Bei der Montage der drei Bauelemente auf der Leiterplatte wird der Reflektor über entsprechende Aufnahmen auf der Leiterplatte fixiert. Die Positionierung der Strahlungsquelle und des Detektors auf der Leiterplatte erfolgt dann relativ zum Reflektor. Somit ist gewährleistet, dass alle Toleranzen, die bei getrennter Montage auftreten würden, minimiert werden.
Ein möglicher Bestückungsablauf der drei Bauteile Reflektor, Detektor und Strahlungsquelle ist im folgenden beschrieben: - Einpressen des Detektors in eine Aufnahme des Reflektors.
Bestücken der Reflektor-Detektor-Einheit. Dabei wird der Reflektor z.B. geclincht und der Detektor in SMD-Technik gelötet (SMD = „surface mounted device") Reversebestücken der Strahlungsquelle. Dabei wird die Strahlungsquelle durch eine übertolertierte Bohrung in eine Führung des Reflektors eingebracht und anschließend in SMD-Technik gelötet.
Alternativ dazu kann zuerst die Leiterplatte mit dem Detektor bestückt werden. Die
Ausrichtung des Reflektors und der Lampe erfolgt dann über den fest integrierten Detektor. Wie oben beschrieben ist eine Ausrichtung aller drei Bauteile natürlich auch über die Strahlungsquelle als Referenz möglich. In diesem Fall kann die Strahlungsquelle von oben bestückt werden. In beiden Fällen muss die Ausrichtung aller drei Bauteile jedoch immer über entsprechende konstruktive Maßnahmen am Reflektor gewährleistet sein.
In Fig. 5 sind die Aufnahmen 51 und 52 für die Lampe a bzw. das Detektorelement b dargestellt. Dabei handelt es sich im Ausführungsbeispiel bei 51 um eine Führung für die Lampe a (d.h. Lampenführung) und bei 52 um eine Führung für den Reflektor b (d.h.
Reflektorführung). 53 kennzeichnet (auch in den Figuren 1 und 3) die Leiterplatte.
Der zweite Reflektor kann auch zwei benachbarte Teilreflektoren R3a und R3b umfassen. Der Fokuspunkt des vom ersten Reflektor ankommenden Infrarotstrahl fällt auf die Grenzlinie zwischen den Teilreflektoren R3a und R3b. Die auf R3a and R3b fallenden Hälften des Fokuspunktes werden in zwei unterschiedliche Richtungen abgelenkt Der Infrarotdetektor b ist als zweikanaliger Detektor ausgebildet, z.B. mit einem Messkanal und einem Referenzkanal. Einer der beiden Teilstrahlen trifft auf das dem Messkanal zugeordnete Sensorelement und der andere Teilstrahl auf das dem Referenzkanal zugeordnete Sensorelement. Die beiden Sensorelemente können dabei als z.B. benachbarte Chips in einem gemeinsamen Gehäuse oder sogar nebeneinander auf einem Chip verwirklicht sein.
Der Gassensor eignet sich wegen seiner geringen Baugröße zum Einsatz in einem Kraftfahrzeug, insbesondere zur Ermittlung der Kohlendioxidkonzentration in der Luft im
Innenraum des Kraftfahrzeugs.

Claims

Λnsprüche
1. Photometrischer Gassensor zur Ermittlung einer Gaskonzentration, enthaltend wenigstens - eine infrarote Strahlungsquelle (a) einen ersten Reflektor (Rl) zur Umlenkung einer von einer infraroten
Strahlungsquelle (a) herkommenden Infrarotstrahlung zu einem zweiten Reflektor
(R3a, R3b), einen zweiten Reflektor (R3a, R3b) zur Umlenkung der vom ersten Reflektor (Rl) herkommenden Strahlung zu einem Infrarotdetektor (b) sowie einen Infrarotdetektor (b).
2. Photometrischer Gassensor nach Anspruch 1, dadurch gekennzeichnet, dass der erste Reflektor (Rl) und der zweite Reflektor (R3a, R3b) - im wesentlichen aus Kunststoff bestehen und in eimGehäusebauelement aus
Kunststoff eingebaut sind oder Teil eines Gehäusebauelements aus Kunststoff sind.
3. Photometrischer Gassensor nach Anspruch 2, dadurch gekennzeichnet, dass der erste (Rl) und zweite Reflektor (R3a, R3b) als verspiegelte Flächen des Kunststoffs ausgebildet sind.
4. Photometrischer Gassensor nach Anspruch 1, dadurch gekennzeichnet, dass der erste (Rl) und der zweite Reflektor (R3a, R3b) - im wesentlichen aus Metall bestehen und in ein Gehäusebauelement aus Metall eingebaut sind oder Teil eines Gehäusebauelements aus Metall sind.
5. Photometrischer Gassensor nach Anspruch 1, dadurch gekennzeichnet, dass die infrarote Strahlungsquelle (a) und der Infrarotdetektor (b) auf einer gemeinsamen Leiterplatte (53) angebracht sind.
6. Photometrischer Gassensor nach Anspruch 2 oder 4, dadurch gekennzeichnet, dass es sich bei dem Gehäusebauelemenl um die Abdeckung des Sensors handelt.
7. Photometrischer Gassensor nach Anspruch 6, dadurch gekennzeichnet, dass die Abdeckung wenigstens eine Durchlassöffhung (c) aufweist, durch welche das Gas in den Innenraum des Gassensors strömen kann.
8. Photometrischer Gassensor nach Anspruch 1, dadurch gekennzeichnet, dass der erste Reflektor (Rl) und der zweite Reflektor (R3a, R3b) derart angeordnet sind, dass die Strahlrichtung der vom ersten Reflektor (Rl) zum zweiten Reflektor (R3a, R3b) umgelenkten Infrarotstrahlung im wesentlichen parallel zur Oberfläche der Leiterplatte
(53) ist.
9. Photometrischer Gassensor nach Anspruch 1, dadurch gekennzeichnet, dass der Infrarotdetektor (b) zwei Infrarotsensorelemente umfasst, - dass der zweite Reflektor ausvzwei Teilreflektoren (RJa, R3b) besteht, welche die vom ersten Reflektor herkommende Strahlung in zwei in verschiedene Richtungen gehende Teilstrahlen aufteilt, dass die beiden Teilreflektoren so angeordnet sind, dass jeder der beiden Teilsttahlen auf ein unterschiedliches der beiden Infrarotsensorelemente trifft
10. Photometrischer Gassensor nach Anspruch 9, dadurch gekennzeichnet, dass der zweite Reflektor (R3a, R3b) aus zwei nebeneinander angeordneten Teilreflektoren besteht und derart angeordnet ist, dass die vom ersten Reflektor herkommende Strahlung an der Grenze zwischen beiden Teilreflektoren auftrifft, so dass auf jeden der beiden
Teilreflektoren ein Teil der Strahlung auftrifft
11. Photometrischer Gassensor nach einem der Ansprüche 2 oder 4, dadurch gekennzeichnet, dass am Gehäusebauelement Aufnahmen zur Anbringung der Infrarotquelle (a) und des Infrarotdetektors (b) angebracht sind.
12. Photometrischer Gassensor nach Anspruch 10, dadurch gekennzeichnet, dass es sich bei den Aufnahmen um Führungen (51 , 52) handelt
EP05767949A 2004-09-13 2005-07-14 Reflektormodul für einen photometrischen gassensor Ceased EP1792164A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004044145A DE102004044145B3 (de) 2004-09-13 2004-09-13 Reflektormodul für einen photometrischen Gassensor
PCT/EP2005/053393 WO2006029920A1 (de) 2004-09-13 2005-07-14 Reflektormodul für einen photometrischen gassensor

Publications (1)

Publication Number Publication Date
EP1792164A1 true EP1792164A1 (de) 2007-06-06

Family

ID=35094594

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05767949A Ceased EP1792164A1 (de) 2004-09-13 2005-07-14 Reflektormodul für einen photometrischen gassensor

Country Status (5)

Country Link
US (1) US20090039267A1 (de)
EP (1) EP1792164A1 (de)
JP (1) JP2007507723A (de)
DE (1) DE102004044145B3 (de)
WO (1) WO2006029920A1 (de)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8294166B2 (en) 2006-12-11 2012-10-23 The Regents Of The University Of California Transparent light emitting diodes
DE102005038831A1 (de) * 2005-08-17 2007-02-22 Boehringer Ingelheim Pharma Gmbh & Co. Kg Ausgewählte CGRP-Antagonisten, Verfahren zu deren Herstellung sowie deren Verwendung als Arzneimittel
KR100982914B1 (ko) * 2008-03-05 2010-09-20 주식회사 휴비츠 적외선 통신을 이용한 자동 리프렉터 시스템
DE102009000182A1 (de) 2009-01-13 2010-07-15 Robert Bosch Gmbh Messvorrichtung, Anordnung und Verfahren zur Messung eines Gehaltes an mindestens einer Komponente in einem flüssigen Kraftstoff
DE102009001615A1 (de) 2009-03-17 2010-09-23 Robert Bosch Gmbh Steuerungsanordnung für ein Abgasrückführungssystem, Abgasrückführungssystem und Verfahren zum Betreiben eines Abgasrückführungssystems
DE102009057078B4 (de) * 2009-12-04 2013-03-14 Abb Ag Photometrischer Gasanalysator
JP2012220353A (ja) * 2011-04-11 2012-11-12 Panasonic Corp 気体成分検出装置
JP5906407B2 (ja) * 2011-04-11 2016-04-20 パナソニックIpマネジメント株式会社 気体成分検出装置
KR101755712B1 (ko) * 2011-10-05 2017-07-10 현대자동차주식회사 차량 실내 이산화탄소농도 측정장치
US8969808B2 (en) * 2012-06-19 2015-03-03 Amphenol Thermometrics, Inc. Non-dispersive infrared sensor with a reflective diffuser
SE536782C2 (sv) 2012-08-24 2014-08-05 Automotive Coalition For Traffic Safety Inc System för utandningsprov med hög noggrannhet
SE536784C2 (sv) 2012-08-24 2014-08-05 Automotive Coalition For Traffic Safety Inc System för utandningsprov
DE102012215660B4 (de) 2012-09-04 2014-05-08 Robert Bosch Gmbh Optische Gassensorvorrichtung und Verfahren zum Bestimmen der Konzentration eines Gases
DE102013212512A1 (de) 2013-06-27 2015-01-15 Robert Bosch Gmbh Außenteil für ein Gerät und Gerät
DE102014015378A1 (de) 2014-10-17 2016-04-21 Audi Ag Gehäuse für ein Head-up-Display eines Kraftfahrzeugs und Verfahren zum Bereitstellen eines Gehäuses für ein Head-up-Display
CN107923842B (zh) * 2015-06-05 2022-03-01 汽车交通安全联合公司 集成呼吸酒精传感器系统
US11104227B2 (en) 2016-03-24 2021-08-31 Automotive Coalition For Traffic Safety, Inc. Sensor system for passive in-vehicle breath alcohol estimation
US10724945B2 (en) 2016-04-19 2020-07-28 Cascade Technologies Holdings Limited Laser detection system and method
US10180393B2 (en) 2016-04-20 2019-01-15 Cascade Technologies Holdings Limited Sample cell
EP3144663B1 (de) 2016-11-18 2020-06-17 Sensirion AG Gassensor-modul
DE102016125840B4 (de) * 2016-12-29 2018-11-08 Infineon Technologies Ag Gasanalysevorrichtung
GB201700905D0 (en) 2017-01-19 2017-03-08 Cascade Tech Holdings Ltd Close-Coupled Analyser
DE102017205974A1 (de) 2017-04-07 2018-10-11 Robert Bosch Gmbh Optische Sensorvorrichtung zum Messen einer Fluidkonzentration und Verwendung der optischen Sensorvorrichtung
SE543968C2 (en) * 2020-02-27 2021-10-12 Senseair Ab Gas sensor with long absorption path length
DE102020114968A1 (de) 2020-06-05 2021-12-09 Drägerwerk AG & Co. KGaA Messanordnung in Modulbauweise zur Bestimmung einer Eigenschaft eines zu vermessenden Gases
SE544494C2 (en) 2020-10-21 2022-06-21 Senseair Ab Temperature controller for a temperature control mechanism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1566626A1 (de) * 2004-02-18 2005-08-24 Tyco Electronics Raychem GmbH Gassensoranordnung in integrierter Fassung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2170880B1 (de) * 1972-02-04 1976-06-11 Souriau & Cie
DE4437188C2 (de) * 1994-10-18 1999-04-08 Zeiss Carl Jena Gmbh Analysengerät zur Konzentrationsbestimmung
DE19512126C1 (de) * 1995-04-04 1996-09-05 Hekatron Gmbh Vorrichtung zum Detektieren eines Gases oder Aerosols
DE19528919A1 (de) * 1995-08-07 1997-02-20 Microparts Gmbh Mikrostrukturiertes Infrarot-Absorptionsphotometer
US6067840A (en) * 1997-08-04 2000-05-30 Texas Instruments Incorporated Method and apparatus for infrared sensing of gas
DE19742053C1 (de) * 1997-09-24 1999-01-28 Draeger Sicherheitstech Gmbh Infrarotmeßanordnung mit erweitertem Meßbereich
US6410918B1 (en) * 1997-10-28 2002-06-25 Edwards Systems Technology, Inc. Diffusion-type NDIR gas analyzer with improved response time due to convection flow
DE19840794C1 (de) * 1998-09-08 2000-03-23 Deutsch Zentr Luft & Raumfahrt Verfahren und Vorrichtung zur Erfassung von Infrarot-Strahlungseigenschaften von Abgasen
DE19926121C2 (de) * 1999-06-08 2001-10-18 Cs Halbleiter Solartech Analysegerät
DE10243014B4 (de) * 2002-09-17 2010-07-01 Robert Bosch Gmbh Vorrichtung zur Detektion und Vorrichtung zur Messung der Konzentration eines Stoffes
GB2395259A (en) * 2002-11-07 2004-05-19 E2V Tech Uk Ltd Gas sensor with predetermined optical paths between its different detectors
JP2004294214A (ja) * 2003-03-26 2004-10-21 Nippon Soken Inc ガス検出装置
DE10360215A1 (de) * 2003-12-20 2005-07-28 Robert Bosch Gmbh Gassensor
JP2005208009A (ja) * 2004-01-26 2005-08-04 Denso Corp 赤外線検知式ガスセンサ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1566626A1 (de) * 2004-02-18 2005-08-24 Tyco Electronics Raychem GmbH Gassensoranordnung in integrierter Fassung

Also Published As

Publication number Publication date
DE102004044145B3 (de) 2006-04-13
WO2006029920A1 (de) 2006-03-23
JP2007507723A (ja) 2007-03-29
US20090039267A1 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
EP1792164A1 (de) Reflektormodul für einen photometrischen gassensor
DE102005055860B3 (de) Gassensoranordnung mit Lichtkanal in Gestalt eines Kegelschnittrotationskörpers
DE19520488C1 (de) Meßvorrichtung zur Infrarotabsorption
DE69323060T2 (de) Optische Detektorvorrichtung für die chemische Analyse von kleinen fluiden Probenvolumina
EP1697724B1 (de) Gassensor
DE102004007946A1 (de) Gassensoranordnung in integrierter Bauweise
DE69331654T2 (de) Vorrichtung mit lichtemittierender Diode
DE69113509T2 (de) Gasdetektor.
DE102006054165B3 (de) Langzeitstabile optische Sensoranordnung, insbesondere Wasserstoffsensor, und kombinierte Gassensoranordnung
DE102016225344A1 (de) System zur Analyse von elektromagnetischer Strahlung und Bauelement zur Herstellung desselben
EP0716292B1 (de) Verfahren und Vorrichtung zur Durchführung dieses Verfahrens zum Messen einer Lage von Bahnen oder Bogen
DE3513475C2 (de)
EP0244721B1 (de) Verfahren und System zur optischen Transmissionsmessung
DE102009051188A1 (de) Lichtsignalgeber und Lichtempfänger für einen optischen Sensor
DE19824652A1 (de) Vorrichtung zur Detektion von flüssigchromatographisch getrennten Substanzen mittels UV- oder Fluoreszenzspektren
DE19523741A1 (de) Optischer Detektor und optisches Meßverfahren für strömende Proben
DE102019126050A1 (de) Miniaturisierte Spektrometereinrichtung und Verfahren zum Herstellen einer miniaturisierten Spektrometereinrichtung
DE19651737A1 (de) Vorrichtung zum Messen des Neigungsgrads einer für einen optischen Aufnehmer vorgesehenen Objektivlinse
EP1031026B1 (de) Vorrichtung zur lageerfassung von bauelementen , lichtumlenkkörper und bestückkopf mit einer vorrichtung zur lageerfassung von bauelementen
DE69422922T2 (de) Fluoreszenzdetektor und vorrichtung zum halten einer auswechselbaren probenküvette in einen fluoreszenzdetektor
EP0105199A1 (de) Strahlungsrauchmelder
EP0043522B1 (de) Refraktometer
WO1997020199A1 (de) Nephelometer
EP3093633B1 (de) Vorrichtung zur gleichzeitigen bestimmung mehrerer unterschiedlicher stoffe und/oder stoffkonzentrationen
DE19836595B4 (de) Anordnung zur Messung von optischen Spektren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070413

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FI FR GB LI

17Q First examination report despatched

Effective date: 20070719

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE FI FR GB LI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20080623