EP1790933B1 - Concentric tubes, in particular for a heat exchanger - Google Patents

Concentric tubes, in particular for a heat exchanger Download PDF

Info

Publication number
EP1790933B1
EP1790933B1 EP20060022999 EP06022999A EP1790933B1 EP 1790933 B1 EP1790933 B1 EP 1790933B1 EP 20060022999 EP20060022999 EP 20060022999 EP 06022999 A EP06022999 A EP 06022999A EP 1790933 B1 EP1790933 B1 EP 1790933B1
Authority
EP
European Patent Office
Prior art keywords
tube
concentric
concentric tube
tube according
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20060022999
Other languages
German (de)
French (fr)
Other versions
EP1790933A1 (en
Inventor
Wolfgang Dipl.-Ing. Seewald
Karl-Heinz Dipl.-Ing. Staffa
Uli Dipl.-Ing. Vedder
Christoph Dipl.-Ing. Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP1790933A1 publication Critical patent/EP1790933A1/en
Application granted granted Critical
Publication of EP1790933B1 publication Critical patent/EP1790933B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation

Definitions

  • the invention relates to a coaxial tube or a tube-in-tube arrangement according to the preamble of claim 1.
  • EP-A1-0550845 shows such a coaxial tube.
  • From the EP 1 202 016 A2 is a one-piece heat exchanger tube with a multi-chamber profile known, according to which a plurality of outer channels are provided around a central channel.
  • the outer channels are divided by intermediate walls which extend in the radial direction.
  • wave-like projections are provided, which extend slightly into the central channel. These projections serve to reduce the cross-sectional area and thus increase the flow velocity.
  • the projections may also be helical, wherein constant, changing or changing slopes may be provided.
  • the inner channel is used in this heat exchanger tube as the high pressure side, the outer channels as the low pressure side.
  • a coaxial tube or a tube-in-tube arrangement for the separate line of at least two media, which is preferably refrigerant, wherein at least one and in a cross-sectional area in the coaxial tube or the tube-in-tube arrangement
  • at most sixteen, more preferably at most twelve turbulence generators are provided, which are arranged in the inner region of the inner tube. The turbulence generators cause the boundary layer on the wall of the inner tube to be disturbed and thereby reduced, whereby the heat exchange and thereby the performance of the heat exchanger is improved.
  • the turbulence generators are preferably arranged in the high-pressure region, which is usually provided in the inner region. However, it is also a twisted arrangement of high and low pressure area possible, i. the low pressure area is inside, the high pressure area outside.
  • pipe is to be interpreted in the following very broad and refers not only to round cross-sections, but in particular also oval, rounded rectangular or any other cross-sections.
  • the pipe may also be two tubes arranged inside one another which have no direct connections (tube-in-tube arrangement).
  • positioning elements for the inner tube may be provided in the outer tube, such as provided on the outer and / or inner tube, radially inwardly or outwardly projecting ribs to optionally ensure a coaxial arrangement.
  • the arrangement of the inner tube or of the inner region in the outer tube is preferably coaxial, but does not have to be, so that eccentric arrangements are also possible.
  • several inner tubes may be provided, which are connected by means of several sleeves.
  • the inner tube may also be soldered or otherwise connected to the outer tube in the contact regions.
  • the turbulence generator is preferably formed by a helix extending in the longitudinal direction of the coaxial tube or the tube-in-tube arrangement.
  • the helix is particularly preferably a round tube helix, wherein a gap is provided between the helix and the inner wall.
  • the difference of the inner diameter of the inner tube and the coil width is preferably 0.2 to 1 mm, so that the coil does not jam in the event of bending of the tube.
  • the helix preferably does not extend over the entire length of the tube but is in particular about 20 mm shorter, but is preferably at least about half as long as the tube, minus about 20 mm.
  • the pitch of the helix is preferably 15 to 40 mm.
  • At least one, in particular at least four, and a maximum of twelve inner ribs may be provided in the inner tube, alternatively or with a corresponding design, also in conjunction with a helix.
  • the inner ribs may extend in the radial direction to the central longitudinal axis, but they may also be designed to extend obliquely to the radial direction.
  • the inner ribs preferably have a rib thickness of 0.1 to 0.2 mm, so they are thin compared to the other wall thicknesses of the tube educated.
  • the rib height of the inner ribs is preferably 0.5 to 1.5 mm with an inner diameter of the inner tube of 4 to 8 mm.
  • the inner ribs are preferably arranged distributed in equidistant intervals over the inner circumference of the inner tube. However, it is also an uneven distribution, as well as a different rib height, possible.
  • a turbulence generator is also at least one, in particular two or three webs in the inner tube in question. Of course, in particular four, five, six, seven, eight, nine or ten bars are conceivable.
  • the web can in this case be designed to extend in the radial direction, as well as in any other way (i.e., as another tendon). If a plurality of webs are provided, they may preferably intersect in the longitudinal center axis of the pipe and subdivide the inner area into a plurality of subregions, wherein overflow openings may also be provided in the webs.
  • the at least one web preferably has a web thickness of 0.2 to 0.6 mm, so it is preferably thinner than the outer and inner wall of the tube.
  • the outer diameter of the outer tube is preferably 10 to 20 mm, in particular 12 to 18 mm.
  • the inner diameter of the inner tube is preferably 3 to 10 mm, in particular 4 to 8 mm.
  • the thickness of ribs or webs between the inner and outer tubes is preferably 0.3 to 1.1 mm, in particular 0.5 to 1.0 mm.
  • the inlet openings of the two media are arranged on different sides of the coaxial tube or the tube-in-tube arrangement, so that the coaxial tube or the tube-in-tube arrangement is flowed through in countercurrent operation.
  • the outer region, in which preferably the low-pressure medium flows, is preferably in at least six, in particular at least eight sub-channels and a maximum of twenty, preferably divided into a maximum of sixteen sub-channels.
  • the wall thickness of the outer wall is preferably greater than or equal to the wall thickness of the wall between the outer tube and the inner tube.
  • the wall thickness of the outer wall is preferably 0.6 to 1.3 mm, in particular 0.8 to 1.1 mm, the inner wall 0.6 to 1.2 mm, preferably 0.8 to 1.0 mm
  • the thickness of the ribs or webs, which divide the individual sub-channels of the outer tube, is preferably less than or equal to the wall thickness of the wall of the outer tube.
  • the web width is preferably 0.5 to 1.0 mm, wherein the wall thickness of the outer wall is 0.6 to 1.3 mm.
  • At least one of the turbulence generators and / or at least one of the inner ribs and / or at least one of the webs, and / or at least one of the ribs between the inner and outer tubes is preferably arranged obliquely with respect to the tube longitudinal axis.
  • the slope can also change over the total length of the tube, as well as the direction of rotation.
  • At least one of the turbulence generators and / or at least one of the inner ribs and / or at least one of the webs and / or at least one of the ribs between the inner and outer tubes is formed obliquely with respect to the tube longitudinal axis with such a pitch that a 360 ° rotation over a tube length of 15 to 35 mm, in particular from 20 to 25 mm, takes place.
  • the length of at least one of the turbulence generators and / or at least one of the inner ribs and / or at least one of the webs and / or at least one of the ribs between inner and outer tube 0.3 times to 0, 5 times, preferably equal to 0.4 times the tube length. It is also conceivable, however, for the length of at least one of the aforementioned devices to correspond essentially to the tube length.
  • a coaxial tube or a tube-in-tube arrangement is provided for the separate line of at least two media, the pressure level of which differs, with the coaxial tube or the tube-in-tube arrangement the low-pressure side in the radial direction closer to the central longitudinal axis than the high pressure side is arranged.
  • the twisted arrangement, the inner tube may be formed with a smaller wall thickness, which reduces the total weight, the material requirements and thus the cost of the coaxial tube or the tube-in-tube arrangement.
  • the dimensions can be slightly reduced, which also reduces the heat input from the outside into the system and thus the performance can be increased.
  • the free flow cross section of the high pressure side is preferably smaller overall than the free flow cross section of the low pressure side.
  • the free flow cross sections differ such that the free flow cross section of the high pressure side is preferably at most half as large and preferably at least a quarter as large, more preferably about one third +/- 10% is as large as the free flow cross section of the low pressure side.
  • the outer diameter of the outer tube is - with twisted arrangement of high and low pressure side - preferably 10 to 18 mm, in particular 12 to 16 mm.
  • the inner diameter of the inner tube is preferably 6 to 12 mm, in particular 8 to 10 mm.
  • the width of the ribs between the inner and outer tubes is preferably 0.3 to 0.8 mm, particularly preferably 0.4 to 0.7 mm.
  • the outer tube is - in the twisted arrangement of high and low pressure side - preferably divided into at least six, in particular at least ten, more preferably at least twelve sub-channels and a maximum of twenty, preferably a maximum of sixteen sub-channels. This subdivision allows optimal strength properties of the pipe, connected with a large heat transfer area for the medium flowing in the outer area.
  • the wall thickness of the outer wall is in the twisted arrangement of high and low pressure side - preferably larger than the wall thickness of the wall between the outer tube and the inner tube. Due to the greater pressure difference from the outer tube to the environment than from the outer tube to the inner region, the wall thickness to the inner tube can be made smaller, so that a material saving is possible. Is - as in conventional coaxial tubes - the maximum pressure in the inner tube provided, the outer tube, however, must also be able to withstand the corresponding pressure, which is why it should have a corresponding wall thickness and therefore designed in conventional coaxial tubes according to the inner tube, making the coaxial tube heavier and thus more expensive than a coaxial tube according to the invention. Incidentally, an improvement in the heat transfer performance can be achieved by the thinner wall.
  • the width of the ribs or webs, which divide the individual sub-channels of the outer tube, is preferably smaller than the wall thickness of the wall of the outer tube, which can also save material.
  • the width of the webs, which divide the individual sub-channels of the outer tube greater than or equal to the wall thickness of the wall between the outer tube and the inner tube.
  • the inflow of the corresponding medium preferably takes place substantially coaxially, for which purpose the corresponding connecting piece is designed accordingly.
  • a coaxial tube according to the invention or a tube-in-tube arrangement according to the invention can be used in particular for heat exchangers, preferably for motor vehicle air conditioners, particularly preferably for high-pressure air conditioning systems (such as in R744 air conditioners) of motor vehicles, however, other applications are also possible.
  • heat exchangers preferably for motor vehicle air conditioners, particularly preferably for high-pressure air conditioning systems (such as in R744 air conditioners) of motor vehicles, however, other applications are also possible.
  • the use as a so-called inner heat exchanger or internal heat exchanger is especially preferred.
  • the refrigerant used usually behaves, even if it is at least partially in the gaseous state, due to the usually very high density similar to a fluid. In particular, this makes it possible, for example by using a turbulence generator to increase the heat transfer between the channels
  • the proposed application of high pressure on the outside or low pressure on the inside may prove to be particularly advantageous.
  • the high pressure usually has a higher temperature than the low pressure, so that particularly good additional heat energy can be dissipated from the high-pressure side refrigerant to the environment.
  • a heat exchanger 1 of which only a cross section in the FIGS. 1 and 3 is shown, but may be formed in principle, as in Fig. 2 is shown with an enlarged, shown another cross-section provided.
  • This heat exchanger 1 serves the heat exchange of a first medium and a second medium.
  • the first medium flows through the inner region 2 of an inner tube 3 and the second medium through the outer region 4 which is formed between an outer tube 5 and the inner tube 3.
  • the inner tube 3 and the outer tube 5 together with them in the radial direction in the longitudinal direction continuously extending ribs 6 are integrally extruded as a coaxial tube 7 made of an aluminum alloy.
  • the outer diameter of the coaxial tube 7 is present 16 mm, the wall thickness of the outer tube 5 0.8 mm, the wall thickness of the inner tube 3 0.6 mm, the rib width 0.7 mm and the inner diameter 7 mm.
  • 7 connecting components 8 are at both ends of the coaxial tube (see Fig. 2 ), via which the media, which in the present case flow in countercurrent operation through the inner region 2 or the outer region 4, are supplied or discharged separately from one another.
  • coaxially extruded coaxial tube 7 On coaxially extruded coaxial tube 7 is located on the outer tube 5 (high pressure side) a higher pressure p a than on the inner tube 3 (low pressure side) to which the pressure p i is applied.
  • the operating pressure on the low pressure side is according to the present embodiment about 130 bar, the corresponding bursting pressure 264 bar, and the operating pressure on the high pressure side is about 160 bar, the corresponding bursting pressure 352 bar.
  • the mentioned pressure values refer in particular to the use of CO 2 (R744) as refrigerant.
  • an improved, defined flow of the high-pressure refrigerant can be realized via the corresponding connecting piece 8, in particular, as in the present case Fig. 3 shown, a deflection-free flow of the high-pressure refrigerant provided in the direction of the longitudinal axis of the inner tube, whereby the pressure loss can be reduced and thereby the cooling capacity can be improved.
  • the flow of the low-pressure refrigerant takes place in the radial direction with respect to the longitudinal axis of the coaxial tube. 1
  • a turbulence generator 11 in the form of a helix (round tube helix) is provided which can be bent in the coaxial tube and bent with the same.
  • the pitch of the helix in this case corresponds to a multiple of the inner diameter of the inner tube 3 and is constant over the entire Koaxialrohronne.
  • the helix deflects the refrigerant flowing in the inner tube, so that no laminar flow is formed in the wall region, resulting in improved mixing and improved heat exchange.
  • the pitch of the helix changes over the length of the coaxial tube and / or changes the direction of rotation of the helix, whereby multiple changes can be made.
  • Fig. 4 shows a second embodiment which - unless mentioned below - corresponds to the first embodiment, but has no helix as a turbulence generator 11.
  • the second embodiment are rather uniform over the inner circumference of the inner tube 3 distributed as a turbulence generator 11 eight inner ribs 21 provided in the radial direction inwardly projecting.
  • the inner ribs have a rib thickness which is 0.1 mm less than the wall thickness of the outer tube 5.
  • the length of the inner ribs 21 is presently 1 mm, so that they leave a circle of 5 mm diameter in the middle of the inner tube 3 free.
  • Fig. 5 illustrated embodiment which, unless mentioned below - corresponds to the first embodiment, but has no coil as a turbulence generator 11, looks as a turbulence generator 11, two perpendicular crossing webs 22 in the inner tube 3, which quadrant the inner region 2.
  • the web thickness is 0.1 mm less than the wall thickness of the outer tube 5.
  • a coaxial tube 7 with a helix as a turbulence generator 11 which has different dimensions than the coaxial tube 7 of the first embodiment.
  • a heat exchanger 1 of which only one cross section in Fig. 6 is shown, but may be formed in principle, as in Fig. 2 is shown with an enlarged, shown another cross-section provided.
  • This heat exchange 1 serves heat exchange of a first medium and a second medium.
  • the first medium flows through the inner region 2 of an inner tube 3 and the second medium through the outer region 4 which is formed between an outer tube 5 and the inner tube 3.
  • the inner tube 3 and the outer tube 5 together with them in the radial direction in the longitudinal direction continuously extending ribs 6 are integrally extruded as a coaxial tube 7 made of an aluminum alloy.
  • the outer diameter of the coaxial tube 7 is present 16 mm, the wall thickness of the outer tube 5 0.8 mm, the wall thickness of the inner tube 3 0.6 mm, the rib width 0.7 mm and the inner diameter 11 mm.
  • the free cross-sectional area of the inner tube 3 is about 95 mm 2
  • the sum of the free cross-sectional areas of the outer channels is about 35 mm 2 , that is about 60% smaller than that of the inner tube. 3
  • a turbulence generator 11 in the form of a helix (round tube helix) is provided, which can be arranged in the coaxial tube bend with the same.
  • the pitch of the helix in this case corresponds approximately to twice the inner diameter of the inner tube 3, ie about 22 mm, and is constant over the entire Koaxialrohronne.
  • the helix deflects the refrigerant flowing in the inner tube, so that no laminar flow is formed in the wall region, resulting in improved mixing and improved heat exchange.
  • 7 connecting components 8 are at both ends of the coaxial tube (see Fig. 2 ), via which the media, which in the present case flow in countercurrent operation through the inner region 2 or the outer region 4, are supplied or discharged separately from one another.
  • a higher pressure is applied to the outer tube 5 (high pressure side) than to the inner tube 3 (low pressure side).
  • the operating pressure on the low pressure side is according to the present embodiment about 130 bar, the corresponding bursting pressure 264 bar, and the operating pressure on the high pressure side is about 160 bar, the corresponding bursting pressure 352 bar.
  • the mentioned pressure values refer in particular to the use of CO 2 (R744) as refrigerant.
  • an improved flow of the low-pressure chaff agent can be realized via the corresponding connection piece 8, in particular, as in the present case Fig. 3 shown, a deflection-free flow of the low-pressure refrigerant provided in the direction of the longitudinal axis of the inner tube, whereby the pressure loss is reduced and thereby the cooling capacity can be improved.
  • the Flow of the high-pressure refrigerant takes place in the radial direction with respect to the longitudinal axis of the coaxial tube. 1
  • Fig. 7 shows a fifth embodiment of a coaxial tube, wherein in the inner tube 3 as turbulence generator 11 both four evenly distributed over the circumference inner ribs 21 are provided with a length of about half the radius and two perpendicular to each other and at a gap to the inner ribs 21 webs 22 which the Divide the interior into four separate areas. Otherwise, the coaxial tube 7 corresponds to that of the fourth embodiment, however, a corresponding embodiment of the turbulence generator 11 is also possible to the previously described form. These internals in the inner tube 3 increase the heat transfer area and therefore improve the heat exchange.
  • the coaxial tube is extruded rotated, i. the ribs, inner ribs and webs run helically, in this case with a constant pitch.
  • the coaxial tube is in turn rotated extruded, but changed with changing rotational speed, so that the pitch of the ribs, inner ribs and webs changed over the length of the coaxial tube.
  • two tendons are provided opposite one another in the inner tube of the coaxial tube instead of the webs extending in the radial direction.
  • a not shown in the drawing sixth embodiment provides a tube-in-tube arrangement as a coaxial tube, wherein the outer tube ribs and the inner tube as a turbulence generator inner ribs and webs, and the outer tube is soldered at the end of the ribs with the inner tube, thereby an embodiment according to the second embodiment results.
  • a first variant of the sixth embodiment provides that the two tubes are extruded rotated in different directions, i. that the flow paths of the refrigerant flowing in the interior are rotated on the one hand in countercurrent operation and on the other hand in different directions, whereby the heat exchange is improved.
  • the rotations of the two tubes have mutually over the length changing slopes, so that, for example, in the inflow a smaller pitch and in the outflow a greater pitch can be provided.

Description

Die Erfindung betrifft ein Koaxialrohr oder eine Rohr-in-Rohr-Anordnung gemäß dem Oberbegriff des Anspruches 1. EP-A1-0550845 zeigt ein derartiges Koaxialrohr.The invention relates to a coaxial tube or a tube-in-tube arrangement according to the preamble of claim 1. EP-A1-0550845 shows such a coaxial tube.

Aus der EP 1 202 016 A2 ist ein einstückiges Wärmetauscherrohr mit einem Mehrkammer-Profil bekannt, gemäß dem um einen Zentralkanal mehrere Außenkanäle vorgesehen sind. Die Außenkanäle sind durch Zwischenwände, die in radialer Richtung verlaufen, unterteilt. An der Wandung des Zentralkanals sind wellenartige Vorsprünge vorgesehen, die sich geringfügig in den Zentralkanal hinein erstrecken. Diese Vorsprünge dienen der Verringerung der Querschnittsfläche und somit der Erhöhung der Strömungsgeschwindigkeit. Die Vorsprünge können auch schraubenförmig ausgebildet sein, wobei konstante, sich ändernde oder wechselnde Steigungen vorgesehen sein können. Der Innenkanal wird bei diesem Wärmetauscherrohr als Hochdruckseite, die Außenkanäle als Niederdruckseite verwendet.From the EP 1 202 016 A2 is a one-piece heat exchanger tube with a multi-chamber profile known, according to which a plurality of outer channels are provided around a central channel. The outer channels are divided by intermediate walls which extend in the radial direction. On the wall of the central channel wave-like projections are provided, which extend slightly into the central channel. These projections serve to reduce the cross-sectional area and thus increase the flow velocity. The projections may also be helical, wherein constant, changing or changing slopes may be provided. The inner channel is used in this heat exchanger tube as the high pressure side, the outer channels as the low pressure side.

Ein Beispiel einer Verwendung eines zweiteiligen Koaxialrohrsystems, bestehend aus einem Außenrohr und einem in das Außenrohr eingeschobenen Innenrohr, für eine Klimaanlage, insbesondere eine Kraftfahrzeug-Klimaanlage, ist aus der DE 199 44 951 A1 bekannt. Hierin sind wendelförmige Stege, weiche die Außenkanäle voneinander trennen, sowie das Vorsehen von Turbulenzelementen an den Stegen offenbart.An example of a use of a two-part coaxial tube system, consisting of an outer tube and an inner tube inserted into the outer tube, for an air conditioning system, in particular a motor vehicle air conditioning system, is known from US Pat DE 199 44 951 A1 known. Herein, helical ridges separating the outer channels from each other and the provision of turbulence elements on the ridges are disclosed.

Aus der US 6,098,704 B2 ist eine Rohr-in-Rohr-Anordnung bekannt, wobei sowohl das Außenrohr als auch das Innenrohr eine Vielzahl in äquidistanten Abständen über den Umfang verteilter, in radialer Richtung ein kurzes Stück nach innen zeigender Rippen aufweist, die eine keilartige Gestalt haben. Diese Rippen dienen hierbei dem Korrosionsschutz, so dass die Rohrwand zwischen den beiden Medien geschützt und die Lebensdauer der Rohr-in-Rohr-Anordnung verlängert wird.From the US 6,098,704 B2 a tube-in-tube arrangement is known, wherein both the outer tube and the inner tube has a plurality of equidistant spaced around the circumference, in the radial direction a short distance inwardly pointing ribs, which have a wedge-like shape. These ribs are used for corrosion protection, so that the pipe wall between the two media protected and extends the life of the tube-in-tube assembly.

Ausgehend von diesem Stand der Technik ist es Aufgabe der Erfindung, ein verbessertes Koaxialrohr zur Verfügung zu stellen. Diese Aufgabe wird gelöst durch ein Koaxialrohr oder eine Rohr-in-Rohr-Anordnung mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.Based on this prior art, it is an object of the invention to provide an improved coaxial tube available. This object is achieved by a coaxial tube or a tube-in-tube arrangement with the features of claim 1. Advantageous embodiments are the subject of the dependent claims.

Erfindungsgemäß ist ein Koaxialrohr oder eine Rohr-in-Rohr-Anordnung für die getrennte Leitung mindestens zweier Medien, wobei es sich vorzugsweise um Kältemittel handelt, vorgesehen, wobei bei dem Koaxialrohr oder der Rohr-in-Rohr-Anordnung mindestens ein und in einer Querschnittsfläche vorzugsweise maximal sechzehn, besonders vorzugsweise maximal zwölf Turbulenzerzeuger vorgesehen sind, der bzw. die im inneren Bereich des Innenrohres angeordnet sind. Die Turbulenzerzeuger bewirken, dass die Grenzschicht an der Wandung des Innenrohres gestört und dadurch verringert wird, wodurch der Wärmeaustausch und dadurch die Leistung des Wärmetauschers verbessert wird. Durch eine verbesserte Leistungsdichte eines Wärmetauschers lässt sich derselbe bei gleicher Leistung kleiner bauen, wodurch sich das Gesamtgewicht, der Materialbedarf und somit die Kosten des Koaxialrohres bzw. der Rohr-in-Rohr-Anordnung verringert. Bevorzugt sind hierbei die Turbulenzerzeuger im Hochdruckbereich angeordnet, welcher üblicherweise im inneren Bereich vorgesehen ist. Es ist jedoch auch eine verdrehte Anordnung von Hoch- und Niederdruckbereich möglich, d.h. der Niederdruckbereich ist innen, der Hochdruckbereich außen angeordnet.According to the invention, a coaxial tube or a tube-in-tube arrangement is provided for the separate line of at least two media, which is preferably refrigerant, wherein at least one and in a cross-sectional area in the coaxial tube or the tube-in-tube arrangement Preferably, at most sixteen, more preferably at most twelve turbulence generators are provided, which are arranged in the inner region of the inner tube. The turbulence generators cause the boundary layer on the wall of the inner tube to be disturbed and thereby reduced, whereby the heat exchange and thereby the performance of the heat exchanger is improved. Through an improved power density of a heat exchanger can be the same build the same power smaller, thereby reducing the total weight, the material requirements and thus the cost of the coaxial tube or the tube-in-tube arrangement. In this case, the turbulence generators are preferably arranged in the high-pressure region, which is usually provided in the inner region. However, it is also a twisted arrangement of high and low pressure area possible, i. the low pressure area is inside, the high pressure area outside.

Der Begriff "Rohr" ist im Folgenden sehr weit auszulegen und bezieht sich nicht nur auf runde Querschnitte, sondern insbesondere auch ovale, abgerundet rechteckförmige oder auch beliebige andere Querschnitte. Beim Rohr kann es sich auch um zwei ineinander angeordnete Rohre handeln, die keine direkten Verbindungen aufweisen (Rohr-in-Rohr-Anordnung). Hierbei können jedoch auch positionierende Elemente für das Innenrohr im Außenrohr vorgesehen sein, wie beispielsweise am Außen- und/oder Innenrohr vorgesehene, radial nach innen beziehungsweise außen vorstehende Rippen, um gegebenenfalls eine koaxiale Anordnung sicherzustellen. Die Anordnung des Innenrohres oder des inneren Bereichs im Außenrohr ist vorzugsweise koaxial, muss es jedoch nicht sein, so dass auch außermittige Anordnungen möglich sind. Ebenso können auch mehrere Innenrohre vorgesehen sein, die mittels mehrerer Hülsen angeschlossen werden. Das Innenrohr kann auch mit dem Außenrohr in den Kontaktbereichen verlötet oder auf andere Weise mit demselben verbunden sein.The term "pipe" is to be interpreted in the following very broad and refers not only to round cross-sections, but in particular also oval, rounded rectangular or any other cross-sections. At the pipe it may also be two tubes arranged inside one another which have no direct connections (tube-in-tube arrangement). In this case, however, positioning elements for the inner tube may be provided in the outer tube, such as provided on the outer and / or inner tube, radially inwardly or outwardly projecting ribs to optionally ensure a coaxial arrangement. The arrangement of the inner tube or of the inner region in the outer tube is preferably coaxial, but does not have to be, so that eccentric arrangements are also possible. Likewise, several inner tubes may be provided, which are connected by means of several sleeves. The inner tube may also be soldered or otherwise connected to the outer tube in the contact regions.

Der Turbulenzerzeuger wird bevorzugt durch eine in Längsrichtung des Koaxialrohres bzw. der Rohr-in-Rohr-Anordnung verlaufende Wendel gebildet.The turbulence generator is preferably formed by a helix extending in the longitudinal direction of the coaxial tube or the tube-in-tube arrangement.

Bei der Wendel handelt es sich insbesondere bevorzugt um eine Rundrohrwendel, wobei zwischen Wendel und Innenwand ein Spalt vorgesehen ist.The helix is particularly preferably a round tube helix, wherein a gap is provided between the helix and the inner wall.

Die Differenz des Innendurchmessers des Innenrohres und der Wendelbreite beträgt bevorzugt 0,2 bis 1 mm, so dass die Wendel sich im Falle eines Biegens des Rohres nicht verklemmt. Die Wendel erstreckt sich bevorzugt nicht über die gesamte Länge des Rohres, sondern ist insbesondere ca. 20 mm kürzer, jedoch ist sie vorzugsweise minimal etwa halb so lang wie das Rohr, abzüglich von ca. 20 mm. Die Ganghöhe der Wendel beträgt vorzugsweise 15 bis 40 mm.The difference of the inner diameter of the inner tube and the coil width is preferably 0.2 to 1 mm, so that the coil does not jam in the event of bending of the tube. The helix preferably does not extend over the entire length of the tube but is in particular about 20 mm shorter, but is preferably at least about half as long as the tube, minus about 20 mm. The pitch of the helix is preferably 15 to 40 mm.

Als Turbulenzerzeuger können alternativ oder bei entsprechender Ausgestaltung auch in Verbindung mit einer Wendel mindestens eine, insbesondere mindestens vier und maximal zwölf Innenrippen im Innenrohr vorgesehen sein. Die Innenrippen können sich in radialer Richtung zur Mittellängsachse hin erstrecken, sie können jedoch auch schräg zur radialen Richtung verlaufend ausgebildet sein.As turbulence generators, at least one, in particular at least four, and a maximum of twelve inner ribs may be provided in the inner tube, alternatively or with a corresponding design, also in conjunction with a helix. The inner ribs may extend in the radial direction to the central longitudinal axis, but they may also be designed to extend obliquely to the radial direction.

Die Innenrippen weisen vorzugsweise eine Rippendicke von 0,1 bis 0,2 mm auf, sind also im Vergleich zu den sonstigen Wandstärken des Rohres dünn ausgebildet. Die Rippenhöhe der Innenrippen beträgt vorzugsweise 0,5 bis 1,5 mm bei einem Innendurchmesser des Innenrohres von 4 bis 8 mm.The inner ribs preferably have a rib thickness of 0.1 to 0.2 mm, so they are thin compared to the other wall thicknesses of the tube educated. The rib height of the inner ribs is preferably 0.5 to 1.5 mm with an inner diameter of the inner tube of 4 to 8 mm.

Die Innenrippen sind vorzugsweise in äquidistanten Abständen verteilt über den Innenumfang des Innenrohres angeordnet. Es ist jedoch auch eine ungleichmäßige Verteilung, wie auch eine unterschiedliche Rippenhöhe, möglich.The inner ribs are preferably arranged distributed in equidistant intervals over the inner circumference of the inner tube. However, it is also an uneven distribution, as well as a different rib height, possible.

Als Turbulenzerzeuger kommt auch mindestens ein, insbesondere zwei oder drei Stege im Innenrohr in Frage. Denkbar sind selbstverständlich auch insbesondere vier, fünf, sechs, sieben, acht, neun oder zehn Stege. Der Steg kann hierbei in radialer Richtung verlaufend, wie auch auf beliebige andere Weise (d.h. als sonstige Sehne) verlaufend ausgebildet sein. Sind mehrere Stege vorgesehen, so können diese sich vorzugsweise in der Längsmittelachse des Rohres schneiden und den inneren Bereich in mehrere Teilbereiche unterteilen, wobei auch Überströmöffnungen in den Stegen vorgesehen sein können.As a turbulence generator is also at least one, in particular two or three webs in the inner tube in question. Of course, in particular four, five, six, seven, eight, nine or ten bars are conceivable. The web can in this case be designed to extend in the radial direction, as well as in any other way (i.e., as another tendon). If a plurality of webs are provided, they may preferably intersect in the longitudinal center axis of the pipe and subdivide the inner area into a plurality of subregions, wherein overflow openings may also be provided in the webs.

Der mindestens eine Steg weist vorzugsweise eine Stegdicke von 0,2 bis 0,6 mm auf, ist also vorzugsweise dünner als die Außen- und Innenwand des Rohres.The at least one web preferably has a web thickness of 0.2 to 0.6 mm, so it is preferably thinner than the outer and inner wall of the tube.

Der Außendurchmesser des Außenrohres beträgt vorzugsweise 10 bis 20 mm, insbesondere 12 bis 18 mm. Der Innendurchmesser des Innenrohres beträgt vorzugsweise 3 bis 10 mm, insbesondere 4 bis 8 mm. Die Dicke von Rippen oder Stegen zwischen dem Innen- und Außenrohr beträgt vorzugsweise 0,3 bis 1,1 mm, insbesondere 0,5 bis 1,0 mm.The outer diameter of the outer tube is preferably 10 to 20 mm, in particular 12 to 18 mm. The inner diameter of the inner tube is preferably 3 to 10 mm, in particular 4 to 8 mm. The thickness of ribs or webs between the inner and outer tubes is preferably 0.3 to 1.1 mm, in particular 0.5 to 1.0 mm.

Vorzugsweise sind die Einströmöffnungen der beiden Medien auf unterschiedlichen Seiten des Koaxialrohres oder der Rohr-in-Rohr-Anordnung angeordnet, so dass das Koaxialrohr bzw. die Rohr-in-Rohr-Anordnung im Gegenstrombetrieb durchströmt wird.Preferably, the inlet openings of the two media are arranged on different sides of the coaxial tube or the tube-in-tube arrangement, so that the coaxial tube or the tube-in-tube arrangement is flowed through in countercurrent operation.

Der äußere Bereich, in welchem vorzugsweise das Niederdruckmedium strömt, ist vorzugsweise in mindestens sechs, insbesondere in mindestens acht Teilkanäle und maximal in zwanzig, vorzugsweise in maximal sechzehn Teilkanäle unterteilt.The outer region, in which preferably the low-pressure medium flows, is preferably in at least six, in particular at least eight sub-channels and a maximum of twenty, preferably divided into a maximum of sixteen sub-channels.

Die Wandstärke der Außenwand ist vorzugsweise größer als oder gleich groß wie die Wandstärke der Wand zwischen Außenrohr und Innenrohr. Dabei beträgt die Wandstärke der Außenwand vorzugsweise 0,6 bis 1,3 mm, insbesondere 0,8 bis 1,1 mm, die der Innenwand 0,6 bis 1,2 mm, vorzugsweise 0,8 bis 1,0 mmThe wall thickness of the outer wall is preferably greater than or equal to the wall thickness of the wall between the outer tube and the inner tube. The wall thickness of the outer wall is preferably 0.6 to 1.3 mm, in particular 0.8 to 1.1 mm, the inner wall 0.6 to 1.2 mm, preferably 0.8 to 1.0 mm

Die Dicke der Rippen oder Stege, welche die einzelnen Teilkanäle des Außenrohres unterteilen, ist vorzugsweise kleiner oder gleich der Wandstärke der Wand des Außenrohres. Dabei beträgt die Stegbreite vorzugsweise 0,5 bis 1,0 mm, wobei die Wandstärke der Außenwand 0,6 bis 1,3 mm beträgt.The thickness of the ribs or webs, which divide the individual sub-channels of the outer tube, is preferably less than or equal to the wall thickness of the wall of the outer tube. The web width is preferably 0.5 to 1.0 mm, wherein the wall thickness of the outer wall is 0.6 to 1.3 mm.

Mindestens einer der Turbulenzerzeuger und/oder mindestens eine der Innenrippen und/oder mindestens einer der Stege, und/oder mindestens eine der Rippen zwischen Innen- und Außenrohr ist vorzugsweise schräg bezüglich der Rohrlängsachse angeordnet. Dabei kann sich die Steigung jedoch auch über die Gesamtlänge des Rohres ändern, wie auch die Drehrichtung.At least one of the turbulence generators and / or at least one of the inner ribs and / or at least one of the webs, and / or at least one of the ribs between the inner and outer tubes is preferably arranged obliquely with respect to the tube longitudinal axis. However, the slope can also change over the total length of the tube, as well as the direction of rotation.

Bevorzugt ist mindestens einer der Turbulenzerzeuger und/oder mindestens eine der Innenrippen und/oder mindestens einer der Stege und/oder mindestens eine der Rippen zwischen Innen- und Außenrohr derart schräg bezüglich der Rohrlängsachse mit einer derartigen Steigung ausgebildet, dass eine 360°-Drehung über eine Rohrlänge von 15 bis 35 mm, insbesondere von 20 bis 25 mm, erfolgt.Preferably, at least one of the turbulence generators and / or at least one of the inner ribs and / or at least one of the webs and / or at least one of the ribs between the inner and outer tubes is formed obliquely with respect to the tube longitudinal axis with such a pitch that a 360 ° rotation over a tube length of 15 to 35 mm, in particular from 20 to 25 mm, takes place.

Weiterhin kann es sich als vorteilhaft erweisen, wenn die Länge mindestens einer der Turbulenzerzeuger und/oder mindestens einer der Innenrippen und/oder mindestens einer der Stege und/oder mindestens einer der Rippen zwischen Innen- und Außenrohr dem 0,3-fachen bis 0,5-fachen, vorzugsweise dem 0,4-fachen der Rohrlänge entspricht. Denkbar ist es aber auch, dass die Länge zumindest einer der vorgenannten Einrichtungen im Wesentlichen der Rohrlänge entspricht.Furthermore, it may prove advantageous if the length of at least one of the turbulence generators and / or at least one of the inner ribs and / or at least one of the webs and / or at least one of the ribs between inner and outer tube 0.3 times to 0, 5 times, preferably equal to 0.4 times the tube length. It is also conceivable, however, for the length of at least one of the aforementioned devices to correspond essentially to the tube length.

Gemäß einer speziellen Ausführungsform ist ein Koaxialrohr oder eine Rohr-in-Rohr-Anordnung für die getrennte Leitung mindestens zweier Medien vorgesehen, deren Druckniveau sich unterscheidet, vorgesehen, wobei bei dem Koaxialrohr oder der Rohr-in-Rohr-Anordnung die Niederdruckseite in radialer Richtung näher der Mittellängsachse als die Hochdruckseite angeordnet ist. Durch die verdrehte Anordnung kann das Innenrohr mit geringerer Wandstärke ausgebildet sein, wodurch sich das Gesamtgewicht, der Materialbedarf und somit die Kosten des Koaxialrohres bzw. der Rohr-in-Rohr-Anordnung verringert. Ferner können die Abmessungen etwas verringert werden, wodurch auch die Wärmeeinleitung von außen in das System verringert und somit die Leistung gesteigert werden kann.According to a specific embodiment, a coaxial tube or a tube-in-tube arrangement is provided for the separate line of at least two media, the pressure level of which differs, with the coaxial tube or the tube-in-tube arrangement the low-pressure side in the radial direction closer to the central longitudinal axis than the high pressure side is arranged. The twisted arrangement, the inner tube may be formed with a smaller wall thickness, which reduces the total weight, the material requirements and thus the cost of the coaxial tube or the tube-in-tube arrangement. Furthermore, the dimensions can be slightly reduced, which also reduces the heat input from the outside into the system and thus the performance can be increased.

Bevorzugt ist bei der verdrehten Anordnung von Hoch- und Niederdruckseite der freie Strömungsquerschnitt der Hochdruckseite insgesamt kleiner als der freie Strömungsquerschnitt der Niederdruckseite. Dabei unterscheiden sich die freien Strömungsquerschnitte derart, dass der freie Strömungsquerschnitt der Hochdruckseite insgesamt vorzugsweise maximal halb so groß und vorzugsweise minimal ein Viertel so groß ist, insbesondere bevorzugt etwa ein Drittel +/- 10% so groß ist, wie der freie Strömungsquerschnitt der Niederdruckseite. Diese Querschnittsverhältnisse ergeben einen sehr guten Wärmeaustausch zwischen den beiden Medien.In the case of the twisted arrangement of high and low pressure sides, the free flow cross section of the high pressure side is preferably smaller overall than the free flow cross section of the low pressure side. In this case, the free flow cross sections differ such that the free flow cross section of the high pressure side is preferably at most half as large and preferably at least a quarter as large, more preferably about one third +/- 10% is as large as the free flow cross section of the low pressure side. These cross-sectional ratios result in a very good heat exchange between the two media.

Der Außendurchmesser des Außenrohres beträgt - bei verdrehter Anordnung von Hoch- und Niederdruckseite - vorzugsweise 10 bis 18 mm, insbesondere 12 bis 16 mm. Der Innendurchmesser des Innenrohres beträgt vorzugsweise 6 bis 12 mm, insbesondere 8 bis 10 mm. Die Breite der Rippen zwischen dem Innen- und Außenrohr beträgt vorzugsweise 0,3 bis 0,8 mm, insbesondere bevorzugt 0,4 bis 0,7 mm.The outer diameter of the outer tube is - with twisted arrangement of high and low pressure side - preferably 10 to 18 mm, in particular 12 to 16 mm. The inner diameter of the inner tube is preferably 6 to 12 mm, in particular 8 to 10 mm. The width of the ribs between the inner and outer tubes is preferably 0.3 to 0.8 mm, particularly preferably 0.4 to 0.7 mm.

Das Außenrohr ist - bei der verdrehten Anordnung von Hoch- und Niederdruckseite - vorzugsweise in mindestens sechs, insbesondere in mindestens zehn, insbesondere bevorzugt in mindestens zwölf Teilkanäle und maximal in zwanzig, vorzugsweise in maximal sechzehn Teilkanäle unterteilt. Diese Unterteilung ermöglicht optimale Festigkeitseigenschaften des Rohres, verbunden mit einer großen Wärmeübertragungsfläche für das im äußeren Bereich strömende Medium.The outer tube is - in the twisted arrangement of high and low pressure side - preferably divided into at least six, in particular at least ten, more preferably at least twelve sub-channels and a maximum of twenty, preferably a maximum of sixteen sub-channels. This subdivision allows optimal strength properties of the pipe, connected with a large heat transfer area for the medium flowing in the outer area.

Die Wandstärke der Außenwand ist bei der verdrehten Anordnung von Hoch- und Niederdruckseite - vorzugsweise größer als die Wandstärke der Wand zwischen Außenrohr und Innenrohr. Auf Grund der größeren Druckdifferenz vom Außenrohr zur Umgebung hin als vom Außenrohr zum inneren Bereich kann die Wandstärke zum Innenrohr geringer ausgelegt werden, so dass eine Materialeinsparung möglich ist. Ist - wie bei herkömmlichen Koaxialrohren - der maximale Druck im Innenrohr vorgesehen, so muss das Außenrohr jedoch auch dem entsprechenden Druck standhalten können, weshalb es eine entsprechende Wandstärke aufweisen sollte und daher bei herkömmlichen Koaxialrohren entsprechend dem Innenrohr ausgelegt ist, wodurch das Koaxialrohr schwerer und somit teurer als ein erfindungsgemäßes Koaxialrohr ist. Im Übrigen kann durch die dünnere Wand auch eine Verbesserung der Wärmeübertragungsleistung erzielt werden.The wall thickness of the outer wall is in the twisted arrangement of high and low pressure side - preferably larger than the wall thickness of the wall between the outer tube and the inner tube. Due to the greater pressure difference from the outer tube to the environment than from the outer tube to the inner region, the wall thickness to the inner tube can be made smaller, so that a material saving is possible. Is - as in conventional coaxial tubes - the maximum pressure in the inner tube provided, the outer tube, however, must also be able to withstand the corresponding pressure, which is why it should have a corresponding wall thickness and therefore designed in conventional coaxial tubes according to the inner tube, making the coaxial tube heavier and thus more expensive than a coaxial tube according to the invention. Incidentally, an improvement in the heat transfer performance can be achieved by the thinner wall.

Die Breite der Rippen oder Stege, welche die einzelnen Teilkanäle des Außenrohres unterteilen, ist vorzugsweise kleiner als sie Wandstärke der Wand des Außenrohres, wodurch sich auch Material einsparen lässt.The width of the ribs or webs, which divide the individual sub-channels of the outer tube, is preferably smaller than the wall thickness of the wall of the outer tube, which can also save material.

Bevorzugt ist die Breite der Stege, welche die einzelnen Teilkanäle des Außenrohres unterteilen, größer oder gleich der Wandstärke der Wand zwischen Außenrohr und Innenrohr.Preferably, the width of the webs, which divide the individual sub-channels of the outer tube, greater than or equal to the wall thickness of the wall between the outer tube and the inner tube.

Um insbesondere den Druckverlust beim Einströmen in das Innenrohr möglichst gering zu halten, erfolgt das Einströmen des entsprechenden Mediums vorzugsweise im Wesentlichen koaxial, wofür das entsprechende Anschlussstück entsprechend ausgebildet ist.In order in particular to keep the pressure loss as low as possible when flowing into the inner tube, the inflow of the corresponding medium preferably takes place substantially coaxially, for which purpose the corresponding connecting piece is designed accordingly.

Ein erfindungsgemäßes Koaxialrohr oder eine erfindungsgemäße Rohr-in-Rohr-Anordnung kann insbesondere für Wärmetauscher, vorzugsweise für Kraftfahrzeug-Klimaanlagen, insbesondere bevorzugt für Hochdruck-Klimaanlagen (wie beispielsweise bei R744-Klimaanlagen) von Kraftfahrzeugen verwendet, jedoch sind auch andere Anwendungen möglich. Besonders bevorzugt ist die Verwendung als so genannter innerer Wärmetauscher bzw. innerer Wärmeübertrager. Insbesondere bei letztgenannter Verwendung und bei der Verwendung von R744 verhält sich das verwendete Kältemittel üblicherweise, auch wenn es zumindest teilweise in gasförmigem Zustand befindlich ist, aufgrund der in der Regel sehr hohen Dichte ähnlich wie ein Fluid. Insbesondere dadurch ist es möglich beispielsweise durch Verwendung eines Turbulenzerzeugers die Wärmeübertragung zwischen den Kanälen zu erhöhenA coaxial tube according to the invention or a tube-in-tube arrangement according to the invention can be used in particular for heat exchangers, preferably for motor vehicle air conditioners, particularly preferably for high-pressure air conditioning systems (such as in R744 air conditioners) of motor vehicles, however, other applications are also possible. Especially preferred is the use as a so-called inner heat exchanger or internal heat exchanger. In particular, in the latter use and in the use of R744, the refrigerant used usually behaves, even if it is at least partially in the gaseous state, due to the usually very high density similar to a fluid. In particular, this makes it possible, for example by using a turbulence generator to increase the heat transfer between the channels

Insbesondere bei der Verwendung als innerer Wärmetauscher in einem Kältemittelkreislauf kann sich die vorgeschlagene Beaufschlagung mit Hochdruck auf der Außenseite bzw. Niederdruck auf der Innenseite als besonders vorteilhaft erweisen. So weist der Hochdruck üblicherweise eine höhere Temperatur als der Niederdruck auf, so dass besonders gut zusätzliche Wärmeenergie vom hochdruckseitigen Kältemittel an die Umgebung abgeführt werden kann.In particular, when used as an inner heat exchanger in a refrigerant circuit, the proposed application of high pressure on the outside or low pressure on the inside may prove to be particularly advantageous. Thus, the high pressure usually has a higher temperature than the low pressure, so that particularly good additional heat energy can be dissipated from the high-pressure side refrigerant to the environment.

Im Folgenden wird die vorliegende Erfindung anhand mehrerer Ausführungsbeispiele mit Varianten, teilweise unter Bezugnahme auf die Zeichnung, näher erläutert. Es zeigen:

Fig. 1
einen Schnitt durch ein Koaxialrohr gemäß dem ersten Ausfüh-rungsbeispiel,
Fig. 2
eine schematische Darstellung eines Wärmeaustauschers mit einem anderen Koaxialrohr,
Fig. 3
einen Längsschnitt durch einen Endbereich des Koaxialrohrs von Fig. 1 mit Anschlussstück,
Fig. 4
einen Schnitt durch ein Koaxialrohr gemäß dem zweiten Ausfüh- rungsbeispiel,
Fig. 5
einen Schnitt durch ein Koaxialrohr gemäß dem dritten Ausfüh- rungsbeispiel,
Fig. 6
einen Schnitt durch ein Koaxialrohr gemäß dem vierten Ausfüh- rungsbeispiel, und
Fig. 7
einen Schnitt durch ein Koaxialrohr gemäß dem fünften Ausfüh- rungsbeispiel.
In the following, the present invention with reference to several embodiments with variants, partially explained with reference to the drawings. Show it:
Fig. 1
a section through a coaxial tube according to the first embodiment,
Fig. 2
a schematic representation of a heat exchanger with another coaxial tube,
Fig. 3
a longitudinal section through an end portion of the coaxial tube of Fig. 1 with connector,
Fig. 4
a section through a coaxial tube according to the second embodiment,
Fig. 5
a section through a coaxial tube according to the third embodiment,
Fig. 6
a section through a coaxial tube according to the fourth embodiment, and
Fig. 7
a section through a coaxial tube according to the fifth embodiment.

Gemäß dem ersten Ausführungsbeispiel ist ein Wärmetauscher 1, von dem nur ein Querschnitt in den Figuren 1 und 3 dargestellt ist, der aber im Prinzip ausgebildet sein kann, wie in Fig. 2 mit einem vergrößert dargestellten, anderen Querschnitt dargestellt ist, vorgesehen. Dieser Wärmeaustauscher 1 dient dem Wärmeaustausch von einem ersten Medium und einem zweiten Medium. Hierbei strömt das erste Medium durch den inneren Bereich 2 eines Innenrohres 3 und das zweite Medium durch den äußeren Bereich 4 welcher zwischen einem Außenrohr 5 und dem Innenrohr 3 gebildet ist. Hierbei sind Innenrohr 3 und Außenrohr 5 samt dazwischen in radialer Richtung in Längsrichtung durchgehend verlaufender Rippen 6 einstückig als ein Koaxialrohr 7 aus einer Aluminiumlegierung extrudiert.According to the first embodiment, a heat exchanger 1, of which only a cross section in the FIGS. 1 and 3 is shown, but may be formed in principle, as in Fig. 2 is shown with an enlarged, shown another cross-section provided. This heat exchanger 1 serves the heat exchange of a first medium and a second medium. Here, the first medium flows through the inner region 2 of an inner tube 3 and the second medium through the outer region 4 which is formed between an outer tube 5 and the inner tube 3. Here, the inner tube 3 and the outer tube 5 together with them in the radial direction in the longitudinal direction continuously extending ribs 6 are integrally extruded as a coaxial tube 7 made of an aluminum alloy.

Der Außendurchmesser des Koaxialrohres 7 beträgt vorliegend 16 mm, die Wandstärke des Außenrohres 5 0,8 mm, die Wandstärke des Innenrohres 3 0,6 mm, die Rippenbreite 0,7 mm und der Innendurchmesser 7 mm. Es sind zwölf Rippen 6, also auch zwölf voneinander unterteilt ausgebildete Außenkanäle vorgesehen, welche auf Grund der einander entsprechenden Breite der einzelnen Rippen 6 in äquidistanten Abständen um das Innenrohr 3 verteilt sind.The outer diameter of the coaxial tube 7 is present 16 mm, the wall thickness of the outer tube 5 0.8 mm, the wall thickness of the inner tube 3 0.6 mm, the rib width 0.7 mm and the inner diameter 7 mm. There are twelve ribs 6, so also twelve subdivided trained outer channels provided, which are distributed due to the corresponding width of the individual ribs 6 at equidistant intervals around the inner tube 3.

Um das kühlende und das zu kühlende Medium in das Koaxialrohr 7 einzuleiten, sind an beiden Enden des Koaxialrohres 7 Anschlussbauteile 8 (siehe Fig. 2) vorgesehen, über welche die Medien, welche durch den inneren Bereich 2 bzw. den äußeren Bereich 4 vorliegend im Gegenstrombetrieb strömen, getrennt voneinander zu- bzw. abgeleitet werden.To initiate the cooling and the medium to be cooled in the coaxial tube 7, 7 connecting components 8 are at both ends of the coaxial tube (see Fig. 2 ), via which the media, which in the present case flow in countercurrent operation through the inner region 2 or the outer region 4, are supplied or discharged separately from one another.

Am einstückig extrudierten Koaxialrohr 7 liegt am Außenrohr 5 (Hochdruckseite) ein höherer Druck pa an als am Innenrohr 3 (Niederdruckseite), an welchem der Druck pi anliegt. Der Betriebsdruck auf Niederdruckseite beträgt gemäß dem vorliegenden Ausführungsbeispiel ca. 130 bar, der entsprechende Berstdruck 264 bar, und der Betriebsdruck auf Hochdruckseite beträgt ca. 160 bar, der entsprechende Berstdruck 352 bar. Die genannten Druckwerte beziehen sich insbesondere auf die Verwendung von CO2 (R744) als Kältemittel.On coaxially extruded coaxial tube 7 is located on the outer tube 5 (high pressure side) a higher pressure p a than on the inner tube 3 (low pressure side) to which the pressure p i is applied. The operating pressure on the low pressure side is according to the present embodiment about 130 bar, the corresponding bursting pressure 264 bar, and the operating pressure on the high pressure side is about 160 bar, the corresponding bursting pressure 352 bar. The mentioned pressure values refer in particular to the use of CO 2 (R744) as refrigerant.

Dadurch, dass die Hochdruckseite innen angeordnet ist, lässt sich eine verbesserte, definierte Anströmung des Hochdruckkältemittels über das entsprechende Anschlussstück 8 realisieren, insbesondere ist, wie vorliegend in Fig. 3 dargestellt, eine umlenkungsfreie Anströmung des Hochdruckkältemittels in Richtung der Längsachse des Innenrohres vorgesehen, wodurch der Druckverlust verringert und dadurch die Kälteleistung verbessert werden kann. Die Anströmung des Niederdruckkältemittels erfolgt in radialer Richtung bezüglich der Längsachse des Koaxialrohres 1.Due to the fact that the high-pressure side is arranged inside, an improved, defined flow of the high-pressure refrigerant can be realized via the corresponding connecting piece 8, in particular, as in the present case Fig. 3 shown, a deflection-free flow of the high-pressure refrigerant provided in the direction of the longitudinal axis of the inner tube, whereby the pressure loss can be reduced and thereby the cooling capacity can be improved. The flow of the low-pressure refrigerant takes place in the radial direction with respect to the longitudinal axis of the coaxial tube. 1

Um jedoch eine gute Vermischung des Hochdruckkältemittels im inneren Bereich 2 zu ermöglichen, ist gemäß dem ersten Ausführungsbeispiel im Innenraum des Innenrohres 3 ein Turbulenzerzeuger 11 in Form einer Wendel (Rundrohrwendel) vorgesehen, welche sich im Koaxialrohr angeordnet auch mit demselben verbiegen lässt. Die Ganghöhe der Wendel entspricht vorliegend einem Mehrfachen des Innendurchmessers des Innenrohres 3 und ist über die gesamte Koaxialrohrlänge konstant. Die Wendel lenkt das im Innenrohr strömende Kältemittel um, so dass sich keine laminare Strömung im Wandbereich ausbildet und dadurch eine verbesserte Vermischung und ein verbesserter Wärmeaustausch ergibt.However, in order to allow a good mixing of the high-pressure refrigerant in the inner region 2, according to the first embodiment in the interior of the inner tube 3, a turbulence generator 11 in the form of a helix (round tube helix) is provided which can be bent in the coaxial tube and bent with the same. The pitch of the helix in this case corresponds to a multiple of the inner diameter of the inner tube 3 and is constant over the entire Koaxialrohrlänge. The helix deflects the refrigerant flowing in the inner tube, so that no laminar flow is formed in the wall region, resulting in improved mixing and improved heat exchange.

Gemäß möglicher Varianten ändert sich die Ganghöhe der Wendel über die Länge des Koaxialrohres und/oder ändert sich die Drehrichtung der Wendel, wobei auch mehrfach Änderungen vorgesehen sein können.According to possible variants, the pitch of the helix changes over the length of the coaxial tube and / or changes the direction of rotation of the helix, whereby multiple changes can be made.

Fig. 4 zeigt ein zweites Ausführungsbeispiel welches - sofern nicht nachfolgend erwähnt - dem ersten Ausführungsbeispiel entspricht, jedoch keine Wendel als Turbulenzerzeuger 11 aufweist. Gemäß dem zweiten Ausführungsbeispiel sind vielmehr gleichmäßig über den Innenumfang des Innenrohres 3 verteilt als Turbulenzerzeuger 11 acht Innenrippen 21 in radialer Richtung nach innen vorstehend vorgesehen. Die Innenrippen haben eine Rippendicke, die 0,1 mm geringer als die Wandstärke des Außenrohres 5 ist. Die Länge der Innenrippen 21 beträgt vorliegend 1 mm, so dass sie einen Kreis von 5 mm Durchmesser in der Mitte des Innenrohres 3 frei lassen. Fig. 4 shows a second embodiment which - unless mentioned below - corresponds to the first embodiment, but has no helix as a turbulence generator 11. According to the second embodiment are rather uniform over the inner circumference of the inner tube 3 distributed as a turbulence generator 11 eight inner ribs 21 provided in the radial direction inwardly projecting. The inner ribs have a rib thickness which is 0.1 mm less than the wall thickness of the outer tube 5. The length of the inner ribs 21 is presently 1 mm, so that they leave a circle of 5 mm diameter in the middle of the inner tube 3 free.

Gemäß dem dritten, in Fig. 5 dargestellten Ausführungsbeispiel, welches sofern nicht nachfolgend erwähnt - dem ersten Ausführungsbeispiel entspricht, jedoch keine Wendel als Turbulenzerzeuger 11 aufweist, sieht als Turbulenzerzeuger 11 zwei sich senkrecht kreuzende Stege 22 im Innenrohr 3 auf, welche den inneren Bereich 2 vierteilen. Die Stegdicke ist vorliegend um 0,1 mm geringer als die Wandstärke des Außenrohres 5.According to the third, in Fig. 5 illustrated embodiment, which, unless mentioned below - corresponds to the first embodiment, but has no coil as a turbulence generator 11, looks as a turbulence generator 11, two perpendicular crossing webs 22 in the inner tube 3, which quadrant the inner region 2. In the present case, the web thickness is 0.1 mm less than the wall thickness of the outer tube 5.

In Fig. 6 ist als viertes Ausführungsbeispiel ein Koaxialrohr 7 mit einer Wendel als Turbulenzerzeuger 11 dargestellt, welches andere Abmessungen als das Koaxialrohr 7 des ersten Ausführungsbeispiels aufweist.In Fig. 6 is shown as a fourth embodiment, a coaxial tube 7 with a helix as a turbulence generator 11, which has different dimensions than the coaxial tube 7 of the first embodiment.

Gemäß dem vierten Ausführungsbeispiel ist ein Wärmetauscher 1, von dem nur ein Querschnitt in Fig. 6 dargestellt ist, der aber im Prinzip ausgebildet sein kann, wie in Fig. 2 mit einem vergrößert dargestellten, anderen Querschnitt dargestellt ist, vorgesehen. Dieser Wärmeaustausch 1 dient Wärmeaustausch von einem ersten Medium und einem zweiten Medium. Hierbei strömt das erste Medium durch den inneren Bereich 2 eines Innenrohres 3 und das zweite Medium durch den äußeren Bereich 4 welcher zwischen einem Außenrohr 5 und dem Innenrohr 3 gebildet ist. Hierbei sind Innenrohr 3 und Außenrohr 5 samt dazwischen in radialer Richtung in Längsrichtung durchgehend verlaufender Rippen 6 einstückig als ein Koaxialrohr 7 aus einer Aluminiumlegierung extrudiert.According to the fourth embodiment, a heat exchanger 1, of which only one cross section in Fig. 6 is shown, but may be formed in principle, as in Fig. 2 is shown with an enlarged, shown another cross-section provided. This heat exchange 1 serves heat exchange of a first medium and a second medium. Here, the first medium flows through the inner region 2 of an inner tube 3 and the second medium through the outer region 4 which is formed between an outer tube 5 and the inner tube 3. Here, the inner tube 3 and the outer tube 5 together with them in the radial direction in the longitudinal direction continuously extending ribs 6 are integrally extruded as a coaxial tube 7 made of an aluminum alloy.

Der Außendurchmesser des Koaxialrohres 7 beträgt vorliegend 16 mm, die Wandstärke des Außenrohres 5 0,8 mm, die Wandstärke des Innenrohres 3 0,6 mm, die Rippenbreite 0,7 mm und der Innendurchmesser 11 mm. Es sind vierzehn Rippen 6, also auch vierzehn voneinander unterteilt ausgebildete Außenkanäle vorgesehen, welche auf Grund der einander entsprechenden Breite der einzelnen Rippen 6 in äquidistanten Abständen um das Innenrohr 3 verteilt sind. Die freien Querschnittsfläche des Innenrohres 3 beträgt ca. 95 mm2, die Summe der freien Querschnittsflächen der Außenkanäle beträgt ca. 35 mm2, ist also etwa 60% kleiner als die des Innenrohres 3.The outer diameter of the coaxial tube 7 is present 16 mm, the wall thickness of the outer tube 5 0.8 mm, the wall thickness of the inner tube 3 0.6 mm, the rib width 0.7 mm and the inner diameter 11 mm. There are fourteen ribs 6, so also fourteen spaced apart formed outer channels provided, which due to the corresponding width of the individual ribs 6 at equidistant intervals around the Inner tube 3 are distributed. The free cross-sectional area of the inner tube 3 is about 95 mm 2 , the sum of the free cross-sectional areas of the outer channels is about 35 mm 2 , that is about 60% smaller than that of the inner tube. 3

Im Innenraum des Innenrohres 3 ist ein Turbulenzerzeuger 11 in Form einer Wendel (Rundrohrwendel) vorgesehen, welche sich im Koaxialrohr angeordnet auch mit demselben verbiegen lässt. Die Ganghöhe der Wendel entspricht vorliegend etwa dem doppelten Innendurchmesser des Innenrohres 3, also etwa 22 mm, und ist über die gesamte Koaxialrohrlänge konstant. Die Wendel lenkt das im Innenrohr strömende Kältemittel um, so dass sich keine laminare Strömung im Wandbereich ausbildet und dadurch eine verbesserte Vermischung und ein verbesserter Wärmeaustausch ergibt.In the interior of the inner tube 3, a turbulence generator 11 in the form of a helix (round tube helix) is provided, which can be arranged in the coaxial tube bend with the same. The pitch of the helix in this case corresponds approximately to twice the inner diameter of the inner tube 3, ie about 22 mm, and is constant over the entire Koaxialrohrlänge. The helix deflects the refrigerant flowing in the inner tube, so that no laminar flow is formed in the wall region, resulting in improved mixing and improved heat exchange.

Um das kühlende und das zu kühlende Medium in das Koaxialrohr 7 einzuleiten, sind an beiden Enden des Koaxialrohres 7 Anschlussbauteile 8 (siehe Fig. 2) vorgesehen, über welche die Medien, welche durch den inneren Bereich 2 bzw. den äußeren Bereich 4 vorliegend im Gegenstrombetrieb strömen, getrennt voneinander zu- bzw. abgeleitet werden.To initiate the cooling and the medium to be cooled in the coaxial tube 7, 7 connecting components 8 are at both ends of the coaxial tube (see Fig. 2 ), via which the media, which in the present case flow in countercurrent operation through the inner region 2 or the outer region 4, are supplied or discharged separately from one another.

Am einstückig extrudierten Koaxialrohr 7 liegt am Außenrohr 5 (Hochdruckseite) ein höherer Druck an als am Innenrohr 3 (Niederdruckseite). Der Betriebsdruck auf Niederdruckseite beträgt gemäß dem vorliegenden Ausführungsbeispiel ca. 130 bar, der entsprechende Berstdruck 264 bar, und der Betriebsdruck auf Hochdruckseite beträgt ca. 160 bar, der entsprechende Berstdruck 352 bar. Die genannten Druckwerte beziehen sich insbesondere auf die Verwendung von CO2 (R744) als Kältemittel.On the coaxially extruded coaxial tube 7, a higher pressure is applied to the outer tube 5 (high pressure side) than to the inner tube 3 (low pressure side). The operating pressure on the low pressure side is according to the present embodiment about 130 bar, the corresponding bursting pressure 264 bar, and the operating pressure on the high pressure side is about 160 bar, the corresponding bursting pressure 352 bar. The mentioned pressure values refer in particular to the use of CO 2 (R744) as refrigerant.

Dadurch, dass die Niederdruckseite innen angeordnet ist, lässt sich eine verbesserte Anströmung des Niederdruckkäkemittels über das entsprechende Anschlussstück 8 realisieren, insbesondere ist, wie vorliegend in Fig. 3 dargestellt, eine umlenkungsfreie Anströmung des Niederdruckkältemittels in Richtung der Längsachse des Innenrohres vorgesehen, wodurch der Druckverlust verringert und dadurch die Kälteleistung verbessert werden kann. Die Anströmung des Hochdruckkältemittels erfolgt in radialer Richtung bezüglich der Längsachse des Koaxialrohres 1.Due to the fact that the low-pressure side is arranged on the inside, an improved flow of the low-pressure chaff agent can be realized via the corresponding connection piece 8, in particular, as in the present case Fig. 3 shown, a deflection-free flow of the low-pressure refrigerant provided in the direction of the longitudinal axis of the inner tube, whereby the pressure loss is reduced and thereby the cooling capacity can be improved. The Flow of the high-pressure refrigerant takes place in the radial direction with respect to the longitudinal axis of the coaxial tube. 1

Fig. 7 zeigt ein fünftes Ausführungsbeispiel eines Koaxialrohres, wobei im Innenrohr 3 als Turbulenzerzeuger 11 sowohl vier gleichmäßig über den Umfang verteilte Innenrippen 21 mit einer Länge von etwa dem halben Radius und zwei senkrecht zueinander und auf Lücke zu den Innenrippen 21 angeordnete Stege 22 vorgesehen sind, welche den Innenraum in vier voneinander getrennte Bereiche unterteilen. Ansonsten entspricht das Koaxialrohr 7 dem des vierten Ausführungsbeispiels, jedoch ist eine entsprechende Ausgestaltung der Turbulenzerzeuger 11 auch auf die zuvor beschriebene Form möglich. Diese Einbauten im Innenrohr 3 vergrößern die Wärmeübergangesfläche und verbessern daher den Wärmeaustausch. Fig. 7 shows a fifth embodiment of a coaxial tube, wherein in the inner tube 3 as turbulence generator 11 both four evenly distributed over the circumference inner ribs 21 are provided with a length of about half the radius and two perpendicular to each other and at a gap to the inner ribs 21 webs 22 which the Divide the interior into four separate areas. Otherwise, the coaxial tube 7 corresponds to that of the fourth embodiment, however, a corresponding embodiment of the turbulence generator 11 is also possible to the previously described form. These internals in the inner tube 3 increase the heat transfer area and therefore improve the heat exchange.

Gemäß einer ersten Variante des fünften Ausführungsbeispiels ist das Koaxialrohr, gedreht extrudiert, d.h. die Rippen, Innenrippen und Stege verlaufen wendelartig, vorliegend mit konstanter Steigung.According to a first variant of the fifth embodiment, the coaxial tube is extruded rotated, i. the ribs, inner ribs and webs run helically, in this case with a constant pitch.

Gemäß einer zweiten Variante des fünften Ausführungsbeispiels ist das Koaxialrohr wiederum gedreht extrudiert, jedoch verändert mit sich ändernder Drehgeschwindigkeit, so dass sich die Steigung der Rippen, Innenrippen und Stege über die Länge des Koaxialrohres verändert.According to a second variant of the fifth embodiment, the coaxial tube is in turn rotated extruded, but changed with changing rotational speed, so that the pitch of the ribs, inner ribs and webs changed over the length of the coaxial tube.

Entsprechend einer weiteren Variante des fünften Ausführungsbeispiels sind an Stelle von den in radialer Richtung verlaufenden Stegen zwei Sehnen einander gegenüberliegend im Innenrohr des Koaxialrohres vorgesehen.According to a further variant of the fifth embodiment, two tendons are provided opposite one another in the inner tube of the coaxial tube instead of the webs extending in the radial direction.

Ein nicht in der Zeichnung dargestelltes sechstes Ausführungsbeispiel sieht eine Rohr-in-Rohr-Anordnung als Koaxialrohr vor, wobei das Außenrohr Rippen und das Innenrohr als Turbulenzerzeuger Innenrippen und Stege aufweist, und das Außenrohr am Ende der Rippen mit dem Innenrohr verlötet ist, wodurch sich eine Ausgestaltung entsprechend dem zweiten Ausführungsbeispiel ergibt.A not shown in the drawing sixth embodiment provides a tube-in-tube arrangement as a coaxial tube, wherein the outer tube ribs and the inner tube as a turbulence generator inner ribs and webs, and the outer tube is soldered at the end of the ribs with the inner tube, thereby an embodiment according to the second embodiment results.

Eine erste Variante des sechsten Ausführungsbeispiels sieht vor, dass die beiden Rohre in unterschiedliche Richtungen gedreht extrudiert sind, d.h. dass die Strömungsverläufe der im Inneren strömenden Kältemittel zum Einen im Gegenstrombetrieb und zum Anderen auch in unterschiedlichen Richtungen gedreht sind, wodurch der Wärmeaustausch verbessert wird.A first variant of the sixth embodiment provides that the two tubes are extruded rotated in different directions, i. that the flow paths of the refrigerant flowing in the interior are rotated on the one hand in countercurrent operation and on the other hand in different directions, whereby the heat exchange is improved.

Gemäß einer zweiten Variante weisen die Verdrehungen der beiden Rohre gegeneinander sich über die Länge ändernde Steigungen auf, so dass bspw. im Einströmbereich eine kleinere Steigung und im Ausströmbereich eine größere Steigung vorgesehen werden kann.According to a second variant, the rotations of the two tubes have mutually over the length changing slopes, so that, for example, in the inflow a smaller pitch and in the outflow a greater pitch can be provided.

Claims (27)

  1. A concentric tube for the separate conduction of at least two media, wherein the concentric tube (7) comprises at least one and, in a cross-sectional area, preferably a maximum of sixteen turbulence generators (11) which are disposed in the inner region (2) of the inner tube, characterized in that the low-pressure side is disposed, in the radial direction, closer to the central longitudinal axis than is the high-pressure side, and the exposed flow cross section of the high-pressure side is smaller, overall, than is the exposed flow cross section of the low-pressure side, and wherein the inner tube and the outer tube, with the fins disposed therebetween in the radial direction and extending continuously in the longitudinal direction, are extruded from an aluminum alloy as a single piece as a concentric tube.
  2. The concentric tube according to claim 1, characterized in that a maximum of twelve turbulence generators (11) are provided in one cross-sectional area.
  3. The concentric tube according to claim 1 or 2, characterized in that the turbulence generator (11) is formed by a helix that extends in the longitudinal direction of the concentric tube (1).
  4. The concentric tube according to one of the preceding claims, characterized in that at least one, in particular at least four, and a maximum of twelve inner fins (21) are provided in the inner
    tube (3) as turbulence generators (11).
  5. The concentric tube according to claim 4, characterized in that the inner fins (21) have a fin thickness of 0.1 to 0.2 mm.
  6. The concentric tube according to claim 4 or 5, characterized in that the inner fins (21) have a fin height of 0.5 to 1.5 mm given an inner diameter of the inner tube (3) of 4 to 8 mm.
  7. The concentric tube according to one of the claims 4 through 6, characterized in that the inner fins (21) extend in the radial direction.
  8. The concentric tube according to one of the claims 4 through 7, characterized in that the inner fins (21) are distributed, at equidistant intervals, around the inner circumference of the inner tube (3) .
  9. The concentric tube according to one of the preceding claims, characterized in that at least one, in particular two or three segments (22) are provided in the inner tube (3) as turbulence generators (11).
  10. The concentric tube according to claim 9, characterized in that the at least one segment (22) extends in the radial direction.
  11. The concentric tube according to claim 9 or 10, characterized in that the at least one segment (22) has a segment thickness of 0.2 to 0.6 mm.
  12. The concentric tube according to one of the preceding claims, characterized in that at least one of the turbulence generators (11) and/or at least one of the fins (7) is disposed obliquely relative to the longitudinal axis of the tube, between the inner tube and the outer tube (3 and 5).
  13. The concentric tube according to claim 12, characterized in that at least one of the turbulence generators (11) and/or at least one of the fins (7) is disposed obliquely relative to the longitudinal axis of the tube, between the inner tube and the outer tube (3 and 5), at a slant such that a rotation of 360° occurs along a tube length of 15 to 40 mm, in particular 20 to 30 mm.
  14. The concentric tube according to one of the preceding claims, characterized in that the length of at least one of the turbulence generators (11) and/or at least one of the inner fins (21) and/or at least one of the segments (22) and/or at least one of the ribs (7) between the inner tube and the outer tube (3 and 5) is 0.3-fold to 0.5-fold, preferably 0.4-fold the length of the tube.
  15. The concentric tube according to one of the preceding claims, characterized in that the exposed flow cross section of the high-pressure side, in all, is half as great at the maximum, and a fourth as great at the minimum, in particular one-third +/- 10% as great as the exposed flow cross section of the low-pressure side.
  16. The concentric tube according to one of the preceding claims, characterized in that the outer diameter of the outer tube is 10 to 20 mm, in
    particular 12 to 18 mm.
  17. The concentric tube according to one of the preceding claims, characterized in that the inner diameter of the inner tube is 3 to 10 mm, in particular 4 to 8 mm.
  18. The concentric tube according to one of the preceding claims, characterized in that the width of fins (7) or segments between the inner tube and the outer tube (3 and 5) is 0.3 to 1.1 mm, in particular 0.5 to 1.0 mm.
  19. The concentric tube according to one of the preceding claims, characterized in that the inflow openings of the two media are disposed on different sides of the concentric tube.
  20. The concentric tube according to one of the preceding claims, characterized in that the outer tube is subdivided into at least six, in particular at least eight, twelve subchannels, and a maximum of twenty, preferably a maximum of sixteen subchannels.
  21. The concentric tube according to one of the preceding claims, characterized in that the wall thickness of the outer wall is greater than or equal to the wall thickness of the wall between the outer tube and the inner tube.
  22. The concentric tube according to one of the preceding claims, characterized in that the thickness of the fins or segments that subdivide the individual subchannels of the outer tube are smaller than or equal to the wall thickness of the
    wall of the outer tube.
  23. A heat exchanger in a concentric tube design, characterized by at least one concentric tube according to one of the claims 1 through 22.
  24. The heat exchanger according to claim 23, characterized in that at least one connecting piece (8) for introducing at least one medium is provided and ensures that the medium is introduced in the concentric direction to the concentric tube (1).
  25. An air conditioning system, in particular for a motor vehicle, characterized by at least one concentric tube according to one of the claims 1 through 22.
  26. The use of a concentric tube according to one of the claims 1 through 22, a heat exchanger according to claim 23 or 24, and/or an air conditioning system according to claim 25, wherein at least one of the media is a refrigerant.
  27. The use of a concentric tube according to one of the claims 1 through 22 or 26, and/or a heat exchanger according to claim 23 or 24 in a refrigerant circuit.
EP20060022999 2005-11-25 2006-11-06 Concentric tubes, in particular for a heat exchanger Expired - Fee Related EP1790933B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200510056650 DE102005056650A1 (en) 2005-11-25 2005-11-25 Coaxial tube or tube-in-tube arrangement, in particular for a heat exchanger

Publications (2)

Publication Number Publication Date
EP1790933A1 EP1790933A1 (en) 2007-05-30
EP1790933B1 true EP1790933B1 (en) 2011-01-19

Family

ID=37887091

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20060022999 Expired - Fee Related EP1790933B1 (en) 2005-11-25 2006-11-06 Concentric tubes, in particular for a heat exchanger

Country Status (2)

Country Link
EP (1) EP1790933B1 (en)
DE (2) DE102005056650A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016081483A1 (en) * 2014-11-17 2016-05-26 Appollo Wind Technologies Llc Greentown Labs Turbo-compressor-condenser-expander
WO2016081481A1 (en) * 2014-11-17 2016-05-26 Appollo Wind Technologies Llc Isothermal-turbo-compressor-expander-condenser-evaporator device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2335953B1 (en) * 2007-08-13 2010-10-25 Valeo Termico, S.A. HEAT EXCHANGER FOR GASES, AND ITS CORRESPONDING MANUFACTURING PROCEDURE.
DE102011012577A1 (en) * 2011-02-26 2012-08-30 Volkswagen Ag Heat exchange device for air conditioning system, has internal spaces for receiving and/or supplying heat transfer medium and refrigerant respectively
RU2502930C2 (en) * 2012-03-26 2013-12-27 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" Double-pipe stream heat exchanger
WO2014026176A1 (en) * 2012-08-10 2014-02-13 Contitech Kuehner Gmbh & Cie Kg Suction flow enhancement for internal heat exchanger
WO2017159542A1 (en) * 2016-03-14 2017-09-21 カルソニックカンセイ株式会社 Double pipe
DE102017222349A1 (en) * 2017-12-11 2019-06-13 Robert Bosch Gmbh absorber device
CN110873542A (en) * 2018-08-29 2020-03-10 重庆蔓极科节能环保科技有限公司 Three-dimensional finned heat exchange tube
DE102019112213A1 (en) * 2019-05-10 2020-11-12 Norma Germany Gmbh Fluid line for a cooling water system of electric vehicles, electric vehicle and use of a fluid line
DE102021209341A1 (en) 2021-08-25 2023-03-02 Mahle International Gmbh heat exchanger

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD57940A (en) *
BE386945A (en) *
CH628134A5 (en) * 1978-03-28 1982-02-15 Ygnis Sa FLUE GAS FLOWED HEAT EXCHANGER.
GB2078927B (en) * 1980-06-20 1983-11-30 Grumman Energy Systems Inc Heat exchange system
DE3209207A1 (en) * 1982-03-13 1983-09-15 Stiebel Eltron Gmbh & Co Kg, 3450 Holzminden Absorber for absorption heat pump system
GB2178518B (en) * 1985-05-21 1988-12-14 Specialist Heat Exchangers Ltd Heat exchangers
US5497824A (en) * 1990-01-18 1996-03-12 Rouf; Mohammad A. Method of improved heat transfer
JPH05164482A (en) * 1991-12-12 1993-06-29 Kobe Steel Ltd Liquefied natural gas vaporizer
JPH063075A (en) * 1992-06-18 1994-01-11 Rinnai Corp Fluid-fluid heat exchanger
JP3131668B2 (en) * 1992-12-01 2001-02-05 昭和アルミニウム株式会社 Oil cooler
JPH10339588A (en) * 1997-06-06 1998-12-22 Denso Corp Heat exchanger and manufacture thereof
JP2000111277A (en) * 1998-10-09 2000-04-18 Toyota Motor Corp Double piping type heat exchanger
JP2000161873A (en) * 1998-11-26 2000-06-16 Toyota Motor Corp Heat exchanger
DE19944951B4 (en) * 1999-09-20 2010-06-10 Behr Gmbh & Co. Kg Air conditioning with internal heat exchanger
DE20011545U1 (en) * 2000-07-01 2000-10-12 Hoecker Hans Peter Heat exchange device
DE10053000A1 (en) * 2000-10-25 2002-05-08 Eaton Fluid Power Gmbh Air conditioning system with internal heat exchanger and heat exchanger tube for one
DE10349140A1 (en) * 2003-10-17 2005-05-12 Behr Gmbh & Co Kg Heat exchanger, in particular for motor vehicles
DE10349504A1 (en) * 2003-10-23 2005-05-25 Bayer Technology Services Gmbh Process for the preparation of isocyanates in the gas phase

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016081483A1 (en) * 2014-11-17 2016-05-26 Appollo Wind Technologies Llc Greentown Labs Turbo-compressor-condenser-expander
WO2016081481A1 (en) * 2014-11-17 2016-05-26 Appollo Wind Technologies Llc Isothermal-turbo-compressor-expander-condenser-evaporator device
US9772122B2 (en) 2014-11-17 2017-09-26 Appollo Wind Technologies Llc Turbo-compressor-condenser-expander

Also Published As

Publication number Publication date
EP1790933A1 (en) 2007-05-30
DE502006008755D1 (en) 2011-03-03
DE102005056650A1 (en) 2007-05-31

Similar Documents

Publication Publication Date Title
EP1790933B1 (en) Concentric tubes, in particular for a heat exchanger
EP1790931A2 (en) Coaxial or pipe in pipe assembly, in particular for a heat exchanger
EP1654508B2 (en) Heat exchanger and method for the production thereof
DE102005052683B4 (en) Multi-channel flat tube for heat exchangers
EP1837499B1 (en) Device for cooling an exhaust gas stream
DE2209325A1 (en) HEAT EXCHANGE TUBE WITH INTERNAL RIBS AND METHOD OF ITS MANUFACTURING
EP1996888B1 (en) Heat exchanger for a motor vehicle
EP0714008A2 (en) Heat exchanger with header box
DE102005021610A1 (en) heat exchangers
DE102015104180B4 (en) Device for a heat exchanger for collecting and distributing a heat transfer fluid
DE10100241A1 (en) Heat exchanger tube for liquid or gaseous media
DE102015102311A1 (en) Shell and tube heat exchanger
EP2447626B1 (en) Heat exchanger, in particular for use with refrigerated cabinets
DE102006032570A1 (en) Heat exchanger unit for air conditioning system of motor vehicle, has internal heat exchanger directly connected or soldered with heat exchanger over connecting cable for formation of structural unit
EP1934545B1 (en) Heating body, cooling circuit, air conditioning unit for a motor vehicle air conditioning system, and air conditioning system for a motor vehicle
EP3491323B1 (en) Heat exchanger having a micro-channel structure or wing tube structure
EP2937658B1 (en) Internal heat exchanger
DE102008020230A1 (en) Heat exchanger for vehicle combustion engine coolant radiator has exchanger tube wall perpendicular to longitudinal direction with zigzag profile and/or zigzag flow cross-section for first medium; cross-section can also have interruptions
DE10000288C1 (en) Spiral heat exchanger; has spiral elements for at least two media, each with central tube and spiralled multichannel profile sealingly connected to slots in central tube and having tapered sealed end
EP1788320B1 (en) Heat exchanger
DE202017102436U1 (en) Heat exchanger with microchannel structure or wing tube structure
EP1331464B1 (en) Heat exchanger
DE102016006913A1 (en) heat exchanger tube
EP3009780B2 (en) Heat exchanger
EP1248063A1 (en) Heat exchanger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20071130

17Q First examination report despatched

Effective date: 20080110

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502006008755

Country of ref document: DE

Date of ref document: 20110303

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006008755

Country of ref document: DE

Effective date: 20110303

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111020

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006008755

Country of ref document: DE

Effective date: 20111020

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111106

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006008755

Country of ref document: DE

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006008755

Country of ref document: DE

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

Effective date: 20150304

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006008755

Country of ref document: DE

Owner name: MAHLE INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: BEHR GMBH & CO. KG, 70469 STUTTGART, DE

Effective date: 20150304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181203

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006008755

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603