EP1790931A2 - Koaxial oder Rohr-in-Rohr-Anordnung, insbesondere für einen Wärmetauscher - Google Patents

Koaxial oder Rohr-in-Rohr-Anordnung, insbesondere für einen Wärmetauscher Download PDF

Info

Publication number
EP1790931A2
EP1790931A2 EP06022998A EP06022998A EP1790931A2 EP 1790931 A2 EP1790931 A2 EP 1790931A2 EP 06022998 A EP06022998 A EP 06022998A EP 06022998 A EP06022998 A EP 06022998A EP 1790931 A2 EP1790931 A2 EP 1790931A2
Authority
EP
European Patent Office
Prior art keywords
tube
coaxial
arrangement according
ribs
pressure side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06022998A
Other languages
English (en)
French (fr)
Other versions
EP1790931A3 (de
Inventor
Julian Dipl.-Ing. Helfen
Wolfgang Dipl.-Ing. Seewald
Karl-Heinz Dipl.-Ing. Staffa
Uli Dipl.-Ing. Vedder
Christoph Dipl.-Ing. Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP1790931A2 publication Critical patent/EP1790931A2/de
Publication of EP1790931A3 publication Critical patent/EP1790931A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Definitions

  • the invention relates to a coaxial tube or a tube-in-tube arrangement according to the preamble of claim 1.
  • From the EP 1 202 016 A2 is a one-piece heat exchanger tube with a multi-chamber profile known, according to which a plurality of outer channels are provided around a central channel.
  • the outer channels are divided by intermediate walls which extend in the radial direction.
  • projections are provided which extend into the central channel. These projections serve to reduce the cross-sectional area and thus increase the flow velocity.
  • the cross-sectional area of the central channel is significantly smaller than the sum of the cross-sectional areas of the outer channels.
  • the ribs / projections may also be helical, wherein constant, changing or alternating gradients may be provided.
  • the inner channel is used as a high pressure side, the outer channels as a low pressure side.
  • Spiral-shaped webs which separate the outer channels from each other, and the provision of turbulence elements on the webs are from the DE 199 44 951 A1 in turn, in turn, the inner channel, the high pressure side and the outer channels form the low pressure side.
  • the cross-sectional area of the inner channel is smaller than the sum of the cross-sectional areas of the outside of the inner channel disposed outer channels.
  • a coaxial tube or a tube-in-tube arrangement for the separate line of at least two media, which is preferably refrigerant, is provided, whose pressure level differs, wherein in the coaxial tube or the tube-in-tube arrangement the Low pressure side is arranged in the radial direction closer to the central longitudinal axis than the high pressure side.
  • the twisted arrangement, the inner tube may be formed with a smaller wall thickness, which reduces the total weight, the material requirements and thus the cost of the coaxial tube or the tube-in-tube arrangement.
  • the dimensions can be slightly reduced, which also reduces the heat input from the outside into the system and thus the performance can be increased.
  • the term "pipe” is to be interpreted in the following very broad and refers not only to round cross-sections, but in particular also oval, rounded rectangular or any other cross-sections.
  • the tube may also be two tubes arranged inside one another which do not have any have direct connections (tube-in-tube arrangement).
  • positioning elements for the inner tube may be provided in the outer tube, such as provided on the outer and / or inner tube, radially inwardly or outwardly projecting ribs to optionally ensure a coaxial arrangement.
  • the arrangement of the inner tube or of the inner region in the outer tube is preferably coaxial, but does not have to be, so that eccentric arrangements are also possible.
  • several inner tubes may be provided, which are connected by means of several sleeves.
  • the inner tube may also be soldered or otherwise connected to the outer tube in the contact regions.
  • the free flow cross section of the high pressure side is preferably smaller overall than the free flow cross section of the low pressure side.
  • the free flow cross sections differ in such a way that the free flow cross section of the.
  • High pressure side is preferably at most half as large and preferably at least a quarter as large, more preferably about one-third +/- 10% is as large as the free flow area of the low pressure side.
  • the outer diameter of the outer tube is preferably 10 to 18 mm, in particular 12 to 16 mm.
  • the inner diameter of the inner tube is preferably 6 to 12 mm, in particular 8 to 10 mm.
  • the width of the ribs between the inner and outer tubes is preferably 0.3 to 0.8 mm, particularly preferably 0.4 to 0.7 mm.
  • the inlet openings of the two media are arranged on different sides of the coaxial tube or the tube-in-tube arrangement, so that the coaxial tube or the tube-in-tube arrangement is flowed through in countercurrent operation.
  • the outer tube is preferably subdivided into at least six, in particular at least ten, in particular preferably at least twelve subchannels and a maximum of twenty, preferably a maximum of sixteen subchannels.
  • This subdivision allows optimal strength properties of the tube, combined with a large heat transfer area for the medium flowing in the outer region.
  • the wall thickness of the outer wall is preferably greater than the wall thickness of the wall between the outer tube and the inner tube. Due to the greater pressure difference from the outer tube to the environment than from the outer tube to the inner region, the wall thickness to the inner tube can be made smaller, so that a material saving is possible. Is - as in conventional coaxial tubes - the maximum pressure in the inner tube provided, the outer tube, however, must also be able to withstand the corresponding pressure, which is why it should have a corresponding wall thickness and therefore designed in conventional coaxial tubes according to the inner tube, making the coaxial tube heavier and thus more expensive than a coaxial tube according to the invention. Incidentally, an improvement in the heat transfer performance can be achieved by the thinner wall.
  • the width of the ribs or webs, which divide the individual sub-channels of the outer tube, is preferably smaller than the wall thickness of the wall of the outer tube, which can also save material.
  • the width of the webs, which divide the individual sub-channels of the outer tube greater than or equal to the wall thickness of the wall between the outer tube and the inner tube.
  • At least one turbulence generator is preferably provided, which is preferably an inner tube coil.
  • at least one inner rib and / or at least one chord which in this case also means a web extending in the radial direction from one to the other side of the inner wall, may be provided in the inner tube.
  • At least one of the turbulence generators and / or at least one of the inner ribs and / or at least one of the webs and / or at least one of the ribs between the inner and outer tubes is preferably inclined with respect to arranged the pipe axis.
  • the slope can also change over the total length of the tube, as well as the direction of rotation.
  • At least one of the turbulence generators and / or at least one of the inner ribs and / or at least one of the webs and / or at least one of the ribs between the inner and outer tubes is formed obliquely with respect to the tube longitudinal axis with such a pitch that a 360 ° rotation over a tube length of 15 to 35 mm, in particular from 20 to 25 mm, takes place.
  • the length of at least one of the turbulence generators and / or at least one of the inner ribs and / or at least one of the webs and / or at least one of the ribs between the inner and outer tube is 0.3 times to 0, 5 times, preferably equal to 0.4 times the tube length. It is also conceivable, however, for the length of at least one of the aforementioned devices to correspond essentially to the tube length.
  • the inflow of the low-pressure medium is preferably carried out substantially coaxially, for which purpose the corresponding connecting piece is designed accordingly.
  • a coaxial tube according to the invention or a tube-in-tube arrangement according to the invention can be used in particular for heat exchangers, preferably for motor vehicle air conditioners, particularly preferably for high-pressure air conditioning systems (such as in R744 air conditioners) of motor vehicles, however, other applications are also possible.
  • heat exchangers preferably for motor vehicle air conditioners, particularly preferably for high-pressure air conditioning systems (such as in R744 air conditioners) of motor vehicles, however, other applications are also possible.
  • Particularly preferred is the use as a so-called inner heat exchanger or internal heat exchanger.
  • the refrigerant used usually behaves, even if it is at least partially in the gaseous state, due to the usually very high density similar to a fluid. In particular, this makes it possible, for example, by use a turbulence generator to increase the heat transfer between the channels.
  • the proposed application of high or low pressure may prove to be particularly advantageous.
  • the high pressure usually has a higher temperature than the low pressure, so that particularly good additional heat energy can be dissipated from the high-pressure side refrigerant to the environment.
  • a heat exchanger 1 of which only a cross-section is shown in Fig. 1, but which may be formed in principle, as shown in Fig. 2 with an enlarged, shown another cross-section provided.
  • This heat exchanger 1 serves the heat exchange of a first medium and a second medium.
  • the first medium flows through the inner region 2 of an inner tube 3 and the second medium through the outer region 4 which between an outer tube 5 and the inner tube 3 is formed.
  • the inner tube 3 and the outer tube 5 together with them in the radial direction in the longitudinal direction continuously extending ribs 6 are integrally extruded as a coaxial tube 7 made of an aluminum alloy.
  • the outer diameter of the coaxial tube 7 is present 16 mm, the wall thickness of the outer tube 5 0.8 mm, the wall thickness of the inner tube 3 0.6 mm, the rib width 0.7 mm and the inner diameter 11 mm.
  • the free cross-sectional area of the inner tube 3 is about 95 mm 2
  • the sum of the free cross-sectional areas of the outer channels is about 35 mm 2 , that is about 60% smaller than that of the inner tube. 3
  • 7 connecting components 8 are provided at both ends of the coaxial tube, via which the media, which by the inner region 2 and the outer region 4 present in the Countercurrent flow, separately from each other or be derived.
  • a higher pressure is applied to the outer tube 5 (high pressure side) than to the inner tube 3 (low pressure side).
  • the operating pressure on low pressure side (low pressure p N ) is according to the present embodiment about 130 bar, the corresponding bursting pressure 264 bar, and the operating pressure on the high pressure side (high pressure p H ) is about 160 bar, the corresponding bursting pressure 352 bar.
  • the mentioned pressure values refer in particular to the use of CO 2 (R744) as refrigerant.
  • an improved flow of the low-pressure refrigerant can be realized via the corresponding connection piece 8; in particular, as shown in FIG. 3, a deflection-free flow of the low-pressure refrigerant is provided in the direction of the longitudinal axis of the inner tube, whereby the pressure loss can be reduced and thereby the cooling capacity can be improved.
  • the flow of the high-pressure refrigerant takes place in the radial direction with respect to the longitudinal axis of the coaxial tube. 1
  • a turbulence generator 11 in the form of a helix is provided in the interior of the inner tube 3, which can be arranged in the coaxial tube bend with the same.
  • the pitch of the helix in this case corresponds approximately to twice the inner diameter of the inner tube 3, that is about 22 mm, and is constant over the entire length of the coaxial tube.
  • the helix deflects the refrigerant flowing in the inner tube, so that no laminar flow is formed in the wall region, resulting in improved mixing and improved heat exchange.
  • the pitch of the helix changes over the length of the coaxial tube and / or changes the direction of rotation of the turning, wherein multiple changes can be provided.
  • Fig. 4 shows a second embodiment of a coaxial tube, wherein in the inner tube 3 both four evenly distributed over the circumference inner ribs 21 are provided with a length of about half the radius and two perpendicular to each other and at a gap to the inner ribs 21 webs 22 which the Divide the interior into four separate areas. These internals in the inner tube 3 enlarge the heat transfer surface and therefore improve the heat exchange.
  • the coaxial tube is extruded turned, i. the ribs, inner ribs and webs run helically, in this case with a constant pitch.
  • the coaxial tube is in turn rotated extruded, but changed with changing Rotational speed, so that the pitch of the ribs, inner ribs and webs changed over the length of the coaxial tube.
  • two tendons are provided opposite one another in the inner tube of the coaxial tube instead of the webs extending in the radial direction.
  • a third embodiment provides a tube-in-tube arrangement as a coaxial tube, wherein the outer tube ribs and the inner tube inner ribs and webs, and the outer tube is soldered at the end of the ribs to the inner tube, resulting in a configuration according to the second embodiment ,
  • a first variant of the third embodiment provides that the two tubes are extruded rotated in different directions, i. that the flow paths of the refrigerant flowing in the interior are rotated on the one hand in countercurrent operation and on the other hand in different directions, whereby the heat exchange is improved.
  • the rotations of the two tubes have mutually different slopes over the length, so that, for example, a smaller pitch can be provided in the inflow area and a larger pitch in the outflow area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die Erfindung betrifft ein Koaxialrohr oder eine oder Rohr-in-Rohr-Anordnung für die getrennte Leitung mindestens zweier Medien, deren Druckniveau sich unterscheidet, wobei bei dem Koaxialrohr (7) oder der Rohr-inRohr-Anordnung die Niederdruckseite in radialer Richtung näher der Mittellängsachse als die Hochdruckseite angeordnet ist.

Description

  • Die Erfindung betrifft ein Koaxialrohr oder eine Rohr-in-Rohr-Anordnung gemäß dem Oberbegriff des Anspruches 1.
  • Aus der EP 1 202 016 A2 ist ein einstückiges Wärmetauscherrohr mit einem Mehrkammer-Profil bekannt, gemäß dem um einen Zentralkanal mehrere Außenkanäle vorgesehen sind. Die Außenkanäle sind durch Zwischenwände, die in radialer Richtung verlaufen, unterteilt. An der Wandung des Zentralkanals sind Vorsprünge vorgesehen, die sich in den Zentralkanal hinein erstrecken. Diese Vorsprünge dienen der Verringerung der Querschnittsfläche und somit der Erhöhung der Strömungsgeschwindigkeit. Dabei ist die Querschnittsfläche des Zentralkanals deutlich kleiner als die Summe der Querschnittsflächen der Außenkanäle. Die Rippen/Vorsprünge können auch schraubenförmig ausgebildet sein, wobei konstante, sich ändemde oder wechselnde Steigungen vorgesehen sein können. Der Innenkanal wird als Hochdruckseite, die Außenkanäle als Niederdruckseite verwendet.
  • Wendelförmige Stege, welche die Außenkanäle voneinander trennen, sowie das Vorsehen von Turbulenzelementen an den Stegen sind aus der DE 199 44 951 A1 bekannt, wobei wiederum der Innenkanal die Hochdruckseite und die Außenkanäle die Niederdruckseite bilden. Die Querschnittsfläche des Innenkanals ist kleiner als die Summe der Querschnittsflächen der außen um den Innenkanal angeordneten Außenkanäle.
  • Ein Beispiel einer Verwendung eines zweiteiligen Koaxialrohrsystems, bestehend aus einem Außenrohr und einem in das Außenrohr eingeschobenen Innenrohr, für eine Klimaanlage, insbesondere eine Kraftfahrzeug-Klimaanlage, ist aus der DE 199 44 951 A1 bekannt.
  • Aus der US 6,098,704 B2 ist eine Rohr-in-Rohr-Anordnung bekannt, wobei sowohl das Außenrohr als auch das Innenrohr eine Mehrzahl in äquidistanten Abständen über den Umfang verteilter, in radialer Richtung nach innen zeigender Rippen aufweist.
  • Ausgehend von diesem Stand der Technik ist es Aufgabe der Erfindung, ein verbessertes Koaxialrohr zur Verfügung zu stellen. Diese Aufgabe wird gelöst durch ein Koaxialrohr oder eine Rohr-in-Rohr-Anordnung mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.
  • Erfindungsgemäß ist ein Koaxialrohr oder eine Rohr-in-Rohr-Anordnung für die getrennte Leitung mindestens zweier Medien, wobei es sich vorzugsweise um Kältemittel handelt, vorgesehen, deren Druckniveau sich unterscheidet, wobei bei dem Koaxialrohr oder der Rohr-in-Rohr-Anordnung die Niederdruckseite in radialer Richtung näher der Mittellängsachse als die Hochdruckseite angeordnet ist. Durch die verdrehte Anordnung kann das Innenrohr mit geringerer Wandstärke ausgebildet sein, wodurch sich das Gesamtgewicht, der Materialbedarf und somit die Kosten des Koaxialrohres bzw. der Rohr-in-Rohr-Anordnung verringert. Femer können die Abmessungen etwas verringert werden, wodurch auch die Wärmeeinleitung von außen in das System verringert und somit die Leistung gesteigert werden kann.
  • Der Begriff "Rohr" ist im Folgenden sehr weit auszulegen und bezieht sich nicht nur auf runde Querschnitte, sondem insbesondere auch ovale, abgerundet rechteckförmige oder auch beliebige andere Querschnitte. Beim Rohr kann es sich auch um zwei ineinander angeordnete Rohre handeln, die keine direkten Verbindungen aufweisen (Rohr-in-Rohr-Anordnung). Hierbei können jedoch auch positionierende Elemente für das Innenrohr im Außenrohr vorgesehen sein, wie beispielsweise am Außen- und/oder Innenrohr vorgesehene, radial nach innen beziehungsweise außen vorstehende Rippen, um gegebenenfalls eine koaxiale Anordnung sicherzustellen. Die Anordnung des Innenrohres oder des inneren Bereichs im Außenrohr ist vorzugsweise koaxial, muss es jedoch nicht sein, so dass auch außermittige Anordnungen möglich sind. Ebenso können auch mehrere Innenrohre vorgesehen sein, die mittels mehrerer Hülsen angeschlossen werden. Das Innenrohr kann auch mit dem Außenrohr in den Kontaktbereichen verlötet oder auf andere Weise mit demselben verbunden sein.
  • Bevorzugt ist der freie Strömungsquerschnitt der Hochdruckseite insgesamt kleiner als der freie Strömungsquerschnitt der Niederdruckseite. Dabei unterscheiden sich die freien Strömungsquerschnitte derart, dass der freie Strömungsquerschnitt der. Hochdruckseite insgesamt vorzugsweise maximal halb so groß und vorzugsweise minimal ein Viertel so groß ist, insbesondere bevorzugt etwa ein Drittel +/- 10% so groß ist, wie der freie Strömungsquerschnitt der Niederdruckseite. Diese Querschnittsverhältnisse ergeben einen sehr guten Wärmeaustausch zwischen den beiden Medien.
  • Der Außendurchmesser des Außenrohres beträgt vorzugsweise 10 bis 18 mm, insbesondere 12 bis 16 mm. Der Innendurchmesser des Innenrohres beträgt vorzugsweise 6 bis 12 mm, insbesondere 8 bis 10 mm. Die Breite der Rippen zwischen dem Innen- und Außenrohr beträgt vorzugsweise 0,3 bis 0,8 mm, insbesondere bevorzugt 0,4 bis 0,7 mm.
  • Vorzugsweise sind die Einströmöffnungen der beiden Medien auf unterschiedlichen Seiten des Koaxialrohres oder der Rohr-in-Rohr-Anordnung angeordnet, so dass das Koaxialrohr bzw. die Rohr-in-Rohr-Anordnung im Gegenstrombetrieb durchströmt wird.
  • Das Außenrohr ist vorzugsweise in mindestens sechs, insbesondere in mindestens zehn, insbesondere bevorzugt in mindestens zwölf Teilkanäle und maximal in zwanzig, vorzugsweise in maximal sechzehn Teilkanäle unterteilt.
  • Diese Unterteilung ermöglicht optimale Festigkeitseigenschaften des Rohres, verbunden mit einer großen Wärmeübertragungsfläche für das im äußeren Bereich strömende Medium.
  • Die Wandstärke der Außenwand ist vorzugsweise größer als die Wandstärke der Wand zwischen Außenrohr und Innenrohr. Auf Grund der größeren Druckdifferenz vom Außenrohr zur Umgebung hin als vom Außenrohr zum inneren Bereich kann die Wandstärke zum Innenrohr geringer ausgelegt werden, so dass eine Materialeinsparung möglich ist. Ist - wie bei herkömmlichen Koaxialrohren - der maximale Druck im Innenrohr vorgesehen, so muss das Außenrohr jedoch auch dem entsprechenden Druck standhalten können, weshalb es eine entsprechende Wandstärke aufweisen sollte und daher bei herkömmlichen Koaxialrohren entsprechend dem Innenrohr ausgelegt ist, wodurch das Koaxialrohr schwerer und somit teurer als ein erfindungsgemäßes Koaxialrohr ist. Im Übrigen kann durch die dünnere Wand auch eine Verbesserung des Wärmeübertragungsleistung erzielt werden.
  • Die Breite der Rippen oder Stege, welche die einzelnen Teilkanäle des Außenrohres unterteilen, ist vorzugsweise kleiner als sie Wandstärke der Wand des Außenrohres, wodurch sich auch Material einsparen lässt.
  • Bevorzugt ist die Breite der Stege, welche die einzelnen Teilkanäle des Außenrohres unterteilen, größer oder gleich der Wandstärke der Wand zwischen Außenrohr und Innenrohr.
  • Im Innenraum des Innenrohres ist vorzugsweise mindestens ein Turbulenzerzeuger vorgesehen, wobei es sich vorzugsweise um eine Innenrohrwendel handelt. Ebenfalls kann im Innenrohr mindestens eine Innenrippe und/oder mindestens eine Sehne, worunter hierbei auch ein in radialer Richtung verlaufender Steg von einer zur anderen Seite der Innenwand verstanden wird, vorgesehen sein.
  • Mindestens einer der Turbulenzerzeuger und/oder mindestens eine der Innenrippen und/oder mindestens einer der Stege und/oder mindestens eine der Rippen zwischen Innen- und Außenrohr ist vorzugsweise schräg bezüglich der Rohrlängsachse angeordnet. Dabei kann sich die Steigung jedoch auch über die Gesamtlänge des Rohres ändern, wie auch die Drehrichtung.
  • Bevorzugt ist mindestens einer der Turbulenzerzeuger und/oder mindestens eine der Innenrippen und/oder mindestens einer der Stege und/oder mindestens eine der Rippen zwischen Innen- und Außenrohr derart schräg bezüglich der Rohrlängsachse mit einer derartigen Steigung ausgebildet, dass eine 360°-Drehung über eine Rohrlänge von 15 bis 35 mm, insbesondere von 20 bis 25 mm, erfolgt.
  • Weiterhin kann es sich als vorteilhaft erweisen, wenn die Länge mindestens einer der Turbulenzerzeuger und/oder mindestens einer der Innenrippen und/oder mindestens einer der Stege und/oder mindestens einer der Rippen zwischen Innen- und Außenrohr dem 0,3-fachen bis 0,5-fachen, vorzugsweise dem 0,4-fachen der Rohrlänge entspricht. Denkbar ist es aber auch, dass die Länge zumindest einer der vorgenannten Einrichtungen im Wesentlichen der Rohrlänge entspricht.
  • Um insbesondere den niederdruckseitigen Druckverlust möglichst gering zu halten, erfolgt das Einströmen des Niederdruckmediums vorzugsweise im Wesentlichen koaxial, wofür das entsprechende Anschlussstück entsprechend ausgebildet ist.
  • Ein erfindungsgemäßes Koaxialrohr oder eine erfindungsgemäße Rohr-in-Rohr-Anordnung kann insbesondere für Wärmetauscher, vorzugsweise für Kraftfahrzeug-Klimaanlagen, insbesondere bevorzugt für Hochdruck-Klimaanlagen (wie beispielsweise bei R744-Klimaanlagen) von Kraftfahrzeugen verwendet, jedoch sind auch andere Anwendungen möglich. Besonders bevorzugt ist die Verwendung als so genannter innerer Wärmetauscher bzw. innerer Wärmeübertrager. Insbesondere bei letztgenannter Verwendung und bei der Verwendung von R744 verhält sich das verwendete Kältemittel üblicherweise, auch wenn es zumindest teilweise in gasförmigem Zustand befindlich ist, aufgrund der in der Regel sehr hohen Dichte ähnlich wie ein Fluid. Insbesondere dadurch ist es möglich beispielsweise durch Verwendung eines Turbulenzerzeugers die Wärmeübertragung zwischen den Kanälen zu erhöhen.
  • Insbesondere bei der Verwendung als innerer Wärmetauscher in einem Kältemittelkreislauf kann sich die vorgeschlagene Beaufschlagung mit Hoch- bzw. Niederdruck als besonders vorteilhaft erweisen. So weist der Hochdruck üblicherweise eine höhere Temperatur als der Niederdruck auf, so dass besonders gut zusätzliche Wärmeenergie vom hochdruckseitigen Kältemittel an die Umgebung abgeführt werden kann.
  • Im Folgenden wird die vorliegende Erfindung anhand zweier Ausführungsbeispiele mit Varianten, teilweise unter Bezugnahme auf die Zeichnung, näher erläutert. Es zeigen:
  • Fig. 1
    einen Schnitt durch ein Koaxialrohr gemäß dem ersten Ausführungsbeispiel,
    Fig. 2
    eine schematische Darstellung eines Wärmeaustauschers mit einem anderen Koaxialrohr,
    Fig. 3
    einen Längsschnitt durch einen Endbereich eines Koaxialrohrs mit Anschlussstück, wobei im Koaxialrohr ein schematisch angedeuteter Turbulenzerzeuger gemäß einer Variante des ersten Ausführungsbeispiels dargestellt ist, und
    Fig. 4
    einen Schnitt durch ein Koaxialrohr gemäß dem zweiten Ausführungsbeispiel.
  • Gemäß dem ersten Ausführungsbeispiel ist ein Wärmetauscher 1, von dem nur ein Querschnitt in Fig. 1 dargestellt ist, der aber im Prinzip ausgebildet sein kann, wie in Fig. 2 mit einem vergrößert dargestellten, anderen Querschnitt dargestellt ist, vorgesehen. Dieser Wärmeaustauscher 1 dient dem Wärmeaustausch von einem ersten Medium und einem zweiten Medium. Hierbei strömt das erste Medium durch den inneren Bereich 2 eines Innenrohres 3 und das zweite Medium durch den äußeren Bereich 4 welcher zwischen einem Außenrohr 5 und dem Innenrohr 3 gebildet ist. Hierbei sind Innenrohr 3 und Außenrohr 5 samt dazwischen in radialer Richtung in Längsrichtung durchgehend verlaufender Rippen 6 einstückig als ein Koaxialrohr 7 aus einer Aluminiumlegierung extrudiert.
  • Der Außendurchmesser des Koaxialrohres 7 beträgt vorliegend 16 mm, die Wandstärke des Außenrohres 5 0,8 mm, die Wandstärke des Innenrohres 3 0,6 mm, die Rippenbreite 0,7 mm und der Innendurchmesser 11 mm. Es sind vierzehn Rippen 6, also auch vierzehn voneinander unterteilt ausgebildete Außenkanäle vorgesehen, welche auf Grund der einander entsprechenden Breite der einzelnen Rippen 6 in äquidistanten Abständen um das Innenrohr 3 verteilt sind. Die freien Querschnittsfläche des Innenrohres 3 beträgt ca. 95 mm2, die Summe der freien Querschnittsflächen der Außenkanäle beträgt ca. 35 mm2, ist also etwa 60% kleiner als die des Innenrohres 3.
  • Um das kühlende und das zu kühlende Medium in das Koaxialrohr 7 einzuleiten, sind an beiden Enden des Koaxialrohres 7 Anschlussbauteile 8 (siehe Fig. 2) vorgesehen, über welche die Medien, welche durch den inneren Bereich 2 bzw. den äußeren Bereich 4 vorliegend im Gegenstrombetrieb strömen, getrennt voneinander zu- bzw. abgeleitet werden.
  • Am einstückig extrudierten Koaxialrohr 7 liegt am Außenrohr 5 (Hochdruckseite) ein höherer Druck an als am Innenrohr 3 (Niederdruckseite). Der Betriebsdruck auf Niederdruckseite (niedriger Druck pN) beträgt gemäß dem vorliegenden Ausführungsbeispiel ca. 130 bar, der entsprechende Berstdruck 264 bar, und der Betriebsdruck auf Hochdruckseite (hoher Druck pH) beträgt ca. 160 bar, der entsprechende Berstdruck 352 bar. Die genannten Druckwerte beziehen sich insbesondere auf die Verwendung von CO2 (R744) als Kältemittel.
  • Dadurch, dass die Niederdruckseite innen angeordnet ist, lässt sich eine verbesserte Anströmung des Niederdruckkältemittels über das entsprechende Anschlussstück 8 realisieren, insbesondere ist, wie vorliegend in Fig. 3 dargestellt, eine umlenkungsfreie Anströmung des Niederdruckkältemittels in Richtung der Längsachse des Innenrohres vorgesehen, wodurch der Druckverlust verringert und dadurch die Kälteleistung verbessert werden kann. Die Anströmung des Hochdruckkältemittels erfolgt in radialer Richtung bezüglich der Längsachse des Koaxialrohres 1.
  • Gemäß einer Variante des ersten Ausführungsbeispiels, die in Fig. 3 dargestellt ist, ist im Innenraum des Innenrohres 3 ein Turbulenzerzeuger 11 in Form einer Wendel (Rundrohrwendel) vorgesehen, welche sich im Koaxialrohr angeordnet auch mit demselben verbiegen lässt. Abgesehen von der Wendel entspricht die Ausgestaltung exakt der des ersten Ausführungsbeispiels. Die Ganghöhe der Wendel entspricht vorliegend etwa dem doppelten Innendurchmesser des Innenrohres 3, also etwa 22 mm, und ist Ober die gesamte Koaxialrohrlänge konstant. Die Wendel lenkt das im Innenrohr strömende Kältemittel um, so dass sich keine laminare Strömung im Wandbereich ausbildet und sich dadurch eine verbesserte Vermischung und ein verbesserter Wärmeaustausch ergibt.
  • Gemäß weiterer Varianten ändert sich die Ganghöhe der Wendel über die Länge des Koaxialrohres und/oder ändert sich die Drehrichtung der Wendet, wobei auch mehrfach Änderungen vorgesehen sein können.
  • Fig. 4 zeigt ein zweites Ausführungsbeispiel eines Koaxialrohres, wobei im Innenrohr 3 sowohl vier gleichmäßig über den Umfang verteilte Innenrippen 21 mit einer Länge von etwa dem halben Radius und zwei senkrecht zueinander und auf Lücke zu den Innenrippen 21 angeordnete Stege 22 vorgesehen sind, welche den Innenraum in vier voneinander getrennte Bereiche unterteilen. Diese Einbauten im Innenrohr 3 vergrößern die Wärmeübergangsfläche und verbessern daher den Wärmeaustausch.
  • Gemäß einer ersten Variante des zweiten Ausführungsbeispiels ist das Koaxialrohr gedreht extrudiert, d.h. die Rippen, Innenrippen und Stege verlaufen wendelartig, vorliegend mit konstanter Steigung.
  • Gemäß einer zweiten Variante des zweiten Ausführungsbeispiels ist das Koaxialrohr wiederum gedreht extrudiert, jedoch verändert mit sich ändernder Drehgeschwindigkeit, so dass sich die Steigung der Rippen, Innenrippen und Stege über die Länge des Koaxialrohres verändert.
  • Entsprechend einer weiteren Variante des zweiten Ausführungsbeispiels sind an Stelle von den in radialer Richtung verlaufenden Stegen zwei Sehnen einander gegenüberliegend im Innenrohr des Koaxialrohres vorgesehen.
  • Ein drittes Ausführungsbeispiel sieht eine Rohr-in-Rohr-Anordnung als Koaxialrohr vor, wobei das Außenrohr Rippen und das Innenrohr Innenrippen und Stege aufweist, und das Außenrohr am Ende der Rippen mit dem innenrohr verlötet ist, wodurch sich eine Ausgestaltung entsprechend dem zweiten Ausführungsbeispiel ergibt.
  • Eine erste Variante des dritten Ausführungsbeispiels sieht vor, dass die beiden Rohre in unterschiedliche Richtungen gedreht extrudiert sind, d.h. dass die Strömungsverläufe der im Inneren strömenden Kältemittel zum Einen im Gegenstrombetrieb und zum anderen auch in unterschiedlichen Richtungen gedreht sind, wodurch der Wärmeaustausch verbessert wird.
  • Gemäß einer zweiten Variante weisen die Verdrehungen der beiden Rohre gegeneinander sich über die Länge ändemde Steigungen auf, so dass bspw. im Einströmbereich eine kleinere Steigung und im Ausströmbereich eine größere Steigung vorgesehen werden kann.

Claims (20)

  1. Koaxialrohr oder Rohr-in-Rohr-Anordnung für die getrennte Leitung mindestens zweier Medien, deren Druckniveau sich unterscheidet, dadurch gekennzeichnet, dass bei dem Koaxialrohr (7) oder der Rohr-in-Rohr-Anordnung die Niederdruckseite in radialer Richtung näher der Mittellängsachse als die Hochdruckseite angeordnet ist.
  2. Koaxialrohr oder Rohr-in-Rohr-Anordnung nach Anspruch 1, dadurch gekennzeichnet; dass der freie Strömungsquerschnitt der Hochdruckseite insgesamt kleiner ist als der freie Strömungsquerschnitt der Niederdruckseite.
  3. Koaxialrohr oder Rohr-in-Rohr-Anordnung nach Anspruch 2, dadurch gekennzeichnet, dass der freie Strömungsquerschnitt der Hochdruckseite insgesamt maximal halb so groß und minimal ein Viertel so groß ist, insbesondere ein Drittel +/- 10% so groß ist, wie der freie Strömungsquerschnitt der Niederdruckseite.
  4. Koaxialrohr oder Rohr-in-Rohr-Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Außendurchmesser des Außenrohres 10 bis 18 mm, insbesondere 12 bis 16 mm, beträgt.
  5. Koaxialrohr oder Rohr-in-Rohr-Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Innendurchmesser des Innenrohres 6 bis 12 mm, insbesondere 8 bis 10 mm, beträgt.
  6. Koaxialrohr oder Rohr-in-Rohr-Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Breite von Rippen (7) oder Stegen zwischen dem Innen- und Außenrohr (3 und 5) 0,3 bis 0,8 mm, insbesondere 0,4 bis 0,7 mm, beträgt.
  7. Koaxialrohr oder Rohr-in-Rohr-Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einströmöffnungen der beiden Medien auf unterschiedlichen Seiten des Koaxialrohres oder der Rohr-in-Rohr-Anordnung angeordnet sind.
  8. Koaxialrohr oder Rohr-in-Rohr-Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Außenrohr in mindestens sechs, insbesondere in mindestens zehn, insbesondere in mindestens zwölf Teilkanäle und maximal in zwanzig, vorzugsweise in maximal sechzehn Teilkanäle unterteilt ist.
  9. Koaxialrohr oder Rohr-in-Rohr-Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wandstärke der Außenwand größer als die Wandstärke der Wand zwischen Außenrohr und Innenrohr ist.
  10. Koaxialrohr oder Rohr-in-Rohr-Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Breite der Rippen oder Stege, welche die einzelnen Teilkanäle des Außenrohres unterteilen, kleiner als sie Wandstärke der Wand des Außenrohres ist.
  11. Koaxialrohr oder Rohr-in-Rohr-Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Breite der Rippen oder Stege, welche die einzelnen Teilkanäle des Außenrohres unterteilen, größer oder gleich der Wandstärke der Wand zwischen Außenrohr und Innenrohr ist.
  12. Koaxialrohr oder Rohr-in-Rohr-Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Innenraum des Innenrohres (3) mindestens ein Turbulenzerzeuger (11) vorgesehen und/oder mindestens eine Innenrippe (21) und/oder mindestens ein Steg (22) ausgebildet ist.
  13. Koaxialrohr oder Rohr-in-Rohr-Anordnung nach Anspruch 12, dadurch gekennzeichnet, dass mindestens einer der Turbulenzerzeuger (11) und/oder mindestens eine der Innenrippen (21) und/oder mindestens einer der Stege (22) und/oder mindestens eine der Rippen (7) zwischen Innen- und Außenrohr (3 und 5) schräg bezüglich der Rohrlängsachse angeordnet ist.
  14. Koaxialrohr oder Rohr-in-Rohr-Anordnung nach Anspruch 13, dadurch gekennzeichnet, dass mindestens einer der Turbulenzerzeuger (11) und/oder mindestens eine der Innenrippen (21) und/oder mindestens einer der Stege (22) und/oder mindestens eine der Rippen (7) zwischen Innen- und Außenrohr (3 und 5) derart schräg bezüglich der Rohrlängsachse mit einer derartigen Steigung ausgebildet ist, dass eine 360°-Drehung über eine Rohrlänge von 15 bis 35 mm, insbesondere von 20 bis 25 mm, erfolgt.
  15. Koaxialrohr oder Rohr-in-Rohr-Anordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Länge mindestens einer der Turbulenzerzeuger (11) und/oder mindestens eine der Innenrippen (21) und/oder mindestens einer der Stege (22) und/oder mindestens eine der Rippen (7) zwischen Innen- und Außenrohr (3 und 5) dem 0,3-fachen bis 0,5-fachen, vorzugsweise dem 0,4-fachen der Rohrlänge entspricht.
  16. Wärmetauscher in Koaxialrohrbauweise, gekennzeichnet durch mindestens ein Koaxialrohr oder eine Rohr-in-Rohr-Anordnung nach einem der Ansprüche 1 bis 15.
  17. Wärmetauscher nach Anspruch 16, dadurch gekennzeichnet, dass mindestens ein Anschlussstück (8) zur Einleitung mindestens eines Mediums vorgesehen ist, welches eine Einleitung des Mediums in koaxialer Richtung zum Koaxialrohr (1) bzw. zur Rohr-in-Rohr-Anordnung vorsieht.
  18. Klimaanlage, insbesondere für ein Kraftfahrzeug, gekennzeichnet durch mindestens ein Koaxialrohr oder eine Rohr-in-Rohr-Anordnung gemäß einem der Ansprüche 1 bis 15, welcher insbesondere als innerer Wärmetauscher ausgebildet ist.
  19. Verwendung eines Koaxialrohrs oder einer Rohr-in-Rohr-Anordnung nach einem der Ansprüche 1 bis 15, eines Wärmetauschers nach Anspruch 16 oder 17 bzw. einer Klimaanlage nach Anspruch 18, wobei zumindest eins der Medien ein Kältemittel ist, insbesondere R744 und/oder R134a.
  20. Verwendung eines Koaxialrohrs oder einer Rohr-in-Rohr-Anordnung nach einem der Ansprüche 1 bis 15 oder 19 bzw. eines Wärmetauschers nach Anspruch 16 oder 17 in einem Kältemittelkreislauf, insbesondere als innerer Wärmetauscher.
EP06022998.6A 2005-11-25 2006-11-06 Koaxial oder Rohr-in-Rohr-Anordnung, insbesondere für einen Wärmetauscher Withdrawn EP1790931A3 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200510056651 DE102005056651A1 (de) 2005-11-25 2005-11-25 Koaxialrohr oder Rohr-in-Rohr-Anordnung, insbesondere für einen Wärmetauscher

Publications (2)

Publication Number Publication Date
EP1790931A2 true EP1790931A2 (de) 2007-05-30
EP1790931A3 EP1790931A3 (de) 2013-05-01

Family

ID=37808335

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06022998.6A Withdrawn EP1790931A3 (de) 2005-11-25 2006-11-06 Koaxial oder Rohr-in-Rohr-Anordnung, insbesondere für einen Wärmetauscher

Country Status (2)

Country Link
EP (1) EP1790931A3 (de)
DE (1) DE102005056651A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1845326A2 (de) 2006-04-13 2007-10-17 Eaton Fluid Power GmbH Innere Kältemaschinen-Wärmetauscher
WO2009062721A2 (de) * 2007-11-13 2009-05-22 Tracto-Technik Gmbh & Co. Kg Geothermiesystem
CN102667389A (zh) * 2009-09-28 2012-09-12 康蒂泰克屈纳有限及两合公司 尤其用于机动车辆空调设备的内部热交换器
CN103375656A (zh) * 2012-04-20 2013-10-30 Ti汽车海德堡有限公司 连接器特别是快速连接器
EP2287507A3 (de) * 2009-07-07 2014-10-01 ELB-Form GmbH Doppelwandiges Rohr, Verfahren zu seiner Herstellung und seine Verwendung
CN108106174A (zh) * 2017-12-08 2018-06-01 广东纽恩泰新能源科技发展有限公司 微通道管道换热器
CN114279249A (zh) * 2021-12-29 2022-04-05 思安新能源股份有限公司 一种双通道套管式换热储热结构及其使用方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008007226A1 (de) 2008-02-01 2009-08-06 Fränkische Rohrwerke Gebr. Kirchner Gmbh & Co. Kg Verbundrohr mit schraubenförmiger Wellung und dessen Verwendung als Abwasserrohr oder Erdkollektor
DE102011012577A1 (de) * 2011-02-26 2012-08-30 Volkswagen Ag Wärmeaustauschvorrichtung
US10011155B2 (en) * 2016-03-11 2018-07-03 Ford Global Technologies Llc Nested HVAC lines
DE102018111542A1 (de) * 2018-05-15 2019-11-21 Friedhelm Meyer Kältekreislaufvorrichtung und Verfahren zum Betrieb einer Kältekreislaufvorrichtung mit einem Hybridverdampfer
DE102018216275A1 (de) 2018-09-25 2019-09-19 Audi Ag Wärmeübertrager für ein Elektrofahrzeug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6098704A (en) 1997-06-06 2000-08-08 Denso Corporation Heat exchanger having a double pipe construction and method for manufacturing the same
DE19944951A1 (de) 1999-09-20 2001-03-22 Behr Gmbh & Co Klimaanlage mit innerem Wärmeübertrager
EP1202016A2 (de) 2000-10-25 2002-05-02 Eaton Fluid Power GmbH Klimaanlage mit innerem Wärmetauscher und Wärmetauscherrohr für einen solchen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6151901A (en) * 1995-10-12 2000-11-28 Cryogen, Inc. Miniature mixed gas refrigeration system
US6131615A (en) * 1997-10-30 2000-10-17 Bundy Corporation Tube assembly for auxiliary heating and air conditioning system
DE10243726B4 (de) * 2002-09-20 2008-03-27 Erbslöh Aluminium Gmbh Wärmetauscher und Verfahren zur Herstellung eines Wärmetauschers sowie stranggepresstes Verbundprofil zur Verwendung in einem solchen Verfahren
US20040089439A1 (en) * 2002-11-07 2004-05-13 Treverton Andrew Clare Tube-to-tube heat exchanger assembly
DE10303595B4 (de) * 2003-01-30 2005-02-17 Visteon Global Technologies, Inc., Dearborn Mehrkanal-Wärmeübertrager- und Anschlusseinheit
JP2005001449A (ja) * 2003-06-10 2005-01-06 Denso Corp 車両用冷凍サイクル装置
JP4679827B2 (ja) * 2003-06-23 2011-05-11 株式会社デンソー 熱交換器
JP4196774B2 (ja) * 2003-07-29 2008-12-17 株式会社デンソー 内部熱交換器
DE102004003325A1 (de) * 2004-01-22 2005-08-18 Valeo Klimasysteme Gmbh Koaxial-Wärmetauscher, Verfahren zur Herstellung eines Koaxial-Wärmetauschers, Verfahren zum Anschließen eines Koaxial-Wärmetauschers und ringförmige Dichtung für einen Koaxial-Wärmetauscher
DE102004050409A1 (de) * 2004-10-15 2006-04-27 Valeo Klimasysteme Gmbh Akkumulator mit internem Wärmetauscher für eine Klimaanlage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6098704A (en) 1997-06-06 2000-08-08 Denso Corporation Heat exchanger having a double pipe construction and method for manufacturing the same
DE19944951A1 (de) 1999-09-20 2001-03-22 Behr Gmbh & Co Klimaanlage mit innerem Wärmeübertrager
EP1202016A2 (de) 2000-10-25 2002-05-02 Eaton Fluid Power GmbH Klimaanlage mit innerem Wärmetauscher und Wärmetauscherrohr für einen solchen

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1845326A2 (de) 2006-04-13 2007-10-17 Eaton Fluid Power GmbH Innere Kältemaschinen-Wärmetauscher
EP1845326A3 (de) * 2006-04-13 2012-03-28 Eaton Fluid Power GmbH Innere Kältemaschinen-Wärmetauscher
WO2009062721A2 (de) * 2007-11-13 2009-05-22 Tracto-Technik Gmbh & Co. Kg Geothermiesystem
WO2009062721A3 (de) * 2007-11-13 2010-03-18 Tracto-Technik Gmbh & Co. Kg Geothermiesystem
GB2467280A (en) * 2007-11-13 2010-07-28 Tracto Technik Geothermiesystem
GB2467280B (en) * 2007-11-13 2012-05-30 Tracto Technik Geothermal system
EP2287507A3 (de) * 2009-07-07 2014-10-01 ELB-Form GmbH Doppelwandiges Rohr, Verfahren zu seiner Herstellung und seine Verwendung
CN102667389B (zh) * 2009-09-28 2014-04-30 康蒂泰克屈纳有限及两合公司 尤其用于机动车辆空调设备的内部热交换器
CN102667389A (zh) * 2009-09-28 2012-09-12 康蒂泰克屈纳有限及两合公司 尤其用于机动车辆空调设备的内部热交换器
CN103375656A (zh) * 2012-04-20 2013-10-30 Ti汽车海德堡有限公司 连接器特别是快速连接器
EP2653770B1 (de) * 2012-04-20 2018-07-25 TI Automotive (Heidelberg) GmbH Verbinder, insbesondere Schnellverbinder
CN108106174A (zh) * 2017-12-08 2018-06-01 广东纽恩泰新能源科技发展有限公司 微通道管道换热器
CN114279249A (zh) * 2021-12-29 2022-04-05 思安新能源股份有限公司 一种双通道套管式换热储热结构及其使用方法

Also Published As

Publication number Publication date
DE102005056651A1 (de) 2007-05-31
EP1790931A3 (de) 2013-05-01

Similar Documents

Publication Publication Date Title
EP1790931A2 (de) Koaxial oder Rohr-in-Rohr-Anordnung, insbesondere für einen Wärmetauscher
EP1790933B1 (de) Koaxial oder Rohr-in-Rohr-Anordnung, insbesondere für einen Wàrmetauscher
DE19944951B4 (de) Klimaanlage mit innerem Wärmeübertrager
DE2209325A1 (de) Waermeaustauschrohr mit innenrippen und verfahren zu seiner herstellung
EP1202016A2 (de) Klimaanlage mit innerem Wärmetauscher und Wärmetauscherrohr für einen solchen
WO2001022012A1 (de) Klimaanlage mit innerem wärmeübertrager
DE102011118761A1 (de) Interner Wärmetauscher für eine Kraftfahrzeug-Klimaanlage
EP1444474A1 (de) W rme bertrager
DE102015104180B4 (de) Vorrichtung für einen Wärmeübertrager zum Sammeln und Verteilen eines Wärmeträgerfluids
DE60307323T2 (de) Wärmetauscher
DE10100241A1 (de) Wärmetauscherrohr für flüssige oder gasförmige Medien
DE102005016540A1 (de) Mehrkanalflachrohr
EP1892491A2 (de) Einheit, aufweisend einen Gaskühler und einen inneren Wärmetauscher, und Wärmetauscher
EP2926073B1 (de) Wärmeübertrager
EP2699864B1 (de) Kondensator
WO2007042186A1 (de) Heizkörper, kühlkreislauf, klimagerät für eine kraftfahrzeug-klimaanlage sowie klimaanlage für ein kraftfahrzeug
DE102013202790A1 (de) Wärmeübertrager
EP3491323B1 (de) Wärmetauscher mit mikrokanal-struktur oder flügelrohr-struktur
EP3009780B2 (de) Wärmeübertrager
EP1563239B1 (de) Wärmetauscher
DE102015111398A1 (de) Vorrichtung zur Wärmeübertragung
EP1716377A1 (de) Vorrichtung zum austausch von wärme und verfahren zur herstellung einer derartigen vorrichtung
EP2994712B1 (de) Wärmeübertrager
EP1434023A2 (de) Kältetrockner
EP1530703B1 (de) Wärmeübertrager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 7/00 20060101AFI20130328BHEP

Ipc: F28D 7/10 20060101ALI20130328BHEP

17P Request for examination filed

Effective date: 20131104

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE BEHR GMBH & CO. KG

17Q First examination report despatched

Effective date: 20160303

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180711

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181122