EP1790566B1 - Méthode de reduction du roulis d'un navire - Google Patents

Méthode de reduction du roulis d'un navire Download PDF

Info

Publication number
EP1790566B1
EP1790566B1 EP06023343A EP06023343A EP1790566B1 EP 1790566 B1 EP1790566 B1 EP 1790566B1 EP 06023343 A EP06023343 A EP 06023343A EP 06023343 A EP06023343 A EP 06023343A EP 1790566 B1 EP1790566 B1 EP 1790566B1
Authority
EP
European Patent Office
Prior art keywords
pitch
transverse
indirectly
rolling motion
transverse pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06023343A
Other languages
German (de)
English (en)
Other versions
EP1790566A1 (fr
Inventor
Harald Gross
Dirk Dr. Jürgens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voith Turbo Schneider Propulsion GmbH and Co KG
Original Assignee
Voith Turbo Marine GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Turbo Marine GmbH and Co KG filed Critical Voith Turbo Marine GmbH and Co KG
Publication of EP1790566A1 publication Critical patent/EP1790566A1/fr
Application granted granted Critical
Publication of EP1790566B1 publication Critical patent/EP1790566B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/08Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using auxiliary jets or propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/06Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/04Propulsive elements directly acting on water of rotary type with rotation axis substantially at right angles to propulsive direction
    • B63H1/06Propulsive elements directly acting on water of rotary type with rotation axis substantially at right angles to propulsive direction with adjustable vanes or blades
    • B63H1/08Propulsive elements directly acting on water of rotary type with rotation axis substantially at right angles to propulsive direction with adjustable vanes or blades with cyclic adjustment
    • B63H1/10Propulsive elements directly acting on water of rotary type with rotation axis substantially at right angles to propulsive direction with adjustable vanes or blades with cyclic adjustment of Voith Schneider type, i.e. with blades extending axially from a disc-shaped rotary body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/42Steering or dynamic anchoring by propulsive elements; Steering or dynamic anchoring by propellers used therefor only; Steering or dynamic anchoring by rudders carrying propellers

Definitions

  • the invention relates to a method for damping the rolling motion of a watercraft, in particular for the roll stabilization of ships, in detail with the features of the preamble of claim 1.
  • the wings are characterized by arranged parallel to the axis of rotation bearing axes, which are additionally pivotable about their own bearing axes.
  • the wing shafts are mounted in plain bearings or special bearings and preferably sealed by double-acting seals against seawater inlet and oil outlet.
  • the wheel body is guided in the axial direction through a track plate and is centered in the radial direction by a bearing, preferably roller bearings.
  • the track plate takes on the weight of the rotating parts and the tilting forces and moments resulting from the propeller thrust, while the bearing assembly transmits the propeller thrust via the propeller housing to the ship.
  • the drive of the wheel body via a flanged on the propeller housing transmission gear and a preferably arranged in the propeller Bevel gear with cyclo-palo spiral toothing.
  • the ring gear is connected via the track plate and the drive drum to the wheel body.
  • the kinematics are controlled by a joystick actuated by two 90 ° offset oil servomotors - a first servomotor and a second servo motor.
  • the first servomotor acts as a so-called drive servo motor and adjusts the slope for the longitudinal thrust, ie, the ship's forward and backward travel.
  • the second servo motor is used to adjust the transverse thrust, ie causes a movement to port and starboard, ie transversely to the longitudinal direction of the hull.
  • the decisive factor is that these can produce a thrust in the respective desired direction by adjusting their wings in order to counteract a rolling movement.
  • the use of such propellers for damping rolling motion is for example known from the following publications: 1. US 2,155,892 2 , US 2,155,456
  • a corresponding device for detecting a roll movement of the ship at least indirectly characterizing size is provided, in the simplest case in the form of a pendulum, wherein in a rolling movement indicating deflection of the pendulum this rash movement is converted directly into a signal for controlling the individual servomotors.
  • the document refers to this US 2,155,892 mainly to the presence of a rolling movement transverse to the longitudinal direction of the ship, while from the document US 2,155,456 the use of a propeller of the type mentioned for roll stabilization in the longitudinal direction is used. In the latter case, however, the propeller itself is pivoted about a horizontal axis, which is very expensive in terms of constructive design and accordingly only allows unsatisfactory results in terms of responsiveness.
  • the invention is therefore based on the object, a method for damping roll motions of watercraft, in particular for the roll stabilization of ships such that the disadvantages mentioned are avoided, especially since the system allows a high ride comfort through its use in ships, which manifests itself therein in that rolling movement is greatly reduced, whereby the system should be characterized by a very short response time and a low design and control engineering effort.
  • the size of the set longitudinal pitch is also taken into account. This minimizes the possible adjustment range depending on their size. As a result, unwanted overlays and countermovements are avoided in other directions.
  • each of the longitudinal gradients are assigned to each of the two limit characteristics for the maximum adjustability at the set transverse pitch, d. H.
  • each set longitudinal pitch is characterized by its own adjustment range for the transverse pitch. In this case, the theoretically possible adjustment range is reduced with increasing set travel rate.
  • the change in the transverse pitch is at least in dependence on the set transverse pitch and the strength of the rolling motion, d. H. the size of a size that at least indirectly characterizes the rolling motion of the ship. From these variables, the required change in the transverse pitch is determined in the map, from which a manipulated variable for controlling the adjusting device, in particular the rudder servo motor, is formed.
  • the propulsion movement or the set speed in the forward drive direction is set as the target value for a ship speed constant value to be kept constant and compared with a currently determined speed during the entire phase of the roll stabilization and depending on the deviation by changing the travel pitch compensated.
  • a regulation for constant speed of the roll stabilization is additionally superimposed here.
  • the overlay makes it possible to compensate the Rolling movement with constant, ie unchanged travel speed.
  • Dynamic positioning is understood to mean the automated control both in the longitudinal and in the transverse direction, as is particularly advantageous for holding a given position of the ship at sea.
  • the roll stabilization is switchable and with this adjustable sizes for driving gradient and transverse slope allowed in terms of it resulting thrust in the longitudinal or transverse direction does not overwrite the specifications from the parent driving modes.
  • FIG. 1 illustrates in a simplified schematic representation of the basic structure of an inventively designed control and regulation system 1 for watercraft 2, in particular in the form of ships, comprising at least one so-called Schneiderpropeller 3.
  • This is a drive element, comprising a rotating wheel body 3.1, the axially parallel wing 3.21 to 3.24 on the outer circumference 3.3 carries.
  • the wing shafts 3.41 to 3.4n are rotatably mounted in plain bearings or special bearings and sealed by double-acting seals against seawater inlet and oil outlet.
  • the wheel body 3.1 is guided axially through a track plate 3.5 and centered radially by a roller bearing. While the roller bearing transmits the propeller thrust to the ship 2 via the propeller housing 3.6, the thrust bearing absorbs the dead weight of the rotating parts and the tilting forces and moments resulting from propeller thrust and pressure.
  • the wheel body 3.1 itself is driven by a reduction gear 3.7 flanged to the propeller housing 3.6 and a bevel gear arranged in the propeller.
  • the ring gear of the bevel gear is connected via the track plate 3.5 and the drive drums with the wheel body 3.1.
  • the control of the kinematics is done via the control stick, which is actuated by two offset by 90 degrees servomotors 3.10 and 3.11 as actuators.
  • the two servomotors 3.10 and 3.11 serve to adjust the so-called longitudinal and also transverse pitch and thus act as adjusting devices 7.1 and 7.2 for adjusting the transverse and / or longitudinal pitch.
  • the first servo motor 3.10 adjusts the pitch for the longitudinal thrust, ie forward and reverse travel of the ship 2
  • the second servomotor 3.11 which is also referred to as rudder servo, is used to influence the transverse thrust, ie movements to port and starboard.
  • FIG. 1 illustrates exemplified the basic structure of such a propeller. On this will not be discussed in detail, since this is well known from the prior art.
  • Decisive is only the kinematics and the corresponding servomotors, here designated 3.10 and 3.11, which allow an adjustability of the wings 3.21 to 3.24.
  • the servomotor 3.10 acts as a so-called driving servo motor and 3.11 as a so-called rudder servo motor.
  • the control during operation can be done differently.
  • three basic types of control are distinguished for controlling such systems, which characterize operating modes - the manual control, the so-called autopilot and as a third additional option Dynamic Positioning. These basic operating modes can be switched on in roles of the ship 2, a so-called roll stabilization 8 in the form of the control and / or control system 1. According to the invention, the roll stabilization can be carried out in different ways.
  • the roll stabilization is activated as a function of a variable which at least indirectly characterizes a rolling movement of the ship.
  • the activation can be done as needed, ie manually or automatically, which is subordinate to the individual driving controls, manual, autopilot or dynamic positioning.
  • a control and / or regulating device 5 is provided, in which the manipulated variables Y 1 , Y 2 are determined for the roll stabilization.
  • Input quantity is at least one, the rolling motion of the ship 2 at least indirectly characterizing size, preferably the actual value of the transverse pitch directly. From these, depending on strategy, as yet in the FIGS. 2 to 4 described, the manipulated variables, in particular the manipulated variable Y 1 for controlling the adjusting device 7.2 in the form of the servomotor 3.11 determined and output for changing the transverse pitch.
  • a roll stabilization takes place by specifying the transverse pitch.
  • the term "transverse pitch” is understood to mean the pitch which describes the pushing movement in the transverse direction when the ship is stationary.
  • the roll stabilization is activated in the presence of a pointing to a roll of the ship or the operation of the roll stabilization at least indirectly characterizing size A.
  • a position of the rudder, ie a current transverse slope Q is at least indirectly characterizing detected size and fed to the control device 5. This may be the control and / or regulating device of the control and / or regulating system 1.
  • the corresponding assignment takes place via a predefined or stored characteristic map, from which the possible setting range ⁇ Y is determined on the basis of the currently determined rudder gradient, and a manipulated variable Y 1 can be adjusted to achieve the roll stabilization depending on the rolling movement characterizing size X.
  • FIG. 2b clarified thereby, over the theoretically possible usable Quersteistskommando, the adjustment range for the roll stabilization.
  • the map is characterized by two limit states, each of which characterizes the maximum adjustment range at the set transverse slope.
  • the straight line I illustrates the state in relation to the possible adjustment of the transverse pitch, ie the rudder in both directions at full speed, ie 100 percent in the feed direction.
  • the two straight lines II and III limit the possible setting range as a function of the individual driving states in the feed direction, the straight lines II and III describing the limit state, ie the maximum possible adjustability when the transverse inclination is set.
  • the straight line IV and V describes this analogously, but for the opposite adjustment, here second adjustment.
  • FIGS. 2a and 2b a first basic embodiment of the solution according to the invention for stabilization
  • FIG. 3a and the FIG. 3b an evolution according to FIG. 2a in which, in addition, the longitudinal pitch, ie the pitch that causes the thrust in the longitudinal direction or in the advancing direction, is taken into account.
  • the corresponding input variables according to FIG. 2a taken into account but here allocation means 6 by way of example a map according to FIG. 3b includes, which limits the possible roll stabilization area depending on the currently set travel slope.
  • a variable of the control and / or regulating device characterizing the current travel or longitudinal gradient L is at least indirectly derived, whereby the possible range of change for realizing the roll stabilization is derived as a function of this from the allocation device 6 can.
  • the map is analogous as in FIG. 2b constructed, but more characteristics are inserted for the individual longitudinal gradients. These are designated in each case by I to V x , wherein x in this case represents the pitch in the longitudinal direction in percent. It can be seen that when driving gradient zero, ie at a standstill, the possibility of changing the transverse pitch is greatest, while at full speed, ie driving gradient 100%, in the longitudinal direction of the adjustment is almost zero.
  • the theoretically possible setting range is set in relation to the standstill state in this characteristic map taking into account the current transverse pitch.
  • a manipulated variable Y is determined from the respectively determined operating point, and the servomotor 3.11 is activated with it.
  • the longitudinal pitch to compensate for by changing the Transverse slope occurring speed losses are made.
  • a manipulated variable Y 2new is set to change the longitudinal gradient .
  • the manipulated variable Y 2new serves as a rule to increase the longitudinal pitch in order to reduce a higher speed or the loss of speed here.
  • at least the current transverse pitch is first determined in the presence of a variable at least indirectly characterizing the use of the roll stabilization, and this is fed to a control device.
  • the currently present speed V ist is set as a setpoint for the speed V soll to be maintained or else a specific speed that can be selected. It is in accordance with FIG. 2 or FIG. 3 in dependence of the rolling movement of at least indirectly characterizing sizes, and the desired effect, that is the attenuation of the corresponding manipulated variable to change in at least the transverse pitch formed and thereby adjusting speed V is determined, and the target quantity V to compare. In case of deviation then an adaptation is made to the effect that the target speed V soll is preferably excited. This is done by changing the longitudinal pitch. For this purpose, the longitudinal pitch is determined and also processed in the control and regulating device 5 and formed a control variable for changing the longitudinal pitch.
  • the determination of the manipulated variable can be done purely mathematically, via diagrams or tables. This will then be in an output of Control and / or regulating device 5 output and the respective adjusting device, in particular the servomotor 3.10 supplied to change the slope in the longitudinal direction.
  • the roll stabilization in particular Abregelung the rolling motion, while embedded in a control on initiation of a constant speed.
  • the following variables can be regarded as parameters for the presence of a rolling motion, at least one of the following variables: roll angle, roll angular velocity, roll angular acceleration and / or variables describing the rolling motion or triggering waves, such as frequency, amplitude.
  • roll angle roll angle
  • roll angular velocity roll angular acceleration
  • / or variables describing the rolling motion or triggering waves such as frequency, amplitude.
  • the roller movement at least indirectly characterizing size detecting detection device 9 which supplies this size of a control and / or regulating device 5, wherein derived depending on the present control signal for longitudinal and / or transverse slope of this directly from the adjustment becomes.
  • the detection device comprises for this purpose at least two sensors 10.1, 10.2 for the lateral acceleration, which determines the slope from the difference and in turn from the slope the manipulated variable Y to control the individual servomotors 3.10, 3.11, in particular the valve devices makes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Vehicle Body Suspensions (AREA)
  • Control Of Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Claims (12)

  1. Procédé pour amortir le mouvement de roulis d'un véhicule aquatique, en particulier stabilisateur antiroulis d'un navire (2), avec au moins une hélice, comprenant un corps de roue rotatif (3) qui prote sur sa circonférence extérieure des pales à axes parallèles (3.21, 3.2n) supportées avec possibilité de rotation autour de leur axe longitudinal ;
    1.1 dans lequel, en fonction d'au moins une grandeur caractérisant au moins indirectement le mouvement de roulis du véhicule aquatique (2), une poussée contrant le mouvement de roulis est produite par la modification de l'inclinaison des pales ;
    caractérisé en ce que :
    1.2 le changement de l'inclinaison des pales pour la production d'une contre-poussée est effectuée sélectivement par la saisie d'une grandeur caractérisant le mouvement de roulis du navire ou par un signal d'activation de la stabilisation antiroulis ;
    1.3 dans lequel, en fonction d'une valeur de consigne faisant fonction de valeur effective de l'inclinaison transversale actuelle réglée au niveau des pales, l'inclinaison transversale est modifiée.
  2. Procédé selon la revendication 1, caractérisé en ce que l'inclinaison transversale est réduite.
  3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la modification nécessaire de l'inclinaison transversale est dérivée d'un champ de caractéristiques pouvant être prédéfini ou préenregistré, qui est délimité par deux lignes de limite, lesquelles lignes de limite décrivent la mobilité maximale possible avec une certaine valeur préréglée d'inclinaison transversale, et dans lequel on obtient pour chaque valeur réglée d'inclinaison transversale dans le champ de caractéristiques une plage de réglage entre une mobilité minimale et maximale.
  4. Procédé selon la revendication 3, caractérisé en ce que la grandeur de la grandeur de réglage (Y1) pour la modification de l'inclinaison transversale est déterminée en fonction d'au moins une grandeur caractérisant au moins indirectement le mouvement de roulis du navire (2).
  5. Procédé selon la revendication 4, caractérisé en ce que les grandeurs caractérisant au moins indirectement le mouvement de roulis du navire (2) saisies comprennent au moins une des grandeurs suivantes :
    - la grandeur caractérisant au moins indirectement l'angle de roulis ;
    - une grandeur caractérisant au moins indirectement la vitesse de roulis ;
    - l'accélération du roulis ;
    - une grandeur caractérisant au moins indirectement le train de vagues déclenchant le roulis, par exemple l'amplitude et/ou la fréquence.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que pour chaque valeur réelle paramétrée d'une grandeur décrivant au moins indirectement l'avancement dans le sens d'avancement, en particulier de la pente longitudinale ou de marche, la plage de réglage maximale pour l'inclinaison transversale effectivement réglée est limitée pour modifier l'inclinaison transversale.
  7. Procédé selon la revendication 6, caractérisé en ce que
    7.1 une valeur de consigne de l'inclinaison de marche servant de valeur réelle de l'inclinaison de marche effectivement réglée et la valeur de consigne de l'inclinaison transversale actuelle servant de valeur réelle sont saisies ;
    7.2 en fonction des valeurs de consigne d'inclinaison transversale et d'inclinaison longitudinale et des grandeurs caractérisant au moins indirectement le mouvement de roulis, une grandeur de réglage est déterminée pour modifier l'inclinaison transversale, une grandeur de réglage pour l'activation d'un dispositif de réglage (7.1 ; 7.2) de l'inclinaison (3.21, 3.2n) étant émise en fonction des valeurs de consigne et de la grandeur caractérisant au moins indirectement le mouvement de roulis.
  8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce qu'une réduction de la vitesse provoquée par la production d'une poussée transversale est compensée par la modification de l'inclinaison longitudinale et ainsi de l'inclinaison de marche dans le sens d'avancement.
  9. Procédé selon la revendication 8, caractérisé en ce qu'une vitesse dans le sens d'avancement présente pour l'activation du changement de l'inclinaison transversale est déterminée et la valeur réelle est posée comme valeur de consigne pour une vitesse de marche à maintenir constante ou une vitesse de marche à maintenir constante est prescrite en tant que telle et à laquelle, en cas de changement de l'inclinaison transversale, les valeurs réelles effectives de la vitesse de marche sont déterminés et comparés à la valeur de consigne posée, un changement de l'inclinaison de marche ayant lieu en cas d'écart de façon à rapprocher la valeur réelle de la valeur de consigne.
  10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce qu'il est subordonné à un procédé pour le pilotage d'un véhicule aquatique.
  11. Procédé selon la revendication 10, caractérisé en ce qu'il est subordonné à l'un des procédé suivants :
    - réglage manuel de l'inclinaison longitudinale ;
    - réglage ou régulation automatique du cours d'un navire paramétré pour être constant ; ou
    - réglage ou régulation automatique d'une position du navire paramétrée pour être constante.
  12. Procédé selon une des revendication 1 à 11, caractérisé en ce qu'il est un élément de contrôle d'une vitesse constante.
EP06023343A 2005-11-26 2006-11-09 Méthode de reduction du roulis d'un navire Active EP1790566B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005056469.0A DE102005056469B4 (de) 2005-11-26 2005-11-26 Verfahren zur Dämpfung der Rollbewegung eines Wasserfahrzeuges, insbesondere zur Rollstabilisierung von Schiffen

Publications (2)

Publication Number Publication Date
EP1790566A1 EP1790566A1 (fr) 2007-05-30
EP1790566B1 true EP1790566B1 (fr) 2010-07-14

Family

ID=37806211

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06023343A Active EP1790566B1 (fr) 2005-11-26 2006-11-09 Méthode de reduction du roulis d'un navire

Country Status (4)

Country Link
US (1) US7527009B2 (fr)
EP (1) EP1790566B1 (fr)
DE (1) DE102005056469B4 (fr)
NO (1) NO337625B1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007011711A1 (de) * 2007-03-08 2008-09-18 Joachim Falkenhagen Verfahren zur Antizipation von Wellen- und Windbewegungen und zu deren Kompensation
EP1997728A1 (fr) * 2007-05-31 2008-12-03 J.G. Blaazer Beheer B.V. Moyen et procédé de stabilisation pour navire
EP2207713B1 (fr) * 2007-10-11 2013-03-20 Itrec B.V. Navires équipés d'un mécanisme d'amortissement en roulis
DE102009002107A1 (de) * 2009-04-01 2010-10-14 Zf Friedrichshafen Ag Verfahren zum Steuern eines Schiffes und Steuerungsanordnung
EP2944556B1 (fr) * 2014-05-12 2018-07-11 GE Energy Power Conversion Technology Ltd Système à propulsion marine cycloïdale
DE102016121933A1 (de) 2016-11-15 2018-05-17 Schottel Gmbh Verfahren zur Dämpfung der Rollbewegung eines Wasserfahrzeuges
DE102018109085A1 (de) 2018-04-17 2019-10-17 Marco Sicconi Antriebsanordnung zur Kompensation und/oder zur Minderung und/oder zur Verringerung der Rollbewegung und/oder der Stampfbewegung eines Wasserfahrzeuges
NL2026944B1 (nl) * 2020-11-20 2022-07-01 Rotorswing Holland B V Stabilisatie-inrichting voor het actief dempen van scheepsbewegingen.
CN113501099B (zh) * 2021-08-26 2022-12-02 哈尔滨工程大学 一种减纵摇槽道螺旋桨

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1740820A (en) * 1924-04-10 1929-12-24 Kirsten Boeing Engineering Co Engine-driven marine vessel
DE690383C (de) * 1936-04-29 1940-04-29 Siemens App Schiffsstabilisierungsanlage
US2155892A (en) * 1937-01-08 1939-04-25 Askania Werke Ag Stabilizing device
US2155456A (en) * 1937-01-18 1939-04-25 Askania Werke Ag Stabilizing device for ships
US3371635A (en) * 1966-09-07 1968-03-05 Nancy Lee Seeley Submersible vessel
US3665168A (en) * 1970-12-18 1972-05-23 Gen Electric Adaptively controlled position prediction system
DE3539617A1 (de) * 1985-11-08 1987-05-14 Voith Gmbh J M Vorrichtung zur steuerung eines zykloidenpropellers fuer schiffe

Also Published As

Publication number Publication date
DE102005056469B4 (de) 2016-03-17
NO337625B1 (no) 2016-05-09
US7527009B2 (en) 2009-05-05
US20070123120A1 (en) 2007-05-31
EP1790566A1 (fr) 2007-05-30
DE102005056469A1 (de) 2007-05-31
NO20065410L (no) 2007-05-29

Similar Documents

Publication Publication Date Title
EP1790566B1 (fr) Méthode de reduction du roulis d'un navire
EP2193073B1 (fr) Procede de commande d'une propulsion de surface d'un bateau dans la plage de vitesses superieure
EP2193074B1 (fr) Procede de commande d'un bateau equipe d'une propulsion de surface
EP2193072B1 (fr) Procede de commande d'un groupe propulseur de surface pour un bateau
DE69505244T2 (de) Automatische drehzahlregelung eines verbrennungsmotors
EP2718177B1 (fr) Procédé et dispositif pour compenser un couple de charge ainsi que procédé et équipement de mesure pour déterminer la position d'une charge
DE19914445B4 (de) Steuereinrichtung für einen beweglichen Körper
EP3099564B1 (fr) Navire, en particulier un remorqueur
DE102016222513A1 (de) Verfahren und Systeme zum Steuern von Lenkreaktion und Lenkmomentfeedback basierend auf der Lenkposition
DE10261724B4 (de) Lenkkontrollsystem mit magnetorheologischem Dämpfer
DE2227703A1 (de) Ruderbetätigungs-Steuereinrichtung für Seefahrzeuge
DE102016105658A1 (de) Anhängerrücksetzhilfe durch geschwindigkeitsbegrenzung mittels bremsen
DE2348098B2 (de) Rieht- und Stabilisiereinrichtung fur eine Rohrwaffe
EP0129810B1 (fr) Méthode pour stabiliser un navire avec un gouvernail
WO2007016805A1 (fr) Direction et compensation d'assiette pour navire
DE69712399T2 (de) Vorrichtung um die Geschwindigkeit eines Flugzeugs in einem vorgegebenen Bereich zu halten
DE102018109085A1 (de) Antriebsanordnung zur Kompensation und/oder zur Minderung und/oder zur Verringerung der Rollbewegung und/oder der Stampfbewegung eines Wasserfahrzeuges
DE3539617A1 (de) Vorrichtung zur steuerung eines zykloidenpropellers fuer schiffe
CH707887A1 (de) Antriebssystem.
DE2626422C2 (fr)
EP4257476A1 (fr) Procédé de commande d'un navire équipé d'une hélice à pas variable
DE102016121102B3 (de) Variabler Offset am Rotorkopf eines Tragschraubers
EP1029781A2 (fr) Hélice à pas variable, notamment pour bateaux
WO2010112391A2 (fr) Procédé de commande d'un bateau et dispositif de commande
DE3901137C2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070322

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid

Designated state(s): IT NL

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): IT NL

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

26N No opposition filed

Effective date: 20110415

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20151204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20201124

Year of fee payment: 15

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: J.M. VOITH SE & CO. KG; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: VOITH TURBO GMBH & CO. KG

Effective date: 20210901

Ref country code: NL

Ref legal event code: HC

Owner name: VOITH TURBO GMBH & CO. KG; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: VOITH TURBO MARINE GMBH & CO. KG

Effective date: 20210806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231120

Year of fee payment: 18