EP1788523B1 - Correction des signaux lumineux indesirables dans une région d'intérêt spécifique d'une image - Google Patents

Correction des signaux lumineux indesirables dans une région d'intérêt spécifique d'une image Download PDF

Info

Publication number
EP1788523B1
EP1788523B1 EP06124151.9A EP06124151A EP1788523B1 EP 1788523 B1 EP1788523 B1 EP 1788523B1 EP 06124151 A EP06124151 A EP 06124151A EP 1788523 B1 EP1788523 B1 EP 1788523B1
Authority
EP
European Patent Office
Prior art keywords
correction
interest
regions
region
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06124151.9A
Other languages
German (de)
English (en)
Other versions
EP1788523A1 (fr
EP1788523B8 (fr
Inventor
James C. Kolterman
Eric B. Shain
Robert C. Gray
Shihai Huang
Gavin A. Cloherty
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott Molecular Inc
Original Assignee
Abbott Laboratories
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abbott Laboratories filed Critical Abbott Laboratories
Priority to EP15161939.2A priority Critical patent/EP2947624A1/fr
Publication of EP1788523A1 publication Critical patent/EP1788523A1/fr
Application granted granted Critical
Publication of EP1788523B1 publication Critical patent/EP1788523B1/fr
Publication of EP1788523B8 publication Critical patent/EP1788523B8/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30072Microarray; Biochip, DNA array; Well plate

Definitions

  • This invention relates to a method for correcting signals detected by a detection system in a diagnostic instrument.
  • Cross-talk refers to the situation where a signal from a given location in the image (for example, a given well in a plate having a plurality of wells, e.g., a 96-well PCR plate), causes a variation in the signal at a different location in the image (for example, a different well in the plate having a plurality of wells).
  • a specific region within an image associated with an independent signal is often referred to as a region of interest (alternatively referred to herein as ROI).
  • Each ROI defines the specific pixels within the image associated with a specific reaction. Variations in signal due to cross-talk, although typically small, can induce variations in reaction quantification of one or more regions of interest within the image. In some cases, sensitivity of the reaction is reduced by requiring an increase in signal threshold in order to avoid false positive results due to cross-talk.
  • the areas in the image between the regions of interest of the image contain optical information that can be used to compensate for sources of variation in signal.
  • These sources of signal variation can result from a specific geometric optical reflection, scattered light from optical components, light leakage, changes in intensity of the source of light, and the like. All of these sources of variation can contribute to a dynamically changing error in the optical signal in a given region of interest of the image.
  • YANG Y H ET AL "Analysis of cDNA microarray images" BRIEFINGS IN BIOINFORMATICS, HENRY STEWART PUBLICATIONS, LONDON, GB, vol. 2, no. 4, December 2001 (2001-12), pages 341-349, XP002335348 ISSN: 1467-5463 discloses an image analysis of cDNA microarrays and, in particular, for correcting a spot's measured intensity which includes contributions not due to probe hybridization.
  • the invention provides a method for correcting the signal in an image having a plurality of regions of interest as set out in the appended claims.
  • region of interest means the collection of pixels within an image that define the location of a specific optical signal.
  • reaction region of interest means the region of interest associated with a specific reaction in an assay.
  • region of correction and “correction region of interest” mean the area associated with the background portion of the image adjacent to a reaction region of interest.
  • reaction pixel sum means the sum of all the pixel intensity values within a reaction region of interest.
  • reaction pixel count means the number of pixels within a reaction region of interest.
  • reaction region of interest pixel average means the value obtained by dividing the reaction pixel sum by the reaction pixel count.
  • correction pixel sum means the sum of all the pixel intensity values within a region of correction.
  • correction pixel count means the number of pixels with a region of correction.
  • region of correction pixel average means the value obtained by dividing the correction pixel sum by the correction pixel count.
  • scale means a multiplicative factor applied to the correction calculation.
  • centroid means the geometric center of a region of interest.
  • this invention provides a method for correcting an image having a plurality of reaction regions of interest and a plurality of regions of correction, the method involving the steps of:
  • the centroid of each reaction region of interest is determined.
  • the reaction regions of interest are typically determined by using a calibration where signals in a device having a plurality of reaction sites are measured. A signal is measured at each reaction site.
  • the signals in a calibration plate containing fluorescent dye at each reaction site can be measured by an imaging sensor.
  • a calibration plate is a 96-well reaction plate used for calibrating the instrument used.
  • the reaction regions of interest can be determined by locating the contiguous pixels at each reaction site within the image.
  • the geometric centroid of each set of centroids from four adjacent reaction regions of interest can be used to determine a center point for a region of correction. A region of correction using that center point and a specific geometric shape can be defined.
  • the reaction regions of interest are circular in shape.
  • a region of correction can be circular-shaped, as shown in FIG. 2A , rectangular-shaped, as shown in FIG. 2B , or diamond-shaped, as shown in FIG. 2C .
  • Other shapes such as, for example, closed polygons, are suitable for both the reaction regions of interest and the regions of correction.
  • the parameters of the regions of correction are typically radii of rings for circular-shaped regions of correction, length and width for rectangular-shaped regions of correction, and length of sides for diamond-shaped regions of correction. Dimensions for the particular geometric shape selected are specified.
  • An alternative to defining regions of correction by means of geometric shapes involves the use of an arbitrary bitmap.
  • Such a bitmap could, for example, be a 9 by 9 array of values specifying which pixels would be included in the region of correction and which pixels would be excluded from the region of correction.
  • the center points of the regions of correction can be mirrored to create regions of correction on the periphery of the plate for the outer rows and columns of the reaction regions of interest in the image.
  • the use of diamond-shaped regions of correction is shown in FIG. 2C .
  • the regions of interest associated with specific wells can be determined and stored, such as, for example, by means of a computer.
  • each reaction region of interest has the four adjacent regions of correction associated with it.
  • the rectangles can be oriented with the length parallel to the x-axis or to the y-axis, as shown in FIG. 2B .
  • the center point between two adjacent regions of interest is located.
  • a rectangle is constructed by using the center point between two adjacent regions of interest as the center of the region of correction between the regions of interest.
  • the center point between two adjacent regions of interest is located.
  • the rectangle is constructed by using the center point between two adjacent regions of interest as the center of the region of correction between the regions of interest.
  • Rectangles are also created on the periphery of the image for the outer rows of regions of interest and outer columns of regions of interest.
  • the mirror of the center between adjacent regions of interest is used to set the center of the region of correction rectangle.
  • the regions of interest associated with specific wells can be determined and stored.
  • each reaction region of interest has the four adjacent regions of correction associated with it. Measures other than the centroid of the regions of correction can also be used to define the location of regions of correction. For example, the region of correction can be placed equidistant from boundaries of adjacent regions of interest.
  • a background offset value needs to be generated. This value can be generated in at least two ways.
  • a background calibration can be performed. In this method, an image is taken of a plate without any fluorescent dye.
  • the average pixel value for each region of correction is calculated by dividing the pixel sum by the pixel count in that region of correction to obtain an average pixel value. This average pixel value is indicative of the background light level and is referred to as the background offset value.
  • the background offset values are stored for use in future runs, e.g., PCR runs.
  • the background offset value can be determined on a run-by-run basis by calculating the average pixel value for each region of correction for the first reading of a run, e.g., a PCR run. Because the first (or first few) readings of a PCR run occur before a significant reaction signal is produced, this alternative method provides a good representation of the background.
  • the signal correction is performed in the following manner. Performance of signal correction is depicted in FIGS. 1 and 3 .
  • the reaction pixel sum and the reaction pixel count are calculated by using the reaction region of interest.
  • the average pixel value for the four regions of correction associated with a given reaction region of interest is calculated.
  • four regions of correction are shown in FIG. 1 and diamond-shaped regions of correction are shown in FIG. 1
  • the method is not limited to four regions of correction nor is the invention limited to diamond-shaped regions of correction.
  • the background offset value is subtracted from the region of correction pixel average. Then, this difference is multiplied by the reaction region of interest pixel count and, if necessary, by a scale factor, to generate a correction value.
  • the correction value is then subtracted from the reaction region of interest pixel sum to generate a corrected reaction region of interest pixel sum.
  • the scale factor is typically dependent upon the detection system. An example of a scale factor is 1.15. In some instrument systems, multiple exposures are made at each reading to increase the dynamic range of measurement. In this case, a corresponding background offset and region of correction pixel average needs to be generated for each exposure. The correction to the reaction pixel sum is then made for the exposure of longest duration that does not exhibit significant saturation of the image sensor.
  • This invention can also be applied to an assay system based on array or a microarray, such as, for example, the Vysis GenoSensor genomic DNA microarray system (Abbott Laboratories, Abbott Park, IL).
  • a microarray such as, for example, the Vysis GenoSensor genomic DNA microarray system (Abbott Laboratories, Abbott Park, IL).
  • Such systems can measure a plurality of genomic targets through hybridization to an array of capture targets placed on a surface, such as, for example, a glass "chip” or a microscope slide.
  • the product of the hybridization is typically measured by means of fluorescent dyes and an electronic imaging system.
  • a real time PCR run for HIV was performed on an ABI Prism 7500 instrument (Applied Biosystems, Foster City, CA). This instrument utilizes a 96-well plate format with wells arranged in a 12 x 8 array. The run was configured so that there were 84 wells containing positive samples with a concentration of 1x10 6 copies/mL and 12 wells not containing positive samples, i.e., negative wells. The negative wells were distributed on the plate to maximize the potential cross-talk from the wells containing positive samples.
  • FIG. 4 illustrates the layout of the plate.
  • the ABI Prism 7500 instrument uses a CCD camera and measures fluorescence in five wavelength bands.
  • FIG. 5 shows one image from the end of the PCR run.
  • FIG. 6 shows the same image with the reaction regions of interest and the regions of correction superimposed. In this example, a diagonal array of diamond-shaped regions of correction, each of which contained of 25 pixels, were used.
  • the first reading in the PCR run was used to establish the background offset values for each subsequent reading.
  • the scaling factor used was 1.15.
  • FIG. 7 shows the raw fluorescence signals for all 96 samples without any image-based correction applied.
  • the 84 positive samples generated signals significantly above the background fluorescence by cycle 15 and approached their maximum fluorescence by cycle 25.
  • FIG. 8 shows the same responses with the Y-axis scaled to focus on the responses in wells not containing positive samples. All of the negative responses showed a small but significant rise from cycles 15 through 25, which is caused by cross-talk from the responses of the positive samples.
  • FIG. 9 shows the effect of the image-based correction on the negative responses. As can be seen, the cross-talk signal has been effectively eliminated.
  • FIG. 10 shows the response for well F-11 with and without the image-based correction applied.
  • the method is also applicable to images that contain a fewer or a greater number of regions of interest.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biotechnology (AREA)
  • Evolutionary Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Claims (14)

  1. Procédé de correction du signal dans une image comprenant un signal variable de manière dynamique et présentant une pluralité de régions d'intérêt, le procédé comprenant les étapes ci-dessous consistant à :
    (a) fournir une image présentant une pluralité de régions d'intérêt, ces régions d'intérêt présentant chacune un signal variable de manière dynamique et des zones entre elles ;
    (b) déterminer une région de correction entre au moins deux régions d'intérêt ;
    (c) calculer un signal de correction à partir de la région de correction ; et
    (d) utiliser le signal de correction en vue de corriger une mesure de signal à partir d'une ou plusieurs régions d'intérêt, caractérisé en ce que l'étape (c) comprend en outre les étapes ci-dessous consistant à :
    (e) déterminer un comptage de pixels de réaction et une somme de pixels de réaction pour chaque région d'intérêt de réaction ;
    (f) déterminer une valeur moyenne de pixel pour au moins une région de correction pour chaque région d'intérêt de réaction ;
    (g) déterminer une valeur de décalage de fond pour chaque valeur moyenne de pixel au niveau d'une région de correction ;
    (h) déterminer une moyenne de pixel et soustraire la valeur de décalage de fond de la moyenne de pixel en vue de produire une valeur de différence de régions de correction pour chaque région de correction ;
    (i) déterminer un signal de correction en multipliant la valeur de différence de régions de correction par le comptage de pixels de régions d'intérêt pour chaque région d'intérêt de réaction ;
    (j) déterminer une somme corrigée de régions d'intérêt de réaction, en soustrayant la valeur de correction de la somme de pixels de régions d'intérêt de réaction pour chaque région d'intérêt de réaction.
  2. Procédé selon la revendication 1, dans lequel le signal de fond correspond à une valeur de décalage de fond stockée avant le début de l'exécution.
  3. Procédé selon la revendication 1, dans lequel le signal de fond correspond à une valeur de décalage de fond déterminée au cours de l'exécution.
  4. Procédé selon la revendication 1, dans lequel le signal de correction est mis à l'échelle.
  5. Procédé selon la revendication 1, dans lequel les régions de correction présentent une pluralité de côtés.
  6. Procédé selon la revendication 1, dans lequel les régions de correction présentent quatre côtés.
  7. Procédé selon la revendication 1, dans lequel les régions de correction correspondent à des polygones fermés.
  8. Procédé selon la revendication 1, dans lequel les réglons de correction sont circulaires.
  9. Procédé selon la revendication 1, dans lequel les régions de correction sont annulaires.
  10. Procédé selon la revendication 1, dans lequel les réglons de correction sont définies par une topogramme binaire.
  11. Procédé selon la revendication 1, dans lequel ladite pluralité de régions d'intérêt provient d'une plaque à puits multiples.
  12. Procédé selon la revendication 1, dans lequel un lecteur de thermocycleur est employé.
  13. Procédé selon la revendication 1, incluant en outre l'étape consistant à stocker les régions de correction définies à l'étape (c).
  14. Procédé selon la revendication 1, dans lequel la somme corrigée de régions d'intérêt de réaction est déterminée pour chaque exposition utilisée en vue de générer l'image.
EP20060124151 2005-11-18 2006-11-15 Correction des signaux lumineux indesirables dans une région d'intérêt spécifique d'une image Not-in-force EP1788523B8 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15161939.2A EP2947624A1 (fr) 2005-11-18 2006-11-15 Correction basée sur image pour des signaux lumineux indésirables dans une région d'intérêt spécifique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/283,365 US20070116376A1 (en) 2005-11-18 2005-11-18 Image based correction for unwanted light signals in a specific region of interest

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP15161939.2A Division-Into EP2947624A1 (fr) 2005-11-18 2006-11-15 Correction basée sur image pour des signaux lumineux indésirables dans une région d'intérêt spécifique
EP15161939.2A Division EP2947624A1 (fr) 2005-11-18 2006-11-15 Correction basée sur image pour des signaux lumineux indésirables dans une région d'intérêt spécifique

Publications (3)

Publication Number Publication Date
EP1788523A1 EP1788523A1 (fr) 2007-05-23
EP1788523B1 true EP1788523B1 (fr) 2015-04-01
EP1788523B8 EP1788523B8 (fr) 2015-05-06

Family

ID=37770289

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15161939.2A Ceased EP2947624A1 (fr) 2005-11-18 2006-11-15 Correction basée sur image pour des signaux lumineux indésirables dans une région d'intérêt spécifique
EP20060124151 Not-in-force EP1788523B8 (fr) 2005-11-18 2006-11-15 Correction des signaux lumineux indesirables dans une région d'intérêt spécifique d'une image

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP15161939.2A Ceased EP2947624A1 (fr) 2005-11-18 2006-11-15 Correction basée sur image pour des signaux lumineux indésirables dans une région d'intérêt spécifique

Country Status (3)

Country Link
US (2) US20070116376A1 (fr)
EP (2) EP2947624A1 (fr)
ES (1) ES2537109T3 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777708B2 (en) * 2006-09-21 2010-08-17 Research In Motion Limited Cross-talk correction for a liquid crystal display
WO2013049776A1 (fr) * 2011-09-30 2013-04-04 Life Technologies Corporation Procédé destiné à rationaliser un étalonnage optique
CN104115190B (zh) 2011-09-30 2018-06-01 生命技术公司 用于在图像中减去背景的方法和系统
ITTO20130940A1 (it) 2013-11-20 2015-05-21 St Microelectronics Srl Kit per analisi biochimiche e metodo per eseguire un processo biochimico di tipo migliorato

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979589A (en) * 1973-11-29 1976-09-07 Finn Bergishagen Method and system for the infrared analysis of gases
US5096807A (en) * 1985-03-06 1992-03-17 Murex Corporation Imaging immunoassay detection system with background compensation and its use
US5139744A (en) * 1986-03-26 1992-08-18 Beckman Instruments, Inc. Automated laboratory work station having module identification means
US5107422A (en) * 1989-10-02 1992-04-21 Kamentsky Louis A Method and apparatus for measuring multiple optical properties of biological specimens
US6238875B1 (en) * 1991-03-12 2001-05-29 The Scripps Research Institute Diagnostic methods useful in the characterization of lymphoproliferative disease characterized by increased EPR-1
US20040062773A1 (en) * 1993-04-22 2004-04-01 Emisphere Technologies Inc. Compositions for the delivery of antigens
US6738529B1 (en) * 1996-10-09 2004-05-18 Symyx Technologies, Inc. Analysis of chemical data from images
US6284474B1 (en) * 1998-04-23 2001-09-04 The Regents Of The University Of California Detection and diagnosis of conditions associated with lung injury
US6097025A (en) * 1997-10-31 2000-08-01 Ljl Biosystems, Inc. Light detection device having an optical-path switching mechanism
US20010046673A1 (en) * 1999-03-16 2001-11-29 Ljl Biosystems, Inc. Methods and apparatus for detecting nucleic acid polymorphisms
US6428752B1 (en) * 1998-05-14 2002-08-06 Affymetrix, Inc. Cleaning deposit devices that form microarrays and the like
US6990221B2 (en) * 1998-02-07 2006-01-24 Biodiscovery, Inc. Automated DNA array image segmentation and analysis
WO2001027688A2 (fr) * 1999-10-08 2001-04-19 Applied Science Fiction, Inc. Systeme et procede de correction des defauts dans des images numeriques par remplissage selectif a partir de zones peripheriques
EP1313055A4 (fr) * 2000-06-28 2004-12-01 Toudai Tlo Ltd Procede de traitement de donnees d'expression genique et programmes de traitement
US6951947B2 (en) * 2000-07-13 2005-10-04 The Scripps Research Institute Labeled peptides, proteins and antibodies and processes and intermediates useful for their preparation
WO2002028530A2 (fr) * 2000-10-06 2002-04-11 Trustees Of Tufts College Capteur d'auto-codage a microspheres
JP2002204372A (ja) * 2000-12-28 2002-07-19 Canon Inc 画像処理装置およびその方法
GB0102357D0 (en) * 2001-01-30 2001-03-14 Randox Lab Ltd Imaging method
US7027930B2 (en) * 2001-01-31 2006-04-11 Agilent Technologies, Inc. Reading chemical arrays
US7027932B2 (en) * 2001-03-21 2006-04-11 Olympus Optical Co., Ltd. Biochemical examination method
EP1432976A4 (fr) * 2001-09-05 2007-11-28 Genicon Sciences Corp Dispositif pour la lecture de signaux emis par des particules a dispersion de la lumiere de resonance utilisees comme marqueurs
US7085404B2 (en) * 2001-10-11 2006-08-01 Industry-University Cooperation Foundation, Hangyang University Image analysis system and method of biochip
WO2003030620A2 (fr) * 2001-10-12 2003-04-17 Vysis, Inc. Imagerie de jeux ordonnes de microechantillons
US7162101B2 (en) * 2001-11-15 2007-01-09 Canon Kabushiki Kaisha Image processing apparatus and method
DE10212557A1 (de) * 2002-03-14 2003-09-25 Univ Schiller Jena Verfahren zur Charakterisierung hochparallelisierter Liquidhandlingtechnik mittels Mikroplatten sowie Testkit zur Durchführung des Verfahrens
JP2003284707A (ja) * 2002-03-27 2003-10-07 Canon Inc 撮影装置、ゲイン補正方法、記録媒体及びプログラム
US7221785B2 (en) * 2002-05-21 2007-05-22 Agilent Technologies, Inc. Method and system for measuring a molecular array background signal from a continuous background region of specified size
US7318590B2 (en) * 2002-06-19 2008-01-15 Ali Razavi Pattern adhesive seal products and method of production
DE50212936D1 (de) * 2002-10-24 2008-12-04 L 1 Identity Solutions Ag Prüfung von Bildaufnahmen von Personen
WO2004047007A1 (fr) * 2002-11-15 2004-06-03 Bioarray Solutions, Ltd. Analyse d'images de reseaux, acces securise a ces images et transmission de ces images
EP1597577A4 (fr) * 2003-02-10 2007-02-21 Pointilliste Inc Reseaux a assemblage autonome et utilisation de ceux-ci
US7522762B2 (en) * 2003-04-16 2009-04-21 Inverness Medical-Biostar, Inc. Detection, resolution, and identification of arrayed elements
US20050000811A1 (en) * 2003-05-06 2005-01-06 Janos Luka Electrophoretically enhanced methods
WO2004104172A2 (fr) * 2003-05-15 2004-12-02 Bioarray Solutions, Ltd. Analyse de polymorphismes induite par hybridation
US20050038839A1 (en) * 2003-08-11 2005-02-17 Srinka Ghosh Method and system for evaluating a set of normalizing features and for iteratively refining a set of normalizing features
US7460223B2 (en) * 2003-09-19 2008-12-02 Applied Biosystems Inc. Inverted orientation for a microplate
US7424170B2 (en) * 2003-09-30 2008-09-09 Fotonation Vision Limited Automated statistical self-calibrating detection and removal of blemishes in digital images based on determining probabilities based on image analysis of single images
US20050236317A1 (en) * 2004-04-23 2005-10-27 Millipore Corporation Pendant drop control in a multiwell plate

Also Published As

Publication number Publication date
ES2537109T3 (es) 2015-06-02
US8249381B2 (en) 2012-08-21
EP1788523A1 (fr) 2007-05-23
EP1788523B8 (fr) 2015-05-06
EP2947624A1 (fr) 2015-11-25
US20070116376A1 (en) 2007-05-24
US20100142848A1 (en) 2010-06-10

Similar Documents

Publication Publication Date Title
CN103025927B (zh) 精确地比对与配准用于dna测序的阵列的方法及系统
US9487822B2 (en) Method and apparatus for determining copy number variation using digital PCR
US8849037B2 (en) Methods and systems for image processing of microfluidic devices
EP2701194B1 (fr) Procédé et appareil pour l'imagerie d'un dispositif microfluidique sous contrôle de température.
JP2008256428A (ja) マイクロアレイ画像のブロック位置検出方法
US7340093B2 (en) Luminescent intensity analysis method and apparatus
KR20100091837A (ko) 바이오칩 스캐닝 방법
EP1788523B1 (fr) Correction des signaux lumineux indesirables dans une région d'intérêt spécifique d'une image
US7115883B2 (en) Detector calibration method and power measurement instruments using the method
JPWO2002001477A1 (ja) 遺伝子発現データの処理方法および処理プログラム
JP2006317261A (ja) 走査型サイトメータの画像処理方法及び装置
JP5895613B2 (ja) 判定方法、判定装置、判定システム、および、プログラム
EP3680851B1 (fr) Procédé et système pour calculer la fonction de dispersion de points d'un système de détection d'images numériques basé sur la mesure du bruit quantique modulé mtf
JP5210571B2 (ja) 画像処理装置、画像処理プログラムおよび画像処理方法
CN104145293B (zh) 用于简化光学校准的方法
CN113670865B (zh) 分辨率板、分辨率评估方法及相关设备
US10733707B2 (en) Method for determining the positions of a plurality of objects in a digital image
Chen et al. Design and implementation of CCD image-based DNA chip scanner with automatic focus calibration
JP2009074937A (ja) 画像処理装置および画像処理プログラム
JP2000292542A (ja) 画像定量方法および装置
KR20050048727A (ko) 바이오칩 촬영영상 분석 시스템 및 그 방법
CN113462760A (zh) 生物芯片的检测方法、装置及设备
JP2010217087A (ja) バイオチップ検査装置
KR20050048729A (ko) 바이오칩 촬영영상 품질 분석 시스템 및 그 방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20071123

17Q First examination report despatched

Effective date: 20071220

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141013

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ABBOTT MOLECULAR INC.

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006044943

Country of ref document: DE

Effective date: 20150513

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 719471

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2537109

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150602

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150401

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 719471

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150401

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150803

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150801

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150702

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006044943

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

26N No opposition filed

Effective date: 20160105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151115

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20061115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191017

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191029

Year of fee payment: 14

Ref country code: ES

Payment date: 20191202

Year of fee payment: 14

Ref country code: IT

Payment date: 20191120

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191029

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006044943

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201115

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201115

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201116