EP1785508B1 - Method of manufacturing a photocatalytic active layer - Google Patents

Method of manufacturing a photocatalytic active layer Download PDF

Info

Publication number
EP1785508B1
EP1785508B1 EP06022877A EP06022877A EP1785508B1 EP 1785508 B1 EP1785508 B1 EP 1785508B1 EP 06022877 A EP06022877 A EP 06022877A EP 06022877 A EP06022877 A EP 06022877A EP 1785508 B1 EP1785508 B1 EP 1785508B1
Authority
EP
European Patent Office
Prior art keywords
metal
particles
photocatalytically active
cold gas
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06022877A
Other languages
German (de)
French (fr)
Other versions
EP1785508A2 (en
EP1785508A3 (en
Inventor
Peter Heinrich
Heinrich Prof. Dr. Kreye
Tobias Schmidt
Frank Dr. Gärtner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1785508A2 publication Critical patent/EP1785508A2/en
Publication of EP1785508A3 publication Critical patent/EP1785508A3/en
Application granted granted Critical
Publication of EP1785508B1 publication Critical patent/EP1785508B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the invention relates to a method for the production of metallic objects, such as films, sheets or moldings, with photocatalytically active surface according to the preamble of claim 1.
  • the peculiarity of the photocatalytically active components mainly titanium dioxide is to break the bonds in the molecules of pollutants and to decompose the substances in question into harmless, simply structured reaction products.
  • the object of the invention is to improve a corresponding process for the production of photocatalytically active layers on metals in such a way that more adhesive, long-term stable layers are produced.
  • J. Morimoto et al. disclose a method for the production of metallic objects with photocatalytically active surface by means of cold gas spraying technique.
  • the spray material is titanium dioxide powder and a metallic powder.
  • EP 1176227 discloses a method for producing metallic articles which are covered with a sprayed material by means of a cold gas spraying technique.
  • the spray material is titanium dioxide powder and a metallic powder.
  • This object is achieved in that instead of the pure oxide ceramic, a mixture of oxide ceramic and metallic powder is injected.
  • the injection of hard ceramic with a metal mixture has the advantage that there are always components that can deform when hitting. Especially the metal parts deform on impact, forming a new matter that penetrates into the existing layer, thus increasing the adhesion and the resistance.
  • the metal particles penetrate into the gaps, but also penetrates a metal impinging ceramic particles into the metal and is thereby enclosed by the metal and firmly connected to the metal.
  • metals and metal alloys in question are virtually all metals and metal alloys in question, which can be injected without ceramic additive.
  • Tuned to the application of the photocatalytic layer are e.g. Metals such as aluminum and copper or their alloys are interesting, which can be easily deformed (flexible tapes). Aluminum and copper are also interesting if the photocatalytically active layer should have good electrical conductivity and good thermal conductivity. In particularly aggressive environments, corrosion resistant nickel alloys or tantalum can be used.
  • the size of the particles can be in the range from 3 to 100 ⁇ m, both in the case of the metallic component and in the case of the ceramic component, and preferably in the range of 10 to 50 ⁇ m in the case of the metallic component.
  • spraying with a high-pressure system is usually carried out at pressures of 20 to 40 bar and gas temperatures of 100 to 600 ° C.
  • spraying with so-called portable devices is operated with pressures up to 10 bar and gas temperature of 300 to 600 ° C.
  • Titanium dioxide has proved to be particularly preferred as the ceramic material.
  • This powder occurs in different crystal structures, with the photocatalytically active phase anatase (anatase) being metastable. When heated to temperatures in the range 600 to 800 ° C, this phase converts to the thermodynamically more stable phase rutile, which, however, has a significantly lower efficiency than photocatalyst. Such a conversion and impairment of the photocatalytic properties can not be avoided in plasma spraying and HVOF spraying. In the case of the cold gas spraying according to the invention, by contrast, the photocatalytically active phase anatase remains fully preserved since the temperatures of the gas used for spraying are below 600 ° C.
  • anatase it is desirable to shift the photocatalytic effectiveness of the material from the UV range into the range of visible light by modifying or doping the titanium dioxide. This would significantly improve the effectiveness as a photocatalyst in daylight.
  • the photocatalytic effectiveness of anatase is greater when this material is in the nanocrystalline state, i. a powder or a layer of crystals whose dimensions are well below one micron or below 100 nm. Both developments are contrary to cold gas spraying, since the heating in this process is so low that the modified or doped state is retained and the extremely small crystals do not grow in the injection process.
  • an agglomerated (agglomerated) powder may also be used in which each particle consists of many small ceramic oxide and metal particles.
  • Small particles in the size of, for example, 0.5 to 2 ⁇ m are agglomerated by the spray-drying method known and practiced in the art into larger particles of 3 to 100 ⁇ m in diameter so that each individual particle then consists of smaller particles of both components. This happens, for example, in that the small particles are provided with an organic binder and the suspension is then dried in a stream of hot air or gas. The binder evaporates and the smaller particles are "glued together" or connected to one another by diffusion processes.
  • a powder in which the oxide-ceramic particles are each coated with a metal or a metal alloy. This coated powder is then applied to the metallic or ceramic substrates by cold gas spraying. In this case, the layer is abraded or ground in a second step by mechanical or chemical post-processing in order to expose the titanium dioxide, which is still encased in the shell after spraying, on the layer surface.
  • the metal content should be between 10% and 90%. Preferably between 30% and 60%.
  • the catalytic effect of the metallic surface is already present when the surface is occupied in a monolayer of titanium dioxide particles. This even if the monolayer is not nationwide. Surface coverage ranges from 5%, with 5-100% exhibiting a photocatalytic effect, wherein preferably a surface coverage of between 30 and 80% is set.
  • the inventive methods can be used to apply thicker layers, which are then much more loadable, since the metal components used serve as adhesives.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

In a process to manufacture metallic objects e.g. foil, sheet metal components or formed components bearing a photo-catalytic active surface, the active material is applied as a cold gas spray incorporating a ceramic oxide and a metallic powder. The cold gas incorporates titanium dioxide powder e.g. Atanas. The individual ceramic oxide particles are encased within a metal or metal alloy representing 30-60% Vol. The metal surface has a photo-catalytic particle coating represents 30-80% of the surface area. The outer layer is subject to further mechanical or chemical treatment.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von metallischen Gegenständen, wie Folien, Blechen oder Formteilen, mit photokatalytisch aktiver Oberfläche nach dem Oberbegriff des Anspruchs 1. Die Besonderheit der photokatalytisch aktiven Komponenten (hauptsächlich Titandioxid) besteht darin, die Bindungen in den Molekülen von Schadstoffen aufzubrechen und die betreffenden Substanzen dadurch in ungefährliche, einfach aufgebaute Reaktionsprodukte zu zerlegen.The invention relates to a method for the production of metallic objects, such as films, sheets or moldings, with photocatalytically active surface according to the preamble of claim 1. The peculiarity of the photocatalytically active components (mainly titanium dioxide) is to break the bonds in the molecules of pollutants and to decompose the substances in question into harmless, simply structured reaction products.

Das Auftragen unterschiedlicher Komponenten auf zahlreichen Untergründen durch thermisches Spritzen hat sich aufgrund der hohen Variabilität von verschiedenen Grund- und Schichtwerkstoffen und seiner hohen Flexibilität bewährt.The application of different components on numerous substrates by thermal spraying has proven itself due to the high variability of different base and layer materials and its high flexibility.

Es wurde bereits vorgeschlagen ( DE 10 2004 038 795 ) photokatalytisch aktive Oberflächen in Kunststoffen durch Kaltgasspritzen herzustellen. Dabei werden Partikel aus dem photokatalytisch aktiven oxidischen Material durch ein Trägergas beschleunigt, dringen beim Aufprall auf die Polymeroberfläche ganz oder teilweise ein und bilden aufgrund ihrer hohen kinetischen Energie einen mechanisch fest anhaftenden Verbund Polymer/Oxid. Diese Anmeldung bezieht sich nur auf Polymerschichten. Dabei ist zu bedenken, dass die katalytische Wirkung des TiO2 auch zur Zersetzung des Kunststoffs führen kann.It has already been proposed ( DE 10 2004 038 795 ) to produce photocatalytically active surfaces in plastics by cold gas spraying. In this case, particles from the photocatalytically active oxidic material are accelerated by a carrier gas, penetrate completely or partially upon impact with the polymer surface and, due to their high kinetic energy, form a mechanically adhering composite polymer / oxide. This application relates only to polymer layers. It should be remembered that the catalytic effect of TiO 2 can also lead to the decomposition of the plastic.

Aus der Literaturstelle: Formation of TiO2 photocatalyst through cold spraying von Chang-Jiu Li, Guan-Jun Yang, Xin-Chun Huang, Wen-Ya Li, Xián / PRC , and Akira Ohmori Osaka / J, Proceedings ITSC, May 10-12,2004, Osaka, Japan , ist es bekannt, photokatalytisch aktives Pulver (TiO2) auf eine Metalloberfläche mit Kaltgas zu spritzen. Dabei werden Anataspulver mit 10-45 µm durch Agglomeration ultrafeiner Partikel hergestellt. Die Primärpartikelgröße der ultrafeinen Partikel sind 200 und 7 Nanometer. Diese Pulver werden auf Edelstahlplatten gespritzt. Problematisch beim Kaltgasspritzen von Titandioxid ist, dass dieses Material sich nicht plastisch verformen kann. Die Haftung der Partikel auf dem metallischen Substrat erfolgt nur dadurch, dass sich das Metall verformt. Ein auf ein bereits haftendes Partikel auftreffendes zweites Partikel dürfte deswegen kaum haften. Dieses Problem wird in dieser Literaturstelle nicht angesprochen, geschweige denn gelöst. Es werden Aufnahmen (rasterelektronenmikroskopische Aufnahmen von der Oberfläche) von porösen TiO2-Schichten gezeigt, bei denen die zweite und weiter folgenden Partikellagen vermutlich nicht kratzfest mit der ersten Partikellage verbunden sein dürften.From the literature: Formation of TiO 2 photocatalyst through cold spraying of Chang-Jiu Li, Guan-Jun Yang, Xin-Chun Huang, Wen-Ya Li, Xián / PRC , and Akira Ohmori Osaka / J, Proceedings ITSC, May 10-12,2004, Osaka, Japan , It is known to inject photocatalytically active powder (TiO 2 ) on a metal surface with cold gas. Anatase powders of 10-45 μm are produced by agglomeration of ultrafine particles. The primary particle size of the ultrafine particles are 200 and 7 nanometers. These powders are sprayed on stainless steel plates. The problem with cold gas spraying of titanium dioxide is that this material can not plastically deform. The adhesion of the particles on the metallic substrate takes place only in that the metal deforms. Therefore, a second particle impinging on an already adhering particle is unlikely to adhere. This problem is discussed in this reference not addressed, let alone solved. Shoots (scanning electron micrographs of the surface) of porous TiO 2 layers are shown in which the second and subsequent particle layers probably should not be connected to the first particle layer in a scratch-resistant manner.

Aufgabe der Erfindung ist es, ein entsprechendes Verfahren für die Herstellung photokatalytisch aktiver Schichten auf Metallen dahingehend zu verbessern, dass besser haftende, langzeitbeständige Schichten erzeugt werden.The object of the invention is to improve a corresponding process for the production of photocatalytically active layers on metals in such a way that more adhesive, long-term stable layers are produced.

J. Morimoto et al. (Vacuum 73 (2004) 527 - 532 ) offenbaren ein Verfahren zur Herstellung von metallischen Gegenständen mit photokatalytisch aktiver Oberfläche mittels Kaltgasspritztechnik. Der Spritzwerkstoff ist Titandioxidpulver und ein metallisches Pulver. EP 1176227 offenbart ein Verfahren zur Herstellung von metallischen Gegenständen, die mittels Kaltgasspritztechnik mit einem Spritzwerkstoff bedeckt sind. Der Spritzwerkstoff ist Titandioxidpulver und ein metallisches Pulver. J. Morimoto et al. (Vacuum 73 (2004) 527-532 ) disclose a method for the production of metallic objects with photocatalytically active surface by means of cold gas spraying technique. The spray material is titanium dioxide powder and a metallic powder. EP 1176227 discloses a method for producing metallic articles which are covered with a sprayed material by means of a cold gas spraying technique. The spray material is titanium dioxide powder and a metallic powder.

Diese Aufgabe wird durch ein Verfahren nach Patentanspruch 1 gelöst.This object is achieved by a method according to claim 1.

Diese Aufgabe wird dadurch gelöst, dass anstelle der reinen Oxidkeramik ein Gemisch aus Oxidkeramik und metallischem Pulver gespritzt wird. Das Spritzen von harter Keramik mit einem Metallgemisch hat den Vorteil, dass hier immer Komponenten vorhanden sind, die sich beim Auftreffen verformen können. Gerade die Metallanteile verformen sich beim Auftreffen, bilden damit eine in die vorhandene Schicht eindringende neue Materie und erhöhen so die Haftung und die Beständigkeit.This object is achieved in that instead of the pure oxide ceramic, a mixture of oxide ceramic and metallic powder is injected. The injection of hard ceramic with a metal mixture has the advantage that there are always components that can deform when hitting. Especially the metal parts deform on impact, forming a new matter that penetrates into the existing layer, thus increasing the adhesion and the resistance.

Die Metallpartikel dringen in die Lücken ein, aber ebenso dringt auch ein auf Metall auftreffendes Keramikpartikel in das Metall ein und wird dabei von dem Metall umschlossen und mit dem Metall fest verbunden.The metal particles penetrate into the gaps, but also penetrates a metal impinging ceramic particles into the metal and is thereby enclosed by the metal and firmly connected to the metal.

Als Metall bzw. metallische Komponente kommen praktisch alle Metalle und Metalllegierungen in Frage, die sich auch ohne Keramikzusatz spritzen lassen. Abgestimmt auf die Anwendung der photokatalytischen Schicht sind z.B. Metalle wie Aluminium und Kupfer bzw. deren Legierungen interessant, die sich gut verformen lassen (flexible Bänder). Aluminium und Kupfer sind auch interessant, wenn die photokatalytisch aktive Schicht eine gute elektrische Leitfähigkeit und gute Wärmeleitfähigkeit aufweisen soll. In besonders aggressiver Umgebung können korrosionsbeständige Nickellegierungen oder Tantal eingesetzt werden.As a metal or metallic component are virtually all metals and metal alloys in question, which can be injected without ceramic additive. Tuned to the application of the photocatalytic layer are e.g. Metals such as aluminum and copper or their alloys are interesting, which can be easily deformed (flexible tapes). Aluminum and copper are also interesting if the photocatalytically active layer should have good electrical conductivity and good thermal conductivity. In particularly aggressive environments, corrosion resistant nickel alloys or tantalum can be used.

Die Größe der Partikel kann sowohl bei der metallischen als auch bei der keramischen Komponente im Bereich von 3 bis 100 µm liegen, bei der metallischen Komponente vorzugsweise im Bereich 10 bis 50 µm. Beim Spritzen mit einem Hochdrucksystem arbeitet man üblicherweise bei Drücken von 20 bis 40 bar und Gastemperaturen von 100 bis 600 °C. Beim Spritzen mit sog. tragbaren Geräten wird mit Drücken bis 10 bar und Gastemperatur von 300 bis 600 °C gearbeitet.The size of the particles can be in the range from 3 to 100 μm, both in the case of the metallic component and in the case of the ceramic component, and preferably in the range of 10 to 50 μm in the case of the metallic component. When spraying with a high-pressure system is usually carried out at pressures of 20 to 40 bar and gas temperatures of 100 to 600 ° C. When spraying with so-called portable devices is operated with pressures up to 10 bar and gas temperature of 300 to 600 ° C.

Als besonders bevorzugt hat sich als Keramikwerkstoff Titandioxid erwiesen. Dieses Pulver kommt in verschiedenen Kristallstrukturen vor, wobei die photokatalytisch besonders aktive Phase Anatas (Anatase) metastabil ist. Bei Erwärmung auf Temperaturen im Bereich 600 bis 800 °C wandelt diese Phase sich in die thermodynamisch stabilere Phase Rutil um, die jedoch eine deutlich geringere Wirksamkeit als Photokatalysator besitzt. Eine solche Umwandlung und Beeinträchtigung der photokatalytischen Eigenschaften lässt sich beim Plasmaspritzen und beim HVOF-Spritzen nicht vermeiden. Beim erfindungsgemäßen Kaltgasspritzen bleibt dagegen die photokatalytisch aktive Phase Anatas voll erhalten, da die Temperaturen des zum Spritzen verwendeten Gases unter 600 °C liegen.Titanium dioxide has proved to be particularly preferred as the ceramic material. This powder occurs in different crystal structures, with the photocatalytically active phase anatase (anatase) being metastable. When heated to temperatures in the range 600 to 800 ° C, this phase converts to the thermodynamically more stable phase rutile, which, however, has a significantly lower efficiency than photocatalyst. Such a conversion and impairment of the photocatalytic properties can not be avoided in plasma spraying and HVOF spraying. In the case of the cold gas spraying according to the invention, by contrast, the photocatalytically active phase anatase remains fully preserved since the temperatures of the gas used for spraying are below 600 ° C.

Möglich ist auch, die photokatalytischen Eigenschaften von Anatas zu verbessern. Man ist derzeit bestrebt, durch eine Modifikation bzw. Dotierung des Titandioxids die photokatalytische Wirksamkeit des Materials vom UV-Bereich in den Bereich des sichtbaren Lichts zu verschieben. Das würde die Wirksamkeit als Photokatalysator bei Tageslicht bedeutend verbessern. Zum Anderen hat man bereits festgestellt, dass die photokatalytische Wirksamkeit von Anatas größer ist, wenn dieses Material im nanokristallinen Zustand vorliegt, d.h. ein Pulver oder eine Schicht aus Kristallen besteht, deren Abmessungen deutlich unter einem Mikrometer bzw. unter 100 nm liegt. Beide Entwicklungen kommen dem Kaltgasspritzen entgegen, da die Erwärmung bei diesem Verfahren so gering ist, dass auch der modifizierte oder dotierte Zustand erhalten bleibt und die extrem kleinen Kristalle im Spritzprozess nicht wachsen.It is also possible to improve the photocatalytic properties of anatase. At present, it is desirable to shift the photocatalytic effectiveness of the material from the UV range into the range of visible light by modifying or doping the titanium dioxide. This would significantly improve the effectiveness as a photocatalyst in daylight. On the other hand, it has already been found that the photocatalytic effectiveness of anatase is greater when this material is in the nanocrystalline state, i. a powder or a layer of crystals whose dimensions are well below one micron or below 100 nm. Both developments are contrary to cold gas spraying, since the heating in this process is so low that the modified or doped state is retained and the extremely small crystals do not grow in the injection process.

Statt eines Gemisches von zwei Pulvern kann auch ein agglomeriertes (zusammengeballtes) Pulver verwendet werden, bei dem jedes Partikel aus vielen kleinen Keramikoxid- und Metallpartikeln besteht. Kleine Partikel in der Größe von z.B. 0,5 bis 2 µm werden durch das in der Technik bekannte und praktizierte Verfahren des Sprühtrocknens zu größeren Partikeln mit 3 bis 100 µm Durchmesser agglomeriert, so dass dann jedes einzelne Partikel aus kleineren Partikeln beider Komponenten besteht. Dies geschieht z.B. dadurch, dass die kleinen Partikel mit einem organischen Binder versehen werden und die Suspension dann in einem heißen Luft- bzw. Gasstrom getrocknet wird. Dabei verdampft der Binder und die kleineren Partikel werden miteinander "verklebt" bzw. durch Diffusionsprozesse miteinander verbunden.Instead of a mixture of two powders, an agglomerated (agglomerated) powder may also be used in which each particle consists of many small ceramic oxide and metal particles. Small particles in the size of, for example, 0.5 to 2 μm are agglomerated by the spray-drying method known and practiced in the art into larger particles of 3 to 100 μm in diameter so that each individual particle then consists of smaller particles of both components. This happens, for example, in that the small particles are provided with an organic binder and the suspension is then dried in a stream of hot air or gas. The binder evaporates and the smaller particles are "glued together" or connected to one another by diffusion processes.

In einer Ausführung der Erfindung kann statt des Gemisches Metall und Oxidkeramik ein Pulver verwendet werden, bei dem die Oxidkeramik-Partikel je mit einem Metall oder einer Metalllegierung ummantelt sind. Dieses ummantelte Pulver wird dann durch Kaltgasspritzen auf die metallische oder keramische Trägermaterialien aufgetragen. In diesem Fall wird die Schicht in einem zweiten Arbeitsschritt durch mechanische oder chemische Nachbearbeitung auf- oder angeschliffen, um das nach dem Spritzen noch in Ummantelung eingeschlossene Titandioxid an der Schichtoberfläche freizulegen.In one embodiment of the invention, instead of the mixture of metal and oxide ceramics, a powder can be used in which the oxide-ceramic particles are each coated with a metal or a metal alloy. This coated powder is then applied to the metallic or ceramic substrates by cold gas spraying. In this case, the layer is abraded or ground in a second step by mechanical or chemical post-processing in order to expose the titanium dioxide, which is still encased in the shell after spraying, on the layer surface.

Versuche haben ergeben, dass der Metallanteil zwischen 10 % und 90 % liegen sollte. Bevorzugt zwischen 30 % und 60 %.Tests have shown that the metal content should be between 10% and 90%. Preferably between 30% and 60%.

Die katalytische Wirkung der metallischen Oberfläche ist schon dann gegeben, wenn die Oberfläche in einer Monolage von Titandioxidpartikeln belegt ist. Dies auch dann, wenn die Monolage nicht flächendeckend ist. Es reichen Flächenbelegungen ab 5 %, wobei 5-100 % eine photokatalytische Wirkung zeigen, wobei vorzugsweise eine Flächenbelegung zwischen 30 und 80 % eingestellt wird. Mit den erfindungsgemäßen Verfahren können neben Monolagen auch dickere Schichten aufgetragen werden, die dann wesentlich belastbarer sind, da die verwendeten Metallanteile als Haftmittel dienen.The catalytic effect of the metallic surface is already present when the surface is occupied in a monolayer of titanium dioxide particles. This even if the monolayer is not nationwide. Surface coverage ranges from 5%, with 5-100% exhibiting a photocatalytic effect, wherein preferably a surface coverage of between 30 and 80% is set. In addition to monolayers, the inventive methods can be used to apply thicker layers, which are then much more loadable, since the metal components used serve as adhesives.

Claims (4)

  1. A method of manufacturing metallic articles, such as foils, sheets or mouldings, having a photocatalytically active surface by the application or incorporation of photocatalytically active materials by means of cold-gas spraying technology where the spray material comprises oxide ceramic, characterized in that the individual oxide-ceramic particles have a sheath of metal or metal alloy and in that the applied layer is mechanically or chemically finished.
  2. A method according to claim 1, characterized in that the cold-gas spraying is effected using a titanium dioxide powder, preferably anatase.
  3. A method according to either of the preceding claims, characterized in that the volumetric fraction of metal is between 10 and '90%, preferably between 30 and 60%.
  4. A method according to any one of the preceding claims, characterized in that from 5 to 100% and preferably from 30 to 80% of the metal surface is covered with photocatalytically active particles.
EP06022877A 2005-11-08 2006-11-02 Method of manufacturing a photocatalytic active layer Not-in-force EP1785508B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005053263A DE102005053263A1 (en) 2005-11-08 2005-11-08 Process to manufacture metallic objects e.g. foil, sheet metal components or formed components bearing a photo-catalytic active surface

Publications (3)

Publication Number Publication Date
EP1785508A2 EP1785508A2 (en) 2007-05-16
EP1785508A3 EP1785508A3 (en) 2007-08-22
EP1785508B1 true EP1785508B1 (en) 2009-04-08

Family

ID=37667250

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06022877A Not-in-force EP1785508B1 (en) 2005-11-08 2006-11-02 Method of manufacturing a photocatalytic active layer

Country Status (4)

Country Link
US (1) US20070148363A1 (en)
EP (1) EP1785508B1 (en)
AT (1) ATE428007T1 (en)
DE (2) DE102005053263A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008016969B3 (en) * 2008-03-28 2009-07-09 Siemens Aktiengesellschaft Method for producing a layer by cold gas spraying
DE102009043319A1 (en) 2009-09-28 2011-07-07 Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg, 22043 Photocatalytically active coatings of titanium dioxide
DE102011083054A1 (en) 2011-09-20 2013-03-21 Hamburg Innovation Gmbh Process for the photocatalytically active coating of surfaces
DE102012001361A1 (en) 2012-01-24 2013-07-25 Linde Aktiengesellschaft Method for cold gas spraying

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578114A (en) * 1984-04-05 1986-03-25 Metco Inc. Aluminum and yttrium oxide coated thermal spray powder
DE10036264B4 (en) * 2000-07-26 2004-09-16 Daimlerchrysler Ag Process for producing a surface layer
DE10224780A1 (en) * 2002-06-04 2003-12-18 Linde Ag High-velocity cold gas particle-spraying process for forming coating on workpiece, is carried out below atmospheric pressure
DE102004038795B4 (en) * 2004-08-09 2007-07-19 Atg- Advanced Technology Group S.R.O. Process for the preparation of photocatalytically active polymers

Also Published As

Publication number Publication date
DE502006003370D1 (en) 2009-05-20
EP1785508A2 (en) 2007-05-16
US20070148363A1 (en) 2007-06-28
DE102005053263A1 (en) 2007-05-10
ATE428007T1 (en) 2009-04-15
EP1785508A3 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
EP1926841B1 (en) Cold gas spraying method
EP2807287A1 (en) Method for cold gas spraying
DE102008042237A1 (en) Metallic coating
WO2011042459A1 (en) Atmospheric pressure plasma method for producing surface-modified particles and coatings
WO2007115959A3 (en) Process for producing metal oxide flakes
WO2006061384A1 (en) Cold gas spraying method
EP1785508B1 (en) Method of manufacturing a photocatalytic active layer
DE112007000436T5 (en) Rolling bearing and method for producing the same
EP2576862A1 (en) Method for cold gas spraying of a layer having a metal microstructure phase and a microstructure phase made of plastic, component having such a layer, and use of said component
EP1903126A1 (en) Cold spray method
DE102012025087A1 (en) Freezing point-lowering coating of plastic films for application to rotor blades of wind turbines
DE102008016969B3 (en) Method for producing a layer by cold gas spraying
EP2243862A2 (en) Solar absorber coating and method for producing such a solar absorber coating
EP1007753A1 (en) Method for producing an adhesive layer for a heat insulating layer
DE102006015591B3 (en) Organic material with a catalytically coated surface and process for its production
DE19826681A1 (en) Gas-absorbent nonvolatile getter material thin films for high vacuum production or gas storage
DE2109133C3 (en) Process for applying coatings of high temperature resistant plastics to substrates by flame spraying and flame spraying powder for its implementation
EP2066827A1 (en) Method and device for depositing a non-metallic coating by means of cold-gas spraying
EP1242195A2 (en) Method for producing an anti-adherent coating, anti-adherent coating and use of an anti-adherent coating
DE102007039904A1 (en) Heat-conductive material layer manufacturing method, involves inserting fibers in field area and transporting towards carrier layer, where fibers have large heat-conductivity toward fiber longitudinal direction than other direction
EP3149091B1 (en) Use of metallic pigments in a liquid polymer formulation
EP1130128A1 (en) Process and apparatus for deposition of a coating by spraying a liquid
DE102017205015A1 (en) Rolling bearing with an electrically insulating layer
DE102018003289A1 (en) Method for adjusting the crystallite size of pulverulent coating materials for aerosol-based cold deposition (Aerosol Deposition Method, ADM)
WO2016058593A1 (en) Method for producing a molded item and a covering layer for use with the method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070920

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20071227

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD OF MANUFACTURING A PHOTOCATALYTIC ACTIVE LAYER

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502006003370

Country of ref document: DE

Date of ref document: 20090520

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: LINDE AG

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090908

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090719

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090808

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

26N No opposition filed

Effective date: 20100111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090709

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091009

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141029

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006003370

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601