EP1506816A1 - Laval nozzle for thermal or kinetical spraying - Google Patents

Laval nozzle for thermal or kinetical spraying Download PDF

Info

Publication number
EP1506816A1
EP1506816A1 EP04010236A EP04010236A EP1506816A1 EP 1506816 A1 EP1506816 A1 EP 1506816A1 EP 04010236 A EP04010236 A EP 04010236A EP 04010236 A EP04010236 A EP 04010236A EP 1506816 A1 EP1506816 A1 EP 1506816A1
Authority
EP
European Patent Office
Prior art keywords
nozzle
spraying
section
gas
contour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04010236A
Other languages
German (de)
French (fr)
Other versions
EP1506816B1 (en
Inventor
Peter Heinrich
Heinrich Prof. Dr. Kreye
Thorsten Stoltenhoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Metco AG
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33568141&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1506816(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE10319481A external-priority patent/DE10319481A1/en
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to PL04010236T priority Critical patent/PL1506816T3/en
Priority to EP04010236A priority patent/EP1506816B1/en
Publication of EP1506816A1 publication Critical patent/EP1506816A1/en
Application granted granted Critical
Publication of EP1506816B1 publication Critical patent/EP1506816B1/en
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/1606Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air
    • B05B7/1613Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed
    • B05B7/162Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/20Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion

Definitions

  • the invention relates to a Laval nozzle for thermal spraying and kinetic Spraying, especially for cold gas spraying, with a converging and with a divergent section.
  • Such nozzles are used in cold gas spraying used and used for the production of coatings or moldings.
  • the spray particles are at relaxation of the gas jet in the divergent part of the Laval nozzle at high speeds above the speed of sound accelerated.
  • the spray particles then strike the substrate and weld due to their high kinetic energy to a very dense layer.
  • the nozzle but is suitable in addition to the cold gas spraying for the other methods of thermal spraying, such as flame spraying or the High-speed flame spraying with inert or reactive spray components.
  • On impact with high Speed is formed by the particles that do not melt in the "cold" gas jet, a dense and firmly adherent layer, whereby plastic deformation and therefrom resulting local heat release for cohesion and adhesion of the sprayed layer take care of the workpiece.
  • a heating of the gas jet increases the Flow velocity of the gas and thus the particle velocity. It also warms the particles, thereby favoring their plasticity Deformation on impact.
  • the gas temperature can be up to 800 ° C, but is well below the melting temperature of the coating material, so that a Melting of the particles in the gas jet does not take place. An oxidation and Phase transformations of the coating material can thus be largely avoid.
  • Nitrogen, helium, argon, air or mixtures thereof used mainly, however, comes Nitrogen for use, higher particle velocities are using helium or Helium-nitrogen mixtures achieved.
  • the nozzle described there and currently has the shape of a double cone with a total length of about 100 mm. It has an expansion ratio of about 9, In addition, a variant with an expansion ratio of 6 is also used.
  • the Length of the convergent section is about 1/3, that of the divergent section 2/3 of the nozzle length.
  • the nozzle throat has a diameter of about 2.7 mm.
  • devices for cold gas spraying are at pressures of from about 1 MPa up to a maximum pressure of 3.5 MPa and gas temperatures up to about 800 ° C.
  • the heated gas is released together with the spray particles in the Laval nozzle.
  • the gas velocity increases to values up to 3000 m / s and the particle velocity to values up to 2000 m / s.
  • FIG. 2a has a cylindrical shape, that of FIG. 2b has a curvature towards the outside.
  • “Curvature outwards” means that the line of the boundary in Figure 2b below in Flow direction of the gas has a curvature to the right, so outward.
  • the Upper boundary line has a curvature to the left, so also after Outside.
  • the cross-sectional areas of the nozzle grow when going outward faster than a corresponding cone.
  • the object of the invention is to provide a nozzle for the thermal and the kinetic To improve spraying so that the application effect is increased and while the tendency of the particles to deposit on the nozzle wall is reduced.
  • a nozzle in which the whole diverging section or at least part of the diverging section one having bell-shaped contour.
  • a nozzle in which the whole diverging section or at least part of the diverging section one having bell-shaped contour.
  • Such a nozzle the comparable dimensions we use the standard nozzle described above in terms of nozzle length, aspect ratio convergent to divergent section, expansion ratio, diameter of the Nozzle neck, etc., but according to the invention has a bell-shaped contour of the divergent nozzle section shows a much better order behavior.
  • a standard nozzle and a bell-shaped nozzle resulted when using the same copper powder with grain size 5 to 25 microns and otherwise same process parameters with regard to gas pressure, gas temperature, gas flow, Pulveronneate, spray distance, etc. an increase in the order efficiency of 50 to 55% to 60 to 65%.
  • Ordering efficiency refers to the amount of adhering powder the amount of powder sprayed per unit area during the same period.
  • the whole divergent section is bell-shaped. It is enough but also out if only part of the divergent section has bell shape and the Rest is designed differently, for example as a cone or as a cylinder.
  • the Beginning of the diverging section bell shape This then moves over One-third or one-half the length of the divergent section.
  • the Go nozzle in another form, where it is favorable if the nozzle no Discontinuities or "kinks" in their course. Should be avoided abrupt transition from bell shape to cone or from cone to cylinder, since abrupt transitions disturb the uniformity of the gas flow.
  • the bell-shaped contour is designed so that a Parallel jet nozzle is present, that is, the jet leaves the nozzle in parallel, without Expansion.
  • This second variant of the invention with the same diameter in Nozzle neck, but a longer divergent section whose bell-shaped contour was designed so that a parallel gas flow is achieved, results in otherwise same process parameter even an order efficiency of 75 to 80%.
  • the total length of the nozzle is between 60 and 300 mm, preferably using nozzles with overall lengths of 100 to 200 mm become.
  • the cross section in the nozzle throat is 3 to 25 mm 2 , more preferably 5 to 10 mm 2 .
  • nozzles in which the exit Mach number between 1 and 5, particularly favorably between 2.5 and 4 lies.
  • the particle velocity depends on the type and state variables of the gas (Pressure, temperature), the particle size and the physical density of the Particle material (article by T. Stoltenhoff et al. HVOF Colloquium, 16 and 17.11.2000 in Erding, formula on page 31 below). thats why It is possible to customize the nozzle contour specifically on the process gases nitrogen, air and helium as well as the spray material.
  • a powder tube is provided in the nozzle, which serves to supply the spray particles and ends in the divergent portion of the nozzle.
  • Such powder tubes and nozzle geometries are shown in DE 101 26 100 A1, the disclosure of which is incorporated herein by reference.
  • the divergent section of the nozzle always has at least one bell-shaped section.
  • the contour is even better at nitrogen than process gas and copper was tuned as a spray material, an order efficiency of over 80% achieved.
  • the optimization was then carried out by varying the nozzle contour and calculating the particle velocities achievable thereafter.
  • the significant Increase of the order efficiency by the invention is due to that more or larger powder particles necessary for the adhesion of the particles Exceed minimum speed.
  • the figure shows a modified scale, the inner contour of an inventive Laval nozzle, with the gas flowing from left to right.
  • the converging section is conical in this embodiment along its entire length designed. In the diverging section one sees a steady decrease of the Increase, if one follows the upper boundary line from left to right and one steady increase of the slope, following the lower boundary.
  • This bell shape is achieved so that the jet is practically parallel to the nozzle on the right side leaves and adverse effects such as compression shocks at the nozzle exit or pressure nodes in the free jet can be significantly reduced.
  • the dimensions in mm are exemplary only and should not limit the scope of the invention.
  • Bell shape means that from the taper, so from the neck of the nozzle konvexkonkaver Curve course takes place, wherein the flow-through cross section is always larger or at least stays the same, but never gets smaller.
  • You can look at the curve also imagine: If you at the point (20 / 1,6) of the upper line of the figure a small Toy car sets up, whose front points to the right, so you would in the first Drive straight on, then make a left turn, to about the point (22 / 1.65). There is the turning point, from there the vehicle would turn right make a right turn until the end of the line at approx. (150 / 3,2), however, the steering angle of the steering becomes smaller and smaller.
  • the first paragraph from 20 to 22 is the convex
  • the larger section from 22 to 150 is the concave.

Abstract

The Laval nozzle has a convergent and a divergent section. At least part of the divergent section has a bell-shaped contour, resulting in and outlet velocity of more than 2.5. The contour is formed to provide a parallel jet nozzle. The full length of the nozzle is between 60mm and 300mm, pref. between 100mm and 200mm, and the cross section of the nozzle neck is 3-25mm 2, pref. 5-10mm 2. The expansion ratio is between 1and 25, and the critical outlet velocity ratio is between 2.5 and 5, pref. between 2.5 and 4. The nozzle contour is specially adapted for nitrogen, air, or helium. A powder tube ends in the divergent part of the nozzle.

Description

Die Erfindung betrifft eine Lavaldüse für das thermische Spritzen und das kinetische Spritzen, insbesondere für das Kaltgasspritzen, mit einem konvergierenden und mit einem divergierenden Abschnitt. Solche Düsen werden beim Kaltgasspritzen verwendet und dienen zur Herstellung von Beschichtungen oder Formteilen. Dazu werden pulverförmige Spritzpartikel in einen Gasstrahl, für welchen ein komprimiertes und erhitztes Gas über die Lavaldüse entspannt wird, mittels eines Pulverrohrs injiziert. Die Spritzpartikel werden bei Entspannung des Gasstrahls im divergenten Teil der Lavaldüse auf hohe Geschwindigkeiten oberhalb der Schallgeschwindigkeit beschleunigt. Die Spritzpartikel treffen dann auf das Substrat auf und verschweißen aufgrund ihrer hohen kinetischen Energie zu einer äußerst dichten Schicht. Die Düse eignet sich aber neben dem Kaltgasspritzen auch für die anderen Verfahren des thermischen Spritzens, wie das Flammspritzen oder das Hochgeschwindigkeitsflammspritzen mit inerten oder reaktiven Spritzkomponenten.The invention relates to a Laval nozzle for thermal spraying and kinetic Spraying, especially for cold gas spraying, with a converging and with a divergent section. Such nozzles are used in cold gas spraying used and used for the production of coatings or moldings. To become powdered spray particles in a gas jet, for which a compressed and heated gas is released through the Laval nozzle, injected by means of a powder tube. The spray particles are at relaxation of the gas jet in the divergent part of the Laval nozzle at high speeds above the speed of sound accelerated. The spray particles then strike the substrate and weld due to their high kinetic energy to a very dense layer. The nozzle but is suitable in addition to the cold gas spraying for the other methods of thermal spraying, such as flame spraying or the High-speed flame spraying with inert or reactive spray components.

Es ist bekannt, auf Werkstoffe unterschiedlichster Art Beschichtungen mittels thermischen Spritzens aufzubringen. Bekannte Verfahren hierfür sind beispielsweise Flammspritzen, Lichtbogenspritzen, Plasmaspritzen oder Hochgeschwindigkeits-Flammspritzen. In jüngerer Zeit wurde ein Verfahren entwickelt, das sog. Kaltgasspritzen, bei welchem die Spritzpartikel in einem "kalten" Gasstrahl auf hohe Geschwindigkeiten beschleunigt werden. Die Spritzpartikel werden als Pulver zugegeben, wobei das Pulver üblicherweise zumindest teilweise Partikel mit einer Größe von 1-50 µm umfasst. Nach der Injektion der Spritzpartikel in den Gasstrahl wird das Gas in einer Düse entspannt, wobei Gas und Partikel auf Geschwindigkeiten oberhalb der Schallgeschwindigkeit beschleunigt werden. Beim Aufprall mit hoher Geschwindigkeit bilden die Partikel, die in dem "kalten" Gasstrahl nicht schmelzen, eine dichte und fest haftende Schicht, wobei plastische Verformung und daraus resultierende lokale Wärmefreigabe für Kohäsion und Haftung der Spritzschicht auf dem Werkstück sorgen. Ein Aufheizen des Gasstrahls erhöht die Strömungsgeschwindigkeit des Gases und somit auch die Partikelgeschwindigkeit. Außerdem erwärmt es die Partikel und begünstigt dadurch deren plastische Verformung beim Aufprall. Die Gastemperatur kann bis zu 800 °C betragen, liegt aber deutlich unterhalb der Schmelztemperatur des Beschichtungswerkstoffs, so dass ein Schmelzen der Partikel im Gasstrahl nicht stattfindet. Eine Oxidation und Phasenumwandlungen des Beschichtungswerkstoffes lassen sich somit weitgehend vermeiden.It is known on materials of various kinds coatings by apply thermal spraying. Known methods for this are, for example Flame spraying, electric arc spraying, plasma spraying or high-speed flame spraying. More recently, a method has been developed, the so-called. Cold gas spraying, in which the spray particles in a "cold" gas jet to high Speeds are accelerated. The spray particles are called powder added, wherein the powder is usually at least partially particles with a Size of 1-50 microns includes. After injection of the spray particles into the gas jet is the gas relaxes in a nozzle, with gas and particles at speeds be accelerated above the speed of sound. On impact with high Speed is formed by the particles that do not melt in the "cold" gas jet, a dense and firmly adherent layer, whereby plastic deformation and therefrom resulting local heat release for cohesion and adhesion of the sprayed layer take care of the workpiece. A heating of the gas jet increases the Flow velocity of the gas and thus the particle velocity. It also warms the particles, thereby favoring their plasticity Deformation on impact. The gas temperature can be up to 800 ° C, but is well below the melting temperature of the coating material, so that a Melting of the particles in the gas jet does not take place. An oxidation and Phase transformations of the coating material can thus be largely avoid.

Ein solches Verfahren und eine Vorrichtung zum Kaltgasspritzen sind in der europäischen Patentschrift EP 0 484 533 B1 im einzelnen beschrieben. Als Düse wird dabei eine de Laval'sche Düse benutzt, im folgenden kurz Lavaldüse genannt. Lavaldüsen bestehen aus einem konvergenten und einem sich in Stromrichtung daran anschließenden divergenten Abschnitt. Charakterisiert sind Lavaldüsen durch die Kontur und die Länge des divergenten Abschnitts und des Weiteren durch das Verhältnis des Austrittquerschnitts zum engsten Querschnitt (= Expansionsverhältnis). Der engste Querschnitt der Lavaldüse heißt Düsenhals. Als Prozessgas werden Stickstoff, Helium, Argon, Luft oder deren Gemische verwendet. Meist kommt jedoch Stickstoff zur Anwendung, höhere Partikelgeschwindigkeiten werden mit Helium oder Helium-Stickstoff-Gemischen erreicht.Such a method and a device for cold gas spraying are in the European patent specification EP 0 484 533 B1. As a nozzle is while a de Laval'sche nozzle used, hereafter called Laval nozzle. Laval nozzles consist of a convergent and a current in it subsequent divergent section. Characterized are Laval nozzles through the Contour and the length of the divergent section and further through the Ratio of the outlet cross section to the narrowest cross section (= expansion ratio). The narrowest cross-section of the Laval nozzle is called nozzle throat. As a process gas Nitrogen, helium, argon, air or mixtures thereof used. Mostly, however, comes Nitrogen for use, higher particle velocities are using helium or Helium-nitrogen mixtures achieved.

Die dort beschriebene und derzeit übliche Düse hat die Form eines Doppelkegels mit einer Gesamtlänge von etwa 100 mm. Sie hat ein Expansionsverhältnis von etwa 9, daneben wird auch eine Variante mit einem Expansionsverhältnis von 6 verwendet. Die Länge des konvergenten Abschnittes beträgt etwa 1/3, die des divergenten Abschnittes 2/3 der Düsenlänge. Der Düsenhals hat einen Durchmesser von etwa 2,7 mm.The nozzle described there and currently has the shape of a double cone with a total length of about 100 mm. It has an expansion ratio of about 9, In addition, a variant with an expansion ratio of 6 is also used. The Length of the convergent section is about 1/3, that of the divergent section 2/3 of the nozzle length. The nozzle throat has a diameter of about 2.7 mm.

Derzeit sind Vorrichtungen zum Kaltgasspritzen auf Drücke von etwa 1 MPa bis zu einem Maximaldruck von 3,5 MPa und Gastemperaturen bis zu etwa 800 °C ausgelegt. Das erhitzte Gas wird zusammen mit den Spritzpartiken in der Lavaldüse entspannt. Während der Druck in der Lavaldüse abfällt, steigt die Gasgeschwindigkeit auf Werte bis zu 3000 m/s und die Partikelgeschwindigkeit auf Werte bis zu 2000 m/s.At present, devices for cold gas spraying are at pressures of from about 1 MPa up to a maximum pressure of 3.5 MPa and gas temperatures up to about 800 ° C. The heated gas is released together with the spray particles in the Laval nozzle. As the pressure in the Laval nozzle drops, the gas velocity increases to values up to 3000 m / s and the particle velocity to values up to 2000 m / s.

Aus der DE 101 26 100 A1 ist eine Vorrichtung zum Kaltgasspritzen bekannt. Die dort gezeigte Düse hat - sieht man von der Injektordüse für das Pulver ab - im divergenten Bereich der Ausführungen der Figuren 1 und 2c eine reine Kegelform. Die Ausführung der Figur 2a hat eine Zylinderform, die der Figur 2b eine Krümmung nach außen. "Krümmung nach außen" heißt, dass die Linie der Begrenzung in Figur 2b unten in Flussrichtung des Gases eine Krümmung nach rechts, also nach außen, aufweist. Die obere Begrenzungslinie weist eine Krümmung nach links auf, also ebenfalls nach außen. Die Querschnittsflächen der Düse wachsen beim weiter nach außen Gehen also schneller als bei einem entsprechenden Kegel.From DE 101 26 100 A1 a device for cold gas spraying is known. These shown nozzle has - apart from the injector nozzle for the powder - in the divergent Area of the embodiments of Figures 1 and 2c is a pure conical shape. Execution FIG. 2a has a cylindrical shape, that of FIG. 2b has a curvature towards the outside. "Curvature outwards" means that the line of the boundary in Figure 2b below in Flow direction of the gas has a curvature to the right, so outward. The Upper boundary line has a curvature to the left, so also after Outside. The cross-sectional areas of the nozzle grow when going outward faster than a corresponding cone.

Auf einem ganz anderen Gebiet der Technik, nämlich dem der Raketentriebwerke, werden als Schubdüsen ebenfalls Lavaldüsen verwendet. Die dortigen Düsen haben ein wesentlich größeres Expansionsverhältnis. Hier kommt es nur darauf an, das Gas (bzw. das Verbrennungsprodukt) auf möglichst kurzem Wege möglichst stark zu beschleunigen. Ein Problem der Raketendüsen ist dabei die Schubreduktion durch Strahldivergenz am Düsenaustritt. Dies wird in dem Lehrbuch "Gas Dynamics, Vol. 1", Seite 232 und 233, beschrieben. Aus diesem Grunde besitzen schuboptimierte Raketendüsen eine glockenförmige Kontur, die dafür sorgt, dass das Gas möglichst parallel strömend die Düse verlässt (= Parallelstrahldüse). Das Strömungsverhalten von Partikeln, die in den Verbrennungsprodukten der Rakete enthalten sind und mit ihnen die Düse verlassen, ist für die Optimierung der Düse von untergeordneter Bedeutung. Beim thermischen Spritzen und insbesondere beim Kaltgasspritzen hat dagegen das Verhalten der Partikel im Freistrahl hinter der Düse eine vorrangige Bedeutung.In a very different area of technology, namely rocket engines, are used as thrusters also Laval nozzles. The local nozzles have a much larger expansion ratio. It all depends on the gas (or the combustion product) on as short a path as possible accelerate. A problem of the rocket nozzles is the thrust reduction by Beam divergence at the nozzle exit. This is described in the textbook "Gas Dynamics, Vol. 1", Pages 232 and 233. For this reason, shear optimized Rocket nozzles a bell-shaped contour, which ensures that the gas as possible flowing parallel leaves the nozzle (= parallel jet nozzle). The flow behavior of particles contained in the rocket's combustion products and with they leave the nozzle is subordinate to the optimization of the nozzle Meaning. In thermal spraying and especially in cold gas spraying has on the other hand, the behavior of the particles in the free jet behind the nozzle is a priority Meaning.

Aufgabe der Erfindung ist es, eine Düse für das thermische und das kinetische Spritzen dahingehend zu verbessern, dass die Auftragswirkung gesteigert wird und dabei die Neigung der Partikel zur Ablagerung an der Düsenwand verringert wird.The object of the invention is to provide a nozzle for the thermal and the kinetic To improve spraying so that the application effect is increased and while the tendency of the particles to deposit on the nozzle wall is reduced.

Diese Aufgabe wird erfindungsgemäß gelöst von einer Düse, bei der der ganze divergierende Abschnitt oder zumindest ein Teil des divergierenden Abschnittes eine glockenförmige Kontur aufweist. Eine solche Düse, die vergleichbare Abmessungen wir die oben beschriebene Standarddüse bezüglich Düsenlänge, Längenverhältnis konvergenter zu divergentem Abschnitt, Expansionsverhältnis, Durchmesser des Düsenhalses usw. hat, jedoch erfindungsgemäß eine glockenförmige Kontur des divergenten Düsenabschnitts hat, zeigt ein wesentlich besseres Auftragsverhalten. In einem Vergleichstest zwischen einer Standarddüse und einer Düse mit Glockenform ergab sich bei Verwendung des gleichen Kupferpulvers mit Körnung 5 bis 25 µm und sonst gleichen Prozessparametern bezüglich Gasdruck, Gastemperatur, Gasfluss, Pulverförderate, Spritzabstand etc. eine Steigerung des Auftragswirkungsgrades von 50 bis 55 % auf 60 bis 65 %. Allein die - mit dem Auge fast gar nicht erkennbare - kleine Abänderung des divergenten Teils von einer Kegelform zu einer Glockenform, also eine zunächst überproportionale, dann unterproportionale Aufweitung im Vergleich zu einer Kegelform, ergibt diese deutliche Steigerung der Auftragswirkung. Als Auftragswirkungsgrad bezeichnet man die Menge des haften gebliebenen Pulvers zu der im gleichen Zeitraum gespritzten Pulvermenge je Flächeneinheit.This object is achieved by a nozzle in which the whole diverging section or at least part of the diverging section one having bell-shaped contour. Such a nozzle, the comparable dimensions we use the standard nozzle described above in terms of nozzle length, aspect ratio convergent to divergent section, expansion ratio, diameter of the Nozzle neck, etc., but according to the invention has a bell-shaped contour of the divergent nozzle section shows a much better order behavior. In a comparison test between a standard nozzle and a bell-shaped nozzle resulted when using the same copper powder with grain size 5 to 25 microns and otherwise same process parameters with regard to gas pressure, gas temperature, gas flow, Pulverförderate, spray distance, etc. an increase in the order efficiency of 50 to 55% to 60 to 65%. Alone - with the eye almost unrecognizable - small modification of the divergent part from a cone shape to a bell shape, so a first disproportionate, then disproportionate expansion in comparison to a cone shape results in this significant increase in the order effect. When Ordering efficiency refers to the amount of adhering powder the amount of powder sprayed per unit area during the same period.

Günstig ist, wenn der ganze divergente Abschnitt glockenförmig gestaltet ist. Es reicht aber auch aus, wenn nur ein Teil des divergenten Abschnitts Glockenform hat und der Rest anders gestaltet ist, zum Beispiel als Konus oder als Zylinder. Bevorzugt hat der Beginn des divergierenden Abschnitts Glockenform. Diese zieht sich dann über ein Drittel oder die Hälfte der Länge des divergierenden Abschnitts hin. Danach kann die Düse in eine andere Form übergehen, wobei es günstig ist, wenn die Düse keine Unstetigkeiten oder "Knicke" in ihrem Verlauf aufweist. Vermieden werden sollte ein abrupter Übergang von Glockenform auf Konus oder von Konus auf Zylinder, da abrupte Übergänge die Gleichförmigkeit des Gasflusses stören.It is favorable if the whole divergent section is bell-shaped. It is enough but also out if only part of the divergent section has bell shape and the Rest is designed differently, for example as a cone or as a cylinder. Preferably, the Beginning of the diverging section bell shape. This then moves over One-third or one-half the length of the divergent section. After that, the Go nozzle in another form, where it is favorable if the nozzle no Discontinuities or "kinks" in their course. Should be avoided abrupt transition from bell shape to cone or from cone to cylinder, since abrupt transitions disturb the uniformity of the gas flow.

In einer Ausführung ist die glockenförmige Kontur so gestaltet, dass eine Parallelstrahldüse vorliegt, das heißt, der Strahl verlässt die Düse parallel, ohne Aufweitung. Diese zweite Variante der Erfindung mit gleichem Durchmesser im Düsenhals, aber einem längeren divergenten Abschnitt, dessen glockenförmige Kontur so ausgelegt wurde, dass eine Parallelgasströmung erzielt wird, ergibt bei sonst gleichen Prozessparametem sogar einen Auftragswirkungsgrad von 75 bis 80 %.In one embodiment, the bell-shaped contour is designed so that a Parallel jet nozzle is present, that is, the jet leaves the nozzle in parallel, without Expansion. This second variant of the invention with the same diameter in Nozzle neck, but a longer divergent section whose bell-shaped contour was designed so that a parallel gas flow is achieved, results in otherwise same process parameter even an order efficiency of 75 to 80%.

In einer Ausführung der Erfindung ist die Gesamtlänge der Düse zwischen 60 und 300 mm, wobei bevorzugt Düsen mit Gesamtlängen von 100 bis 200 mm verwendet werden.In one embodiment of the invention, the total length of the nozzle is between 60 and 300 mm, preferably using nozzles with overall lengths of 100 to 200 mm become.

Bevorzugt ist ebenfalls, dass der Querschnitt im Düsenhals 3 bis 25 mm2 beträgt, besonders bevorzugt 5 bis 10 mm2.It is also preferred that the cross section in the nozzle throat is 3 to 25 mm 2 , more preferably 5 to 10 mm 2 .

Günstige Ergebnisse haben sich bei Düsen ergeben, deren Erweiterungsverhältnis zwischen 1 und 25 liegt.Favorable results have been found in nozzles whose expansion ratio between 1 and 25.

Günstig sind auch Düsen, bei denen die Austrittsmachzahl zwischen 1 und 5, besonders günstig zwischen 2,5 und 4 liegt. Also favorable are nozzles in which the exit Mach number between 1 and 5, particularly favorably between 2.5 and 4 lies.

Die Partikelgeschwindigkeit hängt ab von der Art und den Zustandsgrößen des Gases (Druck, Temperatur), der Partikelgröße und der physikalischen Dichte des Partikelwerkstoffs (Aufsatz von T. Stoltenhoff et al aus dem Tagungsband zum 5. HVOF-Kolloquium, 16. und 17.11.2000 in Erding, Formel auf Seite 31 unten). Daher ist es möglich, die Düsenkontur speziell auf die Prozessgase Stickstoff, Luft und Helium sowie den Spritzwerkstoff abzustimmen.The particle velocity depends on the type and state variables of the gas (Pressure, temperature), the particle size and the physical density of the Particle material (article by T. Stoltenhoff et al. HVOF Colloquium, 16 and 17.11.2000 in Erding, formula on page 31 below). thats why It is possible to customize the nozzle contour specifically on the process gases nitrogen, air and helium as well as the spray material.

In einer Ausführung der Erfindung ist ein Pulverrohr in der Düse vorgesehen, welches der Zufuhr der Spritzpartikel dient und im divergenten Abschnitt der Düse endet.
Solche Pulverrohre und Düsengeometrien sind in der DE 101 26 100 A1 gezeigt, auf deren Offenbarung hier vollinhaltlich Bezug genommen wird. Der divergente Abschnitt der Düse weist aber immer zumindest einen glockenförmigen Abschnitt auf.
In one embodiment of the invention, a powder tube is provided in the nozzle, which serves to supply the spray particles and ends in the divergent portion of the nozzle.
Such powder tubes and nozzle geometries are shown in DE 101 26 100 A1, the disclosure of which is incorporated herein by reference. However, the divergent section of the nozzle always has at least one bell-shaped section.

In einer weiteren Variante, bei der die Kontur noch besser auf Stickstoff als Prozessgas und Kupfer als Spritzwerkstoff abgestimmt wurde, wurde ein Auftragswirkungsgrad von über 80 % erreicht. Die Optimierung erfolgte dann durch Variation der Düsenkontur und Berechnung der danach erreichbaren Partikelgeschwindigkeiten. Die signifikante Steigerung des Auftragswirkungsgrades durch die Erfindung ist darauf zurückzuführen, dass mehr bzw. auch größere Pulverpartikel die für das Haften der Partikel notwendige Mindestgeschwindigkeit überschreiten.In another variant, the contour is even better at nitrogen than process gas and copper was tuned as a spray material, an order efficiency of over 80% achieved. The optimization was then carried out by varying the nozzle contour and calculating the particle velocities achievable thereafter. The significant Increase of the order efficiency by the invention is due to that more or larger powder particles necessary for the adhesion of the particles Exceed minimum speed.

Die bessere Beschleunigung der Partikel durch die neue Düse erlaubt auch die Verwendung eines gröberen Pulvers. So können nun Pulver mit Kömungen zwischen 5 und 106 µm statt der bisher verwendeten Pulver von 5 bis 25 µm eingesetzt werden, wobei die bekannten Pulver selbstverständlich weiterhin einsetzbar sind. Gröbere Pulver sind wesentlich kostengünstiger. Ein weiterer Vorteil der gröberen Pulver besteht darin, dass es beim Spritzen mit diesen Pulvern erst bei höheren Gastemperaturen zu Ablagerungen an der Düsenwand kommt. Eine höhere Gastemperatur bewirkt eine höhere Strömungsgeschwindigkeit des Gases und einen geringeren Gasverbrauch, insgesamt also Kosteneinsparungen bei Pulver und Gas bei der Herstellung der Schichten.The better acceleration of the particles by the new nozzle also allows the Use of a coarser powder. So now powder with kömungen between 5 and 106 microns are used instead of the previously used powders of 5 to 25 microns, Of course, the known powders are still usable. coarser Powders are much cheaper. Another advantage of the coarser powder is that when spraying with these powders only at higher Gas temperatures to deposits on the nozzle wall comes. A higher one Gas temperature causes a higher flow velocity of the gas and a lower gas consumption, so overall cost savings in powder and gas at the production of the layers.

Eine Ausführung der Erfindung wird anhand der einzigen Figur gezeigt. An embodiment of the invention will be shown with reference to the single figure.

Die Figur zeigt in verändertem Maßstab die Innenkontur einer erfindungsgemäßen Lavaldüse, wobei das Gas von links nach rechts strömt. Zu erkennen ist, dass die Länge des konvergenten Abschnittes wesentlich kleiner ist als die Länge des divergenten Abschnittes und dass der divergente Abschnitt insgesamt eine Glockenform aufweist, im Gegensatz zu der Düse der Figur 2b der DE 101 26 100 A1. Der konvergierende Abschnitt ist in dieser Ausführung über seine ganze Länge konisch gestaltet. Im divergierenden Abschnitt sieht man eine stetige Verringerung der Steigung, wenn man der oberen Begrenzungslinie von links nach rechts folgt und eine stetige Erhöhung der Steigung, wenn man der unteren Begrenzungslinie folgt. Durch diese Glockenform wird erreicht, dass der Strahl praktisch parallel die Düse auf der rechten Seite verlässt und nachteilige Effekte wie Verdichtungsstöße am Düsenaustritt oder Druckknoten im Freistrahl deutlich vermindert werden. Die Maßangaben in mm sind rein beispielhaft und sollten den Schutzumfang der Erfindung nicht begrenzen.The figure shows a modified scale, the inner contour of an inventive Laval nozzle, with the gas flowing from left to right. It can be seen that the Length of the convergent section is much smaller than the length of the divergent section and that the divergent section in total one Bell shape, in contrast to the nozzle of Figure 2b DE 101 26 100 A1. The converging section is conical in this embodiment along its entire length designed. In the diverging section one sees a steady decrease of the Increase, if one follows the upper boundary line from left to right and one steady increase of the slope, following the lower boundary. By this bell shape is achieved so that the jet is practically parallel to the nozzle on the right side leaves and adverse effects such as compression shocks at the nozzle exit or pressure nodes in the free jet can be significantly reduced. The dimensions in mm are exemplary only and should not limit the scope of the invention.

Glockenform meint, dass ab der Verjüngung, also ab dem Hals der Düse ein konvexkonkaver Kurvenverlauf erfolgt, wobei der durchströmte Querschnitt stets größer wird oder zumindest gleich bleibt, aber nie kleiner wird. Den Kurvenverlauf kann man sich auch so vorstellen: Wenn man am Punkt (20/1,6) der oberen Linie der Figur ein kleines Spielzeugauto aufstellt, dessen Front nach rechts zeigt, so würde man im ersten Moment geradeaus fahren, dann eine Linkskurve machen, bis ungefähr zum Punkt (22/1,65). Dort liegt der Wendepunkt, ab dort würde das Fahrzeug eine Rechtskurve machen und dann bis zum Ende der Linie bei ca. (150/3,2) eine Rechtskurve fahren, wobei jedoch der Einschlagwinkel der Lenkung immer kleiner wird. Der erste Abschnitt von 20 bis 22 ist der Konvexe, der größere Abschnitt von 22 bis 150 ist der Konkave.Bell shape means that from the taper, so from the neck of the nozzle konvexkonkaver Curve course takes place, wherein the flow-through cross section is always larger or at least stays the same, but never gets smaller. You can look at the curve also imagine: If you at the point (20 / 1,6) of the upper line of the figure a small Toy car sets up, whose front points to the right, so you would in the first Drive straight on, then make a left turn, to about the point (22 / 1.65). There is the turning point, from there the vehicle would turn right make a right turn until the end of the line at approx. (150 / 3,2), however, the steering angle of the steering becomes smaller and smaller. The first paragraph from 20 to 22 is the convex, the larger section from 22 to 150 is the concave.

Claims (10)

Lavaldüse für das thermische Spritzen und das kinetische Spritzen, insbesondere für das Kaltgasspritzen, mit einem konvergenten und einem divergenten Abschnitt, dadurch gekennzeichnet, dass zumindest ein Teil des divergenten Abschnittes eine glockenförmige Kontur besitzt.Laval nozzle for thermal spraying and kinetic spraying, in particular for cold gas spraying, with a convergent and a divergent section, characterized in that at least a part of the divergent section has a bell-shaped contour. Düse nach Anspruch 1, dadurch gekennzeichnet, dass die Kontur so gestaltet ist, dass eine Parallelstrahldüse vorliegt.Nozzle according to claim 1, characterized in that the contour is designed so that a parallel jet nozzle is present. Düse nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Gesamtlänge der Düse zwischen 60 und 300 mm, vorzugsweise zwischen 100 und 200 mm liegt.Nozzle according to claim 1 or 2, characterized in that the total length of the nozzle is between 60 and 300 mm, preferably between 100 and 200 mm. Düse nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass der Querschnitt im Düsenhals 3-25 mm2, vorzugsweise 5 bis 10 mm2 beträgt.Nozzle according to one of the preceding claims, characterized in that the cross section in the nozzle throat is 3-25 mm 2 , preferably 5 to 10 mm 2 . Düse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Erweiterungsverhältnis zwischen 1 und 25 beträgt.Nozzle according to one of the preceding claims, characterized in that the expansion ratio is between 1 and 25. Düse nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Austrittsmachzahl zwischen 1 und 5, vorzugsweise zwischen 2,5 und 4 liegt.Nozzle according to one of claims 1 to 5, characterized in that the exit Mach number is between 1 and 5, preferably between 2.5 and 4. Düse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Düsenkontur speziell auf die Prozessgase Stickstoff, Luft oder Helium abgestimmt ist.Nozzle according to one of the preceding claims, characterized in that the nozzle contour is specially adapted to the process gases nitrogen, air or helium. Düse nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein Pulverrohr, welches im divergenten Abschnitt der Düse endet.Nozzle according to one of the preceding claims, characterized by a powder tube which ends in the divergent section of the nozzle. Durch Kaltgasspritzen hergestellte Schichten, dadurch gekennzeichnet, dass sie mit einer Düse eines der Ansprüche 1 bis 8 hergestellt sind. Layers produced by cold gas spraying, characterized in that they are produced with a nozzle of one of claims 1 to 8. Schichten nach Anspruch 9, dadurch gekennzeichnet, dass zu deren Herstellung Pulver der Kömung 5 bis 106 µm, vorzugsweise 5 bis 25 µm ,10 bis 38 µm oder 30 bis 70 µm verwendet wurde.Layers according to claim 9, characterized in that for the production of the powder powder Kömung 5 to 106 microns, preferably 5 to 25 microns, 10 to 38 microns or 30 to 70 microns was used.
EP04010236A 2003-04-30 2004-04-29 Laval nozzle for thermal or kinetical spraying Revoked EP1506816B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL04010236T PL1506816T3 (en) 2003-04-30 2004-04-29 Laval nozzle for thermal or kinetical spraying
EP04010236A EP1506816B1 (en) 2003-04-30 2004-04-29 Laval nozzle for thermal or kinetical spraying

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10319481A DE10319481A1 (en) 2003-04-30 2003-04-30 Laval nozzle use for cold gas spraying, includes convergent section and divergent section such that portion of divergent section of nozzle has bell-shaped contour
DE10319481 2003-04-30
EP04008360 2004-04-06
EP04008360 2004-04-06
EP04010236A EP1506816B1 (en) 2003-04-30 2004-04-29 Laval nozzle for thermal or kinetical spraying

Publications (2)

Publication Number Publication Date
EP1506816A1 true EP1506816A1 (en) 2005-02-16
EP1506816B1 EP1506816B1 (en) 2013-01-02

Family

ID=33568141

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04010236A Revoked EP1506816B1 (en) 2003-04-30 2004-04-29 Laval nozzle for thermal or kinetical spraying

Country Status (2)

Country Link
EP (1) EP1506816B1 (en)
PL (1) PL1506816T3 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1808508A1 (en) * 2006-01-17 2007-07-18 Siemens Aktiengesellschaft Component located in the flow channel of a turbomachine and spraying process for generating a coating.
EP2014795A1 (en) 2007-07-10 2009-01-14 Linde Aktiengesellschaft Cold gas jet nozzle
EP2014794A1 (en) 2007-07-10 2009-01-14 Linde Aktiengesellschaft Cold gas jet nozzle
WO2011120976A1 (en) 2010-03-31 2011-10-06 Sms Siemag Ag Ultrasonic nozzle for use in metallurgical installations and method for dimensioning an ultrasonic nozzle
DE102014001199A1 (en) 2014-01-29 2015-02-19 Daimler Ag internal burner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9335296B2 (en) 2012-10-10 2016-05-10 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements
ES2955292T3 (en) 2019-09-19 2023-11-29 Westinghouse Electric Co Llc Apparatus for performing in-situ adhesion testing of cold spray tanks and procedure for use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE522059A (en) *
US4300723A (en) * 1980-02-29 1981-11-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlled overspray spray nozzle
JPS6295127A (en) * 1985-10-21 1987-05-01 Canon Inc Unit for controlling flow of fine particle
EP0532134A1 (en) * 1991-09-02 1993-03-17 W. HALDENWANGER TECHNISCHE KERAMIK GMBH & CO. KG Process and apparatus for coating a substrate with a heat resistant polymer
US5573682A (en) * 1995-04-20 1996-11-12 Plasma Processes Plasma spray nozzle with low overspray and collimated flow

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE522059A (en) *
US4300723A (en) * 1980-02-29 1981-11-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlled overspray spray nozzle
JPS6295127A (en) * 1985-10-21 1987-05-01 Canon Inc Unit for controlling flow of fine particle
EP0532134A1 (en) * 1991-09-02 1993-03-17 W. HALDENWANGER TECHNISCHE KERAMIK GMBH & CO. KG Process and apparatus for coating a substrate with a heat resistant polymer
US5573682A (en) * 1995-04-20 1996-11-12 Plasma Processes Plasma spray nozzle with low overspray and collimated flow

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 0113, no. 00 (C - 449) 29 September 1987 (1987-09-29) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1808508A1 (en) * 2006-01-17 2007-07-18 Siemens Aktiengesellschaft Component located in the flow channel of a turbomachine and spraying process for generating a coating.
WO2007082823A1 (en) 2006-01-17 2007-07-26 Siemens Aktiengesellschaft Component for arrangement in the duct of a turbine engine and spray method for production of a coating
US8277194B2 (en) 2006-01-17 2012-10-02 Siemens Aktiengesellschaft Component to be arranged in the flow channel of a turbomachine and spraying method for producing the coating
EP2014795A1 (en) 2007-07-10 2009-01-14 Linde Aktiengesellschaft Cold gas jet nozzle
EP2014794A1 (en) 2007-07-10 2009-01-14 Linde Aktiengesellschaft Cold gas jet nozzle
DE102007032021A1 (en) 2007-07-10 2009-01-15 Linde Ag Kaltgasspritzdüse
DE102007032022A1 (en) 2007-07-10 2009-01-15 Linde Ag Kaltgasspritzdüse
WO2011120976A1 (en) 2010-03-31 2011-10-06 Sms Siemag Ag Ultrasonic nozzle for use in metallurgical installations and method for dimensioning an ultrasonic nozzle
DE102011002616A1 (en) 2010-03-31 2011-12-15 Sms Siemag Ag Supersonic nozzle for use in metallurgical plants and method for dimensioning a supersonic nozzle
DE102014001199A1 (en) 2014-01-29 2015-02-19 Daimler Ag internal burner

Also Published As

Publication number Publication date
PL1506816T3 (en) 2013-06-28
EP1506816B1 (en) 2013-01-02

Similar Documents

Publication Publication Date Title
DE10319481A1 (en) Laval nozzle use for cold gas spraying, includes convergent section and divergent section such that portion of divergent section of nozzle has bell-shaped contour
EP1390152B1 (en) Cold gas spraying method and device
EP1999297B1 (en) Cold-gas spray gun
EP1369498B1 (en) Method and apparatus for high-speed flame spraying
EP1791645B1 (en) Method for cold gas spraying and cold gas spraying pistol with increased retention time for the powder in the gas stream
EP1382720B1 (en) Cold gas spraying method and device
DE60130827T2 (en) Method of producing articles with staggered coatings
AT409235B (en) METHOD AND DEVICE FOR PRODUCING METAL POWDER
DE2452684A1 (en) DEVICE AND METHOD FOR SPRAYING ATOMIZED PARTICLES
WO2015092008A1 (en) Device and method for melting a material without a crucible and for atomizing the melted material in order to produce powder
DE102006009147A1 (en) Dual nozzle has mixing chamber, and ring is arranged by secondary air nozzles around mouth of main nozzle
DE102007016785A1 (en) Process for the production of molded parts with a layer of polyurethane
WO2007080084A1 (en) Two-component nozzle
DE3242543A1 (en) METHOD FOR PRODUCING LAYING MATERIAL WITH A FUNCTIONAL LAYER APPLIED ON A SUPPORT LAYER, AND LAYING MATERIAL PRODUCED BY THIS METHOD
EP1506816B1 (en) Laval nozzle for thermal or kinetical spraying
WO2011057612A1 (en) Method and device for coating components
WO2009124839A2 (en) Cold gas spraying system
EP3088087B1 (en) Spray nozzle and method for producing non-round spray cones
DE10207519A1 (en) Cold gas spraying nozzle used for accelerating gas and sprayed particles e.g. in flame spraying comprises a main body and a wear-resistant nozzle element arranged in the region of the nozzle throat to form the inner wall of the nozzle
WO2021069600A2 (en) Method for producing a coated filter element, application device for coating a filter body, and coated filter element
DE102010001454A1 (en) Device for manufacturing web, particularly hot melt adhesive, on surface of workpieces, is provided with supply line for web-forming material, compressed gas source and spray head
DE10119288B4 (en) Method and device for gas-dynamic coating of surfaces by means of sound nozzles
DE10207525A1 (en) Cold gas spraying device for forming coatings comprises a powder tube having a chamfer in the region of the sprayed particles outlet for injecting sprayed particles into a gas stream
DE102014001199A1 (en) internal burner
DE3117713C2 (en) Method and device for spray-coating objects with powder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20050719

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

17Q First examination report despatched

Effective date: 20091009

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 24/04 20060101ALI20120704BHEP

Ipc: B05B 7/14 20060101AFI20120704BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SULZER METCO AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SULZER MANAGEMENT AG PATENTABTEILUNG/0067, CH

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 591279

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004013972

Country of ref document: DE

Effective date: 20130228

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2398386

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130315

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 13638

Country of ref document: SK

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130402

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130502

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

BERE Be: lapsed

Owner name: SULZER METCO A.G.

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20130927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E017757

Country of ref document: HU

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502004013972

Country of ref document: DE

Effective date: 20130927

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: INTELLECTUAL PROPERTY SERVICES GMBH, CH

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130429

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20140321

Year of fee payment: 11

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 591279

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140422

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20140423

Year of fee payment: 11

Ref country code: FR

Payment date: 20140422

Year of fee payment: 11

Ref country code: DE

Payment date: 20140418

Year of fee payment: 11

Ref country code: SE

Payment date: 20140418

Year of fee payment: 11

Ref country code: FI

Payment date: 20140411

Year of fee payment: 11

Ref country code: CH

Payment date: 20140418

Year of fee payment: 11

Ref country code: NL

Payment date: 20140418

Year of fee payment: 11

Ref country code: ES

Payment date: 20140428

Year of fee payment: 11

Ref country code: IT

Payment date: 20140422

Year of fee payment: 11

Ref country code: SK

Payment date: 20140429

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20140422

Year of fee payment: 11

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 502004013972

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 502004013972

Country of ref document: DE

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PLX

27W Patent revoked

Effective date: 20150220

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20150220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130429

Ref country code: CH

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20130102

Ref country code: LI

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20130102

REG Reference to a national code

Ref country code: SK

Ref legal event code: MC4A

Ref document number: E 13638

Country of ref document: SK

Effective date: 20150220

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 502004013972

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 591279

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150220

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130102