EP1781402B1 - Device for gentle mechanical generation of finely dispersed micro-/nano-emulsions with narrow particle size distribution - Google Patents

Device for gentle mechanical generation of finely dispersed micro-/nano-emulsions with narrow particle size distribution Download PDF

Info

Publication number
EP1781402B1
EP1781402B1 EP05776538A EP05776538A EP1781402B1 EP 1781402 B1 EP1781402 B1 EP 1781402B1 EP 05776538 A EP05776538 A EP 05776538A EP 05776538 A EP05776538 A EP 05776538A EP 1781402 B1 EP1781402 B1 EP 1781402B1
Authority
EP
European Patent Office
Prior art keywords
filter fabric
accordance
membrane body
membrane
fluid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05776538A
Other languages
German (de)
French (fr)
Other versions
EP1781402A1 (en
Inventor
Erich J. Windhab
Dr. Verena Eisner
Beat Troxler
Andreas Kurt DÜRIG
Fred-Rainer Grohmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eidgenoessische Technische Hochschule Zurich ETHZ
Processtech GmbH
Ion Bond AG
KINEMATICA AG
Original Assignee
Eidgenoessische Technische Hochschule Zurich ETHZ
Processtech GmbH
Ion Bond AG
KINEMATICA AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eidgenoessische Technische Hochschule Zurich ETHZ, Processtech GmbH, Ion Bond AG, KINEMATICA AG filed Critical Eidgenoessische Technische Hochschule Zurich ETHZ
Publication of EP1781402A1 publication Critical patent/EP1781402A1/en
Application granted granted Critical
Publication of EP1781402B1 publication Critical patent/EP1781402B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/272Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed axially between the surfaces of the rotor and the stator, e.g. the stator rotor system formed by conical or cylindrical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/411Emulsifying using electrical or magnetic fields, heat or vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3133Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit characterised by the specific design of the injector
    • B01F25/31331Perforated, multi-opening, with a plurality of holes
    • B01F25/313311Porous injectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/21Mixers with rotary stirring devices in fixed receptacles; Kneaders characterised by their rotating shafts
    • B01F27/2122Hollow shafts

Definitions

  • the invention relates to a device for mechanically gentle production of finely dispersed micro / nano-emulsions with a narrow droplet size distribution.
  • the production of finely dispersed emulsions is considered an important development goal for the food, pharmaceutical, cosmetics and chemical industries.
  • the reason for this is the possibility of having such emulsions with sufficient smallness of the disperse droplets entmischungsstabil to use and the extremely large inner interface for the adsorption of functional ingredients (eg., Active ingredients, flavors, dyes, etc.).
  • functional ingredients eg., Active ingredients, flavors, dyes, etc.
  • the disperse drops allow the construction of particle networks to which have a specific influence on the rheological properties of such emulsions.
  • Membrane emulsification processes are a new area for machine / apparatus manufacturers. Traditionally, rotor / stator dispersing systems and high-pressure homogenizers are used for fine emulsification. In these apparatus, the droplet is dispersed under extremely high mechanical stress of the disperse as well as the continuous phase. The present since about five years Membrane emulsification are very gentle from the conventional methods mentioned above, since the finely dispersed emulsion droplets are not produced by the tearing of larger drops, but these are formed and detached in their final size at the outlet openings of the membrane pores.
  • WO 01/45830-A1 is a cup-like structure previously known in which coaxially a tube with radially extending holes or holes dips, which is driven by a motor.
  • a tube with radially extending holes or holes dips which is driven by a motor.
  • the other phase is introduced and to be mixed by centrifugal force with the first in the cup-shaped housing phase to form an emulsion.
  • the finished mixture leaves through a radially disposed channel the cup-shaped housing.
  • a device for producing emulsions with a housing with inlet and outlet opening for a continuous phase of a first liquid medium is previously known, with a rotatably driven in the housing arranged shaft, formed on or in a supply channel for a disperse phase of a second liquid medium is.
  • the device has a plurality of opposite the outer diameter of the shaft considerably enlarged in diameter disk-shaped, hollow membrane body, which are formed as membrane discs and which are arranged in the longitudinal axis of the driving shaft with gap spacing and with gap distance between these membrane bodies arranged ridge-shaped housing parts.
  • the shaft is concentric with the membrane discs, with the feed channel over the shaft the interior of the individual membrane body is connected to allow the supply of the disperse phase via the supply channel in the disk-shaped membrane body.
  • the continuous phase is introduced radially into the gap distance between the radial housing webs and the various membrane disks and coaxially exits the housing after it has peeled from the membrane discs emerging droplets of the disperse phase and mixed with these to form an emulsion.
  • the invention has for its object to provide a device for mechanically gentle production of finely dispersed micro / nano-emulsions with narrow droplet size distribution.
  • the gentle detachment of smaller drops and their more efficient further dispersion after detachment is possible due to a shear flow superimposed Dehnströmungsanteile on the rotating membrane surface, as is the case with realization of pure shear flows of the case.
  • Emulsion droplets are produced in the device according to the invention on the surface of a pore-permeated membrane or a filter fabric by pressing a first fluid phase through these pores and removing the droplets from the membrane surface by rotating them in a second with the first immiscible fluid phase takes place.
  • the detachment of the fluid droplets from the membrane surface is effected by tangential and normal stresses acting on them, supported by additional centrifugal forces.
  • the preferred use of membranes with defined pore spacing compared to pore diameter x ( ⁇ 2x) is additionally conducive to the generation of a narrow droplet size distribution in the emulsion produced.
  • the membrane overflow according to the invention which is realized with additionally efficient expansion flow fractions, permits the production of significantly smaller droplet diameters with a comparable pore diameter.
  • the emulsion droplet production according to the invention offers the advantage of significantly reduced mechanical stress at comparable diameters of the droplets produced. This has advantages in terms of preserving native properties of functional content components, such as proteins in the droplets or at their interfaces.
  • the device according to the invention allows the simple modification and adaptation of the expansion flow overflow characteristic of the membrane according to the invention with regard to the proportion of the expansion flow to the total flow by varying the eccentricity of the rotating diaphragm cylinder and / or easily exchanged flow installations.
  • the inventive device is very compact, since the membrane body can be arranged in the housing with a narrow gap distance to the inner wall.
  • 4 denotes disperse drops and 5 denotes a membrane or filter fabric body, while 6 represents a cylinder body designed as a membrane cylinder.
  • a hollow shaft formed rotary shaft is designated, which has an inner, centrally arranged bore 8.
  • the shaft 7 is sealed by a dynamic mechanical seal 9.
  • the bore 8 opens into an interior 10 of the filter fabric or membrane body 5.
  • a conical component is arranged, which opens into an outlet connection 12.
  • the conical component 11 and the outlet connection 12 form part of a housing 18.
  • a disperse fluid phase is supplied from a container, also not shown, by means of a motor-driven pump (not shown).
  • the emulsion 14 leaves the housing 18 via the outlet connection 12.
  • the filter fabric or membrane body 5 is eccentric, with defined adjustable eccentricity, to the housing 18, respectively.
  • a flow installation (eg web 15) is arranged in the gap 3, which extends in the direction of the longitudinal axis 16 of the housing 18.
  • the web 15 may also be helical or part of a spiral. It is also possible to provide within the gap 3 a plurality of such webs 15, spirals or helically extending ridges 3 of different cross-sectional geometry.
  • the diametrically oppositely directed arrows 17 are intended to indicate the approximately radially directed flow direction of the disperse fluid phase 13 with respect to the filter fabric or membrane body 5.
  • Fig. 5 is a corresponding number sum distribution Q 0 (x) with entry of the characteristic droplet sizes x 90,0 and x 10,0 whose ratio (x 90,0 / x 10,0 ) is used as a suitable measure for the droplet size distribution width, the representation for centric arrangement (Z) and eccentric arrangement (EZ) (and and Dehnströmanteile) were illustrated.
  • the disperse fluid phase 13 is pressed by means of the not shown, motor-driven pump via the provided with an inner bore 8 and thus designed as a hollow shaft rotating shaft 7 into the interior 10 of the rotating diaphragm cylinder body 6.
  • the shaft 7 is dynamically sealed against the housing 18 by means of the mechanical seal 9. From there, the disperse fluid phase 13 passes through the membrane 5 applied to the cylinder body surface and forms the disperse drops 4 on its outside.
  • the continuous fluid phase 1 is passed through the port 2 in the cylindrical housing 18 and flows through the gap 3 between the rotating membrane or filter fabric body 5 and housing 18 in the axial direction.
  • the disperse drops 4 formed on the membrane surface are flown.
  • the intensity of the flow is determined by the circumferential speed of the membrane or filter cloth body or cylinder 6, the gap width 3 and the eccentricity or flow attachments (eg web (s), pins, knife / scraper) attached to the outer cylinder wall and the housing 18 fixed.
  • a mixed shear / elongation flow is formed which has improved dispersing properties.
  • the rotational flow is defined with disturbing flow installations (for example web 15), preferably attached to the inner wall of the housing.
  • Such flow internals eg web 15
  • the mixture of disperse drops 4 and continuous fluid phase 1, the emulsion 14, is formed at the exit from the gap 3 in an outlet geometry, which preferably consists of a conical component 11 and an outlet connection 12.
  • CPDN membrane Controlled Pore Distance Membrane

Abstract

This invention relates to a method for the mechanically protective production of finely dispersed micro-/nanoemulsions with narrow droplet size distribution, whereby drops are produced on the surface of a membrane or of a filter fabric, and the drops are detached from the membrane or filter fabric surface by motion of the membrane or of the filter fabric in a first immiscible liquid phase in which pronounced stretching flow components in particular, besides shear flow components, bring about the detachment of the drops formed on the membrane surface especially efficiently and protectively. The invention also relates to a device for implementing the method according to the invention with a membrane or filter unit that is positioned to move, in particular to be able to rotate, in a housing with a gap that may be eccentric toward the inner wall of the housing and/or provided with flow baffles that produce stretching flow components.

Description

Gattunggenus

Die Erfindung betrifft eine Vorrichtung zur mechanisch schonenden Erzeugung von fein dispersen Mikro-/Nano-Emulsionen mit enger Tropfengrößenverteilung.The invention relates to a device for mechanically gentle production of finely dispersed micro / nano-emulsions with a narrow droplet size distribution.

Stand der TechnikState of the art

Die Herstellung von feindispersen Emulsionen gilt als wichtiges Entwicklungsziel für die Lebensmittel-, Pharma-, Kosmetik- und Chemieindustrie. Grund dafür ist die Möglichkeit, derartige Emulsionen bei hinreichender Kleinheit der dispersen Tröpfchen entmischungsstabil zu hatten und die extrem große innere Grenzfläche zur Adsorption funktioneller Ingredienzien (z. B. Wirkstoffe, Aromen, Farbstoffe etc.) zu nutzen. Ferner lassen die dispersen Tropfen den Aufbau von Partikelnetzwerken zu, welche gezielten Einfluss auf die rheologischen Eigenschaften solcher Emulsionen nehmen.The production of finely dispersed emulsions is considered an important development goal for the food, pharmaceutical, cosmetics and chemical industries. The reason for this is the possibility of having such emulsions with sufficient smallness of the disperse droplets entmischungsstabil to use and the extremely large inner interface for the adsorption of functional ingredients (eg., Active ingredients, flavors, dyes, etc.). Furthermore, the disperse drops allow the construction of particle networks to which have a specific influence on the rheological properties of such emulsions.

Für die Maschinen-/Apparatehersteller sind Membranemulgierverfahren ein neuer Bereich. Herkömmlich werden Rotor-/Stator Dispergiersysteme und Hochdruckhomogenisatoren zur Feinemulgierung eingesetzt. In diesen Apparaten erfolgt die Tropfendispergierung unter extrem hoher mechanischer Beanspruchung der dispersen sowie auch der kontinuierlichen Phase. Die seit etwa fünf Jahren existierenden Membranemulgierverfahren sind unter mechanischen Gesichtspunkten sehr schonend gegenüber den vorab genannten herkömmlichen Verfahren, da die feindispersen Emulsionstropfen nicht durch das Zerreißen größerer Tropfen hergestellt werden, sondern diese werden in ihrer endgültigen Größe an den Austrittsöffnungen der Membranporen gebildet und abgelöst.Membrane emulsification processes are a new area for machine / apparatus manufacturers. Traditionally, rotor / stator dispersing systems and high-pressure homogenizers are used for fine emulsification. In these apparatus, the droplet is dispersed under extremely high mechanical stress of the disperse as well as the continuous phase. The present since about five years Membrane emulsification are very gentle from the conventional methods mentioned above, since the finely dispersed emulsion droplets are not produced by the tearing of larger drops, but these are formed and detached in their final size at the outlet openings of the membrane pores.

Bei bisher existierenden kontinuierlichen Membranverfahren wird die Membran von der kontinuierlichen Emulsionsfluidphase in Form einer reinen Scherströmung überströmt. Die an den Tropfen angreifenden, diese von der Membran ablösenden Schubspannungen sind insbesondere bei höheren Tropfenviskositäten nicht sehr oder überhaupt nicht effizient im Hinblick auf die Ablösung kleiner Tropfen bzw. deren weitergehende Dispergierung (Zerteilung). Dies stellt einen erheblichen Nachteil im Hinblick auf die optimierte Einstellbarkeit kleiner Tropfengrößen und enger Tropfengrößenverteilungsbreite bei in der industriellen Produktion von Emulsionssystemen in der Regel in engen Grenzen vorgegebenen Durchsatzleistungen dar.In previously existing continuous membrane processes, the membrane is overflowed by the continuous emulsion fluid phase in the form of a pure shear flow. The shear stresses acting on the droplets, which detach them from the membrane, are not very or not at all efficient, especially with higher drop viscosities, with regard to the detachment of small droplets or their further dispersion (division). This poses a significant disadvantage with regard to the optimized adjustability of small droplet sizes and narrow droplet size distribution width in the industrial production of Emulsion systems usually within narrow limits specified throughput.

Durch die WO 01/45830-A1 ist ein topfartiges Gebilde vorbekannt, in dem koaxial ein Rohr mit radial verlaufenden Bohrungen oder Löchern eintaucht, das motorisch angetrieben ist. Durch das topfförmige Gehäuse wird die eine Phase und durch das rohrförmige Sieb die andere Phase eingeleitet und soll durch Zentrifugalkraft mit der ersten in dem topfförmigen Gehäuse befindlichen Phase zu einer Emulsion vermischt werden. Die fertige Mischung verlässt durch einen radial angeordneten Kanal das topfförmige Gehäuse.By the WO 01/45830-A1 is a cup-like structure previously known in which coaxially a tube with radially extending holes or holes dips, which is driven by a motor. Through the pot-shaped housing one phase and through the tubular sieve the other phase is introduced and to be mixed by centrifugal force with the first in the cup-shaped housing phase to form an emulsion. The finished mixture leaves through a radially disposed channel the cup-shaped housing.

Aus der EP 1 262 225 A2 ist eine Vorrichtung zum Herstellen von Emulsionen mit einem Gehäuse mit Ein- und Auslassöffnung für eine kontinuierliche Phase eines ersten flüssigen Mediums vorbekannt, mit einer in dem Gehäuse rotierend antreibbar angeordneten Welle, an oder in der ein Zufuhrkanal für eine disperse Phase eines zweiten flüssigen Mediums ausgebildet ist. Die Vorrichtung weist mehrere gegenüber dem Außendurchmesser der Welle erhebliche im Durchmesser vergrößerte scheibenförmige, hohle Membrankörper auf, die als Membranscheiben ausgebildet sind und die in Längsachsrichtung der sie antreibenden Welle mit Spaltabstand und mit Spaltabstand zwischen diesen Membrankörpern angeordneten stegförmigen Gehäuseteilen angeordnet sind. Die Welle verläuft konzentrisch zu den Membranscheiben, wobei der Zufuhrkanal über die Welle mit dem Innenraum der einzelnen Membrankörper verbunden ist, um die Zuführung der dispersen Phase über den Zufuhrkanal in die scheibenförmigen Membrankörper zu ermöglichen. Die kontinuierliche Phase wird radial in den Spaltabstand zwischen den radialen Gehäusestegen und den verschiedenen Membranscheiben eingeführt und verlässt koaxial das Gehäuse, nachdem sie aus den Membranscheiben austretende Tröpfchen der dispersen Phase abgelöst und sich mit diesen zu einer Emulsion vermischt hat.From the EP 1 262 225 A2 a device for producing emulsions with a housing with inlet and outlet opening for a continuous phase of a first liquid medium is previously known, with a rotatably driven in the housing arranged shaft, formed on or in a supply channel for a disperse phase of a second liquid medium is. The device has a plurality of opposite the outer diameter of the shaft considerably enlarged in diameter disk-shaped, hollow membrane body, which are formed as membrane discs and which are arranged in the longitudinal axis of the driving shaft with gap spacing and with gap distance between these membrane bodies arranged ridge-shaped housing parts. The shaft is concentric with the membrane discs, with the feed channel over the shaft the interior of the individual membrane body is connected to allow the supply of the disperse phase via the supply channel in the disk-shaped membrane body. The continuous phase is introduced radially into the gap distance between the radial housing webs and the various membrane disks and coaxially exits the housing after it has peeled from the membrane discs emerging droplets of the disperse phase and mixed with these to form an emulsion.

Aus der US 2003/0024878 A1 ist ebenfalls eine Vorrichtung vorbekannt, bei der durch ein rohrartiges Gehäuse eine kontinuierliche Phase gepumpt und ein zweites Medium in den Ringraum, der das Rohr für die erste Phase umgibt, hineingepumpt wird. Über die Membrankurven erfolgt eine Vermischung der beiden Phasen, wobei die Emulsion am Ende des rohrförmigen Gehäuses dieses verlässt.From the US 2003/0024878 A1 There is also previously known a device in which a continuous phase is pumped through a tubular housing and a second medium is pumped into the annulus surrounding the tube for the first phase. The membrane curves are used to mix the two phases, with the emulsion at the end of the tubular housing leaving it.

Aufgabetask

Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur mechanisch schonenden Erzeugung von fein dispersen Mikro-/Nano-Emulsionen mit enger Tropfengrößenverteilung zu schaffen.The invention has for its object to provide a device for mechanically gentle production of finely dispersed micro / nano-emulsions with narrow droplet size distribution.

Lösungsolution

Diese Aufgabe wird durch die in Patentanspruch 1 wiedergegebenen Merkmale gelöst.This object is achieved by the reproduced in claim 1 features.

Einige VorteileSome advantages

Bei der erfindungsgemäßen Vorrichtung ist infolge einer Scherströmung überlagerter Dehnströmungsanteile an der rotierenden Membranoberfläche die schonende Ablösung kleinerer Tropfen und deren effizientere weitere Dispergierung nach erfolgter Ablösung möglich, als dies bei Realisierung reiner Scherströmungen der Fall ist.In the apparatus according to the invention the gentle detachment of smaller drops and their more efficient further dispersion after detachment is possible due to a shear flow superimposed Dehnströmungsanteile on the rotating membrane surface, as is the case with realization of pure shear flows of the case.

Die Erzeugung von Emulsionstropfen erfolgt bei der erfindungsgemäßen Vorrichtung an der Oberfläche einer mit Poren durchzogenen Membran oder eines Filtergewebes, indem eine erste Fluidphase durch diese Poren gepresst wird und der Abtrag der Tropfen von der Membranoberfläche durch deren rotierende Bewegung in einer zweiten mit der ersten nicht mischbaren fluiden Phase erfolgt. Die Ablösung der Fluidtropfen von der Membranoberfläche wird durch an diesen angreifende, von der Strömung verursachte Tangential- und Normalspannungen, unterstützt durch zusätzliche Zentrifugalkräfte, bewirkt. Der bevorzugte Einsatz von Membranen mit definiertem im Vergleich zum Porendurchmesser x großen Porenabstand (≥ 2x) ist für die Erzeugung einer engen Tropfengrößenverteilung in der erzeugten Emulsion zusätzlich förderlich. Im Vergleich zu herkömmlichen Membranemulgierverfahren mit fixierten oder rotierenden Membranen, welche durch reine Scherströmungen überströmt werden, erlaubt die erfindungsgemäße mit zusätzlich effizienten Dehnströmungsanteilen realisierte Membranüberströmung bei vergleichbarem Porendurchmesser die Erzeugung deutlich kleinerer Tropfendurchmesser. Verglichen mit herkömmlichen Emulgierverfahren mittels Hochdruckhomogenisatoren oder rotierenden Rotor-/Stator Dispergiersystemen bietet die erfindungsgemäße Emulsionstropfenerzeugung bei vergleichbaren Durchmessern der erzeugten Tropfen den Vorteil deutlich reduzierter mechanischer Beanspruchung. Dies besitzt Vorteile hinsichtlich der Erhaltung nativer Eigenschaften funktioneller Inhaltskomponenten, beispielsweise von Proteinen in den Tropfen bzw. an deren Grenzflächen.Emulsion droplets are produced in the device according to the invention on the surface of a pore-permeated membrane or a filter fabric by pressing a first fluid phase through these pores and removing the droplets from the membrane surface by rotating them in a second with the first immiscible fluid phase takes place. The detachment of the fluid droplets from the membrane surface is effected by tangential and normal stresses acting on them, supported by additional centrifugal forces. The preferred use of membranes with defined pore spacing compared to pore diameter x (≥ 2x) is additionally conducive to the generation of a narrow droplet size distribution in the emulsion produced. In comparison to conventional membrane emulsification processes with fixed or rotating membranes, which are overflowed by pure shear flows, the membrane overflow according to the invention, which is realized with additionally efficient expansion flow fractions, permits the production of significantly smaller droplet diameters with a comparable pore diameter. Compared to conventional emulsification processes by means of high-pressure homogenizers or rotating rotor / stator dispersing systems, the emulsion droplet production according to the invention offers the advantage of significantly reduced mechanical stress at comparable diameters of the droplets produced. This has advantages in terms of preserving native properties of functional content components, such as proteins in the droplets or at their interfaces.

Im übrigen erlaubt die erfindungsgemäße Vorrichtung die einfache Modifizierung und Anpassung der erfindungsgemäßen Dehnströmungs-Überströmcharakteristik der Membran hinsichtlich des Anteils der Dehnströmung an der Gesamtströmung durch Variation der Exzentrizität des rotierenden Membranzylinders und/oder einfach auszutauschende Strömungseinbauten.Moreover, the device according to the invention allows the simple modification and adaptation of the expansion flow overflow characteristic of the membrane according to the invention with regard to the proportion of the expansion flow to the total flow by varying the eccentricity of the rotating diaphragm cylinder and / or easily exchanged flow installations.

Die erfindungsgemäße Vorrichtung baut sehr kompakt, da der Membrankörper in dem Gehäuse mit engem Spaltabstand zu dessen Innenwand angeordnet werden kann.The inventive device is very compact, since the membrane body can be arranged in the housing with a narrow gap distance to the inner wall.

Weitere erfinderische AusführungsformenOther inventive embodiments

Weitere erfinderische Ausführungsformen sind in den Patentansprüchen 2 bis 23 beschrieben.Further inventive embodiments are described in claims 2 to 23 .

Im übrigen ergeben sich weitere Vorteile aus der nachfolgenden Beschreibung der Zeichnung, in der die Erfindung beispielsweise veranschaulicht ist. Es zeigen:

Fig. 1
eine erfindungsgemäße Vorrichtung im axialen Längsschnitt, wobei die geschnittenen Wände allerdings zur Vereinfachung nicht schraffiert dargestellt sind;
Fig. 2
einen orthogonal zur Längsachse der aus Fig. 1 ersichtlichen Vorrichtung geführten Querschnitt;
Fig. 3
ebenfalls einen orthogonalen Querschnitt zur Längsachse einer Vorrichtung gemäß der Erfindung, bei einer weiteren Ausführungsform mit Strömungseinbauten;
Fig. 4
eine graphische Darstellung der Tropfenanzahldichteverteilung (q0-Verteilung), die bei 1000 bis 8000 Umdrehungen pro Minute des Filter- oder Membrankörpers aus Wassertropfen in Sonnenblumenöl aufgenommen wurde; und
Fig. 5
eine graphische Darstellung der Tropfen-Anzahlsummenverteilungen (Q0-Verteilung), die bei 1000 bis 8000 Umdrehungen pro Minute des Filter- oder Membrankörpers aus Wassertropfen in Sonnenblumenöl aufgenommen wurden (sogenannte Q0(x) - Verteilungen) mit Eintrag der charakteristischen Tropfengrößen x90,0 und x10,0, deren Verhältnis (x90,0/x10,0) als geeignetes Maß für die Tropfengrößenverteilungsbreite herangezogen wird, und zwar zentrische Anordnung (Z) und exzentrische Anordnung (EZ).
Mit dem Bezugszeichen 1 ist eine kontinuierliche Fluidphase bezeichnet, die aus einem geeigneten Vorratsbehälter (nicht dargestellt) unter Pumpleistung einem Anschluss 2 und über diesen einem Spalt 3 zugeführt wird.Moreover, further advantages result from the following description of the drawing, in which the invention is illustrated, for example. Show it:
Fig. 1
a device according to the invention in axial longitudinal section, wherein the cut walls are shown, however, not hatched for simplicity;
Fig. 2
an orthogonal to the longitudinal axis of the Fig. 1 apparent device guided cross section;
Fig. 3
also an orthogonal cross-section to the longitudinal axis of a device according to the invention, in another embodiment with flow baffles;
Fig. 4
a plot of drop number density distribution (q 0 distribution) taken at 1000 to 8000 revolutions per minute of the filter or membrane body from water droplets in sunflower oil; and
Fig. 5
a graphical representation of the droplet number distributions (Q 0 distribution), which were recorded at 1000 to 8000 revolutions per minute of the filter or membrane body of water droplets in sunflower oil (so-called Q 0 (x) - distributions) with entry of the characteristic drop sizes x 90 , 0 and x 10.0, whose ratio (x 90.0 / x 10.0 ) is used as a suitable measure of the droplet size distribution width, centric arrangement (Z) and eccentric arrangement (EZ).
The reference numeral 1 denotes a continuous fluid phase, which is supplied from a suitable reservoir (not shown) under pump power to a port 2 and via this a gap 3.

Mit 4 sind disperse Tropfen und mit 5 ein Membran- oder Filtergewebekörper bezeichnet, während 6 einen als Membranzylinder ausgebildeten Zylinderkörper darstellt.4 denotes disperse drops and 5 denotes a membrane or filter fabric body, while 6 represents a cylinder body designed as a membrane cylinder.

Mit 7 ist eine als Hohlwelle ausgebildete Rotationswelle bezeichnet, die eine innere, zentrisch angeordnete Bohrung 8 aufweist. Die Welle 7 ist durch eine dynamische Gleitringdichtung 9 abgedichtet.With 7 as a hollow shaft formed rotary shaft is designated, which has an inner, centrally arranged bore 8. The shaft 7 is sealed by a dynamic mechanical seal 9.

Die Bohrung 8 mündet in einen Innenraum 10 des Filtergewebe- oder Membrankörpers 5 aus.The bore 8 opens into an interior 10 of the filter fabric or membrane body 5.

Bei 11 ist ein konisches Bauteil angeordnet, das in einen Auslaufstutzen 12 ausmündet. Das konische Bauteil 11 und der Auslaufstutzen 12 bilden Teil eines Gehäuses 18.At 11 a conical component is arranged, which opens into an outlet connection 12. The conical component 11 and the outlet connection 12 form part of a housing 18.

Bei 13 wird eine disperse Fluidphase von einem ebenfalls nicht dargestellten Behälter mittels einer nicht dargestellten, motorisch angetriebenen Pumpe zugeführt.At 13, a disperse fluid phase is supplied from a container, also not shown, by means of a motor-driven pump (not shown).

Die Emulsion 14 verlässt das Gehäuse 18 über den Auslaufstutzen 12.The emulsion 14 leaves the housing 18 via the outlet connection 12.

Bei der aus Fig. 1 und 2 ersichtlichen Ausführungsform ist der Filtergewebe-oder Membrankörper 5 exzentrisch, mit definiert einstellbarer Exzentrizität, zu dem Gehäuse 18, angeordnet.At the Fig. 1 and 2 apparent embodiment, the filter fabric or membrane body 5 is eccentric, with defined adjustable eccentricity, to the housing 18, respectively.

Bei der Ausführungsform nach Fig. 3 ist in dem Spalt 3 ein Strömungseinbau (z. B. Steg 15) angeordnet, der sich in Richtung der Längsachse 16 des Gehäuses 18 erstreckt. Der Steg 15 kann auch schraubenlinienförmig verlaufen oder Teil einer Spirale sein. Es ist auch möglich, innerhalb des Spaltes 3 mehrere derartiger Stege 15, Spiralen oder schraubenlinienförmig verlaufende Stege 3 unterschiedlicher Querschnittsgeometrie vorzusehen.In the embodiment according to Fig. 3 a flow installation (eg web 15) is arranged in the gap 3, which extends in the direction of the longitudinal axis 16 of the housing 18. The web 15 may also be helical or part of a spiral. It is also possible to provide within the gap 3 a plurality of such webs 15, spirals or helically extending ridges 3 of different cross-sectional geometry.

Die diametral entgegengesetzt gerichteten Pfeile 17 sollen die etwa radial gerichtete Strömungsrichtung der dispersen Fluidphase 13 in Bezug auf den Filtergewebe- oder Membrankörper 5 andeuten.The diametrically oppositely directed arrows 17 are intended to indicate the approximately radially directed flow direction of the disperse fluid phase 13 with respect to the filter fabric or membrane body 5.

In Fig. 5 ist eine entsprechende Anzahlsummenverteilung Q0(x) mit Eintrag der charakteristischen Tropfengrößen x90,0 und x10,0, deren Verhältnis (x90,0/x10,0) als geeignetes Maß für die Tropfengrößenverteilungsbreite herangezogen wird, wobei die Darstellung für zentrische Anordnung (Z) und exzentrische Anordnung (EZ) (bzw. und Dehnströmanteile) veranschaulicht wurden.In Fig. 5 is a corresponding number sum distribution Q 0 (x) with entry of the characteristic droplet sizes x 90,0 and x 10,0 whose ratio (x 90,0 / x 10,0 ) is used as a suitable measure for the droplet size distribution width, the representation for centric arrangement (Z) and eccentric arrangement (EZ) (and and Dehnströmanteile) were illustrated.

Die Wirkungsweise der aus der Zeichnung ersichtlichen Ausführungsform ist folgende:The operation of the apparent from the drawing embodiment is the following:

Die disperse Fluidphase 13 wird mittels der nicht dargestellten, motorisch angetriebenen Pumpe über die mit einer inneren Bohrung 8 versehenen und damit als Hohlwelle ausgeführte Rotationswelle 7 in den Innenraum 10 des rotierenden Membranzylinderkörpers 6 gedrückt. Die Welle 7 wird gegen das Gehäuse 18 mittels der Gleitringdichtung 9 dynamisch gedichtet. Von dort passiert die disperse Fluidphase 13 die auf der Zylinderkörperoberfläche aufgebrachte Membran 5 und bildet an deren Außenseite die dispersen Tropfen 4.The disperse fluid phase 13 is pressed by means of the not shown, motor-driven pump via the provided with an inner bore 8 and thus designed as a hollow shaft rotating shaft 7 into the interior 10 of the rotating diaphragm cylinder body 6. The shaft 7 is dynamically sealed against the housing 18 by means of the mechanical seal 9. From there, the disperse fluid phase 13 passes through the membrane 5 applied to the cylinder body surface and forms the disperse drops 4 on its outside.

Die kontinuierliche Fluidphase 1 wird durch den Anschluss 2 in das zylindrische Gehäuse 18 geleitet und durchströmt den Spalt 3 zwischen dem rotierenden Membran- oder Filtergewebekörper 5 und Gehäuse 18 in axialer Richtung. Dabei werden die an der Membranoberfläche gebildeten dispersen Tropfen 4 angeströmt. Die Intensität der Anströmung wird über die Umfangsgeschwindigkeit des Membran- oder Filtergewebekörpers bzw. -zylinders 6, die Spaltweite 3 und die Exzentrizität bzw. an der Außenzylinderwand befestigte Strömungseinbauten (z. B. Steg(e), Stifte, Messer/Schaber) zwischen diesem und dem Gehäuse 18 festgelegt.The continuous fluid phase 1 is passed through the port 2 in the cylindrical housing 18 and flows through the gap 3 between the rotating membrane or filter fabric body 5 and housing 18 in the axial direction. In this case, the disperse drops 4 formed on the membrane surface are flown. The intensity of the flow is determined by the circumferential speed of the membrane or filter cloth body or cylinder 6, the gap width 3 and the eccentricity or flow attachments (eg web (s), pins, knife / scraper) attached to the outer cylinder wall and the housing 18 fixed.

Sofern zwischen Membranzylinder 6 und Gehäuse 18 eine exzentrische Anordnung des Membranzylinders 6 im zylindrischen Gehäuse 18 (Fig. 2) vorliegt, entsteht eine gemischte Scher-/Dehnströmung, welche verbesserte Dispergiereigenschaften besitzt. Zur Erzielung einer verbesserten Tropfenablösung von der Membranoberfläche können ferner die Rotationsströmung definiert störende Strömungseinbauten (z. B. Steg 15), erfindungsgemäß bevorzugt an der Gehäuseinnenwand, angebracht sein. Derartige Strömungseinbauten (z. B. Steg 15) können sowohl gerade und axial ausgerichtet, als auch helikal, eingepasst sein.If between the diaphragm cylinder 6 and housing 18, an eccentric arrangement of the diaphragm cylinder 6 in the cylindrical housing 18 (FIG. Fig. 2 ), a mixed shear / elongation flow is formed which has improved dispersing properties. In order to achieve an improved droplet detachment from the membrane surface, it is also possible for the rotational flow to be defined with disturbing flow installations (for example web 15), preferably attached to the inner wall of the housing. Such flow internals (eg web 15) can be both straight and axially aligned, as well as helical, fitted.

Das Gemisch aus dispersen Tropfen 4 und kontinuierlicher Fluidphase 1, die Emulsion 14, wird am Austritt aus dem Spalt 3 in einer Auslaufgeometrie, welche bevorzugt aus einem konischen Bauteil 11 und einem Auslaufstutzen 12 besteht, gebildet.The mixture of disperse drops 4 and continuous fluid phase 1, the emulsion 14, is formed at the exit from the gap 3 in an outlet geometry, which preferably consists of a conical component 11 and an outlet connection 12.

In Fig. 4 sind mittels rotierender Membran (CPDN-Membran = Controlled Pore Distance Membrane) erzeugte Emulsionen als Tropfengrößenverteilungsfunktion (Anzahlverteilung qo(x)) vergleichend für reine Scherströmung (konzentrische Zylinder) und überlagerte Dehnströmung (exzentrische Zylinder) dargestellt.In Fig. 4 are emulsions produced by means of a rotating membrane (CPDN membrane = Controlled Pore Distance Membrane) as droplet size distribution function (number distribution qo (x)) for pure shear flow (concentric cylinders) and superimposed expansion flow (eccentric cylinders).

Die in der Zusammenfassung, in den Patentansprüchen und in der Beschreibung beschriebenen sowie aus der Zeichnung ersichtlichen Merkmale können sowohl einzeln als auch in beliebigen Kombinationen für die Verwirklichung der Erfindung wesentlich sein.The features described in the summary, in the patent claims and in the description and apparent from the drawing features, both individually and in any combination for the realization of the invention may be essential.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Fluidphase, kontinuierlicheFluid phase, continuous
22
Anschluss, AnschlussstutzenConnection, connection piece
33
Spalt, Ringspalt, SpaltweiteGap, annular gap, gap width
44
Tropfen, disperserDrops, disperse
55
Membran, Membrankörper, FiltergewebekörperMembrane, membrane body, filter fabric body
66
Zylinderkörper, MembranzylinderCylinder body, diaphragm cylinder
77
Rotationswelle, Welle, HohlwelleRotary shaft, shaft, hollow shaft
88th
Bohrung, innereBore, inner
99
Gleitringdichtung, dynamischeMechanical seal, dynamic
1010
Innenrauminner space
1111
Bauteil, konischesComponent, conical
1212
Auslaufstutzenoutlet connection
1313
Fluidphase, disperseFluid phase, disperse
1414
Emulsionemulsion
1515
Stegweb
1616
Längsachselongitudinal axis
1717
Doppelpfeildouble arrow
1818
Gehäusecasing

Claims (23)

  1. Device for the mechanically careful generation of finely dispersed micro-/nano-emulsions with close drop size dispersal, where drops (4) are generated through a porous filter fabric or membrane body (5), in which a first fluid phase (13) is moved, particularly pressed, through these pores, and the drops (4) move away (are removed) from the filter fabric or membrane surface under their own motion in a second fluid phase (1) which is not mixable with the first and generate overlaid shear- and pronounced extensional flow components in the gap between the membrane cylinder and housing wall such that a preferably axisymmetric filter fabric and membrane body (5) is arranged in a surrounding housing (18) with a gap (3) of variable width so that it can be moved about its longitudinal axis under motor power.
  2. Device in accordance with claim 1, characterised in that the filter fabric or membrane body (5) is shaped like a cylinder.
  3. Device in accordance with claim 1, characterised in that the filter fabric or membrane body (5) is disk-shaped.
  4. Device in accordance with claim 1 characterised in that the inner wall of the housing (18) delimiting the gap (3) and the filter fabric and membrane body (5) are arranged eccentrically.
  5. Device in accordance with claim 1, characterised in that arranged in the gap (3) are one or more bars (15) as generator(s) for extensional current components.
  6. Device in accordance with claim 5, characterised in that the bar (15) concerned extends in the longitudinal direction of the housing (18) and the filter fabric or membrane body (5).
  7. Device in accordance with claim 5 or 6, characterised in that the bar (15) concerned is constructed straight or as a spiral or helix.
  8. Device in accordance with claim 5 or any of the claims following it, characterised in that the bar (15) concerned is arranged on the inside of the housing (18).
  9. Device in accordance with claim 1 or any of the claims following it, characterised in that the peripheral speed of the rotationally driveable filter fabric or membrane body (5) is between 1 m/s and 50 m/s.
  10. Device in accordance with claim 1 or any of the claims following it, characterised in that the axial overflow rate of the cylindrical filter fabric or membrane body (5) is adjustable, particularly controllable or regulable, through the continuous fluid phase (1) independently of the peripheral speed of the filter fabric or membrane body (5).
  11. Device in accordance with claim 1 or any of the claims following it, characterised in that the disperse fluid phase (13) is conducted via a hollow shaft (7) to the filter fabric or membrane body connected to this hollow shaft (7) and can be pressed through this filter fabric or membrane body (5) by means of pump pressure so that disperse fluid drops (4) can be produced on the surface of the filter fabric or membrane body (5).
  12. Device in accordance with claim 1 or any of the claims following it, characterised in that the proper motion of the filter fabric or membrane body (5) can be adjusted via a control or regulation means.
  13. Device in accordance with claim 1 or any of the claims following it, characterised in that the proper motion of the filter fabric or membrane body (5) can be undertaken via a computer program.
  14. Device in accordance with claim 1, characterised in that the filter fabric or membrane body (5) can be rotated at an adjustable, constant speed.
  15. Device in accordance with claim 1, characterised in that the filter fabric or membrane body (5) can be rotated at a periodically oscillating speed.
  16. Device in accordance with claim 1, characterised in that the filter fabric or membrane body (5) is continuously or intermittently flowed through by the disperse fluid phase (13).
  17. Device in accordance with claim 1, characterised in that before the filter fabric or membrane body (5) is flowed through by means of the disperse fluid phase (13) the filter fabric or membrane pore system is shortly flowed through by the continuous fluid phase (1) or another fluid which is not mixable with the disperse fluid phase (13) in order to wet the filter fabric or membrane pore walls of the filter fabric or filter fabric body (5) repellently for the disperse fluid phase (13).
  18. Device in accordance with claim 1 or 14, characterised in that by the movement of the filter fabric or membrane body (5) predetermined, defined shear and/or extensional tensions can be set on the emulsion drops (4) formed on the filter fabric or membrane body (5).
  19. Device in accordance with claim 1, characterised in that the filter fabric or membrane body (5) is subjected to an additional overflow perpendicular to the peripheral direction of the rotary motion, that means, e.g. in the case of a disk-shaped filter fabric or membrane body in a radial direction and in the case of a cylindrical filter fabric or membrane body (5) in an axial direction.
  20. Device in accordance with claim 1, characterised in that, on the one hand, the fluid phase (13) flowing through the filter fabric or membrane body (5) constitutes an emulsion and thus after the drops (4) formed have moved away from the filter fabric or membrane surface in a further fluid phase a double emulsion of the water/oil/water or oil/water/oil type is formed.
  21. Device in accordance with claim 1, characterised in that, on the other hand, the fluid phase (1) created at the surface of the filter fabric or membrane body (5) constitutes a suspension which, after the drops (4) have been carried away, in a further surrounding fluid phase forms a suspension/emulsion system.
  22. Device in accordance with claim 1 or any of the claims following it, characterised in that the motor drive for the pump pumping the fluid phase (13) can be driven intermittently according to a predetermined program.
  23. Device in accordance with claim 1 or any of the claims following it, characterised in that the motor drive for the pump pumping the disperse phase (1) can be driven intermittently in accordance with a predetermined program.
EP05776538A 2004-08-23 2005-08-19 Device for gentle mechanical generation of finely dispersed micro-/nano-emulsions with narrow particle size distribution Not-in-force EP1781402B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004040735A DE102004040735B4 (en) 2004-08-23 2004-08-23 Process for the mechanically gentle production of finely dispersed micro / nano-emulsions with narrow droplet size distribution and apparatus for carrying out the process
PCT/EP2005/008980 WO2006021375A1 (en) 2004-08-23 2005-08-19 Method for gentle mechanical generation of finely dispersed micro-/nano-emulsions with narrow particle size distribution and device for carrying out said method

Publications (2)

Publication Number Publication Date
EP1781402A1 EP1781402A1 (en) 2007-05-09
EP1781402B1 true EP1781402B1 (en) 2008-02-27

Family

ID=35414500

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05776538A Not-in-force EP1781402B1 (en) 2004-08-23 2005-08-19 Device for gentle mechanical generation of finely dispersed micro-/nano-emulsions with narrow particle size distribution

Country Status (6)

Country Link
US (1) US8267572B2 (en)
EP (1) EP1781402B1 (en)
JP (1) JP4852042B2 (en)
AT (1) ATE387255T1 (en)
DE (2) DE102004040735B4 (en)
WO (1) WO2006021375A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9615601B2 (en) 2005-10-04 2017-04-11 Jimmyash Llc Process for the controlled introduction of oil into food products
ES2678057T3 (en) 2005-10-04 2018-08-08 Jimmyash Llc Fried food products that have reduced fat content
AU2006299381B2 (en) 2005-10-04 2013-03-21 Jimmyash Llc Methods of making snack food products and products made thereby
GB0611888D0 (en) * 2006-06-15 2006-07-26 Micropore Technologies Ltd An apparatus and method for membrane emulsification
GB2444035A (en) * 2006-11-25 2008-05-28 Micropore Technologies Ltd An apparatus and method for generating emulsions
US8564783B2 (en) 2008-05-15 2013-10-22 Axsun Technologies, Inc. Optical coherence tomography laser with integrated clock
EP2260917A1 (en) * 2009-05-29 2010-12-15 Novoflow GmbH Filtration system and method to optimize filtration performance
ES2473490T3 (en) 2009-08-28 2014-07-07 Kraft Foods R & D, Inc. Method and apparatus for preparing aerated food products
EP2374535A1 (en) * 2010-04-06 2011-10-12 Bühler AG Method and devices for vesicle formation, in particular using block copolymers
DE102010017523A1 (en) * 2010-06-22 2011-12-22 Technische Universität Berlin Method and mixing device for mixing two fluids and their use
EP2402075A1 (en) * 2010-06-28 2012-01-04 Bühler AG Method and device for producing vesicles
JP5850345B2 (en) * 2010-12-29 2016-02-03 ワンホア ケミカル グループ カンパニー リミテッド Fast mixing reactor and its use
JP5987218B2 (en) 2011-01-07 2016-09-07 ピュロライト コーポレイション Method for producing uniform polymer beads of various sizes
JP5709130B2 (en) * 2011-03-31 2015-04-30 国立大学法人九州大学 Method and apparatus for producing crystalline fine particles with excellent mixing efficiency
GB2494926B (en) * 2011-09-26 2018-07-11 Micropore Tech Ltd Apparatus for particle production
CN104884217A (en) * 2012-12-17 2015-09-02 罗门哈斯公司 Method of producing monomer droplets
AU2013409774B2 (en) * 2012-12-20 2018-10-04 Kao Germany Gmbh Process for manufacturing an emulsion
US9393532B2 (en) * 2013-02-27 2016-07-19 Dow Global Technologies Llc Swept membrane emulsification
US10232333B2 (en) * 2016-07-12 2019-03-19 Micropore Technologies Ltd. Azimuthally oscillating membrane emulsification for controlled droplet production
CA3133245A1 (en) * 2019-03-14 2020-09-17 Moleaer, Inc. A submersible nano-bubble generating device and method
SG10201905946YA (en) * 2019-06-26 2021-01-28 Nat Univ Singapore Systems and Methods for Fabricating Nanoparticles
EP4126319A1 (en) * 2020-04-01 2023-02-08 Merck Patent GmbH Emulsification device
CN113617277B (en) * 2021-08-16 2023-05-23 广东涂百年新型材料有限公司 Stirring equipment and method for producing reflective heat-insulating elastic coating

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372015A (en) * 1976-12-08 1978-06-27 Toyo Tire & Rubber Co Ltd Pre-mixer for emulsion fuel prepataiton
WO1986004144A1 (en) 1984-12-31 1986-07-17 International Genetic Engineering, Inc. Peptide fragments of human apolipoprotein, type-specific antibodies and methods of use
FR2589274B1 (en) 1985-10-28 1987-12-11 Telephonie Ind Commerciale ELECTROSTATIC PRINTHEAD
JPH082416B2 (en) * 1988-09-29 1996-01-17 宮崎県 Method of producing emulsion
JP2847107B2 (en) * 1989-02-16 1999-01-13 富士シリシア化学株式会社 Preparation method of emulsion
WO1993000156A1 (en) * 1991-06-29 1993-01-07 Miyazaki-Ken Monodisperse single and double emulsions and production thereof
JP3081880B2 (en) * 1998-03-30 2000-08-28 農林水産省食品総合研究所長 Microsphere continuous manufacturing equipment
GB9930322D0 (en) * 1999-12-22 2000-02-09 Univ Leeds Rotating membrane
JP3511238B2 (en) * 2000-10-13 2004-03-29 独立行政法人食品総合研究所 Microsphere manufacturing method and manufacturing apparatus
DE10127075C2 (en) 2001-06-02 2003-04-10 Fraunhofer Ges Forschung Device and method for producing emulsions by means of membrane bodies
EP1412418A1 (en) * 2001-08-03 2004-04-28 Akzo Nobel N.V. Process to make dispersions
CN1688381A (en) * 2002-10-02 2005-10-26 荷兰联合利华有限公司 Method for controlling droplet size of an emulsion when mixing two immiscible fluids
JP4008796B2 (en) * 2002-11-06 2007-11-14 花王株式会社 Method for producing acidic oil-in-water emulsion
DE10307568B4 (en) 2003-02-22 2007-08-16 ETH-Zürich, Institut für Lebensmittelwissenschaft, Laboratorium für Lebensmittelverfahrenstechnik Method for producing a membrane with membrane holes and micro / nano membrane produced by this method
CA2526965C (en) * 2003-05-16 2011-10-11 Velocys Inc. Process for forming an emulsion using microchannel process technology
US7485671B2 (en) * 2003-05-16 2009-02-03 Velocys, Inc. Process for forming an emulsion using microchannel process technology
US7396550B2 (en) * 2003-06-05 2008-07-08 Angel Michael G Time released nutritional product and method of manufacture

Also Published As

Publication number Publication date
US8267572B2 (en) 2012-09-18
DE502005003021D1 (en) 2008-04-10
WO2006021375A1 (en) 2006-03-02
ATE387255T1 (en) 2008-03-15
JP4852042B2 (en) 2012-01-11
EP1781402A1 (en) 2007-05-09
US20110038901A1 (en) 2011-02-17
DE102004040735A1 (en) 2006-03-09
DE102004040735B4 (en) 2006-11-23
JP2008510607A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
EP1781402B1 (en) Device for gentle mechanical generation of finely dispersed micro-/nano-emulsions with narrow particle size distribution
DE102005048259B4 (en) Apparatus and method for producing a mixture of two intractable phases
DE4433744C2 (en) Device for mixing media to produce liquid systems
EP2285476B1 (en) Rotor/stator system and process for producing dispersions
DE3111225A1 (en) "DEVICE AND METHOD FOR SEPARATING A GAS FROM A FIBER SUSPENSION"
EP1280598A2 (en) Cavitation mixer
DE3617871A1 (en) DEVICE FOR SCREENING CELLULAR OR. PAPER-FREE
AT395871B (en) DEVICE FOR SCREENING A CELLULOSE-FIBER-MIXED SUSPENSION
DE102005057435A1 (en) ventilation system
DE10127075C2 (en) Device and method for producing emulsions by means of membrane bodies
AT522880B1 (en) Device for filtering liquids
WO2005030659A1 (en) Device and method for the treatment of a medium such as effluent clarifier sludge or similar
WO2023011843A1 (en) Apparatus and method for separating fluid mixtures
EP1057512B1 (en) Method and apparatus for solid/liquid separation
DE4110943C1 (en)
WO2006007609A1 (en) Method for mixing device for the same and use thereof
WO2010028711A1 (en) Method for refining cellulose fibers in aqueous suspension and refiner filling for performing the same
DE958169C (en) Machine for the production of finely divided mixtures, dispersions or emulsions
EP4245395A1 (en) Device and method for continuous gas exchange in a flow of a fluid mixture
DE4137496A1 (en) Filter for dynamic filtration - facilitating fine control and adaptation to the medium under treatment
DE60028188T2 (en) screening device
EP0420981A1 (en) Device for generating acoustic oscillations in a liquid medium
EP1102622A1 (en) Filtration device and method
WO2019011963A1 (en) Method and device for the treatment of contaminants in water by cavitation
DE3544082A1 (en) Process and appliance for separating dispersions by means of membranes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070529

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GROHMANN, FRED-RAINER

Inventor name: WINDHAB, ERICH, J.

Inventor name: EISNER, DR. VERENA

Inventor name: TROXLER, BEAT

Inventor name: DUERIG, ANDREAS, KURT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RTI1 Title (correction)

Free format text: DEVICE FOR GENTLE MECHANICAL GENERATION OF FINELY DISPERSED MICRO-/NANO-EMULSIONS WITH NARROW PARTICLE SIZE DISTRIBUTION

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005003021

Country of ref document: DE

Date of ref document: 20080410

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20080312

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080627

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080607

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080227

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080227

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080227

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080721

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080527

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080227

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080227

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080227

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080227

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080227

26N No opposition filed

Effective date: 20081128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080527

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080227

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080819

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131009

Year of fee payment: 9

Ref country code: GB

Payment date: 20131009

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20131010

Year of fee payment: 9

Ref country code: IT

Payment date: 20131025

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150301

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140819

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180817

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831