EP1781159A2 - Vorrichtung zur messung einer position eines chirurgischen arbeitsinstrumentes - Google Patents

Vorrichtung zur messung einer position eines chirurgischen arbeitsinstrumentes

Info

Publication number
EP1781159A2
EP1781159A2 EP05788656A EP05788656A EP1781159A2 EP 1781159 A2 EP1781159 A2 EP 1781159A2 EP 05788656 A EP05788656 A EP 05788656A EP 05788656 A EP05788656 A EP 05788656A EP 1781159 A2 EP1781159 A2 EP 1781159A2
Authority
EP
European Patent Office
Prior art keywords
working
measuring
working channel
instrument
endoscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05788656A
Other languages
English (en)
French (fr)
Inventor
Daniel SCHÄLLER
Mathias VOIGTLÄNDER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Erbe Elecktromedizin GmbH
Original Assignee
Erbe Elecktromedizin GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erbe Elecktromedizin GmbH filed Critical Erbe Elecktromedizin GmbH
Publication of EP1781159A2 publication Critical patent/EP1781159A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/018Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00026Conductivity or impedance, e.g. of tissue
    • A61B2017/0003Conductivity or impedance, e.g. of tissue of parts of the instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22072Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other
    • A61B2017/22074Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other the instrument being only slidable in a channel, e.g. advancing optical fibre through a channel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/062Measuring instruments not otherwise provided for penetration depth

Definitions

  • the invention relates to a device for measuring a position of a surgical working instrument relative to a working channel of an endoscope into which the working instrument is introduced.
  • DE 198 58 375 A1 discloses an endoscope with an inserted working instrument which has an electrode which can be displaced within the working instrument.
  • a switch is provided, via the actuation or non-actuation of which a coagulation current can be switched. The determination of the position here depends on a switching contact mounted in a defined manner on the work instrument.
  • the invention is based on the object of disclosing a device of the abovementioned type in such a way that the position of the surgical working instrument relative to the working channel of an endoscope, into which the working instrument is introduced, can be detected reliably in a simple manner.
  • a device having a generator for generating a measurement signal, means for coupling the measurement signal into the working channel and / or the working instrument and / or the endoscope, and a measuring device for measuring a positional effect corresponding to the working instrument exerts its position in the working channel on the measurement signal and to generate a display signal depending on the effect.
  • An essential point of the invention is therefore that an interaction between see the working instrument and the endoscope or its working channel is detected, this interaction is a measure of how far the endoscope is inserted into the working channel.
  • the interaction may be an electrical interaction or a mechanical interaction, in particular a pneumatic or acoustic interaction.
  • the generator is designed such that it generates an alternating current signal or a pulsed direct current signal (with high-frequency alternating current components) as measurement signal, and the measuring device establishes a (complex) resistance between the working instrument and at least parts of the endoscope / or measures at least portions of a wall of the working channel as a positional effect.
  • the measurement signal must have at least a frequency of above 300 kHz, since at these frequencies neuromuscular irritations no longer occur.
  • the maximum voltage level must also be limited so as not to cause thermal damage in the patient.
  • the working instrument forms, together with the (electrically conductive) working channel or its walls or a separate line embedded within the walls, a capacitance or a high-frequency line, so that the capacitance or the length the line can be determined with the distributed over them capacity.
  • a resonant circuit or a PLL circuit is suitable, in which the complex resistor is arranged as a variable element for determining a resonant frequency of the resonant circuit or the PLL circuit.
  • the surgical instrument comprises a probe with an electrode
  • the complex resistance between the electrode and the endoscope and / or the wall of the working channel is measured.
  • no separate measuring electrode is necessary here.
  • the measuring device for measuring a DC or alternating pressure of a gas in the working channel and / or in a lumen of the working instrument is formed.
  • the generator for generating a DC or alternating pressure in the working channel and / or at a distal end of the working channel and / or in the probe as a measuring signal can be constructed very easily.
  • a gas supply device which promotes gas in the working channel, the back pressure or the flow resistance in the working channel depends on the length over which the working instrument is inserted into the working channel and thereby reduces its cross section. If the measuring device measures acoustic properties of the system, then the radiation impedance of the working channel (or of a lumen of the working instrument) or else a resonance frequency in the working channel can be measured. Such measuring instruments are easy to set up. The measuring signals are harmless to the patient.
  • the measuring device comprises a microphone or similar transducer, which is attached to a proximal end of a lumen of the working instrument.
  • the microphone acts as a kind of "probe microphone", which measures the sound introduced into the working channel.
  • the measuring device comprises a pressure transducer, which is preferably attached to a proximal end of a lumen of the working instrument, wherein the generator for generating a gas pressure in the working channel and / or in a body cavity is formed, in which the endoscope is insertable.
  • a pressure transducer which is preferably attached to a proximal end of a lumen of the working instrument, wherein the generator for generating a gas pressure in the working channel and / or in a body cavity is formed, in which the endoscope is insertable.
  • the measuring device may be designed to detect the absolute position of the working instrument within the working channel.
  • the measuring device may comprise a change detector for detecting a change in the measuring signal during a change in the position of the working instrument in the working channel. Then, when the working instrument emerges from the working channel (from its distal end) again, then no change would be displayed and the user knows where the instrument is located.
  • the above object is achieved by a method for measuring a position of a surgical working instrument relative to a working channel of an endoscope into which the working tool is inserted, by the following steps:
  • Generating a measurement signal coupling the measurement signal into the working channel and / or the working instrument and / or the endoscope, measuring a positional effect, which the working instrument according to its position in the working channel on the measurement signal and generating an indication signal depending on the effect.
  • the described device for measuring a position of a surgical working instrument is released relative to a working channel of an endoscope into which the working instrument is inserted and for generating an indication signal as a function of the position, wherein a gas supply, depending on the indication signal Suction, a power supply or the supply of a fluid to the working instrument or in the working channel is controlled.
  • a gas supply depending on the indication signal Suction, a power supply or the supply of a fluid to the working instrument or in the working channel is controlled.
  • FIG. 1 is a highly schematic representation of an endoscope with partially inserted working instrument and periphery
  • FIG. 3 shows a partial circuit of the arrangement according to FIG. 1, FIG.
  • FIG. 4 shows another embodiment of the invention with an acoustic measuring device and
  • FIG - Fig. 5 is a wide imple mentation form of the invention with a pneumatic
  • Fig. 1 is (very heavily schematized) shown an endoscope, as it is used in particular in the medical field.
  • the endoscope 10 has an optical system 11 which is either connected to an eyepiece device via a glass fiber strand (the arrangement has been shown in the figures) or - and this is generally the case in modern endoscopes - comprises a CCD camera ,
  • a working channel 12 is provided, which has a wall 13.
  • This wall 13 and the endoscope 10 consists essentially of MetaU.
  • a working instrument 20 can be inserted until a distal end 21 of the working instrument 20 emerges from the proximal end 15 of the working channel 12, as shown in Fig. 2. In this position, the distal end 21 of the working instrument 20 is in the field of view of the optic 11 of the endoscope 10.
  • the working instrument 20 shown here is an APC probe, as it is known for example from DE 41 39 029 C2 or US 5,207,675.
  • a probe has a lumen 23, via which noble gas can be supplied from a gas source 28.
  • an electrode 24 is arranged, which is connected at its proximal end to an HF-surgery device.
  • this working instrument 20 must be in a position as shown in FIG. 2 so that the user can bring the distal end 21 of the working instrument 20 into proximity to a tissue to be coagulated.
  • the electrode 24 of the working instrument 20 and, on the other hand, the (electrically conductive) wall 13 of the working channel are included in a measuring bridge 31, which on the one hand scans a voltage drop across a capacitor C and two resistors R and feeds it to an evaluation device 40 and, on the other hand a high frequency signal (300 kHz) with a defined (low) voltage from a generator 30 is fed into the system.
  • the capacitor C is in this case preferably chosen so that when fully inserted into the working channel 12 working instrument 20, the bridge 31 is tuned.
  • a similar circuit is shown in Fig. 3 with a PLL gate whose output signal (the tuning frequency corresponding) of the evaluation circuit 40 is fed.
  • the evaluation circuit 40 generates a measurement signal which corresponds to the distance by which the working instrument 20 is inserted into the working channel 12.
  • the display is a display device 41 and possibly a speaker 42, the arrangement may be made, for example, such that an acoustically perceptible signal is generated whose pitch corresponds to the insertion depth of the working instrument 20 in Hä ⁇ channel 12. Then, when (as shown in FIG. 2) the distal end 21 of the working instrument 20 begins to exit the distal end 14 of the working channel 12, the capacitance between the electrode 24 and the endoscope 10 or wall 13 of the working channel changes 12 no longer, so that the operator can easily notice the exit of the distal end 21 of the working channel 12.
  • an acoustic measuring system is provided. This comprises an electro-acoustic transducer or loudspeaker 33, which is connected to the proximal end 15 of the working channel 12 and is fed by a generator 30 'with a sound signal. The sound signal is received via a corresponding electromechanical transducer, for example a microphone 32, which is preceded by the lumen 23 of the working instrument 20 as in a probe microphone.
  • the output signal of the converter 32 is again supplied to the evaluation device 40 after appropriate signal processing. Based on the switching level, it can be determined where the distal end 21 is located in the working channel 12 and, in particular, whether it emerges from the distal end 14 of the working channel 12, since in this area the recordable sound pressure drops abruptly. Of course, it would be possible here to swap the two sound transducers 32 and 33, ie to feed the sound signal into the lumen 23 of the working instrument 20 and to measure the sound pressure at the distal end 15 of the working channel 12.
  • the acoustic properties of the working channel 12 are determined with inserted Hä ⁇ instrument 20. This can e.g. by the determination of the acoustic impedance, which is provided in the arrangement of FIG. 4 for the transducer 33 and which is dependent on the penetration depth of the working instrument 20 in the working channel 12. Eben ⁇ if alternatively, it is possible to have an acoustic resonance frequency within the Häka ⁇ nals 12, which in turn depends on the depth of insertion of the working instrument 20. Thus, the acoustic measurement similar to the electrical measurement as described above is performed by determining the interaction within the system consisting of working instrument 20 and working channel 12.
  • a "static" pressure is determined which is generated by a pressure source 34, introduced into the proximal end 15 of the working channel 12 and via the lumen 23 of the working instrument 20 to a pressure transducer 43 on The measuring signal is then fed back to the evaluation device 40.
  • the pressure which is present at the pressure transducer 43 corresponds to the gas pressure at the distal end 21 of the working instrument 20, the lumen 23 of which is actuated by a valve 29 (see Fig. 1) is shut off, which binds this lumen 23 ver ⁇ with the argon gas source 28.
  • gas source 34 it is also possible not to connect the gas source 34 to the working channel 12, but to supply gas (for example for insufflation) to a body cavity by means of a separate conduit into which the endoscope 10 is inserted.
  • the working instrument 20 would then measure a maximum pressure when the working channel 12 is open proximally when the distal end 21 emerges from the distal end 14 of the working channel 12, since no pressure drop (due to the flow through the working channel) occurs more.
  • the valve 29 is then released for opening by a separate signal when the distal end 21 of the working instrument 20 has exited the working channel 12 by a sufficiently large amount (see Fig. 2 and accompanying description).
  • the basic principle of the invention is that the working channel 12 is considered in the endoscope 10 together with the working instrument 20 used as an overall system, so that the interactions between the two parts can be used to generate a measuring signal.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Human Computer Interaction (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

Beim Einführen eines chirurgischen Arbeitsinstrumentes in einen Arbeitskanal eines Endoskops muss die Bedienungsperson wissen, wann das distale Ende des Arbeitsinstru­mentes aus dem distalen Ende des Arbeitskanals hervortritt und so in den sichtbaren Bereich einer Beobachtungseinrichtung des Endoskops gelangt. Es wird hierfür eine Vorrichtung vorgeschlagen, umfassend einen Generator zur Erzeugung eines Messsignals, Einrichtungen zum Einkoppeln des Messsignals in den Arbeitskanal und/oder das Ar­beitsinstrument und/oder das Endoskop und eine Messeinrichtung zum Messen einer Positionswirkung, welche das Arbeitsinstrument entsprechend seiner Position im Arbeits­kanal auf das Messsignal ausübt und zum Erzeugen eines Anzeigesignals in Abhängigkeit von der Wirkung.

Description

"Votrichtung zur Messung einer Position eines chirurgischen Arbeitsinstrumentes"
Beschreibung
Die Erfindung betrifft eine Vorrichtung zur Messung einer Position eines chirurgischen Arbeitsinstrumentes relativ zu einem Arbeitskanal eines Endoskops, in den das Arbeits¬ instrument eingeführt wird.
Vorrichtungen zur Messung der Position eines Arbeitsinstrumentes innerhalb eines menschlichen Körpers sind aus der DE 35 36 271 Cl, DE 101 09 310 Al, DE 100 58 370 Al3 DE 101 34 911 Al5 DE 697 11 311 T2, DE 199 55 346 Al oder der DE 697 19 030 T2 bekannt. Alle diese Vorrichtungen sind äußerst aufwändig und zur Messung einer Position eines chirurgischen Arbeitsinstrumentes relativ zu einem Arbeitskanal eines Endoskops, in den das Arbeitsinstrument eingeführt wird, kaum geeignet.
Aus der DE 198 58 375 Al ist ein Endoskop mit einem eingesetzten Arbeitsinstrument bekannt, das eine Elektrode aufweist, welche innerhalb des Arbeitsinstrumentes ver- schiebbar ist. Zur Feststellung der Position des Arbeitsinstrumentes ist ein Schalter vorgesehen, über dessen Betätigung oder Nicht-Betätigung ein Koagulationsstrom ge¬ schaltet werden kann. Die Positionsbestimmung hängt hierbei von einem auf dem Ar¬ beitsinstrument definiert angebrachten Schaltkontakt ab.
Der Erfindung Hegt die Aufgabe zu Grunde, eine Vorrichtung der oben genannten Art dahin gehend aufzuzeigen, dass in einfacher Weise die Position der chirurgischen Ar¬ beitsinstrumentes relativ zum Arbeitskanal eines Endoskops, in den das Arbeitsinstru¬ ment eingeführt wird, sicher feststellbar ist.
Diese Aufgabe wird durch eine Vorrichtung gelöst, die einen Generator zur Erzeugung eines Messsignals, Einrichtungen zum Einkoppeln des Messsignals in den Arbeitskanal und/oder das Arbeitsinstrument und/oder das Endoskop sowie eine Messeinrichtung aufweist zum Messen einer Positionswirkung, welche das Arbeitsinstrument entsprechend seiner Position im Arbeitskanal auf das Messsignal ausübt und zürn Erzeugen eines Anzeigesignals in Abhängigkeit von der Wirkung.
Ein wesentlicher Punkt der Erfindung liegt also darin, dass eine Wechselwirkung zwi- sehen dem Arbeitsinstrument und dem Endoskop bzw. dessen Arbeitskanal festgestellt wird, wobei diese Wechselwirkung ein Maß dafür ist, wie weit das Endoskop in den Arbeitskanal eingeschoben ist.
Die Wechselwirkung kann eine elektrische Wechselwirkung oder aber eine mechanische Wechselwirkung, insbesondere eine pneumatische oder akustische Wechselwirkung sein.
Bei einer ersten bevorzugten Aus führungs form der Erfindung ist der Generator so ausgebildet, dass er als Messsignal ein Wechselstromsignal oder ein pulsförmiges Gleich- stromsignal (mit hochfrequenten Wechselstromanteilen) erzeugt und die Messeinrichtung einen (komplexen) Widerstand zwischen dem Arbeitsinstrument und mindestens Teilen des Endoskops und/oder mindestens Abschnitten einer Wand des Arbeitskanals als Positionswirkung misst. Um sicherzustellen, dass der Wechselstrom keine Gefährdung eines Patienten mit sich bringt, muss das Messsignal mindestens eine Frequenz von oberhalb 300 kHz haben, da bei diesen Frequenzen neuromuskuläre Reizungen nicht mehr vorkommen. Der maximale Spannungspegel muss ebenfalls begrenzt sein, um im Patienten keine thermischen Schädigungen hervorzurufen. Bei dieser Aus führungs form der Erfindung bildet also das Arbeitsinstrument zusammen mit dem (elektrisch leitenden) Arbeitskanal bzw. dessen Wänden oder einer innerhalb der Wände eingelassenen geson¬ derten Leitung eine Kapazität bzw. eine Hochfrequenz-Leitung, so dass die Kapazität bzw. die Länge der Leitung mit den über sie verteilten Kapazitäten bestimmt werden kann. Zur Bestimmung der Kapazität eignet sich ein Schwingkreis oder ein PLL-Kreis, in welchem der komplexe Widerstand als variables Element zur Bestimmung einer Reso¬ nanzfrequenz des Schwingkreises bzw. der PLL-Schaltung angeordnet ist.
Wenn das chirurgische Arbeitsinstrument eine Sonde mit einer Elektrode umfasst, so wird vorzugsweise der komplexe Widerstand zwischen der Elektrode und dem Endoskop und/oder der Wand des Arbeitskanals gemessen. Es ist also hier keine gesonderte Mess¬ elektrode notwendig. Zur Durchführung des pneumatisch-/akustischen Messprinzips wird die Messeinrichtung zur Messung eines Gleich- oder Wechseldruckes eines Gases im Arbeitskanal und/oder in einem Lumen des Arbeitsinstrumentes ausgebildet. Der Generator zur Erzeugung eines Gleich- oder Wechseldruckes im Arbeitskanal und/oder an einem distalen Ende des Arbeitskanals und/oder in der Sonde als Messsignal kann sehr einfach aufgebaut werden. Nimmt man beispielsweise als Generator eine Gaszuführungsvorrichtung, die in den Arbeitskanal Gas fördert, so hängt der Gegendruck bzw. der Strömungswiderstand im Arbeitskanal von der Länge ab, über welche das Arbeitsinstrument in den Arbeitskanal eingeschoben ist und ihn dadurch in seinem Querschnitt vermindert. Wenn die Messein- richtung akustische Eigenschaften des Systems misst, so können die Strahlungsimpedanz des Arbeitskanals (oder eines Lumens des Arbeitsinstrumentes) oder aber eine Resonanz¬ frequenz im Arbeitskanal gemessen werden. Derartige Messinstrumente sind einfach aufbaubar. Die Messsignale sind für den Patienten unschädlich.
Bei einer Ausführungsform der Erfindung umfasst die Messeinrichtung ein Mikrofon oder dergleichen Messwandler, der an einem proximalen Ende eines Lumens des Ar¬ beitsinstrumentes angebracht ist. Das Mikrofon wirkt sozusagen als „Sondenmikrofon", welches den in den Arbeitskanal eingebrachten Schall misst.
Bei einer pneumatischen Messung umfasst die Messeinrichtung einen Druckaufnehmer, der vorzugsweise an einem proximalen Ende eines Lumens des Arbeitsinstrumentes angebracht ist, wobei der Generator zur Erzeugung eines Gasdruckes im Arbeitskanal und/oder in einer Körperhöhle ausgebildet ist, in welche das Endoskop einführbar ist. Über diese Druckmessung kann festgestellt werden, wo sich das Arbeitsinstrument im Arbeitskanal befindet und insbesondere ob das Arbeitsinstrument aus dem distalen Ende des Arbeitskanals austritt.
Die Me s seinrichtung kann zur Erfassung der Absolutposition des Arbeitsinstrumentes innerhalb des Arbeitskanals ausgebildet sein. Alternativ kann die Messeinrichtung einen Änderungsdetektor umfassen zur Feststellung einer Änderung des Messsignals während einer Änderung der Position des Arbeitsinstrumentes im Arbeitskanal. Dann, wenn das Arbeitsinstrument aus dem Arbeitskanal (aus dessen distalem Ende) wieder austritt, würde dann keine Änderung mehr angezeigt und der Benutzer weiß, wo sich das Instru¬ ment befindet. Verfahrensmäßig wird die o.g. Aufgabe durch ein Verfahren zur Messung einer Position eines chirurgischen Arbeitsinstrumentes relativ zu einem Arbeitskanal eines Endoskops, in den das Arbeitsinstrument eingeführt wird, durch folgende Schritte gelöst:
Erzeugen eines Messsignals, Einkoppeln des Messsignals in den Arbeitskanal und/oder das Arbeitsinstrument und/oder das Endoskop, Messen einer Positionswirkung, welche das Arbeitsinstrument entsprechend seiner Position im Arbeitskanal auf das Messsignal ausübt und Erzeugen eines Anzeigesignals in Abhängigkeit von der Wirkung.
Vorzugsweise wird die beschriebene Vorrichtung zur Messung einer Position eines chirurgischen Arbeitsinstrumentes relativ zu einem Arbeitskanal eines Endoskops, in den das Arbeitsinstrument eingeführt wird und zur Erzeugung eines Anzeigesignals in Abhän¬ gigkeit von der Position gelöst, wobei in Abhängigkeit vom Anzeigesignal eine Gaszu- führung, eine Saugwirkung, eine Stromzuführung oder die Zuführung eines Fluids zum Arbeitsinstrument oder in den Arbeitskanal gesteuert wird. Durch diese bevorzugte Verwendung können verschiedene Arbeitsinstrumente sicherer als bisher betrieben werden.
Bevorzugte Ausführungsformen der Erfindung ergeben sich aus den Unteransprüchen.
Nachfolgend werden Aus führungs formen der Erfindung anhand von Abbildungen näher erläutert. Hierbei zeigen
- Fig. 1 eine stark schematisierte Darstellung eines Endoskops mit teilweise einge¬ schobenem Arbeitsinstrument und Peripherie,
- Fig. 2 einen Endabschnitt des Endoskops mit aus seinem distalen Arbeitskanal¬ ende hervorstehendem Arbeitsinstrument,
- Fig. 3 eine Teil-Schaltung der Anordnung nach Fig. 1,
- Fig. 4 eine weitere Aus führungs form der Erfindung mit einer akustischen Mess¬ einrichtung und - Fig. 5 eine weitete Aus führungs form der Erfindung mit einer pneumatischen
Mes svorrichtung.
In der nachfolgenden Beschreibung werden für gleiche und gleich wirkende Teile diesel¬ ben Bezugsziffern verwendet.
In Fig. 1 ist (sehr stark schematisiert) ein Endoskop gezeigt, wie es insbesondere im medizinischen Bereich verwendet wird. Das Endoskop 10 weist eine Optik 11 auf, die entweder über einen Glasfaserstrang mit einer Okulareinrichtung (so wurde die Anord¬ nung in den Abbildungen gezeigt) verbunden ist oder aber - und dies ist bei modernen Endoskopen im Allgemeinen der Fall - eine CCD-Kamera umfasst.
In dem Endoskop 10 ist (wie üblich) ein Arbeitskanal 12 vorgesehen, der eine Wand 13 aufweist. Diese Wand 13 bzw. das Endoskop 10 besteht in wesentlichen Teilen aus MetaU.
In ein distales Ende 14 des Arbeitskanals 12 kann ein Arbeitsinstrument 20 eingeschoben werden, bis ein distales Ende 21 des Arbeitsinstruments 20 aus dem proximalen Ende 15 des Arbeitskanals 12 hervortritt, wie dies in Fig. 2 gezeigt ist. In dieser Position befindet sich das distale Ende 21 des Arbeitsinstruments 20 im Blickfeld der Optik 11 des Endo¬ skops 10.
Das hier gezeigte Arbeitsinstrument 20 ist eine APC-Sonde, wie sie beispielsweise aus der DE 41 39 029 C2 oder der US 5,207,675 bekannt ist. Eine solche Sonde weist ein Lumen 23 auf, über welches Edelgas aus einer Gasquelle 28 zugeführt werden kann. Innerhalb des Lumens 23 ist eine Elektrode 24 angeordnet, die mit ihrem proximalen Ende an einem HF-Chirurgiegerät angeschlossen ist. Zur Benutzung muss dieses Arbeitsinstru¬ ment 20 in einer Position wie in Fig. 2 gezeigt sein, so dass der Benutzer das distale Ende 21 des Arbeitsinstruments 20 in die Nähe eines zu koagulierenden Gewebes bringen kann. Zur Vorbereitung einer Operation ist es somit notwendig, die Position des Arbeitsin¬ struments 20 innerhalb des Arbeitskanals 12 festzustellen und so einzustellen, dass das Arbeitsinstrument 20 bzw. dessen distales Ende 21 sich in der durch die Optik 11 des Endoskops 10 beobachtbaren Arbeitsposition befindet. Bei der in Fig. 1 gezeigten Aus führungs form der Erfindung werden elektrische Eigen¬ schaften des Systems bestehend aus dem Arbeitsinstrument 20 und dem Endoskop 10 bzw. dessen Arbeitskanal 12 zur Erzeugung des gewünschten Messwertes verwendet. Hierzu ist einerseits die Elektrode 24 des Arbeitsinstrumentes 20 und andererseits die (elektrisch leitende) Wand 13 des Arbeitskanals in eine Messbrücke 31 einbezogen, welche über einen Kondensator C und zwei Widerstände R einerseits einen Spannungsab¬ fall abtastet und einer Auswerteeinrichtung 40 zuleitet und über die andererseits ein Hochfrequenzsignal (300 kHz) mit definierter (niedriger) Spannung aus einem Generator 30 in das System eingespeist wird. Der Kondensator C ist hierbei vorzugsweise so gewählt, dass bei vollständig in den Arbeitskanal 12 eingeschobenem Arbeitsinstrument 20 die Brücke 31 abgestimmt ist. An Stelle einer solchen Brückenschaltung ist es natürlich möglich, einen Schwingkreis aufzubauen, in welchem die Messpunkte a und b aus Fig. 1 die Anschlusspunkte des frequenzbestimmenden (kapazitiven) Gliedes darstellen und dessen Resonanzfrequenz gemessen wird. Eine ähnliche Schaltung ist in Fig. 3 mit einem PLL-Glied gezeigt, dessen Ausgangs signal (der Abstimmungsfrequenz entsprechend) der Auswerteschaltung 40 zugeleitet wird.
Die Auswerteschaltung 40 erzeugt ein Messsignal, welches der Strecke entspricht, um welche das Arbeitsinstrument 20 in den Arbeitskanal 12 eingeschoben ist. Zur Anzeige dient eine Anzeigeeinrichtung 41 und ggf. ein Lautsprecher 42, wobei die Anordnung beispielsweise derart getroffen sein kann, dass ein akustisch wahrnehmbares Signal erzeugt wird, dessen Tonhöhe der Einschubtiefe des Arbeitsinstruments 20 im Arbeits¬ kanal 12 entspricht. Dann, wenn (wie in Fig. 2 gezeigt) das distale Ende 21 des Arbeits- instrumentes 20 aus dem distalen Ende 14 des Arbeitskanals 12 auszutreten beginnt, ändert sich die Kapazität zwischen der Elektrode 24 und dem Endoskop 10 bzw. der Wand 13 des Arbeitskanals 12 nicht mehr, so dass die Bedienungsperson den Austritt des distalen Endes 21 aus dem Arbeitskanal 12 leicht bemerken kann.
Es sei an dieser Stelle betont, dass eine Vielzahl von elektrischen Messungen zur Errei¬ chung dieses Zieles möglich ist. Beispielsweise kann das System bestehend aus Arbeits¬ instrument 20 und Endoskop 10 auch als verlustbehaftete Leitung verstanden werden, deren Länge in an sich bekannter Weise mit auf dem Markt erhältlichen Messinstrumen¬ ten messbar ist. Bei der in Fig. 4 gezeigten Aus führungs form der Erfindung ist ein akustisches Mess¬ system vorgesehen. Dieses umfasst einen elektroakustischen Wandler bzw. Lautsprecher 33, der an das proximale Ende 15 des Arbeitskanals 12 angeschlossen ist und von einem Generator 30' mit einem Schallsignal gespeist wird. Das Schallsignal wird über einen entsprechenden elektromechanischen Wandler, z.B. ein Mikrofon 32 aufgenommen, welchem das Lumen 23 des Arbeitsinstrumentes 20 wie bei einem Sondenmikrofon vorgeschaltet ist. Das Ausgangssignal des Wandlers 32 wird wieder nach entsprechender Signalaufbereitung der Auswerteeinrichtung 40 zugeführt. Anhand des Schaltpegels kann festgestellt werden, wo sich das distale Ende 21 im Arbeitskanal 12 befindet und insbe¬ sondere ob es aus dem distalen Ende 14 des Arbeitskanals 12 austritt, da in diesem Bereich der aufnehmbare Schalldruck abrupt absinkt. Selbstverständlich wäre es hier möglich, die beiden Schallwandler 32 und 33 zu vertauschen, das Schallsignal also in das Lumen 23 des Arbeitsinstrumentes 20 einzuspeisen und am distalen Ende 15 des Arbeits- kanals 12 den Schalldruck zu messen.
Bei einer weiteren, hier nicht gezeigten alternativen Aus führungs form der Erfindung werden die akustischen Eigenschaften des Arbeitskanals 12 mit eingesetztem Arbeits¬ instrument 20 bestimmt. Dies kann z.B. durch die Bestimmung der Schallimpedanz erfolgen, die sich bei der Anordnung nach Fig. 4 für den Wandler 33 bietet und die abhängig ist von der Eindringtiefe des Arbeitsinstrumentes 20 im Arbeitskanal 12. Eben¬ falls alternativ ist es möglich, eine akustische Resonanzfrequenz innerhalb des Arbeitska¬ nals 12 zu bestimmen, die wiederum von der Einsetztiefe des Arbeitsinstrumentes 20 abhängt. Es wird also die akustische Messung ähnlich der elektrischen Messung wie oben beschrieben durchgeführt, indem die Wechselwirkung innerhalb des Systems bestehend aus Arbeitsinstrument 20 und Arbeitskanal 12 bestimmt wird.
Bei der in Fig. 5 gezeigten alternativen Ausführungsform der Erfindung wird ein „stati¬ scher" Druck bestimmt, der von einer Druckquelle 34 erzeugt, in das proximale Ende 15 des Arbeitskanals 12 eingeleitet und über das Lumen 23 des Arbeitsinstrumentes 20 zu einem Druckaufnehmer 43 am proximalen Ende 22 des Arbeitsinstrumentes 20 zur Messung geführt wird. Das Messsignal wird dann wieder der Auswerteeinrichtung 40 zugeführt. Der Druck, der am Druckaufnehmer 43 ansteht, entspricht dem Gasdruck am distalen Ende 21 des Arbeitsinstrumentes 20, wobei dessen Lumen 23 durch ein Ventil 29 (siehe Fig. 1) abgesperrt ist, welches dieses Lumen 23 mit der Argon-Gasquelle 28 ver¬ bindet.
Alternativ ist es auch möglich, die Gasquelle 34 nicht mit dem Arbeitskanal 12 zu verbin- den, sondern durch eine gesonderte Leitung einer Körperhöhle Gas zuzuführen (z.B. zur Insufflation), in welche das Endoskop 10 eingeführt ist. Das Arbeitsinstrument 20 würde bei proximal geöffnetem Arbeitskanal 12 dann einen Maximaldruck messen, wenn das distale Ende 21 aus dem distalen Ende 14 des Arbeitskanals 12 austritt, da kein Druck¬ abfall (durch die Durchströmung des Arbeitskanals) mehr auftritt.
Besonders vorteilhaft ist die Verwendung der hier gezeigten Vorrichtung bzw. des hier gezeigten Verfahrens zu einer selbsttätigen Steuerung von peripheren Geräten des Ar¬ beitsinstrumentes 20, z.B. zur Steuerung des Ventils 29, über welches dem Lumen 23 des als APC-Sonde ausgebildeten Arbeitsinstrumentes 20 Edelgas zugeführt wird. Das Ventil 29 wird dann zur Öffnung durch ein gesondertes Signal freigegeben, wenn das distale Ende 21 des Arbeitsinstrumentes 20 aus dem Arbeitskanal 12 um einen hinreichend großen Betrag (siehe Fig. 2 und dazu gehörige Beschreibung) ausgetreten ist.
Aus der obigen Beschreibung ergibt sich das Grundprinzip der Erfindung dahin gehend, dass der Arbeitskanal 12 im Endoskop 10 zusammen mit dem eingesetzten Arbeits¬ instrument 20 als Gesamtsystem betrachtet wird, so dass die Wechselwirkungen zwischen den beiden Teilen zur Erzeugung eines Messsignals verwendbar sind.
Bezugszeichenliste
10 Endoskop
11 Optik
12 Arbeitskanal
13 Arbeitskanalwand
14 distales Ende
15 proximales Ende
20 Arbeitsinstrument
21 distales Ende
22 proximales Ende 23 Lumen
24 Elektrode
27 HF-Gerät
28 Gasquelle
29 Ventil
30 Generator
31 Messbrücke
32 Mikrofon
33 Lautsprecher
10 34 Druckwelle
40 Auswerteeinrichtung
41 Anz eigeeinrichtung
42 Lautsprecher
43 Druckaufnehmer
15

Claims

Patentansprüche
1. Vorrichtung zur Messung einer Position eines chirurgischen Arbeitsinstrumentes (20) relativ zu einem Arbeitskanal (12) eines Endoskopes (10), in den das Arbeits- instrument (20) eingeführt wird, umfassend einen Generator (30, 27) zur Erzeugung eines Messsignals; Einrichtungen (24, 33) zum Einkoppeln des Messsignals in den Arbeitskanal (12) und/oder das Arbeitsinstrument (20) und/oder das Endoskop (10); eine Messeinrichtung (31, 32; 40) zum Messen einer Positionswirkung, welche das Arbeitsinstrument (20) entsprechend seiner Position im Arbeitskanal (12) auf das Messsignal ausübt und zum Erzeugen eines Anzeigesignals in Abhängigkeit von der Wirkung.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Generator (30) als Messsignal ein Wechselstromsignal oder ein pulsförmiges Gleichstromsignal erzeugt und die Messeinrichtung (31, 40) einen komplexen Wi¬ derstand zwischen dem Arbeitsinstrument (20) und mindestens Teilen des Endo¬ skops (10) und/oder mindestens Abschnitten einer Wand (13) des Arbeitskanals (12) als Positionswirkung misst.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Mes seinrichtung (31) einen Schwingkreis oder einen PLL-Kreis umfasst, in welchem der komplexe Widerstand als variables Element zur Bestimmung einer
Resonanzfrequenz des Schwingkreises angeordnet ist.
4. Vorrichtung nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass das chirurgische Arbeitsinstrument (20) eine Sonde mit einer Elektrode (24) um¬ fasst und der komplexe Widerstand zwischen der Elektrode (24) und dem Endo¬ skop (10) und/oder der Wand (13) des Arbeitskanals (12) gemessen wird.
5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Messeinrichtung zur Messung eines Gleich- oder Wechseldruckes eines Gases im Arbeitskanal (12) und/oder in einem Lumen (23) des Arbeitsinstrumentes (20) ausgebildet ist und der Generator (27, 33) zur Erzeugung eines Gleich- oder
Wechseldruckes im Arbeitskanal (12) und/oder an einem distalen Ende (15) des Arbeitskanals (12) und/oder im Lumen (23) der Sonde als Messsignal ausgebildet ist.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Messeinrichtung zur Messung einer akustischen Resonanzfrequenz im Ar¬ beitskanal (12) ausgebildet ist.
7. Vorrichtung nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass die Messeinrichtung ein Mikrofon (32) oder dergleichen Messwandler umfasst, der an einem proximalen Ende (22) eines Lumens (23) des Arbeitsinstrumentes
(20) angebracht ist.
8. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Messeinrichtung einen Druckaufnehmer (43) umfasst, der vorzugsweise an ei¬ nem proximalen Ende (22) eines Lumens (23) des Arbeitsinstruments (20) ange- bracht ist und dass der Generator (34) zur Erzeugung eines Gasdruckes im Ar¬ beitskanal (12) und/oder in einer Körperhöhle ausgebildet ist, in welche das En¬ doskop (10) einführbar ist.
9. λ^orrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die M es seinrichtung einen Änderungsdetektor umfasst zur Feststellung einer Än¬ derung des Messsignals während einer Änderung der Position des Arbeitsinstru¬ mentes (20) im Arbeitskanal (12).
10. Verfahren zur Messung einer Position eines chirurgischen Arbeitsinstrumentes relativ zu einem Arbeitskanal eines Endoskops, in den das Arbeitsinstrument ein¬ geführt wird, umfassend die Schritte
Erzeugen eines Messsignals, Einkoppeln des Messsignals in den Arbeitskanal und/oder das Arbeitsinstrument und/oder das Endoskop;
Messen einer Positions-wirkung, welche das Arbeitsinstrument ent¬ sprechend seiner Position im Arbeitskanal auf das Messsignal ausübt und Erzeu¬ gen eines Anzeigesignals in Abhängigkeit von der Wirkung.
11. Verwendung einer Vorrichtung zur Messung einer Position eines chirurgischen Arbeitsinstrumentes relativ zu einem Arbeitskanal eines Endoskops, in den das Arbeitsinstrument eingeführt wird, und zur Erzeugung eines Anzeigesignals in Abhängigkeit von der Position, d a d u r c h g e k e n n z e i c h n e t, dass in Abhängigkeit vom Anzeigesignal eine Gaszuführungseinrichtung oder derglei¬ chen periphere Einrichtung für das Arbeitsinstrument gesteuert wird.
EP05788656A 2004-08-12 2005-08-05 Vorrichtung zur messung einer position eines chirurgischen arbeitsinstrumentes Withdrawn EP1781159A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004039202A DE102004039202B3 (de) 2004-08-12 2004-08-12 Vorrichtung zur Messung einer relativen Position eines chirurgischen Arbeitsinstruments sowie Verwendung hierfür
PCT/EP2005/008531 WO2006018163A2 (de) 2004-08-12 2005-08-05 Vorrichtung zur messung einer position eines chirurgischen arbeitsinstrumentes

Publications (1)

Publication Number Publication Date
EP1781159A2 true EP1781159A2 (de) 2007-05-09

Family

ID=35355343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05788656A Withdrawn EP1781159A2 (de) 2004-08-12 2005-08-05 Vorrichtung zur messung einer position eines chirurgischen arbeitsinstrumentes

Country Status (6)

Country Link
US (1) US20090209809A1 (de)
EP (1) EP1781159A2 (de)
JP (1) JP4897682B2 (de)
CN (1) CN101001564B (de)
DE (1) DE102004039202B3 (de)
WO (1) WO2006018163A2 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9182136B2 (en) 2006-12-11 2015-11-10 To Ip Holding Company Pty Ltd Heating and cooling system
JP4912993B2 (ja) * 2007-09-12 2012-04-11 オリンパスメディカルシステムズ株式会社 医療機器システム
RU2606453C2 (ru) * 2011-12-03 2017-01-10 Конинклейке Филипс Н.В. Автоматическое изменение глубины и корректирование ориентации при полуавтоматическом планировании пути
EP2790764A4 (de) 2011-12-15 2015-06-03 Univ Leland Stanford Junior Vorrichtungen und verfahren zur verhinderung von trachealer aspiration
EP2854927B1 (de) * 2012-05-31 2022-03-23 Baylis Medical Company Inc. Hochfrequenz-perforationsvorrichtung
WO2015069804A1 (en) 2013-11-05 2015-05-14 Ciel Medical, Inc. Devices and methods for airway measurement
WO2015190435A1 (ja) * 2014-06-10 2015-12-17 オリンパス株式会社 内視鏡システム、内視鏡装置及びプロセッサ
JP5932174B1 (ja) * 2014-09-05 2016-06-08 オリンパス株式会社 内視鏡システム
EP3861920A1 (de) 2020-02-05 2021-08-11 Erbe Elektromedizin GmbH Chirurgisches instrument mit einer positionserkennungseinrichtung
KR102284135B1 (ko) * 2021-06-01 2021-08-02 주식회사 메디인테크 내구성 확인 기능을 가지는 내시경

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3536271A1 (de) * 1985-10-11 1987-04-16 Dornier Medizintechnik Positioniervorrichtung fuer eine elektrode
US4802487A (en) * 1987-03-26 1989-02-07 Washington Research Foundation Endoscopically deliverable ultrasound imaging system
DE3712054A1 (de) * 1987-04-09 1988-10-27 Dieter Dr Fuierer Messtaster zur erfassung der taschentiefe von zahnhalteapparaten (parodontien)
US5207675A (en) * 1991-07-15 1993-05-04 Jerome Canady Surgical coagulation device
US5437290A (en) * 1991-09-06 1995-08-01 Board Of Trustees Of The Leland Stanford Jr. University System and method for monitoring intraluminal device position
DE4139029C2 (de) * 1991-11-27 1996-05-23 Erbe Elektromedizin Einrichtung zur Koagulation biologischer Gewebe
US5331967A (en) * 1993-02-05 1994-07-26 Playa De Los Vivos S.A. Tracheal intubation monitoring apparatus and method
JP3321266B2 (ja) * 1993-09-29 2002-09-03 株式会社モリタ製作所 生体凹部測深装置並びに同装置用の測深用探針及び校正用アダプタ
US5571147A (en) * 1993-11-02 1996-11-05 Sluijter; Menno E. Thermal denervation of an intervertebral disc for relief of back pain
EP0910299B1 (de) * 1996-02-15 2003-02-12 Biosense, Inc. Verfahren zum konfigurieren und zur benutzung einer sonde
CA2246287C (en) * 1996-02-15 2006-10-24 Biosense, Inc. Medical procedures and apparatus using intrabody probes
DE69725651T2 (de) * 1996-06-11 2004-07-29 Roke Manor Research Ltd., Romsey Katheterverfolgungssystem
CA2216455C (en) * 1996-10-04 2006-12-12 Jeffrey J. Blewett Apparatus for thermal treatment of tissue
US6102926A (en) * 1996-12-02 2000-08-15 Angiotrax, Inc. Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and methods of use
US5899915A (en) * 1996-12-02 1999-05-04 Angiotrax, Inc. Apparatus and method for intraoperatively performing surgery
DE19858375B4 (de) * 1997-07-24 2008-07-03 Erbe Elektromedizin Gmbh Einrichtung zur HF-Koagulation biologischer Gewebe mittels flexibler Endoskopie
AU735977B2 (en) * 1998-02-25 2001-07-19 Biosense, Inc. Guided deployment of stents
US6061588A (en) * 1998-09-29 2000-05-09 Advanced Cardiovascular Systems, Inc. Catheter apparatus for positioning a wire
DE19955346A1 (de) * 1999-11-17 2001-09-20 Hans Rudolf Schwind Endoskop-Abbildungsverfahren und Endoskop-System
CA2393829C (en) * 1999-12-21 2012-02-14 Sherwood Services Ag Apparatus for thermal treatment of an intervertebral disc
US6623423B2 (en) * 2000-02-29 2003-09-23 Olympus Optical Co., Ltd. Surgical operation system
US6817973B2 (en) * 2000-03-16 2004-11-16 Immersion Medical, Inc. Apparatus for controlling force for manipulation of medical instruments
US6705319B1 (en) * 2000-05-26 2004-03-16 Purdue Research Foundation Miniature acoustical guidance and monitoring system for tube or catheter placement
DE10058370A1 (de) * 2000-11-24 2002-06-06 Hannes Strasser Ultraschallsonde mit Positioniereinrichtung für Untersuchungs- und Operationsvorrichtungen
DE10134911A1 (de) * 2001-07-18 2003-02-06 Hannes Strasser Ultraschallsonde mit Positioniereinrichtung für Untersuchungs- und Operationsvorrichtungen
DE10109310A1 (de) * 2001-02-27 2002-09-05 Detlef Richter Vorrichtung und Verfahren zur dreidimensionalen Navigation von Biopsie-Sonden
CN1374137A (zh) * 2001-03-08 2002-10-16 潘卫江 一种气管导管位置检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006018163A3 *

Also Published As

Publication number Publication date
CN101001564A (zh) 2007-07-18
WO2006018163A3 (de) 2006-05-11
JP2008508969A (ja) 2008-03-27
WO2006018163A2 (de) 2006-02-23
DE102004039202B3 (de) 2006-01-19
CN101001564B (zh) 2010-09-15
WO2006018163A8 (de) 2006-07-27
US20090209809A1 (en) 2009-08-20
JP4897682B2 (ja) 2012-03-14

Similar Documents

Publication Publication Date Title
WO2006018163A2 (de) Vorrichtung zur messung einer position eines chirurgischen arbeitsinstrumentes
DE3700082C2 (de) Endoskop und System zur Überwachung und Sichtwiedergabe der Bewegung eines Endoskops
EP0598780B1 (de) Hochfrequenzchirurgiegenerator zum schneiden von geweben
EP2231046B1 (de) Plasma-applikatoren für plasmachirurgische verfahren
EP1595495B1 (de) Zahnärztliche Vorrichtung zum Untersuchen der optischen Eigenschaften von Zahngewebe
DE3323794A1 (de) Ohrenpruefgeraet
EP1596731A1 (de) Medizinische bohrvorrichtung
DE19623840A1 (de) Elektrochirurgischer Hochfrequenz-Generator
DE202009001333U1 (de) Ablationsleistungsindikator für elektrochirurgische Geräte
WO2006005534A1 (de) Apc-gerät
DE19524645C2 (de) Sicherheitsgasanlage für die HF-Chirurgie
EP3685781A1 (de) Vorrichtung zur gewebekoagulation
DE19854223A1 (de) Spitzenposition-Ermittlungsgerät
EP3017781B1 (de) Plasmachirurgisches gerät mit abstandshalter
EP3861920A1 (de) Chirurgisches instrument mit einer positionserkennungseinrichtung
DE4126607C2 (de) Anordnung zum Schneiden von biologischem Gewebe mit Hochfrequenzstrom
DE102014116221B4 (de) Überwachungssystem und Verfahren zur Überwachung
DE102016202456B4 (de) Chirurgievorrichtung mit Funktionsvorrichtung
EP0598778A1 (de) Hochfrequenzchirurgiegenerator zum geregelten schneiden und koagulieren
EP3964822B1 (de) Einrichtung und verfahren zur gewebeanalyse
WO1993002623A1 (de) Messverfahren und messvorrichtung für die schleimhautdicke eines kieferknochenkamms
DE4237761C2 (de) Einrichtung für die Hochfrequenzchirurgie
DE102004010769B4 (de) Hochfrequenz-Chirurgiegerät zum Schneiden und Koagulieren biologischer Gewebe
DE10003480A1 (de) Auslassdruckmessvorrichtung für ein Endoskop
DE102017114410A1 (de) Endoskop mit Näherungssensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070309

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VOIGTLAENDER, MATTHIAS

Inventor name: SCHAELLER, DANIEL

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20110912

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20120808