EP1776735B1 - Receiving antenna system comprising several active antennae - Google Patents

Receiving antenna system comprising several active antennae Download PDF

Info

Publication number
EP1776735B1
EP1776735B1 EP05772844A EP05772844A EP1776735B1 EP 1776735 B1 EP1776735 B1 EP 1776735B1 EP 05772844 A EP05772844 A EP 05772844A EP 05772844 A EP05772844 A EP 05772844A EP 1776735 B1 EP1776735 B1 EP 1776735B1
Authority
EP
European Patent Office
Prior art keywords
individual
antenna
impedance
transmission signals
antenna system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05772844A
Other languages
German (de)
French (fr)
Other versions
EP1776735A1 (en
Inventor
Herbert Steghafner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohde and Schwarz GmbH and Co KG
Original Assignee
Rohde and Schwarz GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohde and Schwarz GmbH and Co KG filed Critical Rohde and Schwarz GmbH and Co KG
Publication of EP1776735A1 publication Critical patent/EP1776735A1/en
Application granted granted Critical
Publication of EP1776735B1 publication Critical patent/EP1776735B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole

Definitions

  • Active receive antennas do not have interfaces with constant characteristic impedance between passive antenna structure and active electronic elements, for example impedance converters and amplifier elements. These interfaces must be in passive antennas with respect to their. Characteristic impedance in the useful frequency range are adapted to the characteristic impedance of a common line. The bandwidth of the entire receiving antenna system is thus undesirably reduced.
  • a receiving antenna system is formed of a plurality of active individual antennas whose respective electrical antenna height is adapted to the respective receiving frequency range of the individual antenna in order to avoid deformed antenna diagrams - "aufzipfelte aerial diagrams" - a broadband total receiving frequency range of the receiving antenna system composed of several partial receiving frequency ranges of the individual antennas can be constructed.
  • the shortening of the electrical antenna height of the individual antenna can be done electrically by impedance elements, for example, a parallel circuit of inductance and ohmic resistance, are arranged at certain heights of the individual antenna.
  • the inductor bypasses the resistor at low receive frequencies, while at high receive frequencies the resistor is effective.
  • a receiving antenna system consisting of several active individual antennas is in DE 34 37 727 A1 disclosed.
  • the individual antennas are positioned at greater distances - up to a few hundred meters from each other.
  • the mutual electromagnetic coupling of the single cladding1.nen worsen the directivity, the efficiency and the antenna gain of the receiving antenna system, are negligible in such an arrangement.
  • a much more compact realization of a receiving antenna system with spatial distances of the individual antennas in the order of a few centimeters is desired, then these mutual electromagnetic couplings of the individual antennas can no longer be neglected.
  • the invention is therefore based on the object to provide a receiving antenna system with a plurality of active small-spaced individual antennas, which has a high bandwidth.
  • the currents in the individual antennas are decoupled from the electromagnetic couplings as a function of the reception frequency by the individual parameters influencing the current of the receiving antenna system.
  • the individual antennas of the receiving antenna system according to the invention are therefore by optimizing the current-influencing parameters of the receiving antenna system - frequency-dependent electrical antenna height (impedance elements on the radiators), antenna diameter, antenna spacings and input impedance of the active for leastlektroniken - in view of Minimized electromagnetic couplings of the individual antennas designed.
  • a suitable influencing of the electromagnetic couplings between the individual antennas and an optimization of the efficiency of the overall arrangement is effected by appropriate dimensioning of the input impedances of the individual whoattylektroniken outside the useful frequency range of the respective individual antenna.
  • the receiving antenna system according to the invention in Fig. 1 and in Fig. 2 consists of several individual antennas 2 1 , 2 2 , ..., 2 N in the minimum configuration of two individual antennas 2 1 and 2 2 . These individual antennas 2 1 , 2 2 ..., 2 N ) are applied as conductor strips on a printed circuit board 3.
  • the antenna receiving system 1 has for the individual antenna with the largest mechanical antenna height, which receives the long-wave transmission signal, an extension 4.
  • the circuit board 3 with the individual antennas 2 1 , 2 2 , ..., 2 N is of a in Fig. 1 Surrounding plastic pipe, not shown, for protection.
  • Each individual antenna 2 1, 2 2, ..., 2 N respectively has a mechanical antenna height L 1, L 2, ..., L N and each having a dish diameter d 1, d 2, .., d N.
  • the individual antennas 2 1 , 2 2 ,..., 2 N each have a plurality of conductor track sections 1 ⁇ , v , which are connected to one another via impedance elements Z ⁇ , v .
  • the individual impedance elements Z ⁇ , v consist of a circuit which has a very low impedance value at low reception frequencies and, in the ideal case, a reception frequency converging to zero, the two adjacent conductor track sections 1 ⁇ , v and 1 ⁇ , v +1 shorts.
  • the circuit has a high real part of the impedance, which in the ideal case of an infinitely high reception frequency as a pure resistance, the current flow between the adjacent conductor track sections 1 ⁇ , v and 1 ⁇ , v +1 suppresses and thus the electrically effective antenna height of the single antenna 2 ⁇ reduced.
  • the electrically effective antenna height of the respective individual antenna 2 ⁇ on the respective receiving frequency range of the individual antenna 2 ⁇ to set optimal antenna height.
  • the individual impedance elements Z ⁇ , v for example, in a known manner by a parallel connection of an inductance L ⁇ , v and an ohmic resistance R ⁇ , v realized.
  • These impedance elements Z ⁇ , v can be distributed either discretely or continuously as correspondingly formed conductor tracks on the individual antennas 2 1 , 2 2 ,..., 2 N.
  • the respective individual antennas 2 ⁇ and 2 V are arranged on the printed circuit board 3 at a distance of D ⁇ , v , which is typically a few centimeters.
  • the respective base points 5 1 , 5 2 ,..., 5 N of the respective passive antenna regions 6 1 , 6 2 ,..., 6 N of the individual antennas 2 1 , 2 2 ,..., 2 N are with the active base point electronics 7 1 , 7 2 , ..., 7 N , for example, amplifier elements and / or impedance converter, electrically coupled.
  • the passive antenna regions 6 1 ; 6 2 , ..., 6 N can be used in all radiator structures, such as monopolies; Dipoles and so on.
  • the spentbylektroniken 7 1 , 7 2 , ..., 7 N is an impedance conversion, gain and coarse filtering - by the frequency response of each individual antenna - in the passive antenna areas 6 1 , 6 2 , ..., 6 N of the individual antennas 2 1 , 2 2 ..., 2 N respectively received transmission signals performed.
  • the received transmission signals are after their impedance conversion, amplification and filtering in the respectiveierearealektroniken 7 1 , 7 2 , ..., 7 N in the subsequent Phasenanpministerozokiee 8 1 , 8 2 , ..., 8 N in their phase, in particular in the overlapping filter the crossover of the individual adjacent sub-reception frequency ranges is made equal to guarantee an addition instead of a subtraction of the individual received transmission signals.
  • the phase matching in the individual Phasenanpministerozotechnike 8 1 , 8 2 , ..., 8 N is optimized so far that a maximum phase deviation of two received transmission signals of 90 ° may occur.
  • phase matching networks 8 1 , 8 2 ,..., 8 N After the phase equalization in the phase matching networks 8 1 , 8 2 ,..., 8 N , a band limitation and a summary of the individual transmission signals received in the individual antennas 2 1 , 2 2 ,..., 2 N takes place in the subsequent crossover 9 to form a single overall received signal , which has a total reception bandwidth which corresponds to the sum of all individual partial reception frequency ranges of the individual antennas 2 1 , 2 2 , ..., 2 N.
  • the optimization of the passive antenna regions 6 1 and 6 2 of the individual antennas 2 1 and 2 2 in terms of minimum electromagnetic couplings is achieved by optimal design of the antenna diameter. d 1 and d 2 , the distance D 1,2 of the two individual antennas 2 1 and 2 2 , the positions of the individual impedance elements Z ⁇ , v to each other within the respective individual antennas 2 1 and 2 2 and between the two individual antennas 2 1 and 2 second ,
  • the conductor track sections l ⁇ , v have a progressively smaller length at a greater distance from the base points 5 1 and 5 2 .
  • the length L 1 of the individual antenna 2 1 is designed to be shorter for the reception of higher-frequency transmission signals than the length L 2 of the individual antenna 2 2 for the reception of low-frequency transmission signals.
  • the antenna diameter d 1 of the individual antenna 2 1 for the reception of higher-frequency transmission signals according to the invention designed to be significantly larger than the antenna diameter d 2 of the individual antenna 2 2 for the reception of relatively low-frequency transmission signals.
  • Fig. 4 is the minimum configuration of the individual antennas to illustrate the electrical optimization Fig. 3 with the individual antenna 2 1 for receiving high-frequency transmission signals and the individual antenna 2 2 for receiving relatively low-frequency transmission signals shown.
  • the input impedance of theticiananylektronik 7 1 of the single antenna 2 1 which has a lower antenna height for receiving in the upper frequency range, according to the invention has a lower value at low reception frequencies.
  • the input impedance 10 1 of the base-point electronics 7 1 used is a parallel circuit of inductance L B1 and ohmic resistance R E1 .
  • the Input impedance 10 the base electronics 7, an input impedance matched to the passive antenna structure.
  • the input impedance 10 2 of the base-point electronics 7 2 has a high-impedance capacitive input impedance over the entire operating frequency range.
  • the input impedance 10 2 consists of a parallel connection of a high-impedance resistor R E2 and a capacitor C E2 with a very small capacitance.
  • all the impedance elements Z 1, v in the individual antenna 2 1 and all impedance elements Z 2, v in the individual antenna 2 2 perform not only the function of the frequency-dependent electrical shortening of the respective antenna height, but by changing their impedance Z 1, v on the individual antenna 2 1 the current I 1 in the single antenna 2 1 and changing their impedance Z 2, v on the single antenna 2 2 the current I 2 on the single antenna 2 2 selectively influence frequency dependent and thus the extent of coupling between the two individual antennas Minimize 2 1 and 2 2 .
  • the input impedances 10 1 , 10 2 ,..., 10 N of the base-point electronics 7 1 , 7 2 ,..., 7 N are in addition to the above-mentioned interpretations in addition to the Base point impedance of the respective passive antenna areas 6 1 , 6 2 , ..., 6 N of the individual antennas 2 1 , 2 2 , ..., 2 N preferably mismatched outside the Nutzfrequens Kunststoffes the individual antenna. In this way, there are targeted reflections at the inputs of potentiallylektroniken 7 1 , 7 2 , ..., 7 N , which in total in minimized electromagnetic couplings between the individual antennas 2 1 , 2 2 , ..., 2 N impact.
  • the invention is not limited to the illustrated embodiment.
  • other antenna geometries and other circuits of the impedance elements and other input circuits of the foot-point electronics are covered by the invention.

Abstract

The invention relates to a receiving antenna system (1) with a higher bandwidth. Said system consists of several active vertical antennae (21, 22, …, 2N), which have an electrically active antenna height that is adapted to the respective receiving frequency range. The invention is characterised in that the mutual electromagnetic coupling between the individual antennae (21, 22, …, 2N), which are positioned at a short distance from one another, is minimised.

Description

Aktive Empfangsantennen besitzen zwischen passiver Antennensti-uktur und aktiven Elektronikelementen, beispielsweise Impedanzwandler und Verstärkerelemente, keine Schnittstellen mit konstantem Wellenwiderstand. Diese Schnittstellen müssen bei passiven Antennen bezüglich ihres. Wellenwiderstandes im Nutzfrequenzbereich an den Wellenwiderstand einer gewöhnlichen Leitung angepaßt werden. Die Bandbreite des gesamten Empfangsantennensystems wird somit unerwünscht vermindert.Active receive antennas do not have interfaces with constant characteristic impedance between passive antenna structure and active electronic elements, for example impedance converters and amplifier elements. These interfaces must be in passive antennas with respect to their. Characteristic impedance in the useful frequency range are adapted to the characteristic impedance of a common line. The bandwidth of the entire receiving antenna system is thus undesirably reduced.

Wird ein Empfangsantennensystem aus mehreren aktiven Einzelantennen gebildet, deren jeweilige elektrische Antennenhöhe zur Vermeidung von deformierten Antennendiagrammen - "aufgezipfelte Antennendiagramme" - an den jeweiligen Empfangsfrequenzbereich der Einzelantenne angepaßt ist, so kann ein aus mehreren Teilempfangsfrequenzbereichen der Einzelantennen zusammengesetzter breitbandiger Gesamtempfangsfrequenzbereich des Empfangsantennensystems konstruiert werden. Die Verkürzung der elektrischen Antennenhöhe der Einzelantenne kann elektrisch erfolgen, indem in bestimmten Höhen der Einzelantenne Impedanzelemente, beispielsweise eine Parallelschaltung aus Induktivität und ohmschem Widerstand, angeordnet sind. Die Induktivität überbrückt bei niedrigen Empfangsfrequenzen den Widerstand, während bei hohen Empfangsfrequenzen der Widerstand wirksam ist. Durch exakte Positionierung der Impedanzelemente und empfangsfrequenzabhängige Parametrierung der Impedanzelemente kann somit die elektrische Antennenhöhe auf den jeweiligen Empfangsfrequenzbereich der Einzelantenne eingestellt werden.If a receiving antenna system is formed of a plurality of active individual antennas whose respective electrical antenna height is adapted to the respective receiving frequency range of the individual antenna in order to avoid deformed antenna diagrams - "aufzipfelte aerial diagrams" - a broadband total receiving frequency range of the receiving antenna system composed of several partial receiving frequency ranges of the individual antennas can be constructed. The shortening of the electrical antenna height of the individual antenna can be done electrically by impedance elements, for example, a parallel circuit of inductance and ohmic resistance, are arranged at certain heights of the individual antenna. The inductor bypasses the resistor at low receive frequencies, while at high receive frequencies the resistor is effective. By exact positioning of the impedance elements and receiving frequency-dependent parameterization of the impedance elements, the electric antenna height can thus be set to the respective receiving frequency range of the individual antenna.

Die Dokumente EP 1 445 832 A2 und US 5 600 335 A beschreiben relevanten Stand der TechnikThe documents EP 1 445 832 A2 and US 5,600,335 A describe relevant prior art

Ein Empfangsantennensystem bestehend aus mehreren aktiven Einzelantennen ist in der DE 34 37 727 A1 offenbart. Bei dem offenbarten Empfangsantennensystem sind die einzelnen Antennen in größeren Abständen - bis zu einigen 100 Metern zueinander positioniert. Die gegenseitigen elektromagnetischen Verkoppelungen der Einzelantel1.nen, die den Richtfaktor, den Wirkungsgrad und den Antennengewinn des Empfangsantennensystems verschlechtern, sind bei einer derartigen Anordnung zu vernachlässigen. Wird dagegen eine wesentlich kompaktere Realisierung eines Empfangsantennensystems mit räumlichen Abständen der Einzelantennen in der Größenordnung von einigen Zentimetern angestrebt, so sind diese gegenseitigen elektromagnetischen Verkopplungen der Einzelantennen nicht mehr zu vernachlässigen. Diese führen nachteilig zu deformierten Antennendiagrammen der Einzelantennen, zu gegenseitiger negativer Beeinflussung der Fußpunktimpedanzen und zu unsymmetrischen Belastungen der Einzelantennen, was sich insgesamt in verschlechterten Empfangsqualitäten des Empfangsantennensystems auswirkt.A receiving antenna system consisting of several active individual antennas is in DE 34 37 727 A1 disclosed. at According to the disclosed receiving antenna system, the individual antennas are positioned at greater distances - up to a few hundred meters from each other. The mutual electromagnetic coupling of the single cladding1.nen, worsen the directivity, the efficiency and the antenna gain of the receiving antenna system, are negligible in such an arrangement. If, on the other hand, a much more compact realization of a receiving antenna system with spatial distances of the individual antennas in the order of a few centimeters is desired, then these mutual electromagnetic couplings of the individual antennas can no longer be neglected. These disadvantageously lead to deformed antenna diagrams of the individual antennas, to mutual negative influence on the Fußpunktimpedanzen and unbalanced loads of the individual antennas, which in total affects in deteriorated reception qualities of the receiving antenna system.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Empfangsantennensystem mit mehreren aktiven gering beabstandeten Einzelantennen zu schaffen, das eine hohe Bandbreite aufweist.The invention is therefore based on the object to provide a receiving antenna system with a plurality of active small-spaced individual antennas, which has a high bandwidth.

Die Aufgabe wird durch ein Empfangsantennensystem nach Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.The object is achieved by a receiving antenna system according to claim 1. Advantageous embodiments of the invention are specified in the dependent claims.

Zur Unterdrückung der oben genannten nachteiligen Effekte sind die Ströme in den Einzelantennen durch die einzelnen strombeeinflußenden Parameter des Empfangsantennensystems von den elektromagnetischen Verkopplungen empfangsfrequenzabhängig entkoppelt. Die Einzelantennen des erfindungsgemäßen Empfangsantennensystems werden deshalb durch Optimierung der strombeeinflussenden Parameter des Empfangsantennensystems - frequenzabhängige elektrische Antennenhöhe (Impedanzelemente auf den Strahlern), Antennendurchmesser, Antennenabstände und Eingangsimpedanz der aktiven Fußpunktelektroniken - im Hinblick auf minimierte elektromagnetische Verkoppelungen der Einzelantennen ausgelegt.To suppress the above-mentioned disadvantageous effects, the currents in the individual antennas are decoupled from the electromagnetic couplings as a function of the reception frequency by the individual parameters influencing the current of the receiving antenna system. The individual antennas of the receiving antenna system according to the invention are therefore by optimizing the current-influencing parameters of the receiving antenna system - frequency-dependent electrical antenna height (impedance elements on the radiators), antenna diameter, antenna spacings and input impedance of the active Fußpunktelektroniken - in view of Minimized electromagnetic couplings of the individual antennas designed.

Hierbei wird insbesondere auf die Anordnung von Impedanzelementen innerhalb einer Einzelantenne wie auch die Anordnung der Impedanselemente zwischen den Einzelantennen, welche empfangsfrequensabhängig die jeweilige elektrisch wirksame Antennenhöhe der Einzelantenne festlegen, ein besonderes Augenmerk gelegt.Here, particular attention is paid to the arrangement of impedance elements within a single antenna, as well as the arrangement of the impedance elements between the individual antennas, which determine the respective electrically effective antenna height of the individual antenna depending on reception frequency.

zusätzlich wird durch geeignete Dimensionierung der Eingangsimpedanzen der einzelnen Fußpunktelektroniken auch außerhalb des Nutzfrequenzbereiches der jeweiligen Einzelantenne eine gezielte Beeinflussung der elektromagnetischen Verkopplungen zwischen den Einzelantennen und eine Optimierung des Wirkungsgrades der Gesamtanordnung bewirkt.In addition, a suitable influencing of the electromagnetic couplings between the individual antennas and an optimization of the efficiency of the overall arrangement is effected by appropriate dimensioning of the input impedances of the individual Fußpunktelektroniken outside the useful frequency range of the respective individual antenna.

Die auf diese Weise optimierten aktiven Einzelantennen werden über Phasenanpaßnetzwerke zur Phasenangleichung der in den Einzelantennen empfangenen Übertragungssignale mit einer Frequenzweiche zur Zusammenführung der einzelnen phasenangepaßten Empfangssignale verbunden.The optimized in this way active individual antennas are connected via Phasenanpaßnetzwerke for phase matching of the received in the individual antennas transmission signals with a crossover for merging the individual phase-matched received signals.

Die Ausführungsform des Empfangsantennensystems mit mehreren aktiven Einzelantennen wird nachfolgend unter Bezugnahme auf die Zeichnung näher erläutert, In der Zeichnung zeigen:

Fig. 1
eine dreidimensionale Darstellung des erfindungsgemäßen Empfangsantennensystems,
Fig. 2
eine prinzipielle Anordnung des erfindungsgemäßen Empfangsantennensystems;
Fig. 3
eine Draufsicht auf die Geometrie des passiven Antennenbereichs des erfindungsgemäßen Empfangsantennensystems und
Fig. 4
ein elektrisches Blockschaltbild des erfindungsgemäßen Empfangsantennensystems.
The embodiment of the receiving antenna system with a plurality of active individual antennas will be explained in more detail with reference to the drawing. In the drawing:
Fig. 1
a three-dimensional representation of the receiving antenna system according to the invention,
Fig. 2
a basic arrangement of the receiving antenna system according to the invention;
Fig. 3
a plan view of the geometry of the passive antenna region of the receiving antenna system according to the invention and
Fig. 4
an electrical block diagram of the receiving antenna system according to the invention.

Das erfindungsgemäße Empfangsantennensystem in Fig. 1 und in Fig. 2 besteht aus mehreren Einzelantennen 21,22,..., 2N in der Minimalkonfiguration aus zwei Einzelantennen 21 und 22. Diese Einzelantennen 21,22 ... , 2N) sind als Leiterstreifen auf einer Leiterplatte 3 aufgebracht. Das Antennenempfangsystem 1 besitzt für die Einzelantenne mit der größten mechanischen Antennenhöhe, die das langwellige Übertragungssignal empfängt, eine Verlängerung 4. Die Leiterplatte 3 mit den Einzelantennen 21,22,...,2N ist von einem in Fig. 1 nicht dargestellten Kunststoffrohr zum Schutz umgeben.The receiving antenna system according to the invention in Fig. 1 and in Fig. 2 consists of several individual antennas 2 1 , 2 2 , ..., 2 N in the minimum configuration of two individual antennas 2 1 and 2 2 . These individual antennas 2 1 , 2 2 ..., 2 N ) are applied as conductor strips on a printed circuit board 3. The antenna receiving system 1 has for the individual antenna with the largest mechanical antenna height, which receives the long-wave transmission signal, an extension 4. The circuit board 3 with the individual antennas 2 1 , 2 2 , ..., 2 N is of a in Fig. 1 Surrounding plastic pipe, not shown, for protection.

Jede Einzelantenne 21, 22, ..., 2N besitzt jeweils eine mechanische Antennenhöhe L1, L2,...,LN und jeweils einen Antennendurchmesser d1, d2,..,dN. Die Einzelantennen 21,22,...,2N weisen jeweils mehrere Leiterbahnabschnitte lµ,v auf, die über Impedanzelemente Zµ,v miteinander verbunden sind. Die Einzelantenne 21 in Fig. 2 weist beispielsweise die Leiterbahnabschnitte l1,1, l1,2, ..., l1,m-1, l1,m und l1,m+1 und die intermittierenden Impedanzelemente Z1,1' ..., Z1,m-1 und Z1,m auf, während die Einzelantenne 2N aus den Leiterbahnabschnitten lN,1, lN,2, ... , lN,n-2, lN,n-1, lN,n und lN,n+1 und den intermittierenden Impedanzelementen ZN,1,..., ZN,n-2, ZN,n-1 und ZN,n besteht.Each individual antenna 2 1, 2 2, ..., 2 N respectively has a mechanical antenna height L 1, L 2, ..., L N and each having a dish diameter d 1, d 2, .., d N. The individual antennas 2 1 , 2 2 ,..., 2 N each have a plurality of conductor track sections 1 μ, v , which are connected to one another via impedance elements Z μ, v . The single antenna 2 1 in Fig. 2 For example, the track sections l 1,1 , l 1,2 , ..., l 1, m-1 , l 1, m and l 1, m + 1 and the intermittent impedance elements Z 1,1 ' ..., Z 1, m-1 and Z 1, m on, while the individual antenna 2 N from the conductor track sections l N, 1 , l N, 2 , ..., l N, n-2 , l N, n-1 , l N , n and l N, n + 1 and the intermittent impedance elements Z N, 1 , ..., Z N, n-2 , Z N, n-1 and Z N, n .

Die einzelnen Impedanzelemente Zµ,v bestehen aus einer Schaltung, die bei niedrigen Empfangsfrequenzen einen sehr niedrigen Impedanzwert aufweist und im Idealfall einer gegen Null konvergierenden Empfangsfrequenz die beiden angrenzenden Leiterbahnabschnitte 1µ,v und 1µ,v+1 kurzschließt. Bei hohen Empfangsfrequenzen weist die Schaltung dagegen einen hohen Realteil der Impedanz auf, der im Idealfall einer unendlich hohen Empfangsfrequenz als reiner Widerstand den Stromfluß zwischen den angrenzenden Leiterbahnabschnitten 1µ,v und 1µ,v+1 unterdrückt und somit die elektrisch wirksame Antennenhöhe der Einzelantenne 2µ verkleinert. Auf diese Weise, ist es möglich, durch entsprechende Parametrierung aller zur jeweiligen Einzelantenne 2µ gehörigen Impedanzelemente Zµ,v und deren Positionierung auf der Einzelantenne 2µ die elektrisch wirksame Antennenhöhe der jeweiligen Einzelantenne 2µ auf die für den jeweiligen Empfangsfrequenzbereich der Einzelantenne 2µ optimale Antennenhöhe einzustellen. Zur Realisierung einer derartigen frequenzabhängigen Impedanzcharakteristik werden die einzelnen Impedanzelemente Zµ,v beispielsweise auf bekannte Art durch eine Parallelschaltung einer Induktivität Lµ,v und eines ohmschen Widerstandes Rµ,v verwirklicht. Diese Impedanzelemente Zµ,v können entweder diskret oder kontinuierlich als entsprechend ausgebildete Leiterbahnen auf den Einzelantennen 21, 22, ... , 2N verteilt sein.The individual impedance elements Z μ, v consist of a circuit which has a very low impedance value at low reception frequencies and, in the ideal case, a reception frequency converging to zero, the two adjacent conductor track sections 1 μ, v and 1 μ, v +1 shorts. At high reception frequencies, however, the circuit has a high real part of the impedance, which in the ideal case of an infinitely high reception frequency as a pure resistance, the current flow between the adjacent conductor track sections 1 μ, v and 1 μ, v +1 suppresses and thus the electrically effective antenna height of the single antenna 2μ reduced. In this way, it is possible, by appropriate parameterization of all the respective individual antenna 2 μ associated impedance elements Z μ, v and their positioning on the single antenna 2 μ, the electrically effective antenna height of the respective individual antenna 2 μ on the respective receiving frequency range of the individual antenna 2 μ to set optimal antenna height. To realize such a frequency-dependent impedance characteristic, the individual impedance elements Z μ, v, for example, in a known manner by a parallel connection of an inductance L μ, v and an ohmic resistance R μ, v realized. These impedance elements Z μ, v can be distributed either discretely or continuously as correspondingly formed conductor tracks on the individual antennas 2 1 , 2 2 ,..., 2 N.

Die jeweiligen Einzelantennen 2µ und 2v sind auf der Leiterplatte 3 in einem Abstand von Dµ,v angeordnet, der typischerweise einige Zentimeter beträgt. Die jeweiligen Fußpunkte 51, 52, ... , 5N der jeweiligen passiven Antennenbereiche 61,62,..., 6N der Einzelantennen 21, 22,..., 2N sind mit den aktiven Fußpunktelektroniken 71,72,...,7N, beispielsweise Verstärkerelemente und/oder Impedanzwandler, elektrisch gekoppelt. Die passiven Antennenbereiche 61; 62, ... ,6N können in allen Strahlerstrukturen, wie beispielsweise Monopole; Dipole usw., ausgeführt sein.The respective individual antennas 2 μ and 2 V are arranged on the printed circuit board 3 at a distance of D μ, v , which is typically a few centimeters. The respective base points 5 1 , 5 2 ,..., 5 N of the respective passive antenna regions 6 1 , 6 2 ,..., 6 N of the individual antennas 2 1 , 2 2 ,..., 2 N are with the active base point electronics 7 1 , 7 2 , ..., 7 N , for example, amplifier elements and / or impedance converter, electrically coupled. The passive antenna regions 6 1 ; 6 2 , ..., 6 N can be used in all radiator structures, such as monopolies; Dipoles and so on.

In den Fußpunktelektroniken 71,72,...,7N wird eine Impedanzwandlung, Verstärkung und grobe Filterung - durch den Frequenzgang der jeweiligen Einzelantenne - der in den passiven Antennenbereichen 61,62,...,6N der Einzelantennen 21,22...,2N jeweils empfangenen Übertragungssignale durchgeführt.In the Fußpunktelektroniken 7 1 , 7 2 , ..., 7 N is an impedance conversion, gain and coarse filtering - by the frequency response of each individual antenna - in the passive antenna areas 6 1 , 6 2 , ..., 6 N of the individual antennas 2 1 , 2 2 ..., 2 N respectively received transmission signals performed.

Die empfangenen Übertragungssignale werden nach ihrer Impedanzwandlung, Verstärkung und Filterung in den jeweiligen Fußpunktelektroniken 71,72,...,7N in den nachfolgenden Phasenanpaßnetzwerken 81,82,...,8N in ihrer Phase insbesondere im Überschneidungsbereich der Filter der Frequenzweiche der einzelnen angrenzenden bzw überschneidenden Teilempfangsfreguenzbereiche angeglichen, um eine Addition anstelle einer Subtraktion der einzelnen empfangenen Übertragungssignale zu garantieren. Die Phasenangleichung in den einzelnen Phasenanpaßnetzwerken 81, 82, ... , 8N wird soweit optimiert, daß eine maximale Phasenabweichung zweier empfangener Übertragungssignale von 90° auftreten kann.The received transmission signals are after their impedance conversion, amplification and filtering in the respective Fußpunktelektroniken 7 1 , 7 2 , ..., 7 N in the subsequent Phasenanpaßnetzwerke 8 1 , 8 2 , ..., 8 N in their phase, in particular in the overlapping filter the crossover of the individual adjacent sub-reception frequency ranges is made equal to guarantee an addition instead of a subtraction of the individual received transmission signals. The phase matching in the individual Phasenanpaßnetzwerke 8 1 , 8 2 , ..., 8 N is optimized so far that a maximum phase deviation of two received transmission signals of 90 ° may occur.

Nach der Phasenangleichung in den Phasenanpaßnetzwerken 81, 82, ... ,8N erfolgt in der anschließenden Frequenzweiche 9 eine Bandbegrenzung und Zusammenfassung der einzelnen in den Einzelantennen 21,22,..,2N empfangenen Übertragungssignale zu einem einzigen Gesamtempfangssignal, das eine Gesamtempfangsbandbreite aufweist, das der Summe aller einzelnen Teilempfangsfrequenzbereiche der Einzelantennen 21, 22, ... , 2N entspricht.After the phase equalization in the phase matching networks 8 1 , 8 2 ,..., 8 N , a band limitation and a summary of the individual transmission signals received in the individual antennas 2 1 , 2 2 ,..., 2 N takes place in the subsequent crossover 9 to form a single overall received signal , which has a total reception bandwidth which corresponds to the sum of all individual partial reception frequency ranges of the individual antennas 2 1 , 2 2 , ..., 2 N.

In Fig. 3 ist zur Veranschaulichung der geometrischen Antennen-Optimierung ein Abschnitt der beiden auf einer Leiterplatte 3 bedruckten passiven Antennenbereiche 61 und 62 der Einzelantennen 21 und 22 der Minimalkonfiguration eines Antennenempfangsystems 1 für jeweils einen unteren und oberen Teilempfangsfrequenzbereich dargestellt. Sie bestehen jeweils aus den Leiterbahnabschnitten 11,1,11,2 und 11,3 sowie 12,2,12,2,12,3,12,4,12,5,12,6,12,7,12,8 usw. und den intermittierenden Impedanzelementen Z1,1 und Z1,2 sowie Z2.1,Z2.2,Z2.3,Z2.4,Z2.5,Z2.6,Z2.7 usw., welche in Fig. 3 nicht in ihrer konkreten Beschaltung, sondern als Freiraum zu deren Plazierung dargestellt sind. Die Optimierung der passiven Antennenbereiche 61 und 62 der Einzelantennen 21 und 22 im Hinblick auf minimale elektromagnetische Kopplungen erfolgt durch optimale Gestaltung der Antennendurchmesser. d1 und d2, des Abstands D1,2 der beiden Einzelantennen 21 und 22, der Positionen der einzelnen Impedanzelemente Zµ,v zueinander innerhalb der jeweiligen Einzelantennen 21 und 22 und zwischen den beiden Einzelantennen 21 und 22.In Fig. 3 For illustration of the geometrical antenna optimization, a section of the two printed on a printed circuit board 3 passive antenna sections 6 1 and 6 2 of the individual antennas 2 1 and 2 2 of the minimum configuration of an antenna receiving system 1 for each of a lower and upper part receiving frequency range shown. They each consist of the strip conductor sections 1, 1 , 1, 1, 2, and 1, 3, and 1, 2 , 2 , 1, 2 , 2 , 1, 2 , 3 , 1, 2 , 4 , 1, 2.5 , 1, 2.6 , 1 2,7 , 1 2,8 etc. and the intermittent impedance elements Z 1,1 and Z 1,2 as well as Z 2.1 , Z 2.2 , Z 2.3 , Z 2.4 , Z 2.5 , Z 2.6 , Z 2.7 , etc., which in Fig. 3 not in their concrete wiring, but as a free space for their placement are shown. The optimization of the passive antenna regions 6 1 and 6 2 of the individual antennas 2 1 and 2 2 in terms of minimum electromagnetic couplings is achieved by optimal design of the antenna diameter. d 1 and d 2 , the distance D 1,2 of the two individual antennas 2 1 and 2 2 , the positions of the individual impedance elements Z μ, v to each other within the respective individual antennas 2 1 and 2 2 and between the two individual antennas 2 1 and 2 second ,

Aus Fig. 3 ist zu erkennen, daß erfindungsgemäß die Leiterbahnabschnitte lµ,v mit größerem Abstand zu den Fußpunkten 51 und 52 eine zunehmend kleinere Länge aufweisen. Außerdem ist ersichtlich, daß die Länge L1 der Einzelantenne 21 für den Empfang höherfrequenter Übertragungssignale kürzer ausgelegt ist als die Länge L2 der Einzelantenne 22 für den Empfang niederfrequenter Übertragungssignale. Schließlich ist der Antennendurchmesser d1 der Einzelantenne 21 für den Empfang von höherfrequenten Übertragungssignalen erfindungsgemäß deutlich größer ausgelegt als der Antennendurchmesser d2 der Einzelantenne 22 für den Empfang von relativ niederfrequenten Übertragungssignalen.Out Fig. 3 It can be seen that according to the invention, the conductor track sections l μ, v have a progressively smaller length at a greater distance from the base points 5 1 and 5 2 . It can also be seen that the length L 1 of the individual antenna 2 1 is designed to be shorter for the reception of higher-frequency transmission signals than the length L 2 of the individual antenna 2 2 for the reception of low-frequency transmission signals. Finally, the antenna diameter d 1 of the individual antenna 2 1 for the reception of higher-frequency transmission signals according to the invention designed to be significantly larger than the antenna diameter d 2 of the individual antenna 2 2 for the reception of relatively low-frequency transmission signals.

In Fig. 4 ist zur Veranschaulichung der elektrischen Optimierung die Minimalkonfiguration der Einzelantennen aus Fig. 3 mit der Einzelantenne 21 zum Empfang von hochfrequenten Übertragungssignalen und der Einzelantenne 22 zum Empfang von relativ niederfrequenten Übertragungssignalen dargestellt. Die Eingangsimpedanz der Fußpunktelektronik 71 der Einzelantenne 21, welche eine geringere Antennenhöhe zum Empfang im oberen Frequenzbereich aufweist, besitzt erfindungsgemäß einen geringeren Wert bei niedrigen Empfangsfrequenzen. Auf diese Weise werden niederfrequente Ströme in der Einzelantenne 21 niederohmig am Eingang der Fußpunktelektronik 71 gegen Masse abgeführt, so daß die von der Einzelantenne 22 in die Einzelantenne 21 eingekoppelten niederfrequenten Ströme nicht unnötig in der Eingangsimpedanz 101 der Fußpunktelektronik 71 Verluste erzeugen und den Wirkungsgrad der Antenne 22 verschlechtern und führen somit zu keiner negativen Beeinflußung der Einzelantenne 22 durch elektromagnetische Strahlungskopplung mit der benachbarten Einzelantenne 21. Zur Realisierung einer kleinen Eingangsimpedanz der Fußpunktelektronik 71 bei niederfrequenten Empfangssignalen wird als Eingangsimpedanz 101 der Fußpunktelektronik 71 eine Parallelschaltung aus Induktivität LB1 und ohmscher Widerstand RE1 verwendet. Bei höherfrequenten Empfangssignalen weist die Eingangsimpedanz 10, der Fußpunktelektronik 7, eine der passiven Antennenstruktur angepaßte Eingangsimpedanz auf.In Fig. 4 is the minimum configuration of the individual antennas to illustrate the electrical optimization Fig. 3 with the individual antenna 2 1 for receiving high-frequency transmission signals and the individual antenna 2 2 for receiving relatively low-frequency transmission signals shown. The input impedance of the Fußpunktelektronik 7 1 of the single antenna 2 1 , which has a lower antenna height for receiving in the upper frequency range, according to the invention has a lower value at low reception frequencies. In this way, low-frequency currents in the single antenna 2 1 low impedance at the input of Fußpunktelektronik 7 1 dissipated to ground, so that the coupled from the single antenna 2 2 in the single antenna 2 1 low-frequency currents not unnecessarily in the input impedance 10 1 of Fußpunktelektronik 7 1 losses generate and degrade the efficiency of the antenna 2 2 and thus do not lead to adverse effect on the individual antenna 2 2 by electromagnetic radiation coupling with the adjacent individual antenna 2. 1 In order to realize a small input impedance of the base electronics 7 1 with low-frequency received signals, the input impedance 10 1 of the base-point electronics 7 1 used is a parallel circuit of inductance L B1 and ohmic resistance R E1 . For higher frequency reception signals, the Input impedance 10, the base electronics 7, an input impedance matched to the passive antenna structure.

Aus Fig. 4 geht des weiteren hervor, daß die Induktivitäten L2,v in den einzelnen Impedanzelementen Z2,v bei Empfang höherfrequenter Übertragungssignale hochohmig werden und in Kombination mit den Widerständen auf den einzelnen Leiterbahnabschnitten 12,v der Einzelantenne 22 ähnlich wie ein ferritisierter Leiter wirken. Höherfrequente Ströme werden folglich auf der Einzelantenne 22 unterdrückt: Somit erfolgt keine Verkopplung mit der benachbarten Einzelantenne 21. Bei niederfrequenten Empfangssignalen sind die Induktivitäten L2,v der Impedanzelemente Z2,v der Einzelantenne 22 niederohmig und führen zu keiner Unterdrückung der Ströme auf den einzelnen Leiterbahnabschnitten I2,v der Einzelantenne 22. Die Eingangsimpedanz 102 der Fußpunktelektronik 72 weist im gesamten Betriebsfrequenzbereich eine hochohmige kapazitive Eingangsimpedanz auf. Die Eingangsimpedanz 102 besteht aus einer Parallelschaltung eines hochohmigen Widerstands RE2 und eines Kondensators CE2 mit sehr kleiner Kapazität.Out Fig. 4 goes further, it is apparent that the inductors L 2, v in the individual impedance elements Z 2, v on receiving higher-frequency transmission signals are high impedance and in combination with the resistors on the individual conductor track sections 1 2, v of the single antenna 2 2 act similar to a ferritized conductor , Higher frequency currents are thus suppressed on the individual antenna 2 2 : Thus, no coupling takes place with the adjacent individual antenna 2 1 . In the case of low-frequency received signals, the inductances L 2, v of the impedance elements Z 2, v of the individual antenna 2 2 are low-resistance and do not lead to any suppression of the currents on the individual conductor track sections I 2, v of the individual antenna 2 2 . The input impedance 10 2 of the base-point electronics 7 2 has a high-impedance capacitive input impedance over the entire operating frequency range. The input impedance 10 2 consists of a parallel connection of a high-impedance resistor R E2 and a capacitor C E2 with a very small capacitance.

Generell ist festzustellen, daß alle Impedanzelemente Z1,v in der Einzelantenne 21 und alle Impedanzelemente Z2,v in der Einzelantenne 22 nicht nur die Funktion der frequenzabhängigen elektrischen Verkürzung der jeweiligen Antennenhöhe ausführen, sondern über Veränderung ihres Scheinwiderstands Z1,v auf der Einzelantenne 21 den Strom I1 in der Einzelantenne 21 und über Veränderung ihres Scheinwiderstands Z2,v auf der Einzelantenne 22 den Strom I2 auf der Einzelantenne 22 gezielt frequenzabhängig beeinflußen und somit auch das Ausmaß der Verkopplung zwischen beiden Einzelantennen 21 und 22 gezielt minimieren.In general, it should be noted that all the impedance elements Z 1, v in the individual antenna 2 1 and all impedance elements Z 2, v in the individual antenna 2 2 perform not only the function of the frequency-dependent electrical shortening of the respective antenna height, but by changing their impedance Z 1, v on the individual antenna 2 1 the current I 1 in the single antenna 2 1 and changing their impedance Z 2, v on the single antenna 2 2 the current I 2 on the single antenna 2 2 selectively influence frequency dependent and thus the extent of coupling between the two individual antennas Minimize 2 1 and 2 2 .

Auch die Eingangsimpedanzen 101, 102,...,10N der Fußpunktelektroniken 71,72,...,7N sind neben den oben genannten Auslegungen zusätzlich gegenüber der Fußpunktimpedanz der jeweiligen passiven Antennenbereiche 61, 62,...,6N der Einzelantennen 21, 22,...,2N vorzugsweise außerhalb des Nutzfrequensbereiches der Einzelantenne fehlangepaßt. Auf diese Weise kommt es zu gezielten Reflexionen an den Eingängen der Fußpunktelektroniken 71,72,...,7N, welche sich insgesamt in minimierten elektromagnetischen Kopplungen zwischen den Einzelantennen 21,22,...,2N auswirken.The input impedances 10 1 , 10 2 ,..., 10 N of the base-point electronics 7 1 , 7 2 ,..., 7 N are in addition to the above-mentioned interpretations in addition to the Base point impedance of the respective passive antenna areas 6 1 , 6 2 , ..., 6 N of the individual antennas 2 1 , 2 2 , ..., 2 N preferably mismatched outside the Nutzfrequensbereiches the individual antenna. In this way, there are targeted reflections at the inputs of Fußpunktelektroniken 7 1 , 7 2 , ..., 7 N , which in total in minimized electromagnetic couplings between the individual antennas 2 1 , 2 2 , ..., 2 N impact.

Die Erfindung ist nicht auf die dargestellte Ausführungsform beschränkt. Insbesondere sind andere Antennen-Geometrien und andere Beschaltungen der Impedanzelemente und andere Eingangsbeschaltungen der Fußpunktelektroniken von der Erfindung abgedeckt.The invention is not limited to the illustrated embodiment. In particular, other antenna geometries and other circuits of the impedance elements and other input circuits of the foot-point electronics are covered by the invention.

Claims (10)

  1. Receiver antenna system (1) of broad bandwidth consisting of several active, vertical individual antennae (21, 22,..., 2N) with an electrically-active antenna height matched to the respective partial-received-frequency range,
    characterised in that
    the mutual electromagnetic coupling between the individual antennae (21, 22,..., 2N), which are positioned at a small spacing distance, is minimised,
    wherein the mutual coupling between the individual antennae (21, 22,..., 2N) is minimised by optimisation of the individual mechanical and electrically-active antenna heights, the individual antenna diameters, the spacing distances between individual antennae and the input impedances of the active base-point electronics (71, 72,..., 7N) associated with the individual active antennae (21, 22, ..., 2N), wherein the optimisation of the respective electrically-active antenna height is implemented by an optimised arrangement of several impedance elements (Zµ,v) in the respective individual antennae (21, 22, ..., 2N) and their optimised interconnection, and wherein the optimised arrangement of the impedance elements (Zµ,v) relative to one another takes place both within one individual antenna (21, 22, ..., 2N) and also between the individual antennae (21, 22, ..., 2N),
    characterised in that
    the printed-conductor portions (1µ,v) between the intermittent impedance elements (Zµ,v) of each individual antenna (21, 22, ..., 2N) are of a shorter length with increasing distance from the base point (51, 52,..., 5N).
  2. Receiver antenna system according to claim 1,
    characterised in that
    the interconnection of the impedance elements (Zµ,v) provides a low impedance in the case of low received frequencies and a high impedance in the case of high received frequencies.
  3. Receiver antenna system according to claim 2,
    characterised in that
    the interconnection of the impedance elements (Zµ,v) consists of a parallel circuit comprising an inductance (Lµ,v) and an ohmic resistor (Rµ,v) or annular or tubular ferrite cores fitted onto the printed conductor portions (1µ,v).
  4. Receiver antenna system according to any one of claims 1 to 3,
    characterised in that
    the input impedance (101, 102,..., 10N) of the active base-point electronics (71, 72,..., 7N) provides a high-resistance input impedance in those of the individual antennae (21, 22,..., 2N), which are determined for the reception of low-frequency transmission signals.
  5. Receiver antenna system according to claim 4,
    characterised in that
    the input impedance (101, 102,..., 10N) of the active base-point electronics (71, 72,..., 7N) consists of a parallel circuit comprising a high-resistance resistor (RE1, RE2,..) and a low-capacity capacitor (CE1, CE2,..) in those of the individual antennae (21, 22, ..., 2N), which are determined for the reception of low-frequency transmission signals.
  6. Receiver antenna system according to any one of claims 1 to 5,
    characterised in that
    the input impedance (101, 102,..., 10N) of the active base-point electronics (71, 72,..., 7N) in those of the individual antennae (21, 22,..., 2N), which are determined for the reception of relatively high-frequency transmission signals, is designed to be of low-resistance for low-frequency transmission signals and matched to the base-point impedance of the passive antenna region (61, 62,..., 6N) of the respective individual antenna (21, 22,..., 2N) for relatively high-frequency transmission signals.
  7. Receiver antenna system according to claim 6,
    characterised in that
    the input impedance (101, 102,..., 10N) of the active base-point electronics (71, 72,..., 7N) in those of the individual antennae (21, 22,..., 2N), which are determined for the reception of relatively high-frequency transmission signals, consists of a parallel circuit comprising a resistor (..., REn-1, REn) and an inductance (..., LEn-1, LEn).
  8. Receiver antenna system according to any one of claims 4 to 7,
    characterised in that
    the input impedance (101, 102,..., 10N) of the active base-point electronics (71, 72,..., 7N) is additionally mismatched in a targeted manner, preferably outside the useful frequency range, to the base-point impedance of the passive antenna region (61, 62, ..., 6N) of the respective individual antenna (21, 22,..., 2N).
  9. Receiver antenna system according to any one of claims 1 to 8,
    characterised in that
    the received-frequency ranges of the individual antennae (21, 22,..., 2N) adjoin one another and form a complete received frequency range.
  10. Receiver antenna system according to claim 9,
    characterised in that
    phase-matching networks (81, 82,..., 8N) for phase matching of the received transmission signals and a frequency-crossover network (9) for combining the individual received transmission signals are connected to the passive antenna regions (61, 62,..., 6N) for the reception of transmission signals and to the base-point electronics (71, 72,..., 7N) for the amplification and filtering of the received transmission signals.
EP05772844A 2004-08-13 2005-07-12 Receiving antenna system comprising several active antennae Active EP1776735B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004039439A DE102004039439A1 (en) 2004-08-13 2004-08-13 Receiving antenna system with multiple active antennas
PCT/EP2005/007554 WO2006018079A1 (en) 2004-08-13 2005-07-12 Receiving antenna system comprising several active antennae

Publications (2)

Publication Number Publication Date
EP1776735A1 EP1776735A1 (en) 2007-04-25
EP1776735B1 true EP1776735B1 (en) 2008-02-20

Family

ID=34980070

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05772844A Active EP1776735B1 (en) 2004-08-13 2005-07-12 Receiving antenna system comprising several active antennae

Country Status (5)

Country Link
US (1) US7456800B2 (en)
EP (1) EP1776735B1 (en)
JP (1) JP4886688B2 (en)
DE (2) DE102004039439A1 (en)
WO (1) WO2006018079A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100848038B1 (en) * 2007-02-14 2008-07-23 주식회사 이엠따블유안테나 Multiple band antenna
WO2008120757A1 (en) * 2007-03-29 2008-10-09 Kyocera Corporation Portable wireless device
US20100013731A1 (en) * 2008-07-21 2010-01-21 Harold James Kittel Coaxial cable dipole antenna for high frequency applications
EP3091610B1 (en) * 2015-05-08 2021-06-23 TE Connectivity Germany GmbH Antenna system and antenna module with reduced interference between radiating patterns

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2898590A (en) * 1953-03-25 1959-08-04 Johnson Co E F Multi-frequency antenna
FR2238257B1 (en) * 1973-07-18 1977-08-12 Lignes Telegraph Telephon
US3961331A (en) * 1975-05-21 1976-06-01 The United States Of America As Represented By The Secretary Of The Army Lossy cable choke broadband isolation means for independent antennas
US4138681A (en) * 1977-08-29 1979-02-06 Motorola, Inc. Portable radio antenna
JPS5513524A (en) * 1978-07-13 1980-01-30 Denki Kogyo Kk Medium wave antenna for multi-wave
DE3437727C2 (en) * 1984-10-15 1994-01-13 Lindenmeier Heinz Receiver antenna system for multiple antenna diagrams
JPS61154202A (en) * 1984-11-27 1986-07-12 Toyota Motor Corp Antenna system for automobile
JPS62188507A (en) * 1986-02-14 1987-08-18 Mitsubishi Electric Corp Antenna system
DE3822081A1 (en) * 1988-06-30 1990-01-04 Inst Rundfunktechnik Gmbh Receiving antenna for ultrashort waves
US5600335A (en) * 1994-12-21 1997-02-04 The United States Of America As Represented By The Secretary Of The Navy High-power broadband antenna
JPH0946259A (en) * 1995-08-02 1997-02-14 Matsushita Electric Ind Co Ltd Antenna system
FI990395A (en) * 1999-02-24 2000-08-25 Nokia Networks Oy Hardware for attenuating interference between antennas
US6429821B1 (en) * 1999-10-12 2002-08-06 Shakespeare Company Low profile, broad band monopole antenna with inductive/resistive networks
FR2802711B1 (en) * 1999-12-20 2003-04-04 Univ Rennes METHOD FOR DECOUPLING ANTENNAS WITHIN A CO-LOCALIZED ANTENNA SYSTEM, SENSOR AND APPLICATIONS THEREOF
US6920315B1 (en) 2000-03-22 2005-07-19 Ericsson Inc. Multiple antenna impedance optimization
US6570544B2 (en) * 2001-05-08 2003-05-27 Litton Systems, Inc. Radiator components that serve to transmit information over frequencies in range with one or more octaves less than or equal to thirty megahertz and that comprise major dimension less than or equal to nine meters
JP2002368536A (en) * 2001-06-12 2002-12-20 Harada Ind Co Ltd Antenna
DE10304911B4 (en) * 2003-02-06 2014-10-09 Heinz Lindenmeier Combination antenna arrangement for multiple radio services for vehicles

Also Published As

Publication number Publication date
EP1776735A1 (en) 2007-04-25
DE102004039439A1 (en) 2006-02-23
US20070268196A1 (en) 2007-11-22
DE502005002935D1 (en) 2008-04-03
WO2006018079A1 (en) 2006-02-23
JP2008509616A (en) 2008-03-27
US7456800B2 (en) 2008-11-25
JP4886688B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
EP0269723B1 (en) Diversity aerial system
DE60022630T2 (en) SECONDARY FREQUENCY ANTENNA, MULTI FREQUENCY ANTENNA, TWO OR MORE FREQUENCY ANTENNA GROUP
DE19912465C2 (en) Multi-area antenna system
DE10304911B4 (en) Combination antenna arrangement for multiple radio services for vehicles
EP0866514B1 (en) Antenna for radio and television broadcast reception in motor vehicles
DE3911178C2 (en)
DE112008002453B4 (en) Symmetrical, printed, meander-shaped dipole antenna
EP1406349B1 (en) Active wide-band reception antenna with regulation of the receiving level
EP0761021B1 (en) Low electric overall height antenna
EP1246294B1 (en) Active broadband vehicle receiving antenna
DE3410415A1 (en) ACTIVE AERIAL IN THE REAR WINDOW OF A MOTOR VEHICLE
DE3907493A1 (en) DISC ANTENNA WITH ANTENNA AMPLIFIER
DE69913962T2 (en) MORE BAND VEHICLE ANTENNA
EP1776735B1 (en) Receiving antenna system comprising several active antennae
DE112013002000T5 (en) antenna device
DE102007055327A1 (en) External multi-band radio antenna module
DE4007824C2 (en) Vehicle antenna for radio services with a rod-shaped antenna element
EP0520197B1 (en) Foil antenna
EP3474374B1 (en) Antenna system for circular polarised satellite radio signals on a vehicle
DE102019119081A1 (en) COMPOSITE ANTENNA DEVICE WITH SHARED ELEMENT
DE112010002639T5 (en) ANTENNA DEVICE
EP3483983B1 (en) Receiving antenna for satellite navigation on a vehicle
DE102013211541A1 (en) Duplex antenna arrangement used for transmitting and receiving in different frequency bands, has helical monopole antennas that are capacitively coupled with electrical antenna conductor by alternating arrangement of windings
DE102016201341B4 (en) MULTI-BAND ANTENNA WITH EXTERNAL CONDUCTOR AND ELECTRONIC DEVICE INCLUDING THIS
EP2756550B1 (en) Multi-band aerial for a motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060327

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20070619

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502005002935

Country of ref document: DE

Date of ref document: 20080403

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081121

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230724

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230724

Year of fee payment: 19

Ref country code: DE

Payment date: 20230720

Year of fee payment: 19