EP0761021B1 - Low electric overall height antenna - Google Patents

Low electric overall height antenna Download PDF

Info

Publication number
EP0761021B1
EP0761021B1 EP96907252A EP96907252A EP0761021B1 EP 0761021 B1 EP0761021 B1 EP 0761021B1 EP 96907252 A EP96907252 A EP 96907252A EP 96907252 A EP96907252 A EP 96907252A EP 0761021 B1 EP0761021 B1 EP 0761021B1
Authority
EP
European Patent Office
Prior art keywords
antenna
frequency range
bridge
conductive surface
electrically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96907252A
Other languages
German (de)
French (fr)
Other versions
EP0761021A1 (en
Inventor
Heinz Lindenmeier
Jochen Hopf
Leopold Reiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuba Automotive GmbH and Co KG
Original Assignee
Fuba Automotive GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuba Automotive GmbH and Co KG filed Critical Fuba Automotive GmbH and Co KG
Publication of EP0761021A1 publication Critical patent/EP0761021A1/en
Application granted granted Critical
Publication of EP0761021B1 publication Critical patent/EP0761021B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point

Definitions

  • the invention relates to an antenna in the preamble of the claim 1 mentioned type.
  • An antenna of this type can be very advantageous in radio mode on motor vehicles for mobile radio services be used. It has in particular in the GHz frequency range the advantage of a small height with the desired Directional diagram to connect.
  • the invention is based on antennas of this type, as they are known from the DAS 2153 827 and DAS 2633 757 as well as European patent applications EP 0176311, EP 0177362 and EP 0163454 are known.
  • the antennas described there essentially consist of one L-shaped flat part over a conductive base or are designed as U-shaped flat antennas.
  • All antennas of this type are according to the current state of the art Technology monofrequency antennas i.e. they are at their basic resonance frequency operated what is physically a requirement for that is that the directional diagram when built over a conductive Surface essentially has a round characteristic.
  • a mobile radio antenna on motor vehicles there is a desire for antennas that are in multiple frequency ranges can be used simultaneously.
  • a cellular antenna both in the D mobile network at around 0.9 GHz and in the frequency range of the e-cellular network at approximately twice the frequency (1.8 GHz).
  • the simultaneous use of one is often Antenna in the frequency-adjacent GPS navigation radio service desired.
  • the object of the invention is therefore in an antenna according to the Preamble of claim 1, with the help of easy to carry out Measures to establish the function for several frequency ranges. These measures are designed to be as cost effective as possible Enable manufacturing.
  • Fig. 1 L-shaped antenna with an almost rectangular first conductive Hatched area over conductive counterweight marked effect zones in another higher frequency
  • Fig. 2 Antenna as Fig. 1, but with an almost circular first conductive surface and missing circle segment.
  • Fig. 3 Antenna with a trapezoidal first conductive surface conductive counterweight and exemplary design of Slits 10, which have a high input impedance at their open End to suppress edge currents in another higher one Frequency range and with additional slots as capacitive Load at the open end, the slots being rectangular Cutouts are loaded inductively, so that the open Slot end at the surface edge, a high-impedance reactance in the sets another higher frequency range.
  • Dashed minimal Size of the second conductive area.
  • Fig. 3a Simplified equivalent circuit diagram of an inventive Antenna to explain the principle of action.
  • Fig. 4 Antenna as Fig. 3 with slots 10 in the bridge 4 to Matching the self-inductance of the bridge in the different Frequency ranges.
  • Fig. 5 L-shaped antenna over a conductive base with a circular sector as the first conductive surface 1 and almost quarter-wavelength slots in the wider frequency range for suppression of currents in the peripheral area of the first area.
  • the different long slots cause resonances in two frequencies adjacent to each other higher frequency ranges.
  • Fig. 6 circular sector antenna with the same shaped second conductive Surface and attachment of the antenna coaxial line parallel to this area.
  • the basic principle of operation of the antenna according to the invention is based on it, with the help of the natural resonance of slots and recesses on the conductive surfaces of the antenna in different Frequency ranges to bring about an antenna resonance.
  • this can be brought about by the fact that the Slots 10 in the first frequency range on the current distribution affect the antenna little and due to the natural resonance of the slot arrangements the current flow on the antenna is designed in this way is that also in this frequency range the antenna impedance resonance exists.
  • the largest dimension of the first conductive area 1 is less than 3/8 lambda, so that is azimuthal Circular diagram e.g. even at double the frequency of the low Frequency range still largely exist.
  • an inductance L 4.13 with a series radiation resistance R s increases and the capacity C 13 represents the capacitance of the inner zone 13 to the base plate and the capacitance C 12, the capacity of the current path 12 with the base plate and L 12 is the series inductance of this current path, the capacitance C 11 of the two edge zones 11 with the base plate is connected in parallel with the connection point 3 via the input impedance Z 10, which is high impedance at this frequency, at the open end of the slots 10.
  • a slot forms an electrical line in a conductive surface, the wave resistance of which increases with the slot width 9.
  • the resonance is mainly formed from the sum of the capacitances C 11 , C 12 , C 13 and the inductance L 12 , L 4 , 13 , the resonance of the slot line results in a complete shutdown of the relatively large ones Capacitance C 11 , whereby the antenna resonates even at the higher frequency. Accordingly, the frequency difference between the first and second resonance is greater, the larger the zone 11 in FIG. 1 is selected by the corresponding position of the slots 10, ie the closer the slots adjacent to the connection point 3 are.
  • the shape of the antenna can affect the basic mode of operation can be freely chosen within wide limits.
  • the one described Effect of the antenna of this kind can be brought about if the first conductive surface e.g. Rectangular shape, trapezoidal shape, Circle sector shape or circular shape with missing circle segment. Also a symmetry condition regarding the surface shape and the arrangement of the slots does not necessarily have to be observed will.
  • the corresponding ones are shown in FIG. 2 for clarification Effective zones for an antenna with a circular shape and a missing one Circle segment entered.
  • FIG. 3 shows an example of an advantageous embodiment of two Slots 10 for designing the current path 12 and the low-current Edge zones 11 and the inner one effective for resonance formation Zone 13 in Fig. 1.
  • the slots 10 in their main direction as To design the boundary of the current path. Is the slot in the higher frequency lambda / 4 long, so it owns at its open End at the edge of the first surface a high input impedance, so that currents at this frequency from connection point 3 to the low-current Zones 11 are hindered in their flow. Noteworthy at the lower frequency, provided that e.g. only half the size the slots for the streams are not essential Obstacle.
  • the first conductive surface 1 are included.
  • you can such slots are introduced into the slots 10, which at their opposite the edge of the conductive surface 1 End with an inductive cutout from the conductive Area 1 is complete.
  • the borders of these sections 14 acts inductively due to its longer length in contrast to Slot, which is a strong due to the small slot width has a capacitive effect.
  • the Reactive resistance in the open end of the slot second frequency range can be designed with high resistance, so that Edge currents on the first conductive surface 1 are significantly suppressed will.
  • the bridge 4 mainly acts inductively. 4 are Slits 10 are also made in the bridge 4 to be on this Way using the changed inductance in a second Frequency range in which the slots have 1/4 wavelength resonance at their open end possess the resonance frequency of the antenna also produce in this frequency range.
  • the first senior Surface 1 of the antenna has the shape of a circular sector with no sector triangle at the top of the circle sector.
  • the Slots 10 are largely straight in this example Sector rays, starting from the circular edge of the sector in Direction of the inner zone of the first conductive surface 1, arranged.
  • Such an antenna can be very advantageous as Antenna for the D mobile network (approx. 900 MHz) and the E mobile network (approx. 1800 MHz). In this case it is Length of the slots about Lambda / 4 to choose for the frequency range of the E network; in the higher frequency range mainly the inner zone 13 of the first conductive Area 1 near the edge 5 and the bridge 4.
  • a special one advantageous embodiment of this antenna covers equally the frequency of the global positioning system (GPS). This is easily achieved by using several slots with slightly unequal lengths for the Slits 10a and 10b in Fig. 5 resonate the antenna at the GPS frequency (1574 MHz) is also reached.
  • GPS global positioning system
  • the circle sector angle for example, 90 degrees.
  • the slots are arranged symmetrically to the bisector. The shorter ones have 6 slits lying near the center line in this Example for the suppression of currents in the electric network frequency range a length of 0.25 lambda. For the longer slots in Fig. 5 was used to generate the resonance of the antenna on the GPS frequency a length of 0.23 lambda is selected.
  • Such an antenna has the particular advantage of being simple Manufacturability. Will it over a conductive base plate or a mechanical support plate, so the first first conductive surface 1 and the bridge 4 from a sheet in one Operation together with the slots 10a and 10b with typical required slot widths of 0.5 ... 1.5 mm are punched out will. By bending the edge 5 at a right angle, the Antenna with the lower edge of the bridge 4 in a simple way mounted on the counterweight. After matching the Position of the slots and their dimensions such that Resonances of the antenna can arise at all three frequencies so with the help of a punch tool the antenna with large Precision and extremely inexpensive to manufacture. One is also in the choice of the sector angle with the invention Antenna relatively free.
  • An antenna according to the invention can e.g. as in Fig. 6, also with mutually congruent conductive surfaces 1 and 2 can be designed.
  • the outer jacket of the coaxial line runs 7 parallel to the surface 2, so that it is the electric field perpendicular to the areas 1, 2 does not bother.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

The invention concerns an antenna with a low electric overall height, preferably for frequencies in the GHz band. The antenna consists of a first electrically conducting surface (1), which in a first frequency band is no bigger in any of its dimensions than 3/8 lambda, and a second electrically conducting surface (2) of at least the same size which acts as an earth screen. The second conducting surface is essentially parallel to the first and faces it at a given distance (A). A conducting bridge (4) forms a high-frequency, low-impedance connection over a width (B) between one edge (5) of the first conducting surface (1) and the second conducting surface, and the first conducting surface (1) is electrically connected, for high frequencies, at a coupling point (3) by a conductor (15) at the antenna-connection point to the inside conductor of a coaxial cable (7) whose outside conductor (8) is connected to the second conducting surface (2). The dimensions of the antenna and of thecoupling point (3) are chosen such that the antenna is in resonance in the first frequency band. To produce resonance in at least one other frequency band, at least one of the two conducting surfaces and/or the conducting bridge (4) have slots (10) of a suitable width (9) and shape, and the edges of each slot are designed so that they determine the changes in current on the conducting surfaces (1, 2) and in the bridge (4) as a function of frequency in the first and in each other frequency band in such a way that the antenna both in the first and in each other frequency band almost exhibits resonance.

Description

Die Erfindung betrifft eine Antenne der im Oberbegriff des Anspruchs 1 genannten Art. Eine Antenne dieser Art kann sehr vorteilhaft im Funkbetrieb auf Kraftfahrzeugen für Mobilfunkdienste eingesetzt werden. Sie besitzt insbesondere im GHz-Frequenzbereich den Vorteil, eine kleine Bauhöhe mit dem gewünschten Richtdiagramm zu verbinden.The invention relates to an antenna in the preamble of the claim 1 mentioned type. An antenna of this type can be very advantageous in radio mode on motor vehicles for mobile radio services be used. It has in particular in the GHz frequency range the advantage of a small height with the desired Directional diagram to connect.

Die Erfindung geht aus von Antennen dieser Art, wie sie aus der DAS 2153 827 und DAS 2633 757 sowie den Europäischen Patentanmeldungen EP 0176311, EP 0177362 und EP 0163454 bekannt sind. Die dort beschriebenen Antennen bestehen im wesentlichen aus einem L-förmigen flächigen Teil über einer leitenden Grundfläche bzw. sind als U-förmige flächige Antennen ausgeführt.The invention is based on antennas of this type, as they are known from the DAS 2153 827 and DAS 2633 757 as well as European patent applications EP 0176311, EP 0177362 and EP 0163454 are known. The antennas described there essentially consist of one L-shaped flat part over a conductive base or are designed as U-shaped flat antennas.

Das Wirkungsprinzip dieser Antennen besteht darin, bei der Betriebsfrequenz eine Resonanz zu besitzen, wobei die Resonanz durch eine ausgeglichene Blindleistungsbilanz zwischen der magnetischen Blindleistung und der kapazitiven Blindleistung ausgezeichnet ist, so daß an der vorgesehenen Antennenanschlußstelle eine im wesentlichen reelle bzw. eine nicht zu stark reaktive Impedanz herrscht. Diese Resonanzwirkung ist im Ersatzschaltbild Fig. 4 der EP 0177362 für eine L-förmige Antenne beschrieben. Bei Resonanz der L-Struktur sind dabei die Blindleistungen der magnetischen Felder, welche die starken Ströme auf der und in der Umgebung der Brücke 38 in Fig. 3 bilden, ausgewogen mit der kapazitiven Blindleistung, welche die elektrischen Felder zwischen der Fläche 36 und der Grundplatte 39 bilden.The principle of operation of these antennas is that Operating frequency to have a resonance, the resonance through a balanced reactive power balance between the magnetic reactive power and capacitive reactive power is excellent, so that at the intended antenna connection point an essentially real or not too reactive one There is impedance. This resonance effect is in the Equivalent circuit Fig. 4 of EP 0177362 for an L-shaped Antenna described. When the L structure resonates, the Reactive powers of the magnetic fields, which are the strong ones Form currents on and in the vicinity of the bridge 38 in FIG. 3, balanced with the capacitive reactive power which the electric fields between the surface 36 and the base plate 39 form.

Alle Antennen dieser Art sind nach dem gegenwärtigen Stand der Technik monofrequente Antennen d.h., sie werden bei ihrer Grundresonanzfrequenz betrieben, was physikalisch eine Voraussetzung dafür ist, daß das Richtdiagramm bei Aufbau über einer leitenden Fläche im wesentlichen eine Rundcharakteristik besitzt. Insbesondere beim Einsatz als Mobilfunkantenne auf Kraftfahrzeugen besteht jedoch der Wunsch nach Antennen, welche in mehreren Frequenzbereichen gleichzeitig einsetzbar sind. Als wichtiges Beispiel gilt die Verwendung einer Mobilfunkantenne sowohl im D-Mobilfunknetz bei ca. 0,9 GHz als auch im Frequenzbereich des E-Mobilfunknetzes bei etwa doppelter Frequenz (1,8 GHz). Zusätzlich ist vielfach die gleichzeitige Verwendung einer Antenne im frequenzbenachbarten GPS-Navigationsfunkdienst erwünscht.All antennas of this type are according to the current state of the art Technology monofrequency antennas i.e. they are at their basic resonance frequency operated what is physically a requirement for that is that the directional diagram when built over a conductive Surface essentially has a round characteristic. Especially when used as a mobile radio antenna on motor vehicles However, there is a desire for antennas that are in multiple frequency ranges can be used simultaneously. As an important example is the use of a cellular antenna both in the D mobile network at around 0.9 GHz and in the frequency range of the e-cellular network at approximately twice the frequency (1.8 GHz). In addition, the simultaneous use of one is often Antenna in the frequency-adjacent GPS navigation radio service desired.

Aufgabe der Erfindung ist es deshalb, bei einer Antenne nach dem Oberbegriff des Anspruchs 1, mit Hilfe einfach durchzuführender Maßnahmen, die Funktion für mehrere Frequenzbereiche herzustellen. Diese Maßnahmen sollen eine möglichst kostengünstige Herstellung ermöglichen.The object of the invention is therefore in an antenna according to the Preamble of claim 1, with the help of easy to carry out Measures to establish the function for several frequency ranges. These measures are designed to be as cost effective as possible Enable manufacturing.

Diese Aufgabe wird erfindungsgemäß durch eine Antenne mit den Merkmalen im kennzeichnenden Teil des Anspruchs 1 gelöst.This object is achieved by an antenna with the Features solved in the characterizing part of claim 1.

Ausführungsbeispiele des Erfindungsgegenstandes werden nachfolgend anhand der Zeichnungen beschrieben. Es zeigt:Exemplary embodiments of the subject matter of the invention are as follows described with reference to the drawings. It shows:

Fig. 1: L-förmige Antenne mit nahezu rechteckiger erster leitender Fläche über leitendem Gegengewicht mit schraffiert gekennzeichneten Wirkungszonen in einem weiteren höherfrequenten Frequenzbereich: 11 = Randzonen mit kleinen Strömen; 13 = für Resonanzbildung wirksame innere Zone; 3 = Strombahn zwischen Ankopplungspunkt 3 und leitender Brücke 4.Fig. 1: L-shaped antenna with an almost rectangular first conductive Hatched area over conductive counterweight marked effect zones in another higher frequency Frequency range: 11 = marginal zones with small currents; 13 = for Resonance effective inner zone; 3 = current path between Coupling point 3 and conductive bridge 4.

Fig. 2: Antenne wie Fig. 1, jedoch mit nahezu kreisförmiger erster leitender Fläche und fehlendem Kreissegment.Fig. 2: Antenna as Fig. 1, but with an almost circular first conductive surface and missing circle segment.

Fig. 3: Antenne mit trapezförmiger erster leitender Fläche über leitendem Gegengewicht und beispielhafter Ausgestaltung von Schlitzen 10, welche mit hoher Eingangsimpedanz an deren offenem Ende zur Unterdrückung von Kantenströmen in einem weiteren höheren Frequenzbereich und mit zusätzlichen Schlitzen als kapazitive Last am offenen Ende, wobei die Schlitze durch rechteckige Ausschnitte induktiv belastet sind, so daß sich am offenen Schlitzende am Flächenrand, ein hochohmiger Blindwiderstand im weiteren höheren Frequenzbereich einstellt. Gestrichelt: minimale Größe der zweiten leitenden Fläche.Fig. 3: Antenna with a trapezoidal first conductive surface conductive counterweight and exemplary design of Slits 10, which have a high input impedance at their open End to suppress edge currents in another higher one Frequency range and with additional slots as capacitive Load at the open end, the slots being rectangular Cutouts are loaded inductively, so that the open Slot end at the surface edge, a high-impedance reactance in the sets another higher frequency range. Dashed: minimal Size of the second conductive area.

Fig. 3a: Stark vereinfachtes Ersatzschaltbild einer erfindungsgemäßen Antenne zur Erläuterung des Wirkungsprinzips.Fig. 3a: Simplified equivalent circuit diagram of an inventive Antenna to explain the principle of action.

Fig. 4: Antenne wie Fig. 3 mit Schlitzen 10 in der Brücke 4 zur Abstimmung der Eigeninduktivität der Brücke in den verschiedenen Frequenzbereichen.Fig. 4: Antenna as Fig. 3 with slots 10 in the bridge 4 to Matching the self-inductance of the bridge in the different Frequency ranges.

Fig. 5: L-förmige Antenne über leitendem Grund mit einem Kreissektor als erster leitender Fläche 1 und nahezu Viertelwellenlängen-Schlitze im weiteren Frequenzbereich zur Unterdrückung von Strömen im Randgebiet der ersten Fläche. Die unterschiedlich langen Schlitze bewirken Resonanzen in zwei zueinander frequenzbenachbarten höheren Frequenzbereichen.Fig. 5: L-shaped antenna over a conductive base with a circular sector as the first conductive surface 1 and almost quarter-wavelength slots in the wider frequency range for suppression of currents in the peripheral area of the first area. The different long slots cause resonances in two frequencies adjacent to each other higher frequency ranges.

Fig. 6: Kreissektorantenne mit ebenso geformter zweiter leitenden Fläche und Anbringung der Antennenkoaxialleitung parallel zu dieser Fläche.Fig. 6: circular sector antenna with the same shaped second conductive Surface and attachment of the antenna coaxial line parallel to this area.

Das Grundwirkungsprinzip der erfindungsgemäßen Antenne beruht darauf, mit Hilfe der Eigenresonanz von Schlitzen und Aussparungen auf den leitenden Flächen der Antenne in unterschiedlichen Frequenzbereichen jeweils eine Antennenresonanz herbeizuführen. Auf einfachste Weise kann dies dadurch bewirkt werden, daß die Schlitze 10 im ersten Frequenzbereich die Stromverteilung auf der Antenne nur wenig beeinflussen und infolge der Eigenresonanz der Schlitzanordnungen der Stromfluß auf der Antenne derart gestaltet ist, daß ebenfalls in diesem Frequenzbereich bezüglich der Antennenimpedanz Resonanz besteht.The basic principle of operation of the antenna according to the invention is based on it, with the help of the natural resonance of slots and recesses on the conductive surfaces of the antenna in different Frequency ranges to bring about an antenna resonance. In the simplest way, this can be brought about by the fact that the Slots 10 in the first frequency range on the current distribution affect the antenna little and due to the natural resonance of the slot arrangements the current flow on the antenna is designed in this way is that also in this frequency range the antenna impedance resonance exists.

In der Fig. 1 ist das Wirkungsprinzip der Antenne nach der Erfindung dargestellt. Im ersten, also niederen Frequenzbereich, wirkt die gesamte erste leitende Fläche 1 und ist durch die Schlitze 10 gemäß dem Anspruch 1 nur wenig in ihrer Wirkung beeinträchtigt, so daß die Antenne in diesem Bereich wirkt wie die Antennen, die gemäß dem Stande der Technik beschrieben sind. Um in einem weiteren höheren Frequenzbereich ebenfalls eine gewünschte Resonanz zu erreichen, werden gemäß dem Kennzeichen des Anspruchs 1 in der Umgebung der Randzonen 11 Schlitze 10 eingebracht, welche insbesondere die hochwirksamen Randströme im höherfrequenten Bereich unterdrücken. Somit bildet sich gemäß der Erfindung zwischen dem Anschlußpunkt 3 und der Brücke 4 eine Strombahn 12 aus, auf der die Antennenströme fließen. Bei geeignetem Verlauf und geeigneter Dimensionierung der Schlitze 10 wird über diese Strombahn 12 die innere Zone 13, welche sich in der Nähe der Brücke 4 befindet, zur Resonanzbildung angeregt. Aufgrund der Kleinheit der inneren Zone 13 im Vergleich zur gesamten ersten leitenden Fläche 1 stellt sich zusätzlich zur ersten Resonanzfrequenz eine höhere Resonanzfrequenz für den weiteren Frequenzbereich ein. Ist die größte Abmessung der ersten leitenden Fläche 1 kleiner als 3/8 Lambda, so ist das azimutale Runddiagramm z.B. auch bei der doppelten Frequenz des niedrigen Frequenzbereichs noch weitgehend gegeben.1 is the principle of operation of the antenna according to the invention shown. In the first, i.e. lower frequency range, acts the entire first conductive surface 1 and is through the Slits 10 according to claim 1 have little effect impaired, so that the antenna in this area acts like the antennas described in the prior art. To also in a higher frequency range To achieve the desired resonance, according to the mark of claim 1 in the vicinity of the edge zones 11 slots 10 introduced, which in particular the highly effective edge currents in suppress higher frequency range. Thus forms according to the invention between the connection point 3 and the bridge 4 a Current path 12 on which the antenna currents flow. If suitable Course and suitable dimensioning of the slots 10 the inner zone 13, which is in located near the bridge 4, stimulated to form resonance. Because of the smallness of the inner zone 13 compared to the whole first conductive surface 1 arises in addition to the first Resonance frequency a higher resonance frequency for the further Frequency range. Is the largest dimension of the first conductive area 1 is less than 3/8 lambda, so that is azimuthal Circular diagram e.g. even at double the frequency of the low Frequency range still largely exist.

Um das Wirkungsprinzip der Antenne besser zu erläutern, wird das stark vereinfachte Ersatzschaltbild in Fig. 3a betrachtet, welches jedoch die einzelnen Wirkelemente nur ganz grob angenähert wiedergibt. Eine grobe Vereinfachung der Darstellung besteht darin, daß verteilt wirkende Blindelemente zum besseren Verständnis als konzentrierte Elemente dargestellt sind und somit nicht als frequenzunabhängig betrachtet werden können. Dennoch läßt sich anhand dieses vereinfachten Ersatzschaltbildes die grundsätzliche Wirkungsweise der Antenne im höheren Frequenzbereich erläutern. Schreibt man der mit der Grundplatte verbundenen Brücke 4 und der inneren Zone 13 eine Induktivität L4,13 mit einem Serienstrahlungwiderstand Rs zu und repräsentiert die Kapazität C13 die Kapazität der inneren Zone 13 mit der Grundplatte und die Kapazität C12 die Kapazität der Strombahn 12 mit der Grundplatte und ist L12 die Serieninduktivität dieser Strombahn, so ist die Kapazität C11 der beiden Randzonen 11 mit der Grundplatte über die bei dieser Frequenz hochohmigen Eingangsimpedanz Z 10 am offenen Ende der Schlitze 10 dem Anschlußpunkt 3 parallelgeschaltet. Durch Einfügung der Schlitzimpedanz Z 10 und deren Darstellung als hochohmiger Parallelresonanzkreis ist erkennbar, daß sich das erfindungsgemäße Resonanzverhalten bei mehreren Frequenzen einstellt. Ein Schlitz bildet in einer leitenden Fläche eine elektrische Leitung, deren Wellenwiderstand mit der Schlitzbreite 9 ansteigt. Tendenzweise ist die Wirkungsfrequenzbandbreite der Schlitzresonanz im Hinblick auf die Beeinflussung der Antennenströme umso größer, je größer die Schlitzbreite ist. Während bei der ersten, niedrigen Frequenz die Resonanz in der Hauptsache aus der Summe der Kapazitäten C11, C12, C13 und der Induktivität L12, L4,13 gebildet ist, ergibt sich bei Resonanz der Schlitzleitung eine vollkommene Abschaltung der relativ großen Kapazität C11, wodurch die Antenne auch bei der höheren Frequenz eine Resonanz besitzt. Demnach ist der Frequenzunterschied zwischen erster und zweiter Resonanz umso größer, je größer die Zone 11 in Fig.1 durch entsprechende Lage der Schlitze 10 gewählt ist, d.h. je näher die zum Anschlußpunkt 3 benachbarten Schlitze beieinander liegen.In order to better explain the principle of operation of the antenna, the greatly simplified equivalent circuit diagram in FIG. 3a is considered, which, however, only gives a rough approximation of the individual active elements. A rough simplification of the representation consists in the fact that distributed-acting dummy elements are shown as concentrated elements for better understanding and can therefore not be regarded as frequency-independent. Nevertheless, the basic mode of operation of the antenna in the higher frequency range can be explained on the basis of this simplified equivalent circuit diagram. Writes to the connected to the base plate bridge 4 and the inner zone 13, an inductance L 4.13 with a series radiation resistance R s increases and the capacity C 13 represents the capacitance of the inner zone 13 to the base plate and the capacitance C 12, the capacity of the current path 12 with the base plate and L 12 is the series inductance of this current path, the capacitance C 11 of the two edge zones 11 with the base plate is connected in parallel with the connection point 3 via the input impedance Z 10, which is high impedance at this frequency, at the open end of the slots 10. By inserting the slot impedance Z 10 and displaying it as a high-impedance parallel resonance circuit, it can be seen that the resonance behavior according to the invention occurs at several frequencies. A slot forms an electrical line in a conductive surface, the wave resistance of which increases with the slot width 9. The larger the slot width, the larger the slot frequency is, with regard to influencing the antenna currents. While at the first, low frequency the resonance is mainly formed from the sum of the capacitances C 11 , C 12 , C 13 and the inductance L 12 , L 4 , 13 , the resonance of the slot line results in a complete shutdown of the relatively large ones Capacitance C 11 , whereby the antenna resonates even at the higher frequency. Accordingly, the frequency difference between the first and second resonance is greater, the larger the zone 11 in FIG. 1 is selected by the corresponding position of the slots 10, ie the closer the slots adjacent to the connection point 3 are.

Die Form der Antenne kann bezüglich der grundsätzlichen Wirkungsweise in weiten Grenzen frei gewählt werden. Die beschriebene Wirkung der Antenne dieser Art kann herbeigeführt werden, wenn die erste leitende Fläche z.B. Rechteckform, Trapezform, Kreissektorform bzw. Kreisform mit fehlendem Kreissegment besitzt. Auch eine Symmetriebedingung bezüglich der Flächenform und der Anordnung der Schlitze muß nicht zwingend eingehalten werden. Zur Verdeutlichung sind in Fig. 2 die entsprechenden Wirkungszonen für eine Antenne mit Kreisform und fehlendem Kreissegment eingetragen.The shape of the antenna can affect the basic mode of operation can be freely chosen within wide limits. The one described Effect of the antenna of this kind can be brought about if the first conductive surface e.g. Rectangular shape, trapezoidal shape, Circle sector shape or circular shape with missing circle segment. Also a symmetry condition regarding the surface shape and the arrangement of the slots does not necessarily have to be observed will. The corresponding ones are shown in FIG. 2 for clarification Effective zones for an antenna with a circular shape and a missing one Circle segment entered.

Fig. 3 zeigt beispielhaft eine vorteilhafte Ausgestaltung zweier Schlitze 10 zur Gestaltung der Strombahn 12 sowie der stromarmen Randzonen 11 und der für die Resonanzbildung wirksamen inneren Zone 13 in Fig. 1. Hierbei ist es vorteilhaft, zur Gestaltung der Strombahn 12, die Schlitze 10 in ihrer Hauptrichtung als Berandung der Strombahn zu gestalten. Ist der Schlitz bei der höheren Frequenz Lambda/4 lang, so besitzt er an seinem offenen Ende am Rand der ersten Fläche eine hohe Eingangsimpedanz, so daß Ströme bei dieser Frequenz vom Anschlußpunkt 3 zu den stromarmen Zonen 11 in ihrem Fluß behindert werden. Bei der nennenswert niedrigeren Frequenz, sofern diese z.B. nur halb so groß ist, stellen die Schlitze für die Ströme kein wesentliches Hindernis dar. Ihre Wirkung auf die Resonanzfrequenz im ersten Frequenzbereich kann auf bekannte Weise in die Dimensionierung der ersten leitenden Fläche 1 einbezogen werden. Zusätzlich können zu den Schlitzen 10 solche Schlitze eingebracht werden, welche an ihrem dem Rand der leitenden Fläche 1 entgegengesetztem Ende mit einem induktiv wirkenden Ausschnitt aus der leitenden Fläche 1 abgeschlossen ist. Die Berandung dieser Ausschnitte 14 wirkt aufgrund ihrer größeren Länge induktiv im Gegensatz zum Schlitz, welcher aufgrund der kleinen Schlitzbreite eine stark kapazitive Wirkung hat. Bei geeigneter Ausführung kann dabei der am offenen Ende des Schlitzes entstehende Blindwiderstand im zweiten Frequenzbereich hochohmig gestaltet werden, so daß Randströme auf der ersten leitenden Fläche 1 wesentlich unterdrückt werden. Diese Anordnung bewirkt, daß die in Fig. 1 mit 11 gekennzeichneten Zonen nur wenig zur Kapazität der ersten leitenden Fläche 1 gegenüber der als elektrisches Gegengewicht wirkenden elektrisch leitenden Fläche 2 beitragen. Die Verkleinerung der wirksamen Kapazität bewirkt somit im zweiten Frequenzbereich eine Resonanz, wobei die für die Resonanzbildung wirksame innere Zone 13 (siehe Fig. 1) über die Strombahn 12 zwischen Ankopplungspunkt 3 und leitender Brücke 4 in Fig. 1 angeregt wird.3 shows an example of an advantageous embodiment of two Slots 10 for designing the current path 12 and the low-current Edge zones 11 and the inner one effective for resonance formation Zone 13 in Fig. 1. Here it is advantageous to design the current path 12, the slots 10 in their main direction as To design the boundary of the current path. Is the slot in the higher frequency lambda / 4 long, so it owns at its open End at the edge of the first surface a high input impedance, so that currents at this frequency from connection point 3 to the low-current Zones 11 are hindered in their flow. Noteworthy at the lower frequency, provided that e.g. only half the size the slots for the streams are not essential Obstacle. Their effect on the resonance frequency in the first Frequency range can be dimensioned in a known manner the first conductive surface 1 are included. In addition, you can such slots are introduced into the slots 10, which at their opposite the edge of the conductive surface 1 End with an inductive cutout from the conductive Area 1 is complete. The borders of these sections 14 acts inductively due to its longer length in contrast to Slot, which is a strong due to the small slot width has a capacitive effect. With a suitable design, the Reactive resistance in the open end of the slot second frequency range can be designed with high resistance, so that Edge currents on the first conductive surface 1 are significantly suppressed will. This arrangement has the effect that the 11th in FIG zones marked little to the capacity of the first conductive Area 1 compared to that acting as an electrical counterweight contribute electrically conductive surface 2. The Reduction of the effective capacity thus results in the second Frequency range a resonance, the one for resonance formation effective inner zone 13 (see FIG. 1) via the current path 12 excited between coupling point 3 and conductive bridge 4 in Fig. 1 becomes.

Die Brücke 4 wirkt in der Hauptsache induktiv. In Fig. 4 sind Schlitze 10 ebenfalls in die Brücke 4 eingebracht, um auf diese Weise mit Hilfe der veränderten Induktivität in einem zweiten Frequenzbereich, in dem die Schlitze an ihrem offenen Ende 1/4-Wellenlängen-Resonanz besitzen, die Resonanzfrequenz der Antenne auch in diesem Frequenzbereich herstellen.The bridge 4 mainly acts inductively. 4 are Slits 10 are also made in the bridge 4 to be on this Way using the changed inductance in a second Frequency range in which the slots have 1/4 wavelength resonance at their open end possess the resonance frequency of the antenna also produce in this frequency range.

In Fig. 5 ist eine besonders vorteilhafte Ausgestaltung einer Antenne nach der Erfindung dargestellt. Die erste leitende Fläche 1 der Antenne besitzt hier die Form eines Kreissektors mit fehlendem Sektordreieck an der Spitze des Kreissektors. Die Schlitze 10 sind bei diesem Beispiel auf weitgehend geradlinigen Sektorstrahlen, ausgehend vom kreisförmigen Rand des Sektors in Richtung der inneren Zone der ersten leitenden Fläche 1, angeordnet. Eine solche Antenne läßt sich sehr vorteilhaft als Antenne für das D-Mobilfunknetz (ca. 900 MHz) und das E-Mobilfunknetz (ca. 1800 MHz) einsetzen. In diesem Fall ist die Länge der Schlitze etwa Lambda/4 zu wählen für den Frequenzbereich des E-Netzes; im höheren Frequenzbereich wirken dabei in der Hauptsache nur die innere Zone 13 der ersten leitenden Fläche 1 in der Nähe der Kante 5 und die Brücke 4. Eine besonders vorteilhafte Ausführungsform dieser Antenne deckt gleichermaßen die Frequenz des Global-Positioning-Systems (GPS) ab. Dies wird auf einfache Weise dadurch erreicht, daß durch Verwendung mehrerer Schlitze mit geringfügig ungleichen Längen für die Schlitze 10a und 10b in Fig. 5 eine Resonanz der Antenne bei der GPS-Frequenz (1574 MHz) ebenfalls erreicht wird. Bei einer praktischen Ausführungsform einer erfindungsgemäßen Antenne beträgt der Kreissektorwinkel beispielhaft 90 Grad. Die Schlitze sind symmetrisch zur Winkelhalbierenden angeordnet. Die kürzeren, nahe der Mittellinie 6 liegenden Schlitze haben in diesem Beispiel zur Unterdrückung von Strömen im E-Netzfrequenzbereich eine Länge von 0,25 Lambda. Für die längeren Schlitze in Fig. 5 wurde zur Erzeugung der Resonanz der Antenne auf der GPS-Frequenz eine Länge von 0,23 Lambda gewählt.5 is a particularly advantageous embodiment of a Antenna according to the invention shown. The first senior Surface 1 of the antenna has the shape of a circular sector with no sector triangle at the top of the circle sector. The Slots 10 are largely straight in this example Sector rays, starting from the circular edge of the sector in Direction of the inner zone of the first conductive surface 1, arranged. Such an antenna can be very advantageous as Antenna for the D mobile network (approx. 900 MHz) and the E mobile network (approx. 1800 MHz). In this case it is Length of the slots about Lambda / 4 to choose for the frequency range of the E network; in the higher frequency range mainly the inner zone 13 of the first conductive Area 1 near the edge 5 and the bridge 4. A special one advantageous embodiment of this antenna covers equally the frequency of the global positioning system (GPS). This is easily achieved by using several slots with slightly unequal lengths for the Slits 10a and 10b in Fig. 5 resonate the antenna at the GPS frequency (1574 MHz) is also reached. With a practical Embodiment of an antenna according to the invention the circle sector angle, for example, 90 degrees. The slots are arranged symmetrically to the bisector. The shorter ones have 6 slits lying near the center line in this Example for the suppression of currents in the electric network frequency range a length of 0.25 lambda. For the longer slots in Fig. 5 was used to generate the resonance of the antenna on the GPS frequency a length of 0.23 lambda is selected.

Eine solche Antenne hat den besonderen Vorteil der einfachen Herstellbarkeit. Wird sie über einer leitenden Grundplatte oder einer mechanischen Trägerplatte verwendet, so können die erste erste leitende Fläche 1 und die Brücke 4 aus einem Blech in einem Arbeitsgang gemeinsam mit den Schlitzen 10a und 10b mit typisch erforderlichen Schlitzbreiten von 0,5...1,5 mm ausgestanzt werden. Durch Biegen der Kante 5 im rechten Winkel wird die Antenne mit der unteren Kante der Brücke 4 auf einfache Weise auf dem Gegengewicht montiert. Nach gefundenem Abgleich der Position der Schlitze und ihrer Abmessungen derart, daß Resonanzen der Antenne bei allen drei Frequenzen entstehen, kann so mit Hilfe eines Stanzwerkzeugs die Antenne mit großer Präzision und außerordentlich kostengünstig hergestellt werden. Auch in der Wahl des Sektorwinkels ist man bei der erfindungsgemäßen Antenne relativ frei. Es zeigt sich, daß bei vorgegebener, nach dem Stande der Technik gewählter Trapez- oder Rechteck-Form für die erste leitende Fläche 1, nach Maßgabe der vorliegenden Erfindung stets Schlitze 10 derart eingebracht werden können, um die erfindungsgemäße Aufgabe der Erzeugung von Mehrfachresonanzen zu lösen. Eine ähnlich einfache Herstellung einer Antenne nach der Erfindung kann in gedruckter Leiterplattentechnik erfolgen, wobei auch kompliziertere Schlitzformen kostengünstig realisiert werden können.Such an antenna has the particular advantage of being simple Manufacturability. Will it over a conductive base plate or a mechanical support plate, so the first first conductive surface 1 and the bridge 4 from a sheet in one Operation together with the slots 10a and 10b with typical required slot widths of 0.5 ... 1.5 mm are punched out will. By bending the edge 5 at a right angle, the Antenna with the lower edge of the bridge 4 in a simple way mounted on the counterweight. After matching the Position of the slots and their dimensions such that Resonances of the antenna can arise at all three frequencies so with the help of a punch tool the antenna with large Precision and extremely inexpensive to manufacture. One is also in the choice of the sector angle with the invention Antenna relatively free. It turns out that for a given State-of-the-art trapezoidal or Rectangular shape for the first conductive surface 1, according to the slots 10 are always introduced in this way can to the inventive task of generating To solve multiple resonances. A similarly simple manufacture an antenna according to the invention can be printed Printed circuit board technology take place, although also more complicated Slot shapes can be realized inexpensively.

Eine erfindungsgemäße Antenne kann z.B. wie in Fig. 6, auch mit zueinander kongruenten leitenden Flächen 1 und 2 gestaltet werden. In diesem Fall verläuft der Außenmantel der Koaxialleitung 7 parallel zur Fläche 2, so daß er das elektrische Feld senkrecht zu den Flächen 1, 2 nicht stört.An antenna according to the invention can e.g. as in Fig. 6, also with mutually congruent conductive surfaces 1 and 2 can be designed. In this case, the outer jacket of the coaxial line runs 7 parallel to the surface 2, so that it is the electric field perpendicular to the areas 1, 2 does not bother.

Claims (15)

  1. An antenna with electrically low overall height, preferably for frequencies in the GHz range, comprising a first electrically-conductive surface (1) which, in a first frequency range, is no larger than 3/8 Lambda in any of its dimensions, and a second electrically-conductive surface (2) which functions as an electrical counterweight of at least the same size, and which is arranged essentially opposite and parallel to the first electrically-conductive surface (1) and at a certain distance (A) therefrom; and a conductive bridge (4) which forms a high frequency, low resistance connection between an edge (5) of the first conductive surface (1) and the second conductive surface (2) across a width (B) and the first electrically-conductive surface (1) is connected in a connection point (3) so as to conduct high frequencies to the inner conductor (7) of a coaxial cable via a conductor (15) at the antenna connection point, the outer conductor (8) of which is connected to the second electrically-conductive surface (2) and the dimensions of the antenna and the connection point (3) are selected so that the antenna is in resonance in the first frequency range, characterised in that in order to generate resonance in at least one further frequency range, slits (10) of a suitable width (9) and shape are formed in at least one of the two conducting surfaces and/or in the conductive bridge (4) and their edges are selected in such a way that they each conform to the flow of current in the electrically-conductive surfaces (1, 2) and the bridge (4) in the first and in each subsequent frequency range, in a frequency-selective manner, so that in each case the antenna is close to a resonance in the first and in each subsequent frequency range.
  2. An antenna according to claim 1, characterised in that in order to generate resonance in at least one further, higher-frequency, frequency range, slits (10) of a suitable width (9) and each with an open end facing the edge of the surface are formed at least in one of the two electrically-conductive surfaces, their shape in the surface and their lengths being selected so that they only slightly influence the current flow on the surfaces in the first frequency range, so that the effective area for resonance generation is essentially given as the entire conductive surface, but determine the flow of current on these surfaces in each subsequent frequency range in such a way that a conducting path (12) with strong currents is set up between the connection point (3) and the conductive bridge (4), the edge areas (11) of the conducting surface on both sides of this flow of current only conducting small currents so that the effective inner area (13) for resonance generation set up near the conducting bridge and this area, corresponding to the higher frequency, is smaller than the conducting surface, so that the antenna also resonates in this frequency range.
  3. An antenna according to claims 1 to 2, characterised in that in order to generate resonance in at least one further frequency range, at least one slit (10) of a suitable width (9) and with an open end facing the edge of the surface is formed in the conductive bridge (4), its shape in the surface and its length up to its closed end being selected in each case so that it only slightly influences the current flow on the surfaces in the first frequency range, the effective inductive effect of the bridge for resonance generation thus being given by the total width of the bridge, the flow of currents on this bridge in each subsequent frequency range however being determined in such a way that the effective width of the bridge, corresponding to the further frequency, is smaller than the geometric width B, so that the antenna also resonates in this frequency range.
  4. An antenna according to claims 1 to 3,
    characterised in that in the case of a large frequency ratio between a second and the first frequency range, the slits (10) are arranged, with a constant slit width (9), so they have an electrical length of approximately 1/4 Lambda in the second frequency range, so that they have a large reactance at the open end on the edge of the conducting surface.
  5. An antenna according to claims 1 to 4,
    characterised in that a narrow slit width (9) is selected to effect a geometrical reduction in the necessary slit length and the closed end of the slit is formed by the edge of a recessed surface (14) which is large in comparison with the surface of the slit, so that the slit has a large reactance in the second frequency range at its open end, this reactance being as small as possible in the first frequency range.
  6. An antenna according to claims 1 to 5,
    characterised in that the first electrically-conductive surface (1) is rectangular, and the connection point (3) is substantially disposed on the central vertex (16) of the edge (5), which forms the first conductive surface (1) with the bridge (4).
  7. An antenna according to claims 1 to 5,
    characterised in that the first electrically-conductive surface (1) is shaped as a circle with a missing segment and the connection point (3) is substantially disposed on the central vertex (16) of the substantially straight edge (5) which is formed by the missing segment of the circle and which forms the first conductive surface (1) with the bridge (4).
  8. An antenna according to claims 1 to 5,
    characterised in that the first electrically-conductive surface (1) is shaped as a sector of a circle with a missing sector triangle at the point of the circle sector, the connection point (3) being substantially disposed on the bisector (6) of the circle sector, the opening angle of the circle sector being less than 180 degrees.
  9. An antenna according to claims 1 to 8,
    characterised in that at least two slits (10) on the first electrically-conductive surface (1) lead from the edge substantially in a straight line towards the conducting bridge (4), symmetrically about the line of symmetry, and in the direction of the effective inner area (13) for the further frequency range.
  10. An antenna according to claim 7 or 8, characterised in that slits, in the form of sector radii, run in a substantially straight line from the edge of the first electrically-conductive surface (1) in the direction of the effective inner area (13).
  11. An antenna according to claims 1 to 10,
    characterised in that slits of varying length are arranged on the first and/or second conducting surface (1, 2) for the development of further resonances for further frequency ranges.
  12. An antenna according to claim 11, characterised in that a plurality of slits, running symmetrically about the line of symmetry in a substantially straight line, are provided so that effective inner areas are set up for resonance generation in the D net, E net and for the satellite-supported navigation system GPS.
  13. An antenna according to claims 1 to 12,
    characterised in that the second conductive surface (2) is a substantially horizontal conductive surface of a motor vehicle body.
  14. An antenna according to claims 1 and 2,
    characterised in that the first and second conductive surface are substantially congruent to one another and the outer jacket of the coaxial cable (7) is parallel to the second conductive surface (2) so that it does not disturb the electrical field vertical to the surfaces (1, 2).
  15. An antenna according to claim 14, characterised in that it is disposed on a non-conductive surface of a motor vehicle body.
EP96907252A 1995-03-21 1996-03-19 Low electric overall height antenna Expired - Lifetime EP0761021B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19510236A DE19510236A1 (en) 1995-03-21 1995-03-21 Flat antenna with low overall height
DE19510236 1995-03-21
PCT/DE1996/000472 WO1996029757A1 (en) 1995-03-21 1996-03-19 Low electric overall height

Publications (2)

Publication Number Publication Date
EP0761021A1 EP0761021A1 (en) 1997-03-12
EP0761021B1 true EP0761021B1 (en) 1998-07-22

Family

ID=7757285

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96907252A Expired - Lifetime EP0761021B1 (en) 1995-03-21 1996-03-19 Low electric overall height antenna

Country Status (5)

Country Link
US (1) US5850198A (en)
EP (1) EP0761021B1 (en)
DE (2) DE19510236A1 (en)
ES (1) ES2120811T3 (en)
WO (1) WO1996029757A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043786A (en) * 1997-05-09 2000-03-28 Motorola, Inc. Multi-band slot antenna structure and method
DE19817573A1 (en) * 1998-04-20 1999-10-21 Heinz Lindenmeier Antenna for multiple radio services
US6127983A (en) * 1998-10-08 2000-10-03 The United States Of America As Represented By The Secretary Of The Navy Wideband antenna for towed low-profile submarine buoy
GB2345194B (en) * 1998-12-22 2003-08-06 Nokia Mobile Phones Ltd Dual band antenna for a handset
DE29823087U1 (en) * 1998-12-28 2000-05-04 reel Reinheimer Elektronik GmbH, 35435 Wettenberg Broadband, linearly polarized multi-range antenna, especially for mobile use in vehicles
AU7999500A (en) 1999-10-12 2001-04-23 Arc Wireless Solutions, Inc. Compact dual narrow band microstrip antenna
WO2001045200A1 (en) * 1999-12-17 2001-06-21 Rangestar Wireless, Inc. Orthogonal slot antenna assembly
JP2002076757A (en) * 2000-09-01 2002-03-15 Hitachi Ltd Radio terminal using slot antenna
SE524825C2 (en) * 2001-03-07 2004-10-12 Smarteq Wireless Ab Antenna coupling device cooperating with an internal first antenna arranged in a communication device
US6441792B1 (en) * 2001-07-13 2002-08-27 Hrl Laboratories, Llc. Low-profile, multi-antenna module, and method of integration into a vehicle
US6433756B1 (en) 2001-07-13 2002-08-13 Hrl Laboratories, Llc. Method of providing increased low-angle radiation sensitivity in an antenna and an antenna having increased low-angle radiation sensitivity
US6545647B1 (en) 2001-07-13 2003-04-08 Hrl Laboratories, Llc Antenna system for communicating simultaneously with a satellite and a terrestrial system
US6739028B2 (en) * 2001-07-13 2004-05-25 Hrl Laboratories, Llc Molded high impedance surface and a method of making same
US6670921B2 (en) 2001-07-13 2003-12-30 Hrl Laboratories, Llc Low-cost HDMI-D packaging technique for integrating an efficient reconfigurable antenna array with RF MEMS switches and a high impedance surface
US20070211403A1 (en) * 2003-12-05 2007-09-13 Hrl Laboratories, Llc Molded high impedance surface
DE102006039357B4 (en) * 2005-09-12 2018-06-28 Heinz Lindenmeier Antenna diversity system for radio reception for vehicles
DE102007017478A1 (en) * 2007-04-13 2008-10-16 Lindenmeier, Heinz, Prof. Dr. Ing. Receiving system with a circuit arrangement for the suppression of switching interference in antenna diversity
EP2037593A3 (en) * 2007-07-10 2016-10-12 Delphi Delco Electronics Europe GmbH Antenna diversity array for relatively broadband radio reception in automobiles
DE102007039914A1 (en) * 2007-08-01 2009-02-05 Lindenmeier, Heinz, Prof. Dr. Ing. Antenna diversity system with two antennas for radio reception in vehicles
DE102008003532A1 (en) * 2007-09-06 2009-03-12 Lindenmeier, Heinz, Prof. Dr. Ing. Antenna for satellite reception
PT2209221T (en) * 2009-01-19 2018-12-27 Fuba Automotive Electronics Gmbh Receiver for summating phased antenna signals
DE102009011542A1 (en) * 2009-03-03 2010-09-09 Heinz Prof. Dr.-Ing. Lindenmeier Antenna for receiving circularly in a direction of rotation of the polarization of broadcast satellite radio signals
DE102009023514A1 (en) * 2009-05-30 2010-12-02 Heinz Prof. Dr.-Ing. Lindenmeier Antenna for circular polarization with a conductive base
CN107093790B (en) * 2016-02-18 2020-05-12 元太科技工业股份有限公司 Slot antenna device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3736591A (en) * 1970-10-30 1973-05-29 Motorola Inc Receiving antenna for miniature radio receiver
US4070676A (en) * 1975-10-06 1978-01-24 Ball Corporation Multiple resonance radio frequency microstrip antenna structure
US4067016A (en) * 1976-11-10 1978-01-03 The United States Of America As Represented By The Secretary Of The Navy Dual notched/diagonally fed electric microstrip dipole antennas
US4191959A (en) * 1978-07-17 1980-03-04 The United States Of America As Represented By The Secretary Of The Army Microstrip antenna with circular polarization
JPS60244103A (en) * 1984-05-18 1985-12-04 Nec Corp Antenna
JPH061848B2 (en) * 1984-09-17 1994-01-05 松下電器産業株式会社 antenna
JPS6187434A (en) * 1984-10-04 1986-05-02 Nec Corp Portable radio equipment
CA1263745A (en) * 1985-12-03 1989-12-05 Nippon Telegraph & Telephone Corporation Shorted microstrip antenna
US4692769A (en) * 1986-04-14 1987-09-08 The United States Of America As Represented By The Secretary Of The Navy Dual band slotted microstrip antenna
US4835541A (en) * 1986-12-29 1989-05-30 Ball Corporation Near-isotropic low-profile microstrip radiator especially suited for use as a mobile vehicle antenna
US5355142A (en) * 1991-10-15 1994-10-11 Ball Corporation Microstrip antenna structure suitable for use in mobile radio communications and method for making same
DE4302905C1 (en) * 1993-02-02 1994-03-17 Kathrein Werke Kg Directional antenna, pref. symmetrical dipole type - is formed by cutting and/or stamping out sections of reflector wall and bending remaining bridging piece
DE69409447T2 (en) * 1993-07-30 1998-11-05 Matsushita Electric Ind Co Ltd Antenna for mobile radio
US5627550A (en) * 1995-06-15 1997-05-06 Nokia Mobile Phones Ltd. Wideband double C-patch antenna including gap-coupled parasitic elements

Also Published As

Publication number Publication date
DE59600359D1 (en) 1998-08-27
EP0761021A1 (en) 1997-03-12
ES2120811T3 (en) 1998-11-01
DE19510236A1 (en) 1996-09-26
US5850198A (en) 1998-12-15
WO1996029757A1 (en) 1996-09-26

Similar Documents

Publication Publication Date Title
EP0761021B1 (en) Low electric overall height antenna
DE60211316T2 (en) ANTENNA ARRANGEMENT
DE69423939T2 (en) Antennas
DE60118449T2 (en) Surface mounted antenna and communication device with such an antenna
DE10025262B4 (en) antenna device
DE602005002697T2 (en) Small planar antenna with increased bandwidth and small strip antenna
DE69900773T2 (en) Disk antenna with two resonance frequencies
DE69908264T2 (en) COMPACT SPIRAL ANTENNA
DE60104756T2 (en) Surface mounted antenna, method of adjusting and adjusting the two-frequency resonance of the antenna and communication device with such an antenna
DE69624300T2 (en) antenna
DE69804023T2 (en) ANTENNA
DE69218045T2 (en) Plane antenna
DE10304911B4 (en) Combination antenna arrangement for multiple radio services for vehicles
EP2784874B1 (en) Broadband monopole antenna for vehicles for two frequency bands separated by a frequency gap in the decimeter wavelength
EP2693565B1 (en) Electrical radiator for vertically polarised radio signals
DE10029733A1 (en) Antenna arrangement for mobile phones
EP1336222B1 (en) Pifa antenna device for mobile communication terminals
WO2006032368A1 (en) Antenna
DE69817133T2 (en) Surface-mounted antenna and communication device with it
WO2016042061A1 (en) Multi-structure broadband monopole antenna for two frequency bands in the decimeter wave range separated by a frequency gap, for motor vehicles
DE10022107A1 (en) Integrated antenna for mobile phones
DE102015009221A1 (en) Improved dual-band tunable bandpass filter
DE10292326T5 (en) Antenna device and wireless device using them
DE2708306C2 (en) Crossover
DE60313588T2 (en) MICROWAVE ANTENNA

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19961115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19971212

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FUBA AUTOMOTIVE GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 59600359

Country of ref document: DE

Date of ref document: 19980827

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2120811

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981023

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040304

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040317

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040318

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050321

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050319

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050321

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150327

Year of fee payment: 20

Ref country code: IT

Payment date: 20150324

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150317

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59600359

Country of ref document: DE