EP1774612A1 - Fuel-cell stack comprising a tensioning device - Google Patents
Fuel-cell stack comprising a tensioning deviceInfo
- Publication number
- EP1774612A1 EP1774612A1 EP05770274A EP05770274A EP1774612A1 EP 1774612 A1 EP1774612 A1 EP 1774612A1 EP 05770274 A EP05770274 A EP 05770274A EP 05770274 A EP05770274 A EP 05770274A EP 1774612 A1 EP1774612 A1 EP 1774612A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel cell
- cell stack
- elements
- fuel
- thermal insulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04067—Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
- H01M8/04074—Heat exchange unit structures specially adapted for fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/247—Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/247—Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
- H01M8/248—Means for compression of the fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1231—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention relates to a fuel cell stack according to the preamble of patent claim 1.
- Fuel cells have an ion-conducting electrolyte, which is contacted on both sides via two electrodes, anode and cathode.
- the anode is supplied with a reducing, mostly hydrogen-containing fuel, the cathode an oxidant, for example air.
- the electrons released at one electrode during the oxidation of the hydrogen contained in the fuel are conducted via an external load circuit to the other electrode.
- the released chemical energy is thus directly available to the load circuit with high efficiency as electrical energy.
- planar fuel cells are often stacked in the form of a fuel cell stack and electrically connected in series.
- a fuel cell stack is held together by pressing forces, wherein the pressing forces are applied by a tensioning device.
- the tensioning device suitably comprises interconnected pressure distribution elements, by means of which the pressure forces generated by means of the tensioning device are uniformly applied to the fuel cell stack.
- the stacked fuel cells and the tensioning device are then surrounded with a heat-insulating device to reduce heat losses to the outside.
- Fuel cells are designed, for example, as low-temperature fuel cells, such as, for example, as PEMFC (operating temperature of about 100 ° C.). This has the advantages that suitable materials for the tensioning device are available in this temperature range.
- SOFC solid oxide fuel cell
- SOFC solid oxide fuel cell
- the materials used for the clamping device generally have a greater coefficient of thermal expansion than the stacks of fuel cells.
- re-crystallization effects occur in the metals used for the chuck, softening them.
- the invention provides that the
- Heat-insulating device between the fuel cell and the tensioning device is arranged.
- the basic idea of the invention is based on the fact that, in such an arrangement, all the elements of the tensioning device subject to tensile stress as well as all elastic elements are arranged outside the thermal insulation in the cold region.
- the tensioning device on tension elements which are designed as a rod, rope, wire, chain, tape or fiber material.
- substantially less material can be used for the tension elements than is usual in the prior art.
- the tension elements consist of a light metal, such as aluminum. This leads both to a cost saving and to a reduction of the volume and the weight of the fuel cell stack.
- a fuel cell system with an energy-generating unit comprising a Refor ⁇ mer, a fuel cell stack with fuel cells and a Nachbrenntician, wherein the fuel cell system further comprises a tensioning device with pressure distribution elements and a thermal insulation device, and the ener ⁇ gieendde unit is arranged between the pressure distribution elements, wherein the thermal insulation device between the energy-generating unit and the tensioning device is arranged.
- FIG. 1 shows a cross section through a fuel cell stack according to the invention in a first embodiment
- FIG 3 shows a cross section through a fuel cell stack in a third embodiment of the invention.
- FIG. 4 a and 4 b are cross sections through a fuel cell stack in a fourth embodiment of the invention, wherein in Figure 4 a is a cross section through FIG. 4 b shows the fuel cell stack along the line IV A - IV A, FIG.
- FIG. 5 a and 5 b are cross sections through a fuel cell stack in a fifth embodiment of the invention, wherein FIG. 5 a shows a cross section through the fuel cell stack of FIG. 5 b along the line V A -V A, and FIG
- FIG. 6 shows a cross section through an inventive fuel cell system with a power generating unit.
- a fuel cell stack 10 is shown.
- the stacked fuel cells 12 which are surrounded by a heat-insulating device 14 consisting of a plurality of heat-insulating elements 14a, 14b, 14c, 14d.
- the fuel cells 12 and the thermal insulation device 14 are clamped together in a tensioning device 16.
- the clamping device has two pressure distribution elements 18, which are designed here as two parallel planar plates, and which are connected by tension elements 20 miteinan ⁇ .
- tension elements 20 miteinan ⁇ By this embodiment of the clamping device 16, a contact pressure is exerted on the composite of fuel cells 12 and furnisheddämmvorrich ⁇ device 14.
- the pressure distribution elements 18 ensure that the pressure is distributed uniformly over the entire surface of the heat-insulating elements 14a and 14c, whereby a distribution of the compressive forces on the fuel cells 12 takes place.
- the tensioning device 16 further has spring elements 22, by means of which pressure load on the composite of fuel cells 12 and heat-insulating device 14 can be set very finely. In addition, a readjustment can take place if expansion or shrinkage, for example by sintering of the thermal insulation device 14 occur.
- the tension elements 20 can be embodied here as a rod, rope, wire, chain, strip or fiber material, so that in comparison to the prior art significantly less material must be used and thus a lighter and raumspa ⁇ rendere construction can be achieved.
- the tension elements 20 are made of a light metal, for example aluminum.
- the weight of the fuel cell stack 10 is thus significantly reduced.
- the spring elements 22 may be formed as helical springs, disc springs, torsion springs, cable springs or pneumatic springs, wherein in particular elastomers may be used as the material. Since both the tension elements 20 and the spring elements 22 are outside the thermal insulation device 14, they are exposed only to lower temperatures. For these elements 20, 22 can thus less temperature-resistant and therefore cheaper materials are used as in the prior art, where they are disposed within the thermal insulation device 14 and thus are exposed to much higher temperatures.
- the heat losses of the fuel cell stack 10 are significantly lower overall since no parts of the tensioning device 16 are guided out of the hot into the cold region.
- the heat-insulating elements 14a to 14d of the thermal insulation device 14 can be designed either as a monolayer of microporous insulating materials, a sandwich construction or with a composite material. Such thermal insulation elements have a particularly pressure-resistant structure, so that the pressures built up by the tensioning device 16 can be particularly well intercepted.
- the heat-insulating device 14 is cylindrical or spherical in shape. Accordingly, the pressure distribution elements 18 may be hemispherical shell-shaped or semi-cylindrical. Between the pressure distribution elements 18, the spring elements 22 are arranged. A connection between the two pressure distribution Elements 18 is achieved here by tension elements 20 which are arranged in the transition region between the two pressure distribution elements 18 near the spring elements 22 an ⁇ . Similar to the embodiment of FIG. 1, the tension elements 20 exert a tensile force on the two pressure distribution elements 18. In this embodiment, a particularly favorable pressure distribution over the Halbku ⁇ gelschale or the half-cylinder shell of the pressure distribution element 18 is achieved.
- the thermal insulation device 14 of the fuel cell stack 10 shown in FIG. 3 has three porous layer elements 24, which are directly adjacent to the fuel cells 12.
- the porous layer elements 24 are at least partially surrounded by sheet metal elements 25, which are preferably made of metal. If the fuel cell stack 10 is acted upon from above and with force (symbolized here by arrows F), the layer elements 24 surrounded by the sheet metal elements 25 remain stable in their shape and the heat insulation elements 14 a, 14 b are prevented by the layer elements 24 therein to flow upwards or downwards over edges 13 of the fuel cells 12, which would lead to a destruction of the heat-insulating device 14 or the fuel cells 12. Due to the layer elements 24 surrounded by the sheet metal elements 25, the entire heat-insulating device 14 remains dimensionally stable even under the application of force F.
- FIGS. 4 a, 4 b, 5 a and 5 b correspond in their basic structure to those of FIG. 3, but here a gaseous operating medium is passed through at least one porous layer element 24.
- FIGS. 4 a and 5 a respectively show the cross sections through the fuel cell stack 10 of FIGS. 4 b and 5 b in the direction of the lines IV A-IV A or VA-VA with the tensioning device 16 and the pressure distribution elements 18 and the spring elements 22nd
- gaseous operating medium is conveyed in the direction of arrow Y (FIG. 4 b on the left) through the fuel cells 12 to exit on the opposite side (FIG.
- porous layer element 24 As a gas-conducting element, parts of the gas guide can be saved in the fuel cell stack 10.
- the gaseous operating medium is conveyed in the direction of arrow Y (FIG. 5b, left) through the lower left layer element 24 of porous, viable metal foam and via a distributor system (not shown) to the fuel cells 12.
- the operating medium then passes through the fuel cells 12 (in FIG. 5b in the plane of the drawing to the right, symbolized by the arrow W), in order on the rear side in FIGS. 5a and 5b.
- FIG. 6 shows a fuel cell system 26 with a unit that generates energy, which consists of a reformer 28, the fuel cell stack 10 with fuel cells 12 and an afterburner unit 30 as central components.
- the components 28, 10, 30 of the fuel cell system 26 are surrounded by a thermal insulation device 14, consisting of the heat-insulating elements 14 a - d and the porous layer elements 24.
- the tensioning device (not shown here) is arranged outside the thermal insulation device 14 and exerts tensioning forces F on the fuel cell system 26, as a result of which is held together.
- the construction of the fuel cell system 26 is otherwise analogous to the construction of the embodiments of the fuel cell stack 10 shown in FIGS. 3 to 5. Of course, all features shown for the fuel cell stacks 10 can also be applied to the fuel cell system 26.
- the described embodiments of the fuel cell stack 10 and the fuel cell system 26 are particularly suitable for the use of solid oxide fuel cells, which are operated at temperatures of 800 to 900 c C.
- the described materials and components have their advantages in terms of volume and weight reduction and thus cost reduction.
- the spring elements 22 are to be solved.
- the pressure distribution elements 18 can be separated from the tension elements 20. It is now possible, either by removing the heat-insulating device 14 from the fuel cell stack 10 or from the fuel cell system 26, to exchange the fuel cells 12 (and possibly the reformer 28 and the afterburning unit 30) alone or together with the heat-insulating device 14. After replacement, the pressure distribution elements 18 are connected to the tension elements 20. Finally, by attaching the spring elements 22, the entire fuel cell stack 10 or the fuel cell system 26 is assembled under tension. LIST OF REFERENCE NUMBERS
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
The invention relates to a fuel-cell stack (10) comprising fuel cells (12), a tensioning device (16) and a thermal insulation device (14). The tensioning device (16) comprises pressure distribution elements (18) and the fuel cells (10) are located between the pressure distribution elements (18). According to the invention, the fuel-cell stack (10) is characterised in that the thermal insulation device (14) is located between the fuel cells (12) and the tensioning device (16).
Description
BRENNSTOFFZELLENSTAPEL MIT SPANNVORRICHTUNG FUEL CELL STACK WITH CLAMPING DEVICE
Die Erfindung betrifft einen Brennstoffzellenstapel gemäß dem Oberbegriff von Patentanspruch 1.The invention relates to a fuel cell stack according to the preamble of patent claim 1.
Brennstoffzellen weisen einen ionenleitenden Elektrolyten auf, der beidseitig über zwei Elektroden, Anode und Kathode, kontaktiert wird. Der Anode wird ein redu- zierender, meist wasserstoffhaltiger Brennstoff zugeführt, der Kathode ein Oxidati- onsmittel, zum Beispiel Luft. Die bei der Oxidation des im Brennstoff enthaltenen Wasserstoffs an einer Elektrode freigesetzten Elektronen werden über einen ex¬ ternen Laststromkreis zu der anderen Elektrode geführt. Die freiwerdende chemi¬ sche Energie steht so dem Laststromkreis mit hohem Wirkungsgrad direkt als e- lektrische Energie zur Verfügung.Fuel cells have an ion-conducting electrolyte, which is contacted on both sides via two electrodes, anode and cathode. The anode is supplied with a reducing, mostly hydrogen-containing fuel, the cathode an oxidant, for example air. The electrons released at one electrode during the oxidation of the hydrogen contained in the fuel are conducted via an external load circuit to the other electrode. The released chemical energy is thus directly available to the load circuit with high efficiency as electrical energy.
Zur Erzielung höherer Leistungen werden mehrere planare Brennstoffzellen häufig in Form eines Brennstoffzellenstapels aufeinander geschichtet und elektrisch in Reihe geschaltet. Ein solcher Brennstoffzellenstapel wird durch Presskräfte zu- sammengehalten, wobei die Presskräfte durch eine Spannvorrichtung aufgebracht werden. Die Spannvorrichtung umfasst in geeigneter weise miteinander verbun¬ dene Druckverteilelemente, durch welche die mittels der Spannvorrichtung er¬ zeugten Druckkräfte gleichmäßig auf den Brennstoffzellenstapel aufgebracht wer¬ den. Die gestapelten Brennstoffzellen und die Spannvorrichtung werden dann, um die Wärmeverluste nach außen zu verringern, mit einer Wärmedämmvorrichtung umgeben.
Brennstoffzellen werden beispielsweise als Niedertemperaturbrennstoffzellen, wie zum Beispiel als PEMFC (polymer electrolyte membrane fuel cell) mit Betriebs¬ temperaturen von etwa 1000C ausgeführt: Dies hat den Vorteile, dass in diesem Temperaturbereich geeignete Materialien für die Spannvorrichtung verfügbar sind. Außerdem gibt es Hochtemperaturbrennstoffzellen, insbesondere die Festoxid¬ brennstoffzelle (SOFC, solid oxide fuel cell), die bei Temperaturen oberhalb von 8000C betrieben wird. In diesem Temperaturbereich weisen viele Materialien keine dauerhaft elastische Wirkung auf, da durch Kriechvorgänge die eingebrachten Vorspannkräfte aufgezehrt werden. Außerdem haben die für die Spannvorrichtung verwendeten Materialien in der Regel einen größeren thermischen Ausdehnungs¬ koeffizienten auf als die Stapel aus Brennstoffzellen. Darüber hinaus kommt es in dem für die Spannvorrichtung verwendeten Metallen zu Rekristallisationseffekten, wodurch diese weich werden.To achieve higher performance several planar fuel cells are often stacked in the form of a fuel cell stack and electrically connected in series. Such a fuel cell stack is held together by pressing forces, wherein the pressing forces are applied by a tensioning device. The tensioning device suitably comprises interconnected pressure distribution elements, by means of which the pressure forces generated by means of the tensioning device are uniformly applied to the fuel cell stack. The stacked fuel cells and the tensioning device are then surrounded with a heat-insulating device to reduce heat losses to the outside. Fuel cells are designed, for example, as low-temperature fuel cells, such as, for example, as PEMFC (operating temperature of about 100 ° C.). This has the advantages that suitable materials for the tensioning device are available in this temperature range. In addition, there are high-temperature fuel cells, in particular the solid oxide fuel cell (SOFC, solid oxide fuel cell), which is operated at temperatures above 800 0 C. In this temperature range, many materials have no permanently elastic effect, since by creeping the introduced biasing forces are consumed. In addition, the materials used for the clamping device generally have a greater coefficient of thermal expansion than the stacks of fuel cells. In addition, re-crystallization effects occur in the metals used for the chuck, softening them.
Um diese Probleme zu vermeiden, ist erfindungsgemäß vorgesehen, dass dieTo avoid these problems, the invention provides that the
Wärmedämmvorrichtung zwischen den Brennstoffzellen und der Spannvorrichtung angeordnet ist.Heat-insulating device between the fuel cell and the tensioning device is arranged.
Die Grundidee der Erfindung beruht darauf, dass bei einer derartigen Anordnung alle zugbelasteten Elemente der Spannvorrichtung sowie alle elastischen Elemen¬ te im kalten Bereich außerhalb der Wärmedämmung angeordnet werden.The basic idea of the invention is based on the fact that, in such an arrangement, all the elements of the tensioning device subject to tensile stress as well as all elastic elements are arranged outside the thermal insulation in the cold region.
Vorteilhafterweise weist die Spannvorrichtung Zugelemente auf, die als Stab, Seil, Draht, Kette, Band oder Fasermaterial ausgeführt sind. Damit kann wesentlich weniger Material für die Zugelemente eingesetzt werden als im Stand der Technik üblich. Besonders günstig ist es, wenn die Zugelemente aus einem Leichtmetall, wie zum Beispiel Aluminium, bestehen. Dies führt sowohl zu einer Kosteneinspa¬ rung als auch zu einer Reduzierung des Volumens und des Gewichts des Brenn¬ stoffzellenstapels.
Erfindungsgemäß ist weiter ein Brennstoffzellensystem mit einer energieerzeu¬ genden Einheit vorgesehen, wobei die energieerzeugende Einheit einen Refor¬ mer, einen Brennstoffzellenstapel mit Brennstoffzellen und eine Nachbrenneinheit umfasst, wobei das Brennstoffzellensystem weiter einer Spannvorrichtung mit Druckverteilelementen und eine Wärmedämmvorrichtung aufweist, und die ener¬ gieerzeugende Einheit zwischen den Druckverteilelementen angeordnet ist, wobei die Wärmedämmvorrichtung zwischen der energieerzeugenden Einheit und der Spannvorrichtung angeordnet ist. Bei einer derartigen Anordnung einer energieer¬ zeugenden Einheit werden alle zugbelasteten Elemente der Spannvorrichtung so- wie alle elastischen Elemente im kalten Bereich außerhalb der Wärmedämmung angeordnet.Advantageously, the tensioning device on tension elements, which are designed as a rod, rope, wire, chain, tape or fiber material. As a result, substantially less material can be used for the tension elements than is usual in the prior art. It is particularly favorable if the tension elements consist of a light metal, such as aluminum. This leads both to a cost saving and to a reduction of the volume and the weight of the fuel cell stack. According to the invention, a fuel cell system with an energy-generating unit is further provided, wherein the energy-generating unit comprises a Refor¬ mer, a fuel cell stack with fuel cells and a Nachbrenneinheit, wherein the fuel cell system further comprises a tensioning device with pressure distribution elements and a thermal insulation device, and the ener¬ gieerzeugende unit is arranged between the pressure distribution elements, wherein the thermal insulation device between the energy-generating unit and the tensioning device is arranged. With such an arrangement of an energy generating unit, all the elements of the tensioning device subject to tensile stress and all elastic elements in the cold region are arranged outside the thermal insulation.
Weitere Ausfϋhrungsformen der Erfindung sind den Unteransprüchen zu entneh¬ men.Further embodiments of the invention can be found in the subclaims.
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläu¬ tert, wobei auf Zeichnungen Bezug genommen wird. Die Zeichnungen zeigen:The invention will be explained in more detail below with reference to exemplary embodiments, reference being made to drawings. The drawings show:
Fig. 1 einen Querschnitt durch einen erfindungsgemäßen Brennstoffzellenstapel in einer ersten Ausführungsform,1 shows a cross section through a fuel cell stack according to the invention in a first embodiment,
Fig. 2 einen Querschnitt durch einen Brennstoffzellenstapel in einer zweiten Aus¬ führungsform der Erfindung,2 shows a cross section through a fuel cell stack in a second embodiment of the invention Aus¬
Fig. 3 einen Querschnitt durch einen Brennstoffzellenstapel in einer dritten Aus¬ führungsform der Erfindung,3 shows a cross section through a fuel cell stack in a third embodiment of the invention.
Fig. 4 a und 4 b Querschnitte durch einen Brennstoffzellenstapel in einer vierten Ausführungsform der Erfindung, wobei in Figur 4 a ein Querschnitt durch
den Brennstoffzellenstapel von Figur 4 b entlang der Linie IV A - IV A ge¬ zeigt ist,4 a and 4 b are cross sections through a fuel cell stack in a fourth embodiment of the invention, wherein in Figure 4 a is a cross section through FIG. 4 b shows the fuel cell stack along the line IV A - IV A, FIG.
Fig. 5 a und 5 b Querschnitte durch einen Brennstoffzellenstapel in einer fünften Ausführungsform der Erfindung, wobei in Figur 5 a ein Querschnitt durch den Brennstoffzellenstapel von Figur 5 b entlang der Linie V A - V A ge¬ zeigt ist, und5 a and 5 b are cross sections through a fuel cell stack in a fifth embodiment of the invention, wherein FIG. 5 a shows a cross section through the fuel cell stack of FIG. 5 b along the line V A -V A, and FIG
Fig. 6 einen Querschnitt durch ein erfindungsgemäßes Brennstoffzellensystem mit einer energieerzeugenden Einheit.6 shows a cross section through an inventive fuel cell system with a power generating unit.
In Fig. 1 ist ein Brennstoffzellenstapel 10 dargestellt. Im Zentrum des Brennstoff¬ zellenstapels 10 befinden sich die gestapelten Brennstoffzellen 12, die von einer aus mehreren Wärmedämmelementen 14a, 14b, 14c, 14d bestehenden Wärme- dämmvorrichtung 14 umgeben sind. Die Brennstoffzellen 12 und die Wärme¬ dämmvorrichtung 14 sind zusammen in eine Spannvorrichtung 16 eingespannt. Die Spannvorrichtung weist zwei Druckverteilelemente 18 auf, die hier als zwei parallele ebene Platten ausgebildet sind, und die durch Zugelemente 20 miteinan¬ der verbunden sind. Durch diese Ausführung der Spannvorrichtung 16 wird ein Anpressdruck auf den Verbund aus Brennstoffzellen 12 und Wärmedämmvorrich¬ tung 14 ausgeübt. Die Druckverteilelemente 18 sorgen dabei dafür, dass der Druck gleichmäßig auf die gesamte Fläche der Wärmedämmelemente 14a und 14c verteilt wird, wodurch auch eine Verteilung der Druckkräfte auf die Brennstoff¬ zellen 12 erfolgt. Die Spannvorrichtung 16 weist weiter Federelemente 22 auf, durch die Druckbelastung auf den Verbund aus Brennstoffzellen 12 und Wärme¬ dämmvorrichtung 14 sehr fein eingestellt werden kann. Darüber hinaus kann eine Nachjustierung erfolgen, falls Dehnungen oder Schrumpfungen, z.B. durch Sintern der Wärmedämmvorrichtung 14 auftreten.
Die Zugelemente 20 können hier als Stab, Seil, Draht, Kette, Band oder Faserma¬ terial ausgeführt sein, so dass im Vergleich zum Stand der Technik wesentlich weniger Material eingesetzt werden muss und damit eine leichtere und raumspa¬ rendere Konstruktion erreicht werden kann. Besonders bevorzugt ist, wenn die Zugelemente 20 aus einem Leichtmetall, zum Beispiel Aluminium, bestehen. Das Gewicht des Brennstoffzellenstapels 10 wird damit deutlich reduziert. Die Feder¬ elemente 22 können als Schraubenfedern, Tellerfedern, Schenkelfedern, Seilzug¬ federn oder pneumatische Federn ausgebildet sein, wobei insbesondere Elasto¬ mere als Material zum Einsatz kommen können. Da sowohl die Zugelemente 20 als auch die Federelemente 22 außerhalb der Wärmedämmvorrichtung 14 liegen, werden diese nur niedrigeren Temperaturen ausgesetzt. Für diese Elemente 20, 22 können damit weniger temperaturbeständige und damit auch preisgünstigere Materialien als im Stand der Technik eingesetzt werden, wo sie innerhalb der Wärmedämmvorrichtung 14 angeordnet sind und damit wesentlich höheren Tem- peraturen ausgesetzt sind. Darüber hinaus wird durch die außenliegende Anord¬ nung der Spannvorrichtung 16 erreicht, dass die Wärmeverluste des Brennstoff¬ zellenstapels 10 insgesamt deutlich geringer ausfallen, da keine Teile der Spann¬ vorrichtung 16 aus dem heißen in den kalten Bereich geführt sind. Die Wärme¬ dämmelemente 14a bis 14d der Wärmdämmvorrichtung 14 können in einer be- sonders bevorzugten Ausführungsform entweder als Monolayer aus mikroporösen Dämmstoffen, Sandwichkonstruktion oder mit einem Compositematerial ausge¬ führt sein. Derartige Wärmedämmelemente haben eine besonders druckfeste Struktur, so dass die durch die Spannvorrichtung 16 aufgebauten Drücke beson¬ ders gut abgefangen werden können.In Fig. 1, a fuel cell stack 10 is shown. In the center of the fuel cell stack 10 are the stacked fuel cells 12, which are surrounded by a heat-insulating device 14 consisting of a plurality of heat-insulating elements 14a, 14b, 14c, 14d. The fuel cells 12 and the thermal insulation device 14 are clamped together in a tensioning device 16. The clamping device has two pressure distribution elements 18, which are designed here as two parallel planar plates, and which are connected by tension elements 20 miteinan¬. By this embodiment of the clamping device 16, a contact pressure is exerted on the composite of fuel cells 12 and Wärmedämmvorrich¬ device 14. The pressure distribution elements 18 ensure that the pressure is distributed uniformly over the entire surface of the heat-insulating elements 14a and 14c, whereby a distribution of the compressive forces on the fuel cells 12 takes place. The tensioning device 16 further has spring elements 22, by means of which pressure load on the composite of fuel cells 12 and heat-insulating device 14 can be set very finely. In addition, a readjustment can take place if expansion or shrinkage, for example by sintering of the thermal insulation device 14 occur. The tension elements 20 can be embodied here as a rod, rope, wire, chain, strip or fiber material, so that in comparison to the prior art significantly less material must be used and thus a lighter and raumspa¬ rendere construction can be achieved. It is particularly preferred if the tension elements 20 are made of a light metal, for example aluminum. The weight of the fuel cell stack 10 is thus significantly reduced. The spring elements 22 may be formed as helical springs, disc springs, torsion springs, cable springs or pneumatic springs, wherein in particular elastomers may be used as the material. Since both the tension elements 20 and the spring elements 22 are outside the thermal insulation device 14, they are exposed only to lower temperatures. For these elements 20, 22 can thus less temperature-resistant and therefore cheaper materials are used as in the prior art, where they are disposed within the thermal insulation device 14 and thus are exposed to much higher temperatures. In addition, due to the external arrangement of the tensioning device 16, the heat losses of the fuel cell stack 10 are significantly lower overall since no parts of the tensioning device 16 are guided out of the hot into the cold region. In a particularly preferred embodiment, the heat-insulating elements 14a to 14d of the thermal insulation device 14 can be designed either as a monolayer of microporous insulating materials, a sandwich construction or with a composite material. Such thermal insulation elements have a particularly pressure-resistant structure, so that the pressures built up by the tensioning device 16 can be particularly well intercepted.
Bei dem in Fig. 2 gezeigten Brennstoffzellenstapel 10 ist die Wärmedämmvorrich¬ tung 14 zylinder- beziehungsweise kugelförmig ausgebildet. Dementsprechend können die Druckverteilelemente 18 halbkugelschalenförmig oder halbzylinder- förmig ausgebildet sein. Zwischen den Druckverteilelementen 18 sind die Feder- elemente 22 angeordnet. Eine Verbindung zwischen den beiden Druckverteil-
elementen 18 wird hier durch Zugelemente 20 erreicht, die im Übergangsbereich zwischen den beiden Druckverteilelementen 18 nahe den Federelementen 22 an¬ geordnet sind. Ähnlich wie in der Ausführungsform von Fig. 1 üben die Zugele¬ mente 20 eine Zugkraft auf die beiden Druckverteilelemente 18 aus. Bei dieser Ausführungsform wird eine besonders günstige Druckverteilung über die Halbku¬ gelschale beziehungsweise die Halbzylinderschale des Druckverteilelements 18 erreicht.In the fuel cell stack 10 shown in FIG. 2, the heat-insulating device 14 is cylindrical or spherical in shape. Accordingly, the pressure distribution elements 18 may be hemispherical shell-shaped or semi-cylindrical. Between the pressure distribution elements 18, the spring elements 22 are arranged. A connection between the two pressure distribution Elements 18 is achieved here by tension elements 20 which are arranged in the transition region between the two pressure distribution elements 18 near the spring elements 22 an¬. Similar to the embodiment of FIG. 1, the tension elements 20 exert a tensile force on the two pressure distribution elements 18. In this embodiment, a particularly favorable pressure distribution over the Halbku¬ gelschale or the half-cylinder shell of the pressure distribution element 18 is achieved.
Die Wärmedämmvorrichtung 14 des in Fig. 3 gezeigten Brennstoffzellenstapels 10 weist drei poröse Schichtelemente 24 auf, die unmittelbar den Brennstoffzellen 12 benachbart sind. Die porösen Schichtelemente 24 sind mindestens teilweise von Blechelementen 25 umgeben, die vorzugsweise aus Metall bestehen. Wird der Brennstoffzellenstapel 10 von oben und mit Kraft beaufschlagt (hier durch Pfeile F symbolisiert), so bleiben die von den Blechelementen 25 umgebenen Schichtele- mente 24 stabil in ihrer Form erhalten und die Wärmedämmelemente 14 a, 14 b werden durch die Schichtelemente 24 darin gehindert, über Kanten 13 der Brenn¬ stoffzellen 12 nach oben bzw. unten zu fließen, was zu einer Zerstörung der Wär¬ medämmvorrichtung 14 oder der Brennstoffzellen 12 führen würde. Durch die von den Blechelementen 25 umgebenen Schichtelemente 24 bleibt die gesamte Wär- medämmvorrichtung 14 auch unter Kraftbeaufschlagung F formstabil.The thermal insulation device 14 of the fuel cell stack 10 shown in FIG. 3 has three porous layer elements 24, which are directly adjacent to the fuel cells 12. The porous layer elements 24 are at least partially surrounded by sheet metal elements 25, which are preferably made of metal. If the fuel cell stack 10 is acted upon from above and with force (symbolized here by arrows F), the layer elements 24 surrounded by the sheet metal elements 25 remain stable in their shape and the heat insulation elements 14 a, 14 b are prevented by the layer elements 24 therein to flow upwards or downwards over edges 13 of the fuel cells 12, which would lead to a destruction of the heat-insulating device 14 or the fuel cells 12. Due to the layer elements 24 surrounded by the sheet metal elements 25, the entire heat-insulating device 14 remains dimensionally stable even under the application of force F.
Die in den Figuren 4 a, 4 b, 5 a und 5 b gezeigten Ausführungsformen der Brenn¬ stoffzellenstapel 10 entsprechen in ihrem Grundaufbau dem von Fig. 3, jedoch wird hier jeweils durch mindestens ein poröses Schichtelement 24 ein gasförmiges Betriebsmedium geleitet. Die Figuren 4 a bzw. 5 a zeigen jeweils die Querschnitte durch den Brennstoffzellenstapel 10 der Figuren 4 b bzw. 5 b in Richtung der Li¬ nien IV A - IV A bzw V A - V A mit der Spannvorrichtung 16 und den Druckver¬ teilelementen 18 sowie den Federelementen 22.
In der Ausführungsform der Figuren 4a und 4b wird gasförmiges Betriebsmedium in Pfeilrichtung Y (Fig. 4b links) durch die Brennstoffzellen 12 gefördert, um auf der gegenüberliegenden Seite (Fig. 4b rechts) auszutreten und in Richtung der Pfeile Z durch das obere Schichtelement 24 aus porösem, tragfähigen Metall- schäum zurückgeführt zu werden, und schließlich auf der linken Seite (Fig. 4b) wieder aus dem Schichtelement 24 auszutreten. Durch die Ausbildung des porö¬ sen Schichtelements 24 als gasführendes Element können Teile der Gasführung in dem Brennstoffzellenstapel 10 eingespart werden.The embodiments of the fuel cell stacks 10 shown in FIGS. 4 a, 4 b, 5 a and 5 b correspond in their basic structure to those of FIG. 3, but here a gaseous operating medium is passed through at least one porous layer element 24. FIGS. 4 a and 5 a respectively show the cross sections through the fuel cell stack 10 of FIGS. 4 b and 5 b in the direction of the lines IV A-IV A or VA-VA with the tensioning device 16 and the pressure distribution elements 18 and the spring elements 22nd In the embodiment of FIGS. 4 a and 4 b, gaseous operating medium is conveyed in the direction of arrow Y (FIG. 4 b on the left) through the fuel cells 12 to exit on the opposite side (FIG. 4 b on the right) and in the direction of the arrows Z through the upper layer element 24 be returned to porous, viable metal foam, and finally on the left side (Fig. 4b) to emerge again from the layer member 24. By forming the porous layer element 24 as a gas-conducting element, parts of the gas guide can be saved in the fuel cell stack 10.
In der Ausführungsform der Figuren 5a und 5b wird das gasförmige Betriebsmedi¬ um in Pfeilrichtung Y (Fig. 5b links) durch das linke untere Schichtelement 24 aus porösem, tragfähigen Metallschaum und über ein (nicht dargestelltes) Verteilersys¬ tem zu den Brennstoffzellen 12 gefördert. Das Betriebsmedium gelangt dann durch die Brennstoffzellen 12 (in Fig. 5b in der Zeichnungsebene nach rechts hin- ten, symbolisiert durch den Pfeil W), um auf der in Fig. 5b hinteren Seite derIn the embodiment of FIGS. 5a and 5b, the gaseous operating medium is conveyed in the direction of arrow Y (FIG. 5b, left) through the lower left layer element 24 of porous, viable metal foam and via a distributor system (not shown) to the fuel cells 12. The operating medium then passes through the fuel cells 12 (in FIG. 5b in the plane of the drawing to the right, symbolized by the arrow W), in order on the rear side in FIG
Brennstoffzellen 12 auszutreten und über ein (nicht dargestelltes) Sammlersystem und das untere rechte Schichtelement 24 aus porösem, tragfähigen Metallschaum in Richtung des Pfeils Z zum Austritt auf der rechten Seite (Fig. 5b) des Brenn¬ stoffzellenstapels 10 zu gelangen. Auch hier können durch die Ausbildung von zwei porösen Schichtelementen 24 als gasführende Elemente Teile der Gasfüh¬ rung in dem Brennstoffzellenstapel 10 eingespart werden.To exit fuel cell 12 and via a (not shown) collector system and the lower right layer member 24 of porous, viable metal foam in the direction of arrow Z to exit on the right side (Fig. 5b) of the fuel cell stack 10 to arrive. Here, too, parts of the gas guide in the fuel cell stack 10 can be saved by forming two porous layer elements 24 as gas-conducting elements.
In Figur 6 ist schließlich ein Brennstoffzellensystem 26 mit einer energieerzeugen¬ den Einheit gezeigt, die aus einem Reformer 28, dem Brennstoffzellenstapel 10 mit Brennstoffzellen 12 und einer Nachbrenneinheit 30 als zentrale Komponenten besteht. Die Komponenten 28, 10, 30 des Brennstoffzellensystems 26 sind von einer Wärmedämmvorrichtung 14, bestehend aus den Wärmedämmelementen 14a-d und den porösen Schichtelementen 24, umgeben. Die (hier nicht gezeigte) Spannvorrichtung ist außerhalb der Wärmedämmvorrichtung 14 angeordnet und übt Spannkräfte F auf das Brennstoffzellensystem 26 aus, wodurch dieses zu-
sammengehalten wird. Der Aufbau des Brennstoffzellensystems 26 ist ansonsten analog zu dem Aufbau der in den Figuren 3 bis 5 gezeigten Ausführungsformen des Brennstoffzellenstapels 10. Selbstverständlich können alle für die Brennstoff¬ zellenstapel 10 gezeigten Merkmale auch auf das Brennstoffzellensystem 26 an- gewandt werden.Finally, FIG. 6 shows a fuel cell system 26 with a unit that generates energy, which consists of a reformer 28, the fuel cell stack 10 with fuel cells 12 and an afterburner unit 30 as central components. The components 28, 10, 30 of the fuel cell system 26 are surrounded by a thermal insulation device 14, consisting of the heat-insulating elements 14 a - d and the porous layer elements 24. The tensioning device (not shown here) is arranged outside the thermal insulation device 14 and exerts tensioning forces F on the fuel cell system 26, as a result of which is held together. The construction of the fuel cell system 26 is otherwise analogous to the construction of the embodiments of the fuel cell stack 10 shown in FIGS. 3 to 5. Of course, all features shown for the fuel cell stacks 10 can also be applied to the fuel cell system 26.
Die beschriebenen Ausführungsformen der Brennstoffzellenstapel 10 und des Brennstoffzellensystems 26 eignen sich besonders für den Einsatz von Festoxid¬ brennstoffzellen, die bei Temperaturen von 800 bis 900cC betrieben werden. Ins- besondere bei einem derartigen Hochtemperatursystem entfalten die beschriebe¬ nen Materialien und Bauelemente ihre Vorteile hinsichtlich Volumen- und Ge¬ wichtsreduzierung und damit Kostenminderung.The described embodiments of the fuel cell stack 10 and the fuel cell system 26 are particularly suitable for the use of solid oxide fuel cells, which are operated at temperatures of 800 to 900 c C. In particular, in such a high-temperature system, the described materials and components have their advantages in terms of volume and weight reduction and thus cost reduction.
Im Folgenden soll ein Verfahren beschrieben werden, das ein besonders einfa- ches Wechseln der Brennstoffzellen 12 und der Wärmedämmvorrichtung 14 er¬ laubt.In the following, a method is to be described which permits a particularly simple change of the fuel cells 12 and the thermal insulation device 14.
In einem ersten Schritt sind die Federelemente 22 zu lösen. Anschließend können die Druckverteilelemente 18 von den Zugelementen 20 getrennt werden. Es ist nun möglich, entweder durch Abnehmen der Wärmedämmvorrichtung 14 von dem Brennstoffzellenstapel 10 bzw. von dem Brennstoffzellensystem 26 die Brenn¬ stoffzellen 12 (und ggf. der Reformer 28 und die Nachbrenneinheit 30) allein oder diese im Verbund mit der Wärmedämmvorrichtung 14 zusammen auszutauschen. Nach dem Austausch werden die Druckverteilelemente 18 mit den Zugelementen 20 verbunden. Abschließend wird durch Anbringen der Federelemente 22 der ge¬ samte Brennstoffzellenstapel 10 bzw. das Brennstoffzellensystem 26 unter Span¬ nung zusammengefügt.
BezugszeichenlisteIn a first step, the spring elements 22 are to be solved. Subsequently, the pressure distribution elements 18 can be separated from the tension elements 20. It is now possible, either by removing the heat-insulating device 14 from the fuel cell stack 10 or from the fuel cell system 26, to exchange the fuel cells 12 (and possibly the reformer 28 and the afterburning unit 30) alone or together with the heat-insulating device 14. After replacement, the pressure distribution elements 18 are connected to the tension elements 20. Finally, by attaching the spring elements 22, the entire fuel cell stack 10 or the fuel cell system 26 is assembled under tension. LIST OF REFERENCE NUMBERS
10 Brennstoffzellenstapel10 fuel cell stacks
12 Brennstoffzellen12 fuel cells
13 Brennstoffzellenkanten 14 Wärmedämmvorrichtung13 fuel cell edges 14 thermal insulation device
14a-d Wärmedämmelemente14a-d thermal insulation elements
16 Spannvorrichtung16 clamping device
18 Druckverteilelemente18 pressure distribution elements
20 Zugelemente 22 Federelemente20 tension elements 22 spring elements
24 poröses Schichtelement24 porous layer element
25 Blechelement25 sheet metal element
26 Brennstoffzellensystem 28 Reformer 30 Nachbrenneinheit
26 fuel cell system 28 reformer 30 afterburning unit
Claims
1. Brennstoffzellenstapel (10) mit Brennstoffzellen (12), einer Spannvorrich¬ tung (16) und einer Wärmedämmvorrichtung (14), wobei die Spannvorrich¬ tung (16) Druckverteilelemente (18) aufweist und die Brennstoffzellen (12) zwischen den Druckverteilelementen (18) angeordnet sind, dadurch ge¬ kennzeichnet, dass die Wärmedämmvorrichtung (14) zwischen den Brenn- Stoffzellen (12) und der Spannvorrichtung (16) angeordnet ist.1. Fuel cell stack (10) with fuel cells (12), a Spannvorrich¬ device (16) and a thermal insulation device (14), wherein the Spannvorrich¬ device (16) Druckverteilelemente (18) and the fuel cells (12) between the pressure distribution elements (18 ), characterized in that the thermal insulation device (14) between the fuel cells (12) and the clamping device (16) is arranged.
2. Brennstoffzellenstapel (10) nach Anspruch 1 , dadurch gekennzeichnet, dass die Spannvorrichtung (16) Zugelemente (20) aufweist, die als Stab, Seil, Draht, Kette, Band oder Fasermaterial ausgeführt sind.2. Fuel cell stack (10) according to claim 1, characterized in that the clamping device (16) has tension elements (20), which are designed as a rod, rope, wire, chain, tape or fiber material.
3. Brennstoffzellenstapel (10) nach Anspruch 2, dadurch gekennzeichnet, dass die Zugelemente (20) aus einem Leichtmetall bestehen.3. Fuel cell stack (10) according to claim 2, characterized in that the tension elements (20) consist of a light metal.
4. Brennstoffzellenstapel (10) nach Anspruch 2 oder 3, dadurch gekennzeich- net, dass die Zugelemente (20) aus Aluminium bestehen.4. fuel cell stack (10) according to claim 2 or 3, characterized marked, that the tension elements (20) consist of aluminum.
5. Brennstoffzellenstapel (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Spannvorrichtung (16) Federelemente (22) aufweist, die als Schraubenfedern, Tellerfedern, Schenkelfedern, Seil- zugfedem oder pneumatische Federn ausgebildet sind.5. Fuel cell stack (10) according to any one of the preceding claims, characterized in that the tensioning device (16) spring elements (22), which are designed as coil springs, disc springs, torsion springs, cable tension springs or pneumatic springs.
6. Brennstoffzellenstapel (10) nach Anspruch 5, dadurch gekennzeichnet, dass die Federelemente (22) aus Elastomeren bestehen. 6. Fuel cell stack (10) according to claim 5, characterized in that the spring elements (22) consist of elastomers.
7. Brennstoffzellenstapel (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Federelemente (22) zwischen den Druckverteilelementen (18) angeordnet sind.7. Fuel cell stack (10) according to any one of the preceding claims, characterized in that the spring elements (22) between the pressure distribution elements (18) are arranged.
8. Brennstoffzellenstapel (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wärmedämmvorrichtung (14) als Sand¬ wichkonstruktion ausgeführt ist.8. Fuel cell stack (10) according to any one of the preceding claims, characterized in that the thermal insulation device (14) is designed as Sand¬ wichkonstruktion.
9. Brennstoffzellenstapel (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wärmedämmvorrichtung (14) aus einem9. fuel cell stack (10) according to any one of the preceding claims, characterized in that the thermal insulation device (14) consists of a
Compositematerial besteht.Compositematerial exists.
10. Brennstoffzellenstapel (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wärmedämmvorrichtung (14) mindes- tens ein poröses Schichtelement (24) umfasst.10. Fuel cell stack (10) according to any one of the preceding claims, characterized in that the thermal insulation device (14) at least one porous layer element (24).
11. Brennstoffzellenstapel (10) nach Anspruch 10, dadurch gekennzeichnet, dass das poröse Schichtelement (24) aus einem Metallschaum besteht.11. Fuel cell stack (10) according to claim 10, characterized in that the porous layer element (24) consists of a metal foam.
12. Brennstoffzellenstapel (10) nach Anspruch 10 oder 11 , dadurch gekenn¬ zeichnet, dass das poröse Schichtelement (24) wenigstens teilweise von einem Blechelement (25) umgeben ist.12. Fuel cell stack (10) according to claim 10 or 11, characterized gekenn¬ characterized in that the porous layer element (24) is at least partially surrounded by a sheet metal element (25).
13. Brennstoffzellenstapel (10) nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass durch das poröse Schichtelement (24) ein gasförmi¬ ges Betriebsmedium geleitet wird.13. Fuel cell stack (10) according to any one of claims 10 to 12, characterized in that a gaseous operating medium is passed through the porous layer element (24).
14. Brennstoffzellenstapel (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Druckverteilelemente (18) im wesentli- chen ebene, zueinander parallele Platten sind. 14, fuel cell stack (10) according to any one of the preceding claims, characterized in that the pressure distribution elements (18) are essentially flat, mutually parallel plates.
15. Brennstoffzellenstapel (10) nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Druckverteilelemente (18) halbkugelschalenför- mig ausgebildet sind.15. Fuel cell stack (10) according to one of claims 1 to 13, characterized in that the pressure distribution elements (18) are formed halbkugelschalenför- mig.
16. Brennstoffzellenstapel (10) nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Druckverteilelemente (18) halbzylinderförmig ausgebildet sind.16. The fuel cell stack (10) according to any one of claims 1 to 13, characterized in that the pressure distribution elements (18) are formed in a semi-cylindrical shape.
17. Brennstoffzellenstapel (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Brennstoffzellen (12) Festoxidbrenn¬ stoffzellen sind.17. Fuel cell stack (10) according to one of the preceding claims, characterized in that the fuel cells (12) are solid oxide fuel cells.
18. Brennstoffzellensystem (26) mit einer energieerzeugenden Einheit, wobei die energieerzeugende Einheit einen Reformer (28), einen Brennstoffzel¬ lenstapel (10) mit Brennstoffzellen (12) und eine Nachbrenneinheit (30) um- fasst, wobei das Brennstoffzellensystem (26) weiter einer Spannvorrichtung (16) mit Druckverteilelementen (18) und eine Wärmedämmvorrichtung (14) aufweist, und die energieerzeugende Einheit zwischen den Druckverteil- elementen (18) angeordnet ist, dadurch gekennzeichnet, dass die Wärme¬ dämmvorrichtung (14) zwischen der energieerzeugenden Einheit und der Spannvorrichtung (16) angeordnet ist. 18. Fuel cell system (26) with a power-generating unit, wherein the energy-generating unit a reformer (28), a Brennstoffzel¬ lenstapel (10) with fuel cells (12) and a Nachbrenneinheit (40) summarizes, wherein the fuel cell system (26) on a tensioning device (16) with pressure distribution elements (18) and a thermal insulation device (14), and the energy-generating unit between the Druckverteil- elements (18) is arranged, characterized in that the Wärme¬ dämmvorrichtung (14) between the energy-generating unit and the Clamping device (16) is arranged.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004037678A DE102004037678A1 (en) | 2004-08-02 | 2004-08-02 | fuel cell stack |
PCT/DE2005/001286 WO2006012844A1 (en) | 2004-08-02 | 2005-07-20 | Fuel-cell stack comprising a tensioning device |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1774612A1 true EP1774612A1 (en) | 2007-04-18 |
Family
ID=35376988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05770274A Withdrawn EP1774612A1 (en) | 2004-08-02 | 2005-07-20 | Fuel-cell stack comprising a tensioning device |
Country Status (10)
Country | Link |
---|---|
US (1) | US20070248855A1 (en) |
EP (1) | EP1774612A1 (en) |
JP (1) | JP2008508688A (en) |
KR (1) | KR20070040409A (en) |
CN (1) | CN101053107A (en) |
AU (1) | AU2005269099A1 (en) |
CA (1) | CA2575868A1 (en) |
DE (1) | DE102004037678A1 (en) |
RU (1) | RU2007107803A (en) |
WO (1) | WO2006012844A1 (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006028439B4 (en) * | 2006-06-21 | 2016-02-18 | Elringklinger Ag | Fuel cell stack and method for producing a fuel cell stack |
DE102006028498B4 (en) * | 2006-06-21 | 2016-04-14 | Elringklinger Ag | fuel cell stack |
DE102006028440B4 (en) * | 2006-06-21 | 2015-03-12 | Elringklinger Ag | fuel cell stack |
DE102006030605A1 (en) * | 2006-07-03 | 2008-01-10 | Webasto Ag | Arrangement with a fuel cell stack and method for clamping a fuel cell stack |
JP5125015B2 (en) * | 2006-07-28 | 2013-01-23 | 大日本印刷株式会社 | Stacking jig for single-chamber solid oxide fuel cell, stack structure for single-chamber solid oxide fuel cell using the same, and method of using the same |
DE102006060809A1 (en) * | 2006-12-21 | 2008-06-26 | Enerday Gmbh | Insulating and bracing device for a high temperature fuel cell system component |
AU2008209059B2 (en) * | 2007-01-26 | 2011-11-24 | Haldor Topsoe A/S | Fuel cell stack clamping structure and solid oxide fuel cell stack |
DE102007012763B4 (en) * | 2007-03-16 | 2014-04-10 | Staxera Gmbh | Housing for receiving at least one fuel cell stack and fuel cell system with such a housing |
KR100938948B1 (en) * | 2007-06-06 | 2010-01-26 | 파나소닉 주식회사 | Polymer electrolyte fuel cell |
DE102007036642A1 (en) * | 2007-08-03 | 2009-02-05 | Staxera Gmbh | Tensioning of a high-temperature fuel cell stack |
US8865337B2 (en) * | 2008-03-24 | 2014-10-21 | Lightening Energy | Modular battery, an interconnector for such batteries and methods related to modular batteries |
JP5285319B2 (en) * | 2008-04-02 | 2013-09-11 | パナソニック株式会社 | Fuel cell stack |
DE102008018630B4 (en) | 2008-04-14 | 2013-05-29 | Staxera Gmbh | Fuel cell stack, fuel cell system and method for producing a fuel cell stack |
DE102008051181A1 (en) * | 2008-10-14 | 2010-04-15 | J. Eberspächer GmbH & Co. KG | The fuel cell system |
JP5449411B2 (en) | 2009-03-13 | 2014-03-19 | トプサー・フューエル・セル・アクチエゼルスカベット | COMPRESSION CASING FOR FUEL CELL STACK AND METHOD FOR PRODUCING COMPRESSION CASING FOR FUEL CELL STACK |
DE102009034141A1 (en) * | 2009-07-22 | 2011-01-27 | Elringklinger Ag | Housing for e.g. battery, has tensioning device including spring element e.g. coil spring, and electrochemical device tensionable against external carrier structure of tensioning device by using spring element |
WO2012040253A1 (en) | 2010-09-20 | 2012-03-29 | Nextech Materials, Ltd. | Fuel cell repeat unit and fuel cell stack |
US9029040B2 (en) | 2012-04-17 | 2015-05-12 | Intelligent Energy Limited | Fuel cell stack and compression system therefor |
DE102012219022B4 (en) | 2012-10-18 | 2021-05-27 | Scheuermann & Heilig Gmbh | Clamping system for a fuel cell stack |
JP6379859B2 (en) * | 2014-08-25 | 2018-08-29 | 三浦工業株式会社 | Fuel cell and fuel cell system |
DE102014217220A1 (en) | 2014-08-28 | 2016-03-03 | Bayerische Motoren Werke Aktiengesellschaft | Housing for a fuel cell stack |
JP6717182B2 (en) * | 2016-12-13 | 2020-07-01 | トヨタ自動車株式会社 | Fuel cell stack inspection device |
JP2020534659A (en) * | 2017-09-19 | 2020-11-26 | フイリツプス66カンパニー | Solid oxide fuel cell stack design |
DE102018210170A1 (en) * | 2018-06-22 | 2019-12-24 | Audi Ag | fuel cell stack |
JP7140590B2 (en) * | 2018-07-24 | 2022-09-21 | 株式会社東芝 | electrochemical cell stack |
CN112117477A (en) * | 2019-06-20 | 2020-12-22 | 国家能源投资集团有限责任公司 | Assembly structure, electric pile array and battery system |
DE102020108813A1 (en) | 2020-03-31 | 2021-09-30 | Audi Aktiengesellschaft | Method for operating a fuel cell device with a fuel cell stack, fuel cell stack, fuel cell device and motor vehicle with such |
DE102022200760A1 (en) | 2022-01-24 | 2023-07-27 | Christian Bauer Gmbh + Co. Kg | flat spring |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61248368A (en) * | 1985-04-25 | 1986-11-05 | Mitsubishi Electric Corp | Clamping device of layer-built type fuel cell |
JPH071703B2 (en) * | 1988-02-19 | 1995-01-11 | 石川島播磨重工業株式会社 | Fuel cell |
US4973531A (en) * | 1988-02-19 | 1990-11-27 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Arrangement for tightening stack of fuel cell elements |
JPH0249360A (en) * | 1988-08-10 | 1990-02-19 | Sanyo Electric Co Ltd | Stacked fuel cell |
DE4203245C2 (en) * | 1991-02-07 | 1994-03-24 | Yoshida Kogyo Kk | Solid electrolyte fuel cell |
US5547777A (en) * | 1994-02-23 | 1996-08-20 | Richards Engineering | Fuel cell having uniform compressive stress distribution over active area |
DE19506690A1 (en) * | 1995-02-25 | 1996-08-29 | Licentia Gmbh | Arrangement for gas supply for high temperature components |
DE19517042C1 (en) * | 1995-05-10 | 1996-12-05 | Mtu Friedrichshafen Gmbh | Fuel cell arrangement |
DE19645111C2 (en) * | 1996-11-01 | 1998-09-03 | Aeg Energietechnik Gmbh | Space-saving cell stack arrangement made of solid oxide fuel cells |
JPH117975A (en) * | 1997-06-19 | 1999-01-12 | Yoyu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai | Fastening control device for fuel cell |
US6413665B1 (en) * | 2000-08-31 | 2002-07-02 | Fuelcell Energy, Inc. | Fuel cell stack compression system |
US20030215689A1 (en) * | 2002-05-16 | 2003-11-20 | Keegan Kevin R. | Solid oxide fuel cell with a metal foam seal |
US6793544B2 (en) * | 2003-02-05 | 2004-09-21 | General Motors Corporation | Corrosion resistant fuel cell terminal plates |
DE10308382B3 (en) * | 2003-02-27 | 2004-11-11 | Forschungszentrum Jülich GmbH | Bracing a high temperature fuel cell stack |
-
2004
- 2004-08-02 DE DE102004037678A patent/DE102004037678A1/en not_active Ceased
-
2005
- 2005-07-20 US US11/573,144 patent/US20070248855A1/en not_active Abandoned
- 2005-07-20 CN CNA2005800334548A patent/CN101053107A/en active Pending
- 2005-07-20 KR KR1020077004892A patent/KR20070040409A/en not_active Application Discontinuation
- 2005-07-20 RU RU2007107803/09A patent/RU2007107803A/en not_active Application Discontinuation
- 2005-07-20 WO PCT/DE2005/001286 patent/WO2006012844A1/en active Application Filing
- 2005-07-20 JP JP2007524168A patent/JP2008508688A/en not_active Withdrawn
- 2005-07-20 CA CA002575868A patent/CA2575868A1/en not_active Abandoned
- 2005-07-20 EP EP05770274A patent/EP1774612A1/en not_active Withdrawn
- 2005-07-20 AU AU2005269099A patent/AU2005269099A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2006012844A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2006012844A1 (en) | 2006-02-09 |
AU2005269099A1 (en) | 2006-02-09 |
JP2008508688A (en) | 2008-03-21 |
CN101053107A (en) | 2007-10-10 |
US20070248855A1 (en) | 2007-10-25 |
RU2007107803A (en) | 2008-09-10 |
CA2575868A1 (en) | 2006-02-09 |
KR20070040409A (en) | 2007-04-16 |
DE102004037678A1 (en) | 2006-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1774612A1 (en) | Fuel-cell stack comprising a tensioning device | |
DE69929731T2 (en) | Polymer electrolyte fuel cell | |
DE69837848T2 (en) | A FUEL CELL ARRANGEMENT | |
DE102006028498B4 (en) | fuel cell stack | |
DE112008000024T5 (en) | Polymer electrolyte fuel cell | |
DE10392620T5 (en) | Fuel cell stack with improved pressure plate and improved current collector | |
EP1870952A2 (en) | Fuel cell stack | |
WO2010054647A2 (en) | Fuel cell without bipolar plates | |
WO1992016029A1 (en) | Device comprising a plurality of high-temperature fuel cells for converting the chemical energy of a fuel to electrical energy | |
DE102004027694A1 (en) | Fuel cell stack has elements clamped together using convex dish shape spring elements loaded by a clamping band | |
DE112008002778B4 (en) | Fuel cell with insulating section | |
DE102007059449B4 (en) | Fuel cell system and compression support system with planar strips | |
DE102006028440B4 (en) | fuel cell stack | |
WO2002005368A1 (en) | High temperature fuel cell | |
DE102020209081A1 (en) | Electrochemical reaction cell stack | |
DE112014006238B4 (en) | Fuel cell stack having an end plate structure with a tapered spring plate | |
DE102017215748A1 (en) | Compression device for a fuel cell stack | |
EP1589602B1 (en) | Contact spring sheet and electrical battery containing same | |
DE19650904C2 (en) | Device for ensuring the mechanical integrity of a fuel cell stack | |
DE102014225069A1 (en) | Component for power absorption and / or force distribution in a battery cell module | |
DE102012010994A1 (en) | End plate for a fuel cell and fuel cell with such | |
DE102021112699A1 (en) | Fuel cell stack with a compression system for the fuel cell stack | |
DE102021201970A1 (en) | fuel cell unit | |
WO2007115558A1 (en) | Polar plate, particularly end plate or bipolar plate for a fuel cell | |
DE102019215888A1 (en) | Fuel cell unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070131 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: REINERT, ANDREAS |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: STAXERA GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20110201 |