JP7140590B2 - electrochemical cell stack - Google Patents

electrochemical cell stack Download PDF

Info

Publication number
JP7140590B2
JP7140590B2 JP2018138526A JP2018138526A JP7140590B2 JP 7140590 B2 JP7140590 B2 JP 7140590B2 JP 2018138526 A JP2018138526 A JP 2018138526A JP 2018138526 A JP2018138526 A JP 2018138526A JP 7140590 B2 JP7140590 B2 JP 7140590B2
Authority
JP
Japan
Prior art keywords
heat insulating
load
laminate
plate
wall member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018138526A
Other languages
Japanese (ja)
Other versions
JP2020017382A (en
Inventor
昌平 小林
正人 吉野
啓輔 中澤
憲和 長田
隆利 浅田
斉二 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2018138526A priority Critical patent/JP7140590B2/en
Publication of JP2020017382A publication Critical patent/JP2020017382A/en
Application granted granted Critical
Publication of JP7140590B2 publication Critical patent/JP7140590B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)

Description

本発明の実施形態は、電気化学セルスタックおよびその断熱板に関する。 Embodiments of the present invention relate to electrochemical cell stacks and insulation plates thereof.

固体酸化物形燃料電池(Solid Oxide Fuel Cell。以降の説明では、単にSOFCという)および固体酸化物形電解セル(Solid Oxide Electrolisys Cell。以降の説明では、単にSOECという)を構成するセルスタックは、少なくとも空気極、電解質、および燃料極からなる電気化学セル(以降の説明では、単セルという)を複数積層した積層体である。この積層体は、それぞれの単セルに供給される燃料ガスの気密性を確保するために、上下一対の荷重受け板の間に圧縮された状態で配置される。その圧縮方法としては、例えばボルトを用いて上下の荷重受け板を連結する方法が知られている。 A cell stack that constitutes a solid oxide fuel cell (Solid Oxide Fuel Cell, hereinafter simply referred to as SOFC) and a solid oxide electrolysis cell (Solid Oxide Electrolysis Cell, hereinafter simply referred to as SOEC) It is a laminate obtained by laminating a plurality of electrochemical cells (hereinafter referred to as single cells) each composed of at least an air electrode, an electrolyte, and a fuel electrode. This stack is arranged in a compressed state between a pair of upper and lower load receiving plates in order to ensure the airtightness of the fuel gas supplied to each unit cell. As a compression method, for example, a method of connecting upper and lower load receiving plates using bolts is known.

また、その他の圧縮方法として、上側の荷重受け板と積層体との間に圧縮ばねを設け、このばねの復元力により積層体を圧縮する方法が知られている。より具体的には、セルスタックの上端面に押さえ板を重ね、この押さえ板と上側の荷重受け板との間に圧縮ばねを設ける。これにより、圧縮ばねの復元力に起因して押さえ板から積層体に荷重が加えられる。 As another compression method, a method is known in which a compression spring is provided between the upper load-receiving plate and the laminate, and the laminate is compressed by the restoring force of this spring. More specifically, a pressing plate is superimposed on the upper end surface of the cell stack, and a compression spring is provided between this pressing plate and the upper load receiving plate. As a result, a load is applied from the pressing plate to the laminate due to the restoring force of the compression spring.

特開2011-065909号公報JP 2011-065909 A

ところで、積層体を構成する固体酸化物形の単セルは600℃から1000℃程度の高温で電気化学反応(以降、この温度を運転温度という)する。積層体の性能を向上させるためには、この温度においても燃料ガスの気密性を確保できること、すなわち安定して積層体を圧縮できることが求められる。しかしながら、一般的にボルトを用いて上下の荷重受け板を連結する方法の場合、600℃から1000℃程度の運転温度ではボルトがクリープ変形し、積層体の圧縮が弱くなる。また、圧縮ばねを用いる方法の場合、600℃から1000℃程度の高温では圧縮ばねが変形してしまうため、ボルトの場合と同様に積層体の圧縮が弱くなる。したがって、積層体周囲の温度雰囲気が単セルの反応温度程度であっても荷重付加機構の熱変形を防ぎ、安定して荷重を付加できる構造が求められている。 By the way, the solid oxide type single cell constituting the laminate undergoes an electrochemical reaction at a high temperature of about 600° C. to 1000° C. (this temperature is hereinafter referred to as the operating temperature). In order to improve the performance of the laminate, it is required that the airtightness of the fuel gas can be secured even at this temperature, that is, the laminate can be stably compressed. However, in the case of the method of connecting the upper and lower load receiving plates using bolts, the bolts are creep-deformed at an operating temperature of about 600° C. to 1000° C., and the compression of the laminate is weakened. Moreover, in the case of the method using a compression spring, the compression spring is deformed at a high temperature of about 600° C. to 1000° C., so that the compression of the laminated body becomes weak as in the case of the bolt. Therefore, there is a demand for a structure that prevents thermal deformation of the load application mechanism and can apply a load stably even when the ambient temperature around the laminate is about the reaction temperature of the single cell.

そこで、本発明が解決しようとする課題は、積層体周囲の温度雰囲気が単セルの反応温度程度であっても荷重付加機構の熱変形を防ぎ、安定して荷重を付加できる電気化学セルスタックおよびその断熱板を提供することである。 Therefore, the problem to be solved by the present invention is to provide an electrochemical cell stack that can stably apply a load by preventing thermal deformation of the load applying mechanism even if the temperature atmosphere around the laminate is about the reaction temperature of the single cell. It is to provide the heat insulating board.

上記の課題を解決するために、実施形態の電気化学セルスタックは、複数の単セルが積層された積層体と、前記積層体の積層方向上端面および下端面の少なくとも一方に設けられた断熱板と、前記断熱板に直接的または間接的に接し、前記積層体に圧縮荷重を付加するように配置される荷重付加機構と、を備える。 In order to solve the above problems, an electrochemical cell stack of an embodiment includes a laminate in which a plurality of single cells are laminated, and a heat insulating plate provided on at least one of the upper end surface and the lower end surface in the stacking direction of the laminate. and a load applying mechanism that is directly or indirectly in contact with the insulating plate and is arranged to apply a compressive load to the laminate.

本発明の電気化学セルスタックおよびその断熱板によれば、積層体周囲の温度雰囲気が単セルの反応温度程度であっても荷重付加機構の熱変形を防ぎ、安定して荷重を付加できる。 According to the electrochemical cell stack and its heat insulating plate of the present invention, even if the temperature atmosphere around the stack is about the reaction temperature of the single cell, thermal deformation of the load application mechanism can be prevented and the load can be applied stably.

第一の実施形態に係る電気化学セルスタックの概要図である。1 is a schematic diagram of an electrochemical cell stack according to a first embodiment; FIG. 第一の実施形態の変形例に係る電気化学セルスタックの概要図である。FIG. 4 is a schematic diagram of an electrochemical cell stack according to a modification of the first embodiment; 第一の実施形態の他の変形例に係る電気化学セルスタックの概要図である。FIG. 5 is a schematic diagram of an electrochemical cell stack according to another modification of the first embodiment; 第二の実施形態に係る電気化学セルスタックの概要図である。FIG. 2 is a schematic diagram of an electrochemical cell stack according to a second embodiment; 第三の実施形態に係る電気化学セルスタックの概要図である。FIG. 4 is a schematic diagram of an electrochemical cell stack according to a third embodiment;

(第一の実施形態)
図1は、第一の実施形態に係る電気化学セルスタックの概要図である。電気化学セルスタック1は、積層体2と、荷重受け板3と、断熱板4と、断熱壁部材5と、荷重付加機構である固定部材6およびボルト7とを備える。なお、以降の説明では、積層体2を構成する単セルおよびセパレータを積層する方向を積層方向(図中のz軸方向)とし、その方向や特定の面を表す際には、積層方向を基準として表記する。例えば、上面とは積層方向の上面、側面とは積層方向の側面、下側とは積層方向の下側をそれぞれ示す。すなわち、以降の説明において、向きを表す表記は積層方向を基準としたものであり、重力方向に対する向きとは必ずしも一致しない。なお、図中ではz軸正方向を積層方向上側とする。
(First embodiment)
FIG. 1 is a schematic diagram of an electrochemical cell stack according to the first embodiment. An electrochemical cell stack 1 includes a laminate 2, a load receiving plate 3, a heat insulating plate 4, a heat insulating wall member 5, and a fixing member 6 and a bolt 7 as a load applying mechanism. In the following description, the stacking direction (the z-axis direction in the drawing) is the direction in which the single cells and separators that make up the stack 2 are stacked, and the stacking direction is used as a reference when expressing the direction or a specific surface. Notated as For example, the upper surface indicates the upper surface in the stacking direction, the side surface indicates the side surface in the stacking direction, and the lower side indicates the lower side in the stacking direction. That is, in the following description, the notation representing the orientation is based on the stacking direction, and does not necessarily match the orientation with respect to the direction of gravity. In the drawings, the positive direction of the z-axis is defined as the upper side in the stacking direction.

積層体2は、燃料極、電解質、および空気極を順次積層した角板状や円板状の単セルを複数有する。この単セルは、SOFCやSOECに用いられる固体酸化物形の単セルである。単セルの具体的な構成は、例えばイットリア安定ジルコニア(YSZ)等からなる固体の電解質の一方の表面に、セリア(GDC)と酸化ニッケル(NiO)との混合焼結体を還元して得られるNi-GDC等からなる燃料極を形成すると共に、電解質の他方の表面にペロブスカイト型酸化物等からなる空気極を形成する。単セルの側面は導電性の矩形部材であるセパレータに囲われ、セパレータの上面には隣接する単セル同士のガス雰囲気を分離するためのシール材が配置される。積層体2は、単セル、セパレータ、およびシール材を一単位として、この単位を複数単位積層して形成される。各単位のセパレータおよびシール材には、積層方向に貫通する流路孔が複数設けられる。この流路孔は、単セルの燃料極へ燃料ガス(水素あるいは水蒸気)を、SOFCとして用いられる場合に空気極へ空気を供給するための供給流路と、単セルでの化学反応により生成する生成ガスを排出するための排出流路をそれぞれ構成する。また、積層体2の上端および下端には、複数単位の単セル、セパレータ、およびシール材を挟みこむように上下一対のエンドプレートである上端側エンドプレート2aおよび下端側エンドプレート2bが設けられる。 The laminate 2 has a plurality of square-plate-like or disk-like unit cells in which a fuel electrode, an electrolyte, and an air electrode are sequentially laminated. This single cell is a solid oxide single cell used for SOFC and SOEC. A specific structure of a single cell is obtained by reducing a mixed sintered body of ceria (GDC) and nickel oxide (NiO) on one surface of a solid electrolyte made of, for example, yttria-stabilized zirconia (YSZ). A fuel electrode made of Ni-GDC or the like is formed, and an air electrode made of perovskite type oxide or the like is formed on the other surface of the electrolyte. The sides of the unit cells are surrounded by a separator, which is a conductive rectangular member, and a sealing material is arranged on the upper surface of the separator for separating gas atmospheres between adjacent unit cells. The laminated body 2 is formed by laminating a plurality of units each including a unit cell, a separator, and a sealing material. Each unit of separator and sealing material is provided with a plurality of passage holes penetrating in the stacking direction. This channel hole is formed by a supply channel for supplying fuel gas (hydrogen or steam) to the fuel electrode of the single cell and air to the air electrode when used as an SOFC, and a chemical reaction in the single cell. Each comprises an exhaust channel for exhausting the product gas. A pair of upper and lower end plates 2a and 2b are provided at the upper and lower ends of the laminate 2 so as to sandwich a plurality of unit cells, separators, and sealing materials.

荷重受け板3は、上端側エンドプレート2aの上側に配置される。荷重受け板3は、円形や角形に形成された板状部材であり、ステンレス鋼等の剛性の高い材料で構成される。これは、荷重付加機構である固定部材6およびボルト7を介して、積層体2上端側のエンドプレートに均一に荷重を付加するためである。なお、本実施形態においては、この荷重受け板3がなく、後述する断熱板4の上に固定部材6が設けられる構成としてもよい。 The load receiving plate 3 is arranged above the upper end plate 2a. The load receiving plate 3 is a plate-like member formed in a circular or square shape, and is made of a highly rigid material such as stainless steel. This is for uniformly applying a load to the end plate on the upper end side of the laminate 2 via the fixing member 6 and the bolt 7, which are the load applying mechanism. In this embodiment, the load receiving plate 3 may be omitted, and the fixing member 6 may be provided on the heat insulating plate 4, which will be described later.

断熱板4は、積層体2の上端側エンドプレート2aと荷重受け板3の間に設けられる断熱部材を構成する。すなわち、断熱板4は、上端側エンドプレート2aの上面と荷重受け板3の下面の双方と当接する。また、断熱板4はアルミナ等の熱伝導率の小さい材料で構成される。なお、断熱板4の材料はこれに限定されるものではなく、例えばムライトやジルコニア等から構成されてもよい。この断熱板4の上面および下面は、荷重受け板3から受ける荷重を積層体2に伝えうる程度の面積、例えば積層体2を構成するセパレータやシール材の積層方向に垂直な断面での断面積の少なくとも半分以上であることがより好ましい。 The heat insulating plate 4 constitutes a heat insulating member provided between the upper end plate 2 a of the laminate 2 and the load receiving plate 3 . That is, the heat insulating plate 4 contacts both the upper surface of the upper end plate 2 a and the lower surface of the load receiving plate 3 . Also, the heat insulating plate 4 is made of a material having a low thermal conductivity such as alumina. The material of the heat insulating plate 4 is not limited to this, and may be made of, for example, mullite, zirconia, or the like. The upper and lower surfaces of the heat insulating plate 4 have an area that is large enough to transmit the load received from the load receiving plate 3 to the laminate 2, for example, the cross-sectional area of the separator and the sealing material constituting the laminate 2 in a cross section perpendicular to the lamination direction. is more preferably at least half or more.

断熱壁部材5は、断熱板4の側面から積層体2の外側を囲う矩形の断熱部材を構成する。本実施形態において、断熱壁部材5はガラスウール等の耐熱補強繊維から構成される。なお、断熱壁部材5の材料はガラスウールに限定されず、例えばセラミックス繊維やロックウール等から構成されてもよい。より具体的には、荷重受け板3および断熱板4は、断熱壁部材5に設けられた孔部に内包されるように構成されている。この孔部は、積層体2の周囲から熱が放出しないよう気密な構造を有する。ここでいう気密な構造とは、荷重受け板3および断熱板4と断熱壁部材5との間の間隙が気密であるように孔部を設計するほかに、例えば孔部と荷重受け板3および断熱板4との間に熱伝導率の小さい別の部材を設けて気密になるように構成されてもよい。 The heat insulating wall member 5 constitutes a rectangular heat insulating member surrounding the outside of the laminate 2 from the side surface of the heat insulating plate 4 . In this embodiment, the heat-insulating wall member 5 is made of heat-resistant reinforcing fiber such as glass wool. The material of the heat insulating wall member 5 is not limited to glass wool, and may be made of, for example, ceramic fiber or rock wool. More specifically, the load receiving plate 3 and the heat insulating plate 4 are configured to be enclosed in a hole provided in the heat insulating wall member 5 . This hole has an airtight structure so that heat is not emitted from the periphery of the laminate 2 . Here, the airtight structure means that the holes are designed so that the gaps between the load receiving plate 3 and the heat insulating plate 4 and the heat insulating wall member 5 are airtight. Another member having a small thermal conductivity may be provided between the heat insulating plate 4 to make it airtight.

固定部材6は、断熱壁部材5の上面に設けられた板状の部材である。固定部材6は、荷重受け板3の上側に、後述するボルト7をねじ込み固定するためのねじ込み孔であるボルト孔6aを有する。この固定部材6は、図示しないねじを用いて断熱壁部材5に締付固定される。なお、固定部材6の他の構成として、例えば断熱壁部材5の下面と断熱壁部材5の上面とを接着して固定してもよい。 The fixing member 6 is a plate-shaped member provided on the upper surface of the heat insulating wall member 5 . The fixing member 6 has, on the upper side of the load receiving plate 3, a bolt hole 6a, which is a screw hole for screwing and fixing a bolt 7, which will be described later. The fixing member 6 is tightened and fixed to the heat insulating wall member 5 using screws (not shown). As another configuration of the fixing member 6, for example, the lower surface of the heat insulating wall member 5 and the upper surface of the heat insulating wall member 5 may be adhered and fixed.

ボルト7は、固定部材6のボルト孔6aにねじ込み固定される。ボルト7の先端面7a(ねじ先)は荷重受け板3の上面と当接する。ボルト7は、固定部材6のボルト孔6aに深くねじ込まれ、ボルト孔6aよりも下側に突き出た部分の長さが長くなるほど先端面7aから荷重受け板3に付加される荷重が大きくなる。すなわち、ボルト孔6aよりも下側に突き出たボルト7の長さを調整することにより、先端面7aから荷重受け板3に付加される荷重が調整される。 The bolt 7 is screwed into the bolt hole 6a of the fixing member 6 and fixed. A tip surface 7 a (thread tip) of the bolt 7 contacts the upper surface of the load receiving plate 3 . The bolt 7 is deeply screwed into the bolt hole 6a of the fixing member 6, and the load applied to the load receiving plate 3 from the tip surface 7a increases as the length of the portion protruding downward from the bolt hole 6a increases. That is, by adjusting the length of the bolt 7 protruding downward from the bolt hole 6a, the load applied to the load receiving plate 3 from the tip surface 7a is adjusted.

次に、本実施形態の作用を説明する。外部から積層体2のセパレータおよびシール材に設けられた供給側の流路孔を介して、各単位の単セルを構成する燃料極および空気極に燃料ガスと酸素がそれぞれ供給される。SOFCとして用いる場合には、燃料ガスとして水素を供給し、単セルが電気化学反応(発電反応)を引き起こして電気エネルギー、反応熱、および水蒸気を発生させる。ここで発生した水蒸気は、セパレータおよびシール材に設けられた排出側の流路孔を経て外部に排出される。 Next, the operation of this embodiment will be described. Fuel gas and oxygen are supplied from the outside to the fuel electrode and the air electrode that constitute the single cell of each unit, respectively, through flow passage holes on the supply side provided in the separator and sealing material of the laminate 2 . When used as an SOFC, hydrogen is supplied as fuel gas, and the single cell causes an electrochemical reaction (power generation reaction) to generate electric energy, reaction heat, and steam. The water vapor generated here is discharged to the outside through the discharge-side channel holes provided in the separator and the sealing material.

一方、SOECとして用いる場合には、外部から直流電流、および燃料ガスである水蒸気を供給し、単セルにおいて電気分解反応を引き起こして水蒸気を水素と酸素とに分解する。電気分解反応により発生した水素と酸素は、セパレータおよびシール材に設けられた排出側の流路孔を経てそれぞれ外部に排出される。 On the other hand, when used as an SOEC, a DC current and water vapor, which is a fuel gas, are supplied from the outside to cause an electrolysis reaction in the single cell to decompose the water vapor into hydrogen and oxygen. Hydrogen and oxygen generated by the electrolysis reaction are respectively discharged to the outside through passage holes on the discharge side provided in the separator and sealing material.

いずれの場合においても、単セルにおける反応の温度は600度から1000度程度の高温であるため、断熱板4と断熱壁部材5とに囲まれた部分(積層体2の周囲)は、その外側よりも高温雰囲気となる。しかしながら、断熱板4および断熱壁部材5によって固定部材6およびボルト7側への放熱が抑制されるため、固定部材6およびボルト7への伝熱量は小さくなる。 In either case, the temperature of the reaction in the single cell is as high as about 600° C. to 1000° C., so the portion surrounded by the heat insulating plate 4 and the heat insulating wall member 5 (around the laminate 2) is A higher temperature atmosphere is created. However, since heat radiation to the fixed member 6 and bolt 7 side is suppressed by the heat insulating plate 4 and the heat insulating wall member 5, the amount of heat transferred to the fixed member 6 and the bolt 7 is reduced.

上述した第一の実施形態によれば、積層体2を断熱板4および断熱壁部材5の内部に収容すると共に、断熱壁部材5の上面に荷重付加機構である固定部材6およびボルト7を設けることにより、高温雰囲気である積層体2の周囲から荷重付加機構である固定部材6およびボルト7への伝熱量が小さくなり、積層体周囲の温度雰囲気が単セルの反応温度程度であっても荷重付加機構の熱変形を防いで安定して荷重を付加できる。また、固定部材6およびボルト7は、断熱板4および断熱壁部材5を介して積層体2からの熱を遮断するため、固定部材6やボルト7を構成する材料は必ずしも単セルでの反応温度に耐えうる程度の耐熱性を有する必要がない。したがって、従来よりも安価に電気化学セルスタックを構成することもできる。 According to the first embodiment described above, the laminate 2 is accommodated inside the heat insulating plate 4 and the heat insulating wall member 5, and the fixing member 6 and the bolt 7, which are the load applying mechanism, are provided on the upper surface of the heat insulating wall member 5. As a result, the amount of heat transferred from the surroundings of the laminate 2, which is in a high-temperature atmosphere, to the fixing members 6 and bolts 7, which are load applying mechanisms, is reduced. A load can be applied stably by preventing thermal deformation of the additional mechanism. In addition, since the fixing member 6 and the bolt 7 block heat from the laminate 2 through the heat insulating plate 4 and the heat insulating wall member 5, the material constituting the fixing member 6 and the bolt 7 does not necessarily have to be at the reaction temperature of the single cell. It is not necessary to have heat resistance to the extent that it can withstand Therefore, an electrochemical cell stack can be constructed at a lower cost than conventionally.

なお、本実施形態では、積層方向上側にのみ荷重受け板3、断熱板4、固定部材6、およびボルト7が配置される場合を例示して説明するが、その設置位置はこれに限定されず、例えば積層方向下側にこれらを設けた構成としてもよいし、積層方向上側と下側それぞれにこれらを設けてもよい。 In this embodiment, the case where the load receiving plate 3, the heat insulating plate 4, the fixing member 6, and the bolt 7 are arranged only on the upper side in the stacking direction will be described as an example, but the installation positions are not limited to this. For example, they may be provided on the lower side in the stacking direction, or may be provided on the upper side and the lower side in the stacking direction.

また、本実施形態の図1では、二本のボルト7で荷重受け板3に荷重を付加する場合を例示しているが、ボルト7の個数については限定されず、ボルト7の配置位置についても、荷重受け板3の上面と接触するような配置位置の限りにおいて限定されない。 In addition, although FIG. 1 of the present embodiment illustrates a case where a load is applied to the load receiving plate 3 by two bolts 7, the number of bolts 7 is not limited, and the arrangement position of the bolts 7 is not limited. , as long as it is in contact with the upper surface of the load receiving plate 3 .

さらに、本実施形態では、図1において荷重受け板3の上面が断熱壁部材5の上面と積層方向の同じ位置に配置される場合を例示したが、本実施形態の変形例として、例えば図2に示すように断熱壁部材5が積層体2および断熱板4を囲うように配置されると共に、荷重受け板3の上面が断熱壁部材5の上面よりも下側に配置され、断熱壁部材5の上面と荷重受け板3の上面との間にボルト7を内包する溝部5aを設けてもよいし、例えば図3に示すように、断熱板4が断熱壁部材と一体に構成されてもよい。ただし、図3に示すような構成の場合、断熱板4は、ボルト7の先端面7aから荷重受け板3を介して付加される荷重を積層体2に付加できる程度の剛性を有する。 Furthermore, in the present embodiment, the case where the upper surface of the load receiving plate 3 and the upper surface of the heat insulating wall member 5 are arranged at the same position in the stacking direction as shown in FIG. 2, the heat insulating wall member 5 is arranged so as to surround the laminate 2 and the heat insulating plate 4, and the upper surface of the load receiving plate 3 is arranged below the upper surface of the heat insulating wall member 5, so that the heat insulating wall member 5 and the upper surface of the load receiving plate 3 may be provided with a groove 5a containing the bolt 7. For example, as shown in FIG. . However, in the case of the configuration shown in FIG. 3 , the heat insulating plate 4 has such rigidity that it can apply the load applied from the tip surface 7 a of the bolt 7 via the load receiving plate 3 to the laminate 2 .

これらの設置位置や個数に関する関係は、後述する他の実施形態においても成り立つ。 These relationships regarding installation positions and numbers also hold true in other embodiments described later.

(第二の実施形態)
次に、第二の実施形態に係る電気化学セルスタックについて、図4を用いて説明する。図4は、第二の実施形態に係る電気化学セルスタックの概要図である。以降では第一の実施形態と異なる箇所について説明し、それ以外の箇所については第一の実施形態と同様であるとして、重複する説明を省略する。
(Second embodiment)
Next, an electrochemical cell stack according to a second embodiment will be described with reference to FIG. FIG. 4 is a schematic diagram of an electrochemical cell stack according to the second embodiment. Hereinafter, portions different from the first embodiment will be described, and other portions are assumed to be the same as in the first embodiment, and overlapping descriptions will be omitted.

電気化学セルスタック1は、積層体2と、荷重受け板3と、断熱板4と、断熱壁部材5と、荷重付加機構である締付バンド16とを備える。本実施形態と第一の実施形態との違いは、固定部材6およびボルト7の代わりに、締付バンド16を設けたことである。 The electrochemical cell stack 1 includes a laminate 2, a load receiving plate 3, a heat insulating plate 4, a heat insulating wall member 5, and a tightening band 16 as a load application mechanism. The difference between this embodiment and the first embodiment is that a tightening band 16 is provided instead of the fixing member 6 and bolt 7 .

荷重受け板3は、断熱板4を介して積層体2の上端側エンドプレート2aの上側に設けられると共に、その上面が断熱壁部材5の上面よりも上側に位置するように配置される。 The load receiving plate 3 is provided above the upper end plate 2 a of the laminate 2 with the heat insulating plate 4 interposed therebetween, and is arranged such that its upper surface is located above the upper surface of the heat insulating wall member 5 .

締付バンド16は、断熱壁部材5の外周に設けられ、締結部16aと、ねじ16bとを有する。締付バンド16は、例えばゴム等の圧縮性に優れた材料で構成される。締付バンド16は、その自然長が断熱壁部材5外周の周長よりも短く設計されている。なお、この締付バンド16として、例えば金属バンドを用いた構成としてもよい。 The tightening band 16 is provided on the outer periphery of the heat insulating wall member 5 and has a fastening portion 16a and a screw 16b. The tightening band 16 is made of a highly compressible material such as rubber. The tightening band 16 is designed such that its natural length is shorter than the circumference of the heat insulating wall member 5 . The tightening band 16 may be configured using, for example, a metal band.

締結部16aは、締付バンド16の周方向に設けられる。締結部16aは、後述するねじ16bを締結するためのねじ孔を有する。 The fastening portion 16 a is provided in the circumferential direction of the tightening band 16 . The fastening portion 16a has a screw hole for fastening a screw 16b, which will be described later.

ねじ16bは、締結部16aのねじ孔に締結される。すなわち、ねじ16bは、締結部16aのねじ孔に締結され、締付バンド16を断熱壁部材5の外周に巻きつき固定する。締付バンド16は、その全長が自然長よりも伸びたまま断熱壁部材5の外周に巻きつき固定されるため、締付バンド16が自然長に戻るように復元力が働く。この復元力により、締付バンド16から断熱壁部材5および荷重受け板3に締付力が付加されるので、荷重受け板3の上面から断熱板4を介して積層体2に圧縮荷重が付加される。 The screw 16b is fastened to the screw hole of the fastening portion 16a. That is, the screw 16b is fastened to the threaded hole of the fastening portion 16a, and the fastening band 16 is wrapped around the outer periphery of the heat insulating wall member 5 and fixed. Since the tightening band 16 is wound and fixed around the outer periphery of the heat insulating wall member 5 while its full length is longer than its natural length, a restoring force acts so that the tightening band 16 returns to its natural length. Due to this restoring force, a tightening force is applied from the tightening band 16 to the heat insulating wall member 5 and the load receiving plate 3, so that a compressive load is applied to the laminate 2 from the upper surface of the load receiving plate 3 through the heat insulating plate 4. be done.

上述した第二の実施形態によれば、断熱壁部材5の外側に締付バンド16を設け、その締付力により荷重受け板3から積層体2に圧縮荷重が付加される構成のため、第一の実施形態と同様に荷重付加機構である締付バンド16の熱変形を防ぎ、安定して荷重を付加できる。 According to the above-described second embodiment, the tightening band 16 is provided on the outside of the heat insulating wall member 5, and the compressive load is applied from the load receiving plate 3 to the laminate 2 by the tightening force of the tightening band 16. As in the first embodiment, thermal deformation of the tightening band 16, which is a load application mechanism, can be prevented, and a load can be applied stably.

(第三の実施形態)
次に、第三の実施形態に係る電気化学セルスタックについて、図5を用いて説明する。図5は、第三の実施形態に係る電気化学セルスタックの概要図である。以降では第一または第二の実施形態と異なる箇所について説明し、それ以外の箇所については第一または第二の実施形態と同様であるとして、重複する説明を省略する。
(Third embodiment)
Next, an electrochemical cell stack according to a third embodiment will be described with reference to FIG. FIG. 5 is a schematic diagram of an electrochemical cell stack according to the third embodiment. Hereinafter, portions different from those of the first or second embodiment will be described, and redundant description will be omitted as the other portions are the same as those of the first or second embodiment.

電気化学セルスタック1は、積層体2と、荷重受け板3と、断熱板4と、断熱壁部材5と、荷重付加機構であるシリンダ26とを備える。本実施形態と第一および第二の実施形態との違いは、第一の実施形態における固定部材6およびボルト7や第二の実施形態における締付バンド16の代わりに、荷重付加機構として荷重付加装置26を設けたことである。 The electrochemical cell stack 1 includes a laminate 2, a load receiving plate 3, a heat insulating plate 4, a heat insulating wall member 5, and a cylinder 26 as a load application mechanism. The difference between this embodiment and the first and second embodiments is that instead of the fixing member 6 and bolt 7 in the first embodiment and the tightening band 16 in the second embodiment, a load applying mechanism is used as a load applying mechanism. A device 26 is provided.

荷重付加装置26は荷重受け板3の上面に配置され、流体供給部26aと、シリンダ26bと、ピストン26cと、流体排出部26dを備える。 The load application device 26 is arranged on the upper surface of the load receiving plate 3, and includes a fluid supply portion 26a, a cylinder 26b, a piston 26c, and a fluid discharge portion 26d.

流体供給部26aは、シリンダ26bに連結され、シリンダ26bに荷重の供給源である流体を供給する配管である。流体供給部26aには図示していない流量調整弁および圧力調整弁が設けられ、この圧力調整弁の絞りによってシリンダ26b内部に充満する圧力を調整可能である。本実施形態では流体が油である場合を例示して説明するが、流体の種類や状態については特に限定されず、例えば気体を用いてもよい。 The fluid supply portion 26a is a pipe that is connected to the cylinder 26b and supplies the fluid that is the source of the load to the cylinder 26b. The fluid supply portion 26a is provided with a flow control valve and a pressure control valve (not shown), and the pressure filling the cylinder 26b can be adjusted by throttling the pressure control valve. In this embodiment, the case where the fluid is oil will be described as an example, but the type and state of the fluid are not particularly limited, and gas may be used, for example.

シリンダ26bは、荷重受け板3の上側に配置される。シリンダ26bの下端面には、図示していない嵌合部が設けられ、この嵌合部を介して荷重受け板3とシリンダ26bと下端面とを嵌め合わせる。シリンダ26bの内部にはピストン26cが挿入されており、ピストン26cよりも上側と下側は、それぞれピストン26cが上下に可動できる程度に密閉されている。シリンダ26bの上側は、流体供給部26aに連結され、流体供給部26aから油が供給される。一方、シリンダ26bの下側は、ピストン26cを介してシリンダ26bの上側から密閉されている。すなわち、流体供給部26aから供給された油はシリンダ26bの下側には漏洩せず、シリンダ26bの上側にのみ油が供給される。 The cylinder 26b is arranged above the load receiving plate 3 . A fitting portion (not shown) is provided on the lower end surface of the cylinder 26b, and the load receiving plate 3, the cylinder 26b, and the lower end surface are fitted through this fitting portion. A piston 26c is inserted into the cylinder 26b, and the upper and lower sides of the piston 26c are sealed to the extent that the piston 26c can move up and down. The upper side of the cylinder 26b is connected to the fluid supply portion 26a, and oil is supplied from the fluid supply portion 26a. On the other hand, the lower side of the cylinder 26b is sealed from the upper side of the cylinder 26b via the piston 26c. That is, the oil supplied from the fluid supply portion 26a does not leak to the lower side of the cylinder 26b, and is supplied only to the upper side of the cylinder 26b.

流体排出部26dはシリンダ26bの上側に連結され、シリンダ26bの上側に満たされた油を排出する配管である。流体排出部26dには図示していない流量調整弁が設けられ、シリンダ26bの上側から排出される油量を調整可能である。この流量調整弁は通常は閉じており、シリンダ26bの上側に満たされた油を排出する場合に、その排出量に応じて開く。なお、流体排出部26dにはリリーフ弁(保圧弁)やその他の圧力調整弁、また逆止弁などを適宜配置してもよい。 The fluid discharge portion 26d is a pipe that is connected to the upper side of the cylinder 26b and discharges the oil filled in the upper side of the cylinder 26b. A flow control valve (not shown) is provided in the fluid discharge portion 26d, and the amount of oil discharged from the upper side of the cylinder 26b can be adjusted. This flow control valve is normally closed, and opens according to the amount of oil that is discharged from the upper side of the cylinder 26b. A relief valve (holding pressure valve), other pressure regulating valves, check valves, or the like may be appropriately disposed in the fluid discharge portion 26d.

次に、本実施形態の作用について説明する。シリンダ26bの上側に油が満たされていない状態から、流体供給部26aの図示していない流量調整弁を開き、流体供給部26aからシリンダ26bの上側に所定量の油を供給する。シリンダ26bの上側が油で満たされると、ピストン26cには、この油の自重に相当する下向きの荷重が付加される。この状態で、流体供給部26aの図示しない圧力調整弁を絞ることにより、ピストン26cには、油の自重および圧力調整弁の絞りに応じた油圧が付加される。この油圧がシリンダ26bの下側からピストン26cに付加される圧力に打ち勝つと、ピストン26cは下向きに可動し、シリンダ26bの下端面の図示しない嵌合部に嵌め合わされた荷重受け板3の上面と接触する。これにより、荷重受け板3にはピストン26cを介して下向きの荷重が付加される。シリンダ26bの上側に所定量の油が供給されると、流体供給部26aの図示していない流量調整弁を閉じて、流体供給部26aからの油の供給を停止する。 Next, the operation of this embodiment will be described. From the state where the upper side of the cylinder 26b is not filled with oil, a flow control valve (not shown) of the fluid supply section 26a is opened to supply a predetermined amount of oil from the fluid supply section 26a to the upper side of the cylinder 26b. When the upper side of the cylinder 26b is filled with oil, a downward load corresponding to the weight of the oil is applied to the piston 26c. In this state, by throttling the pressure regulating valve (not shown) of the fluid supply portion 26a, hydraulic pressure is applied to the piston 26c according to the weight of the oil and the throttling of the pressure regulating valve. When this hydraulic pressure overcomes the pressure applied to the piston 26c from the lower side of the cylinder 26b, the piston 26c moves downward, and the upper surface of the load receiving plate 3 fitted to the fitting portion (not shown) of the lower end surface of the cylinder 26b. Contact. As a result, a downward load is applied to the load receiving plate 3 via the piston 26c. When a predetermined amount of oil is supplied to the upper side of the cylinder 26b, the flow control valve (not shown) of the fluid supply section 26a is closed to stop the supply of oil from the fluid supply section 26a.

上述した第三の実施形態によれば、荷重付加機構として荷重付加装置26を用いることにより第一ならびに第二の実施形態と同様の効果が得られる。 According to the above-described third embodiment, by using the load applying device 26 as the load applying mechanism, the same effects as those of the first and second embodiments can be obtained.

なお、本実施形態では第一および第二の実施形態と同様に断熱壁部材5を備える場合を例示して説明したが、本実施形態の電気化学セルスタック1は、断熱壁部材5を備えない構成としてもよい。 Although the present embodiment has been described by exemplifying the case where the heat insulating wall member 5 is provided as in the first and second embodiments, the electrochemical cell stack 1 of the present embodiment does not include the heat insulating wall member 5. may be configured.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の趣旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 While several embodiments of the invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.

1.電気化学セルスタック、2.積層体、2a.上端側エンドプレート、2b.下端側エンドプレート、3.荷重受け板、4.断熱板、5.断熱壁部材、5a.溝部、6.固定部材、6a.ボルト孔、7.ボルト、7a.先端面、16.締付バンド、16a.締結部、16b.ねじ、26.荷重付加装置、26a.流体供給部、26b.シリンダ、26c.ピストン、26d.流体排出部 1. electrochemical cell stack;2. laminate, 2a. upper end plate, 2b. lower end plate;3. 4. load bearing plate; 5. heat insulating plate; Insulating wall member 5a. groove, 6. fixing member, 6a. 7. bolt holes; bolt, 7a. tip face, 16 . tightening band, 16a. fastener, 16b. screw, 26. load application device, 26a. fluid supply, 26b. cylinder, 26c. piston, 26d. Fluid discharge

Claims (1)

固体酸化物形の複数の単セルが積層された積層体と、
前記積層体の積層方向上端面および下端面の少なくとも一方に設けられた断熱板と、
前記断熱板に間接的に接して前記積層体に圧縮荷重を付加する荷重付加機構と、
前記断熱板の側面から前記積層体を囲う断熱壁部材と、
前記断熱板と前記荷重付加機構との間に荷重受け板と、を備え、
前記断熱板および前記荷重受け板は、前記断熱壁部材に設けられた孔部に内包され
前記荷重付加機構は、
前記荷重受け板にねじ先が当接するボルトと、
前記ボルトをねじ込むボルト孔を有し、前記断熱壁部材の上面に固定される固定部材と、
を具備する電気化学セルスタック。
a laminate in which a plurality of solid oxide single cells are laminated;
a heat insulating plate provided on at least one of the upper end surface and the lower end surface of the laminate in the stacking direction;
a load applying mechanism that applies a compressive load to the laminate by indirectly contacting the heat insulating plate;
a heat insulating wall member surrounding the laminate from the side surface of the heat insulating plate;
a load receiving plate between the heat insulating plate and the load applying mechanism;
The heat insulating plate and the load receiving plate are included in a hole provided in the heat insulating wall member ,
The load application mechanism is
a bolt whose screw tip abuts against the load receiving plate;
a fixing member having a bolt hole into which the bolt is screwed and fixed to the upper surface of the heat insulating wall member;
An electrochemical cell stack comprising:
JP2018138526A 2018-07-24 2018-07-24 electrochemical cell stack Active JP7140590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018138526A JP7140590B2 (en) 2018-07-24 2018-07-24 electrochemical cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018138526A JP7140590B2 (en) 2018-07-24 2018-07-24 electrochemical cell stack

Publications (2)

Publication Number Publication Date
JP2020017382A JP2020017382A (en) 2020-01-30
JP7140590B2 true JP7140590B2 (en) 2022-09-21

Family

ID=69581568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018138526A Active JP7140590B2 (en) 2018-07-24 2018-07-24 electrochemical cell stack

Country Status (1)

Country Link
JP (1) JP7140590B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230357936A1 (en) * 2020-02-05 2023-11-09 Hoeller Electrolyzer Gmbh Method for operating an electrochemical cell stack arrangement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052726A (en) 1999-08-12 2001-02-23 Yoyu Tansanengata Nenryo Denchi Hatsuden System Gijutsu Kenkyu Kumiai Moisture absorption preventing method for molten carbonate type fuel cell
JP2008508688A (en) 2004-08-02 2008-03-21 ステクセラ ゲゼルシャフト ミット ベシュレンクテル ハフツング Fuel cell stack with clamping device
JP2011258409A (en) 2010-06-09 2011-12-22 Nippon Telegr & Teleph Corp <Ntt> Fuel cell stack
JP2012119164A (en) 2010-12-01 2012-06-21 Honda Motor Co Ltd Fuel cell stack
JP2014232678A (en) 2013-05-30 2014-12-11 日本特殊陶業株式会社 Fuel cell power generation facility

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052726A (en) 1999-08-12 2001-02-23 Yoyu Tansanengata Nenryo Denchi Hatsuden System Gijutsu Kenkyu Kumiai Moisture absorption preventing method for molten carbonate type fuel cell
JP2008508688A (en) 2004-08-02 2008-03-21 ステクセラ ゲゼルシャフト ミット ベシュレンクテル ハフツング Fuel cell stack with clamping device
JP2011258409A (en) 2010-06-09 2011-12-22 Nippon Telegr & Teleph Corp <Ntt> Fuel cell stack
JP2012119164A (en) 2010-12-01 2012-06-21 Honda Motor Co Ltd Fuel cell stack
JP2014232678A (en) 2013-05-30 2014-12-11 日本特殊陶業株式会社 Fuel cell power generation facility

Also Published As

Publication number Publication date
JP2020017382A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
RU2677269C2 (en) Fuel cell stack arrangement
US6190793B1 (en) Electrochemical fuel cell stack with an improved compression assembly
RU2531805C2 (en) Compression body for set of fuel elements and method of its manufacturing
EP1590846B1 (en) Fuel cell stack compressive loading system
KR101484635B1 (en) Compression assembly, solid oxide fuel cell stack, a process for compression of the solid oxide fuel cell stack and its use
US8574787B2 (en) Fuel cell stack
US20150311559A1 (en) Fuel cell stack
US20120009499A1 (en) Compression arrangement for fuel or electrolysis cells in a fuel cell stack or an electrolysis cell stack
KR20100007862A (en) Solid oxide fuel cell device
JP2006236611A (en) Fuel cell stack
JP6609189B2 (en) Electrochemical stack compression system
JP7140590B2 (en) electrochemical cell stack
JP2009217959A (en) Flat plate type solid oxide fuel cell stack
WO2016199223A1 (en) Solid-oxide fuel cell
JP2003297377A (en) On-vehicle type fuel cell
JP2015153679A (en) fuel cell stack
JP2009054378A (en) Fuel cell
JP2007066625A (en) Fuel cell stack
WO2018154656A1 (en) Flat plate type electrochemical cell stack
JP7050413B2 (en) Fuel cell modules and how to operate such modules
JP2015088288A (en) Fuel cell stack
WO2011059654A1 (en) Fuel cell system manifold seal
KR101306349B1 (en) fastener for stack and fuel cell stack using the same
JP2012064386A (en) Fuel cell and fuel cell system
WO2018154629A1 (en) Electrochemical cell

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180831

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20191219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211215

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220209

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20220330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220908

R150 Certificate of patent or registration of utility model

Ref document number: 7140590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150