JPS61248368A - Clamping device of layer-built type fuel cell - Google Patents

Clamping device of layer-built type fuel cell

Info

Publication number
JPS61248368A
JPS61248368A JP60087467A JP8746785A JPS61248368A JP S61248368 A JPS61248368 A JP S61248368A JP 60087467 A JP60087467 A JP 60087467A JP 8746785 A JP8746785 A JP 8746785A JP S61248368 A JPS61248368 A JP S61248368A
Authority
JP
Japan
Prior art keywords
springs
fuel cell
plate
surface pressure
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60087467A
Other languages
Japanese (ja)
Inventor
Akemi Hijikata
土方 明躬
Taesuke Nakayama
中山 妙輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60087467A priority Critical patent/JPS61248368A/en
Publication of JPS61248368A publication Critical patent/JPS61248368A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To uniformly clamp a layer-built type fuel cell body to always keep a surface pressure value constant, and to obtain stable output of a cell by disposing a plurality of springs within the surfaces of a pushing upper plate and a pushing lower plate. CONSTITUTION:A plurality of springs 11 are disposed between plate members 9a, 9b and between plate members 10a, 10b, and the springs 11 is positioned by a strut 12. The body of a layer-built type fuel cell operates by pressing the whole plane to a fixed surface pressure value after the completion of laminating and assembling. For this reason, a plurality of springs 11 are evenly contracted by a pushing upper plate 9 which accommodates the springs 11 and the strut 12, a pushing lower plate 10 and a pushing rod 4 when a pressing force is applied to the body 1. The distribution of surface pressure becomes uniform if the spring constant is selected to make the variation of the pressing force of the springs 11 small, even if the plate members 9a, 10a are deformed as shown by broken lines. Further, it is possible to always hold the surface pressure value constant by absorbing the expansion and the contraction due to the thermal expansion of the body 1 and an insulating plate 2 and the pushing rod 4 by means of the springs 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、積層形燃料電池の締付装置に関するもので
あシ、もう少し詳しくいうと、ガス分離板、単電池およ
びガスケットを交互に複数個積層した燃料電池本体を、
その両端面から加圧して締付けるだめの積層形燃料電池
の締付装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a tightening device for a stacked fuel cell, and more specifically, it relates to a tightening device for a stacked fuel cell. The stacked fuel cell body is
This invention relates to a tightening device for a stacked fuel cell, which tightens the cell by applying pressure from both end faces thereof.

〔従来の技術〕[Conventional technology]

第3図は、例えば、特開昭夕ざ−/乙3/l!号公報に
示された従来の積層形燃料電池の締付装置を示し7、(
1)は積層形燃料電池の本体、(コ)は本体(1)の上
・下面に装着した電気的絶縁性を有する絶縁板、(3a
)および(3b)は本体(1)と絶縁板(2)を積層方
向に両端面から加圧する押え上板および押え下板、(り
は押え上板(3a)と押え下板(3b)とに加圧力を付
加する押え棒、(5)は押え棒(りに装着された伸縮吸
収用のバネ機構である。
Figure 3 shows, for example, JP-A Showyuza-/Otsu3/l! The conventional stacked fuel cell tightening device shown in the publication is shown in 7, (
1) is the main body of the stacked fuel cell, (C) is the insulating plate with electrical insulation properties attached to the upper and lower surfaces of the main body (1), and (3a) is the main body of the stacked fuel cell.
) and (3b) are an upper presser plate and a lower presser plate that apply pressure to the main body (1) and the insulating plate (2) from both end faces in the laminating direction; The presser bar (5) is a spring mechanism attached to the presser bar to absorb expansion and contraction.

以上の構成により、積層形燃料電池の本体(1)は、積
層・組立完了後、平面全体を均一の面圧分布にて一定の
面圧値に加圧されて動作する。このため、バネ機構(5
)を調節して押え上板、押え下板(3a) (jb)に
本体(1)の断面積を面圧値から算出される加圧力を付
加する。
With the above configuration, the main body (1) of the stacked fuel cell operates by being pressurized to a constant surface pressure value with uniform surface pressure distribution over the entire plane after completion of stacking and assembly. For this reason, the spring mechanism (5
) to apply a pressing force calculated from the cross-sectional area of the main body (1) and the surface pressure value to the presser foot upper plate and presser foot lower plate (3a) (jb).

一方、積層形燃料電池の温度は待機温度と動作温度の間
を昇・降温するので、バネ機構(5)によって本体(1
)および絶縁板(コ)と押え棒(りとの熱膨張による伸
縮を吸収して面圧値を常に一定に保持する。次に、本体
(1)の構成部材および押え上板(3a)と押え下板(
3b)の必要条件を積層形燃料電池の構成を示す第6図
に基づき説明する。
On the other hand, since the temperature of the stacked fuel cell rises and falls between the standby temperature and the operating temperature, the spring mechanism (5)
), the insulating plate (c), and the presser rod (to absorb expansion and contraction due to thermal expansion to maintain a constant surface pressure value at all times.Next, the structural members of the main body (1) and the presser foot plate (3a) Presser foot plate (
The necessary conditions of 3b) will be explained based on FIG. 6, which shows the configuration of a stacked fuel cell.

積層形燃料電池はガス分離板(6)と単電池(7)およ
びガスケット<1>とを交互に複数個積層して構成され
る。この際、複数の燃料流路(6a)および酸化剤流路
(6b)の方向はそれぞれ総て一致するようになってい
る。単電池(7)から発生する電気出力は、ガス分離板
(6)、単電池(7)を通って積層方向に流れる。
The stacked fuel cell is constructed by alternately stacking a plurality of gas separation plates (6), unit cells (7), and gaskets <1>. At this time, the directions of the plurality of fuel channels (6a) and oxidizer channels (6b) are all the same. Electrical output generated from the cell (7) flows in the stacking direction through the gas separation plate (6) and the cell (7).

したがって、ガス分離板(ル)、単電池(7)を含む積
層形燃料電池の本体(1)は面内に均一に締めつけられ
て、電気的な接触抵抗の直を小さくしてXR損を低減巾
るとともに、過大な締付面圧によって単電池(7)内の
ガスの拡散性を阻害してはならない。
Therefore, the main body (1) of the stacked fuel cell including the gas separation plate (1) and the single cell (7) is tightened uniformly within the plane, reducing the electrical contact resistance and reducing the XR loss. In addition, the diffusion of gas within the cell (7) must not be inhibited by excessive tightening surface pressure.

この点について、第5図に示した従来装置を考察すると
、加圧力を、押え上板(3a) 、押え下板(3b) 
、押え棒(りによって、本体(1)に加えると、押え上
板(3a)と押え下板(3b)は第1図の破線のように
変形する。この押え板(、?a) 、 (,7b)の変
形のために面圧分布は、第を図に示すように面内で不均
一となシ、周辺部で大きく、中央部で小さい面圧分布と
なる。
Regarding this point, considering the conventional device shown in Fig. 5, the pressurizing force is applied to the presser foot upper plate (3a) and the presser foot lower plate (3b).
, when applied to the main body (1) by the presser bar (, ?a), the presser foot upper plate (3a) and presser foot lower plate (3b) deform as shown by the broken lines in Fig. 1.This presser foot plate (,?a), ( , 7b), the surface pressure distribution becomes non-uniform within the plane, as shown in the figure, and the surface pressure distribution is large at the periphery and small at the center.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のような従来の積層形燃料電池の締付装置では、面
圧分布が不均一であることから、面圧を適正に管理する
ことが困難で、面圧が過小であると電池の接触抵抗が犬
となってIR損が増大し、面圧が過大となると電池内で
のガスの拡散性が悪くガスの反応が阻害され、いずれも
電池出力の低下を来たすという問題点があった。
With the conventional tightening devices for stacked fuel cells as described above, the surface pressure distribution is uneven, making it difficult to properly manage the surface pressure, and if the surface pressure is too low, the contact resistance of the cell will increase. However, when the surface pressure becomes excessive, the gas diffusion within the battery is poor and the gas reaction is inhibited, both of which lead to a decrease in battery output.

この発明はかかる問題点を解消しようとするもので、電
池本体にがかる面圧分布が均一で、電池出力の低下を招
くことのない積層形燃料電池の締付装置を得ることを目
的とする。
The present invention is intended to solve these problems, and aims to provide a tightening device for a stacked fuel cell in which the distribution of surface pressure applied to the cell body is uniform and does not cause a decrease in cell output.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る積層形燃料電池の締付装置は、押え上板
および押え下板の少なくとも一方の面内にバネを複数個
配置し、バネを介して積層形燃料電池本体を加圧する。
The stacked fuel cell tightening device according to the present invention includes a plurality of springs disposed within the plane of at least one of the upper presser plate and the lower presser plate, and pressurizes the stacked fuel cell main body via the springs.

〔作用〕[Effect]

この発明においては、複数のバネを内蔵した押え板が、
積層形燃料電池本体を均一に締付け、常に所定の面圧値
を保持する。
In this invention, the presser plate incorporating a plurality of springs is
Tighten the stacked fuel cell body uniformly and always maintain a predetermined surface pressure value.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図〜第3図について説
明する。第1図において、(9)および(10)は本体
(1)と絶縁板(2)を積層方向に両端面から加圧する
押え上板および押え下板で、それぞれ/対の板部材(9
a) (9b)および(/Qa)(10b)からなって
いる。(りは板部材(qa)と(10a)間に加圧力を
付加する押え棒である。板部材(9a)(9b)間およ
び(#7a)(/7b)間にはバネ(//)が複数個配
置されており、バネ(//)は支柱(/、2)Kよって
位置決めされている。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. In Fig. 1, (9) and (10) are a presser upper plate and a presser lower plate that press the main body (1) and the insulating plate (2) from both end faces in the stacking direction, respectively, and are a pair of plate members (9).
a) Consists of (9b) and (/Qa) (10b). (ri is a presser bar that applies pressure between plate members (qa) and (10a). There are springs (//) between plate members (9a) (9b) and (#7a) (/7b). A plurality of springs (//) are positioned by support columns (/, 2) K.

その他、第5因におけると同一符号は同一部分を示して
いる。
In addition, the same reference numerals as in the fifth factor indicate the same parts.

第2図は、押え下板(10)におけるバネ(//)の配
置を示し、バネ(//)が板部材(10a)(/θb)
間に複数個、適宜に分布して配置されている。押え上板
(りについても同様である。
Figure 2 shows the arrangement of the spring (//) on the presser foot plate (10), and the spring (//) is attached to the plate member (10a) (/θb).
A plurality of them are appropriately distributed and arranged in between. The same applies to the presser foot top plate.

以上の構成により、積層形燃料電池の本体(1)は、積
層・組立完了後、平面全体一定の面圧直に加圧されて動
作する。このために、バネ(//)と支柱(/コ)を内
蔵した押え上板(9)と押え下板(10)および押え棒
(りによって、加圧力を本体(1)K加えると、この加
圧力によって、複数個のバネ(//)は均等に収縮する
。板部材(9a ) (10a)は第1図で破線のよう
に変形することがあっても、バネ(//)の加圧力の変
化が小さくなるようにバネ定数を選べば、面圧分布は第
3図に示すように均一になる。
With the above configuration, the main body (1) of the stacked fuel cell operates by being directly pressurized with a constant surface pressure over the entire plane after completion of stacking and assembly. For this purpose, pressurizing force is applied to the main body (1) K using the presser foot upper plate (9) and presser foot lower plate (10), which have built-in springs (//) and struts (/ko), and the presser rod (ri). The plurality of springs (//) contract uniformly due to the applied force.Even though the plate members (9a) (10a) may be deformed as shown by the broken lines in Fig. 1, the springs (//) are If the spring constant is selected so that the change in pressure is small, the surface pressure distribution will be uniform as shown in FIG.

また、本体(1)および絶縁板(2)と押え棒(りとの
熱膨張による伸縮をバネ(//)が吸収して、面圧直を
常に一定に保持することができる。
In addition, the spring (//) absorbs the expansion and contraction due to thermal expansion of the main body (1), the insulating plate (2), and the presser rod (2), so that the surface pressure can always be kept constant.

なお、上記実施的では、押え上板(テ)と押え下板(1
0)双方にそれぞれ複数個のバネ(//)を配設したが
、押え上板(9)、押え下板(10)のいずれかに複数
個のバネ(//)を配設してもよく、同様の効果が得ら
れる。また、内側の板部材(9b)(10b)として絶
縁板(2)を兼用させてもよい。
In addition, in the above implementation, the presser foot upper plate (TE) and the presser foot lower plate (1
0) A plurality of springs (//) are arranged on both sides, but even if a plurality of springs (//) are arranged on either the presser foot upper plate (9) or the presser foot lower plate (10), A similar effect can often be obtained. Further, the insulating plate (2) may also be used as the inner plate members (9b) (10b).

つぎに、上記実施列では、バネ(//)の形式について
は、機能および効果が同じであれば、特に午 規定しないが、第q図に示す皿パル(/3)などが適し
ている。
Next, in the above embodiment, the type of spring (//) is not particularly stipulated as long as the function and effect are the same, but a plate-shaped spring (/3) shown in FIG. q is suitable.

また、押え下板(/θ)に内蔵されるバネ(//)のバ
ネ定数は、本体(1)の重量が加わるので押え上板(9
)に内蔵されるバネ(//)のバネ定数よりも大きくす
るのがよい。
In addition, the spring constant of the spring (//) built into the presser foot lower plate (/θ) will change due to the weight of the main body (1).
) should be larger than the spring constant of the built-in spring (//).

さらに、押え上板(9)および押え下板(10)の剛性
に合わせて、面内にバネ定数の異なるバネを易くし、周
辺部では撓みが小さいのでバネ定数を強くすることによ
って、よシ面圧分布を均一にすることができる。
Furthermore, in accordance with the rigidity of the presser foot upper plate (9) and the presser foot lower plate (10), springs with different spring constants are easily installed in the plane, and the spring constant is strengthened in the peripheral area where the deflection is small, so that the structure can be improved. Surface pressure distribution can be made uniform.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、押え上板および押え
下板の面内に複数個のバネを配置したので積層形燃料電
池本体を均一に締めつけ、運転時における熱膨張による
伸縮をバネで吸収して面圧直を常に一定に保持すること
ができ、電池の内部の接触抵抗が面内で均一になるとと
もに、面圧を適正直に管理することができるので、過大
面圧によってガスの拡散性が阻害されることがなく、安
定な電池出力が得られる。
As described above, according to the present invention, since a plurality of springs are arranged within the plane of the upper presser plate and the lower presser plate, the stacked fuel cell body can be tightened uniformly, and the springs can absorb expansion and contraction due to thermal expansion during operation. By absorbing the surface pressure, it is possible to keep the surface pressure constant at all times, making the contact resistance inside the battery uniform within the surface, and also controlling the surface pressure properly, so that excessive surface pressure can cause gas leakage. Diffusivity is not inhibited and stable battery output can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図はこの発明の一実施例を示し、第1図は
縦断面図、第2図は一部平面図、第3図は面圧分布線図
である。第q@は他の実施例の一部縦断面図である。 第5図〜第を図は従来の積層形燃料電池の締付装置を示
し、第3図は斜視図、第6図は一部斜視図、第1図は縦
断面図、第を図は面圧分布線図である。 (1)・・積層形燃料電池本体、(コ)・・絶縁板、(
す・・押え棒、(9)・・押え上板、(va) (9b
)・・板部材、(10)・・押え下板、(10a)(1
0b)・・板部材、(//)・・バネ、(/コ)・・支
柱。 なお、各図中、同一符号は同−又は相当部分を示す。 9、捏上と褒 9a、9b :  板部材 10 ・ W上下ス 10a、lOb :  &li、T 11  :  w年 1Z   ]1 犀4図
1 to 3 show an embodiment of the present invention, in which FIG. 1 is a longitudinal sectional view, FIG. 2 is a partial plan view, and FIG. 3 is a surface pressure distribution diagram. The q@th is a partial longitudinal sectional view of another embodiment. Figures 5 to 5 show a conventional tightening device for a stacked fuel cell, Figure 3 is a perspective view, Figure 6 is a partial perspective view, Figure 1 is a longitudinal sectional view, and Figure 1 is a planar view. It is a pressure distribution diagram. (1)...Stacked fuel cell body, (C)...Insulation plate, (
Presser foot bar, (9) Presser foot top plate, (va) (9b
)... Plate member, (10)... Presser foot plate, (10a) (1
0b)...Plate member, (//)...Spring, (/KO)...Strut. In each figure, the same reference numerals indicate the same or corresponding parts. 9. Fabrication and reward 9a, 9b: Plate member 10, W upper and lower parts 10a, lOb: &li, T 11: W year 1Z] 1 Rhinoceros 4 figure

Claims (7)

【特許請求の範囲】[Claims] (1)ガス分離板、単電池およびガスケットを交互に複
数個積層した燃料電池本体を、絶縁板を介して押え上板
と押え下板とで押圧してなる積層形燃料電池の締付装置
において、上記押え上板および上記押え下板の少なくと
も一方の内側面に複数個のバネを配置してなることを特
徴とする積層形燃料電池の締付装置。
(1) In a tightening device for a stacked fuel cell, in which a fuel cell main body, in which a plurality of gas separation plates, cell cells, and gaskets are alternately stacked, is pressed by an upper presser plate and a lower presser plate through an insulating plate. A tightening device for a stacked fuel cell, characterized in that a plurality of springs are arranged on an inner surface of at least one of the upper presser plate and the lower presser plate.
(2)押え上板および押え下板の少なくとも一方が、複
数個のバネを挟持した1対の板部材でなる特許請求の範
囲第1項記載の積層形燃料電池の締付装置。
(2) The tightening device for a stacked fuel cell according to claim 1, wherein at least one of the upper presser plate and the lower presser plate is a pair of plate members sandwiching a plurality of springs.
(3)支柱により位置決めされたバネを備えた特許請求
の範囲第1項記載の積層形燃料電池の締付装置。
(3) A tightening device for a stacked fuel cell according to claim 1, comprising a spring positioned by a support.
(4)バネが皿バネである特許請求の範囲第1項記載の
積層形燃料電池の締付装置。
(4) The tightening device for a stacked fuel cell according to claim 1, wherein the spring is a disc spring.
(5)押え下板に内蔵されたバネのバネ定数が、押え上
板に内蔵されたバネのバネ定数よりも大である特許請求
の範囲第1項記載の積層形燃料電池の締付装置。
(5) The tightening device for a stacked fuel cell according to claim 1, wherein the spring constant of the spring built into the lower presser plate is larger than the spring constant of the spring built into the upper presser plate.
(6)複数個のバネのバネ定数が不同である特許請求の
範囲第1項記載の積層形燃料電池の締付装置。
(6) The tightening device for a stacked fuel cell according to claim 1, wherein the plurality of springs have different spring constants.
(7)中央部にあるバネのバネ定数よりも周辺部にある
バネのバネ定数が大である特許請求の範囲第6項記載の
積層形燃料電池の締付装置。
(7) The tightening device for a stacked fuel cell according to claim 6, wherein the spring constant of the springs in the peripheral portion is larger than the spring constant of the spring in the central portion.
JP60087467A 1985-04-25 1985-04-25 Clamping device of layer-built type fuel cell Pending JPS61248368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60087467A JPS61248368A (en) 1985-04-25 1985-04-25 Clamping device of layer-built type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60087467A JPS61248368A (en) 1985-04-25 1985-04-25 Clamping device of layer-built type fuel cell

Publications (1)

Publication Number Publication Date
JPS61248368A true JPS61248368A (en) 1986-11-05

Family

ID=13915700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60087467A Pending JPS61248368A (en) 1985-04-25 1985-04-25 Clamping device of layer-built type fuel cell

Country Status (1)

Country Link
JP (1) JPS61248368A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271364A (en) * 1986-05-19 1987-11-25 Yamaha Motor Co Ltd Stack clamping structure for fuel cell
EP0620609A1 (en) * 1993-03-26 1994-10-19 Daimler-Benz Aktiengesellschaft Electrochemical multicell-battery
WO1995028010A1 (en) * 1994-04-06 1995-10-19 Ballard Power Systems Inc. Electrochemical fuel cell stack with compact, centrally disposed compression mechanism
EP0750797A1 (en) * 1994-02-23 1997-01-02 William R. Richards Fuel cell having uniform compressive stress distribution over active area
EP1045468A2 (en) * 1999-04-16 2000-10-18 Mitsubishi Heavy Industries, Ltd. Fuel cell stack with fastening means
WO2001056104A3 (en) * 2000-01-27 2001-12-20 Siemens Ag Intermediate element for a fuel cell stack and the corresponding fuel cell stack
US6696185B1 (en) * 1995-07-07 2004-02-24 Honda Giken Kogyo Kabushiki Kaisha Fuel cell and fastening method therefor
EP1601041A1 (en) * 2003-03-06 2005-11-30 Toyota Jidosha Kabushiki Kaisha Fuel cell
WO2006012844A1 (en) * 2004-08-02 2006-02-09 Staxera Gmbh Fuel-cell stack comprising a tensioning device
JP2006114362A (en) * 2004-10-15 2006-04-27 Toyota Motor Corp Fuel cell
JP2007242278A (en) * 2006-03-06 2007-09-20 Toyota Motor Corp Fuel cell and its elastic module
EP1870953A1 (en) * 2006-06-21 2007-12-26 ElringKlinger AG Fuel cell stack
EP1870951A1 (en) * 2006-06-21 2007-12-26 ElringKlinger AG Fuel cell stack
JP2008060010A (en) * 2006-09-01 2008-03-13 Chuo Spring Co Ltd Fuel cell pressing assembly
JP2008066178A (en) * 2006-09-08 2008-03-21 Honda Motor Co Ltd Fuel cell stack
DE112008000024T5 (en) 2007-06-06 2009-06-10 Panasonic Corporation, Kadoma-shi Polymer electrolyte fuel cell
US7560187B2 (en) 2003-11-25 2009-07-14 Toyota Jidosha Kabushiki Kaisha Fuel cell stack
JP2009158381A (en) * 2007-12-27 2009-07-16 Toyota Motor Corp Fuel cell stack
DE102009034141A1 (en) * 2009-07-22 2011-01-27 Elringklinger Ag Housing for e.g. battery, has tensioning device including spring element e.g. coil spring, and electrochemical device tensionable against external carrier structure of tensioning device by using spring element
JP2014139905A (en) * 2013-01-21 2014-07-31 Sumitomo Electric Ind Ltd Cell stack for redox flow battery and method of manufacturing cell stack for redox flow battery
CN113571751A (en) * 2020-04-29 2021-10-29 未势能源科技有限公司 Fuel cell and electric pile structure thereof
CN113945460A (en) * 2021-10-25 2022-01-18 上海交通大学 Anti-instability device and method for high-strength plate compression experiment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207567A (en) * 1983-05-11 1984-11-24 Hitachi Ltd Manifold installing device of fuel cell
JPS6093765A (en) * 1983-10-28 1985-05-25 Toshiba Corp Fuel cell
JPS6039571B2 (en) * 1975-12-04 1985-09-06 株式会社クボタ Stand mounting structure of walk-behind cultivator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039571B2 (en) * 1975-12-04 1985-09-06 株式会社クボタ Stand mounting structure of walk-behind cultivator
JPS59207567A (en) * 1983-05-11 1984-11-24 Hitachi Ltd Manifold installing device of fuel cell
JPS6093765A (en) * 1983-10-28 1985-05-25 Toshiba Corp Fuel cell

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271364A (en) * 1986-05-19 1987-11-25 Yamaha Motor Co Ltd Stack clamping structure for fuel cell
EP0620609A1 (en) * 1993-03-26 1994-10-19 Daimler-Benz Aktiengesellschaft Electrochemical multicell-battery
EP0750797A1 (en) * 1994-02-23 1997-01-02 William R. Richards Fuel cell having uniform compressive stress distribution over active area
EP0750797A4 (en) * 1994-02-23 2000-02-09 William R Richards Fuel cell having uniform compressive stress distribution over active area
WO1995028010A1 (en) * 1994-04-06 1995-10-19 Ballard Power Systems Inc. Electrochemical fuel cell stack with compact, centrally disposed compression mechanism
US6696185B1 (en) * 1995-07-07 2004-02-24 Honda Giken Kogyo Kabushiki Kaisha Fuel cell and fastening method therefor
EP1045468A2 (en) * 1999-04-16 2000-10-18 Mitsubishi Heavy Industries, Ltd. Fuel cell stack with fastening means
EP1045468A3 (en) * 1999-04-16 2003-05-28 Mitsubishi Heavy Industries, Ltd. Fuel cell stack with fastening means
WO2001056104A3 (en) * 2000-01-27 2001-12-20 Siemens Ag Intermediate element for a fuel cell stack and the corresponding fuel cell stack
US7833678B2 (en) 2003-03-06 2010-11-16 Toyota Jidosha Kabushiki Kaisha Fuel cell stack
EP1601041A1 (en) * 2003-03-06 2005-11-30 Toyota Jidosha Kabushiki Kaisha Fuel cell
EP1601041A4 (en) * 2003-03-06 2008-05-28 Toyota Motor Co Ltd Fuel cell
US7560187B2 (en) 2003-11-25 2009-07-14 Toyota Jidosha Kabushiki Kaisha Fuel cell stack
WO2006012844A1 (en) * 2004-08-02 2006-02-09 Staxera Gmbh Fuel-cell stack comprising a tensioning device
JP2006114362A (en) * 2004-10-15 2006-04-27 Toyota Motor Corp Fuel cell
JP2007242278A (en) * 2006-03-06 2007-09-20 Toyota Motor Corp Fuel cell and its elastic module
EP1870953A1 (en) * 2006-06-21 2007-12-26 ElringKlinger AG Fuel cell stack
EP1870951A1 (en) * 2006-06-21 2007-12-26 ElringKlinger AG Fuel cell stack
JP2008060010A (en) * 2006-09-01 2008-03-13 Chuo Spring Co Ltd Fuel cell pressing assembly
JP2008066178A (en) * 2006-09-08 2008-03-21 Honda Motor Co Ltd Fuel cell stack
DE112008000024T5 (en) 2007-06-06 2009-06-10 Panasonic Corporation, Kadoma-shi Polymer electrolyte fuel cell
US8343688B2 (en) 2007-06-06 2013-01-01 Panasonic Corporation Polymer electrolyte fuel cell having a fastening structure including elastic members
JP2009158381A (en) * 2007-12-27 2009-07-16 Toyota Motor Corp Fuel cell stack
DE102009034141A1 (en) * 2009-07-22 2011-01-27 Elringklinger Ag Housing for e.g. battery, has tensioning device including spring element e.g. coil spring, and electrochemical device tensionable against external carrier structure of tensioning device by using spring element
JP2014139905A (en) * 2013-01-21 2014-07-31 Sumitomo Electric Ind Ltd Cell stack for redox flow battery and method of manufacturing cell stack for redox flow battery
CN113571751A (en) * 2020-04-29 2021-10-29 未势能源科技有限公司 Fuel cell and electric pile structure thereof
CN113945460A (en) * 2021-10-25 2022-01-18 上海交通大学 Anti-instability device and method for high-strength plate compression experiment
CN113945460B (en) * 2021-10-25 2022-08-09 上海交通大学 Anti-instability device and method for high-strength plate compression experiment

Similar Documents

Publication Publication Date Title
JPS61248368A (en) Clamping device of layer-built type fuel cell
US4692391A (en) Cell stack assembly structure for fuel cell
US6428921B1 (en) Fuel cell stack compression method and apparatus
CA2243370C (en) Electrochemical fuel cell stack with an improved compression assembly
US5789091A (en) Electrochemical fuel cell stack with compression bands
CA1202065A (en) Compact fuel cell stack
EP0329161B1 (en) Arrangement for tightening stack of fuel cell elements
US6210823B1 (en) Polymer electrolyte fuel cell
US20050186462A1 (en) PEM fuel cell stack with floating current collector plates
KR20020093978A (en) Fuel cell assembly
JPH0888018A (en) Solid polymer fuel cell
US20240063418A1 (en) Systems and methods of fuel cell stack compression
JPH09259916A (en) Fastening device for fuel cell
JPH0845535A (en) Fuel cell fastening device
JPS6158176A (en) Fuel cell
US5422196A (en) Pressure vessel for pressurized secondary cells and batteries
JPH1032016A (en) Fastening and heating device of fuel cell
JPH0358155B2 (en)
JP2007294243A (en) Fuel cell
JPH03119665A (en) Fuel cell fastening device
JP4197931B2 (en) Tightening structure of polymer electrolyte fuel cell stack
JPH01209671A (en) Fuel cell of molten carbonate type
JPS5975578A (en) Stack type fuel cell
JP3109239B2 (en) Fuel cell
JP3240712B2 (en) Fuel cell