EP1771868A1 - Electromagnetic control device operating by switching - Google Patents

Electromagnetic control device operating by switching

Info

Publication number
EP1771868A1
EP1771868A1 EP05787407A EP05787407A EP1771868A1 EP 1771868 A1 EP1771868 A1 EP 1771868A1 EP 05787407 A EP05787407 A EP 05787407A EP 05787407 A EP05787407 A EP 05787407A EP 1771868 A1 EP1771868 A1 EP 1771868A1
Authority
EP
European Patent Office
Prior art keywords
plate
mechanical element
electromagnet
gap
closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05787407A
Other languages
German (de)
French (fr)
Inventor
Jean-Paul Yonnet
Christophe Baldi
Christophe Fageon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Publication of EP1771868A1 publication Critical patent/EP1771868A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/14Pivoting armatures
    • H01F7/145Rotary electromagnets with variable gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1692Electromagnets or actuators with two coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • H01H51/2263Polarised relays comprising rotatable armature, rotating around central axis perpendicular to the main plane of the armature

Definitions

  • the present invention relates to an electromagnetic control device for opening and closing a mechanical element, in particular an internal combustion engine valve.
  • a mechanical element in particular an internal combustion engine valve.
  • an actuator the positioning of the mechanical element in at least one position (open or closed) is obtained by the action of an electromagnet acting on a plate, including a magnetic material, and controlling the positioning of the mechanical element.
  • Known devices of this type operate in such a way that the plate moves in translation or in rotation around an axis of rotation situated outside the zone of the airfoils of the electromagnets and thus assimilable to a translational movement of the plate.
  • the electromagnetic dimensioning of an actuator is conditioned by the force it must exert. This force is related to the course of the plateau and the mass of the latter. In Indeed, the mass of the plate conditions its travel time and therefore imposes the stiffness of the return springs intended to participate in the actuation of the plate.
  • the force of the electromagnetic control device is directly coupled with the force of the return springs since the actuator must be able to exert a force greater than that of the springs to hold the plate in position.
  • the present invention results from the observation that the greater the mechanical performance of a known electromagnetic control device, the more bulky this device.
  • It relates to a device having at least first and second gaps of variable thickness to be closed by the plate during positioning of the mechanical element in at least one position, the plate being rotated so that the The axis of rotation of the plate passes between the first and second air gaps.
  • the inertia of the plate is smaller than for a device operating in translation. Indeed, in the devices in translation, the entire plate moves the entire race. Instead, in a device where the plate is rotatably mounted about an axis positioned between the two air gaps, the two ends of the plate move the entire stroke but the points of the plate located on the axis of rotation are immobile. The average displacement is then half that observed in a device in translation. the the
  • the second position of the mechanical element is such that the gaps are open or said large air gaps.
  • a closed air gap is also called a low air gap.
  • the device includes a third and a fourth gap of variable thickness to be closed by the plate during the positioning of the mechanical element in the second position, the axis of rotation of the plate passing between the first, second, third and fourth gaps.
  • the two positions of the valve are controlled by the plate which oscillates angularly between two positions controlled by similar means.
  • the second position of the mechanical element is obtained by the action of a second electromagnet acting on the plate.
  • a second electromagnet acting on the plate This first embodiment, without a permanent magnet, is called a non-polarized actuator.
  • the device comprises at least one permanent magnet for polarizing the device in the absence of current in the electromagnet and to linearize the operation of the system.
  • the maintenance of the mechanical element in an open or closed position is ensured by the permanent polarization generated by the permanent magnet even in the absence of a current flowing in the coil.
  • the actuator is called polarized.
  • the magnetic flux generated by the electromagnet passes through the permanent magnet. This embodiment is called series polarization.
  • the permanent magnet is thin.
  • the magnetic flux generated by the electromagnet does not cross the the the
  • the permanent magnet although placed out of the magnetic circuit of the electromagnet, is traversed by the magnetic flux generated by
  • the electromagnet so that said flow passes through two closed air gaps.
  • the magnetic material included in the plate is advantageously a ferromagnetic material.
  • the invention relates to a device for electromagnetic control of the opening and closing of a mechanical element, the positioning of the mechanical element in at least one position (open or closed) being obtained by the action of at least one electromagnet acting on a plate including a magnetic material and controlling the positioning of the mechanical element, this device comprising: at least a first and a second gap of variable thickness to be closed by the plate during the positioning the mechanical element in at least one position, the plate being mounted in rotation so that the axis of rotation of the plate passes between the first and second air gaps, and - at least one permanent magnet for biasing the device so as to maintain the plate in at least one position in the absence of current in the electromagnet, this permanent magnet not being traversed by the magnetic flux main electromagnet.
  • the magnetic flux generated by electromagnet passes through an air gap devoid of permanent magnet and located in parallel with an air gap containing a permanent magnet.
  • the fact that the magnetic flux does not pass through the permanent magnet makes it possible not to demagnetize this magnet, since it is not subject to significant demagnetizing fields.
  • the magnetic flux generated by the electromagnet passes, in addition to the air gap located in parallel with the permanent magnet, the two air gaps closed by the plate during its tilting in a position.
  • the closed air gaps traversed by the flux are seen by the coils as relatively small, which makes the contribution of the coils more efficient in terms of efficiency since the magnetic flux thus encounters a smaller reluctance than if it passed through large gaps such as the coils. air gaps left open by the plateau.
  • FIG. 1 illustrates the operation of an electromagnetic control device according to the invention
  • Figures 2a and 2b are intended to illustrate the advantage produced by the invention with respect to a device operating in translation
  • FIG. 3 to 9 show seven embodiments of the invention.
  • Figure 10 shows a perspective view of an exemplary embodiment of the invention.
  • the magnetic circuits and the magnetic fluxes are represented by a closed curve referenced for the sake of clarity by the same reference.
  • the magnetic circuit is a circuit that can channel a magnetic flux.
  • the arrow on such a closed curve indicates the direction of polarization magnetic flux.
  • the magnetic fluxes are represented in the cutting plane of the plate.
  • the symbols used are identical for all the figures.
  • the double arrows represent the directions of the polarization fluxes in the permanent magnets and the directions of the induction fluxes created by these permanent magnets in the air gaps.
  • the simple arrows represent the directions of the induction fluxes generated by the coils in the air gaps.
  • the devices described preferably have a linear behavior and preferably operate without magnetic saturation to allow a high controllability of the device. Proper sizing of the different elements of the devices allow such behaviors.
  • FIG. 1 shows the simplest embodiment of the invention in which positioning of the mechanical element 17 in a position (open or closed) is obtained by the action of an electromagnet 10 including a first coil 11 and a first magnetic circuit 12.
  • the electromagnet 10 acts on a plate 13 including a magnetic material, preferably a ferromagnetic material. A permanent magnet may also possibly be included in the tray.
  • the positions 13 1 and 13 2 of this plate 13 control the positioning of the mechanical element 17.
  • the device has two so-called first air gaps 14a and 14b air gaps. These air gaps 14a and 14b are intended to be closed by the plate 13 during the positioning of the mechanical element in the open or closed position which corresponds in the figure to the position 13i of the plate 13.
  • the plate 13 is rotatably mounted to move from a position 13i to the other 13 2 so that the axis of rotation 15 of the plate 13 is between the first and the second gap 14a and 14b.
  • the connection of the plate 13 with the valve 17 is performed using a hinge 16 between a valve stem 17a and the plate 13.
  • the hinge 16 is placed at one end of the plate 13.
  • the valve stem 17a is linearly reciprocated and drives the valve head 17b.
  • Springs 18a and 18b and attachment of the springs 19 allow the return movement of the valve 17.
  • the setting in position 13i is carried out when a current flows in the first coil 11.
  • the holding in position can be achieved through the circulation of such a stream or, as described later, using a polarization carried out using a permanent magnet inserted in the magnetic circuit 12 of the electromagnet 10 or in its vicinity.
  • Positioning 13 2 may be performed by means other than electromagnetic, for example, mechanical or by electromagnetic means other than or similar to that shown in FIG.
  • the dimensioning of the valve control devices is completely determined with two external parameters: the stroke and the half period (that is, say the time taken by the valve to go from one position to another).
  • the stroke of the valve is defined by the operation of the engine. This race 2zo (see Figure 2a and 2b) is imposed.
  • the coefficient ⁇ is classically of the order of 10 N / cm 2 , 160 at the most.
  • the mass of the plate is directly a function of this section of the electromagnetic gaps because the section of the plate must be sized to pass the magnetic flux.
  • m p ⁇ S 3/2 where p is the density of the material of the plate, and ⁇ a form factor.
  • This half period T / 2 is related to the operation of the engine. It is of the order of 3 ms.
  • FIGS. 2a and 2b illustrate the advantage that a rotating configuration according to the invention has with respect to a configuration in translation such as those encountered in the state of the art and meeting the problems of inertia explained above.
  • the factor 3 on the mass must however be reduced by a coefficient of effectiveness of the force of the device.
  • the force of each air gap is a fully usable axial force. It is not the same for a tilting device. If we want to compare the forces, we must reduce the force exerted at the end of the plateau, equivalent torque.
  • the attraction force of the device is exerted on the contact surface between the plate 13 and the part of the magnetic circuit that comes into contact with the low-gap plate.
  • the area in contact varies from x o L to L.
  • the parameter Xo should be around 0.3, which corresponds to 0.65 for the coefficient ⁇ .
  • the real gain is only 2/3 of the gain of 3 obtained on the equivalent mass of the plateau. Overall, this results in a gain of around a factor of 2.
  • the valve is, for example, connected by a rod-type system at the end of the plate.
  • the return springs are then arranged along the axis of the valve.
  • electromagnetic means according to the invention are used for positioning in both positions of the valve.
  • the plate operates between four gaps that function in attraction two by two and alternately.
  • the exemplary embodiments are based on the different possibilities of circulation of polarization flux in the air gaps, the different possibilities of circulation of excitation flux generated by the coils in the air gaps when the polarization has been defined, the arrangement of the coils relative to to the device and the arrangement of the permanent polarization magnets of the device.
  • FIGS. 3, 4 and 5 show three devices operating on a principle similar to that shown in FIG.
  • FIG. 3 shows a case of non-polarized device with four gaps where the two positions of the plate 33 are controlled by two electromagnets 30 and 36, respectively comprising a first and a second coil 31 and 37 and a first and second magnetic circuit 32 and 38
  • Four air gaps 34a, 34b and 34c, 34d are therefore present in the two magnetic circuits 32 and 38 and intended to be closed alternately, two by two, depending on the position of the plate 33 and therefore the valve.
  • This unpolarized configuration is in fact a double basic system similar to that described in Figure 1.
  • permanent magnets 49a and 49b have been added to a device as shown in FIG. 3. They allow polarization of the magnetic circuits 42 and 48 of the electromagnets 40 and 46 in the absence of current. circulating in the coils 41 and 47. Such polarization allows a holding position of the plate 43 without additional energy consumption or reduced energy consumption. Indeed, thanks to the polarization, the flow of current in the coils is not necessary during the holding in position.
  • the polarized control devices thus allow easy control of the intensity of the currents, in particular with a low air gap (or closed air gap) where the plate can be maintained without effort.
  • the polarization is called series when the flux of a bias magnet is in series with the flow of the coil for performing the actuation of the device.
  • the configurations shown in Figure 4 and Figure 5 are examples of such polarization. These examples have the advantage of being simple configurations of construction even if the magnetic circuits which carry the coils are rather complex, because crisscrossed.
  • the magnets In the case of serial configurations, it is advantageous for the magnets to be as thin as possible in order to maintain a good efficiency of the ampere turns of the coils. Indeed the magnets constitute an additional gap for the amp turns generated by the coils. On the other hand, the magnets are subjected to demagnetizing fields which can be important when the fields of the coils are in opposition with their magnetization.
  • the polarization is said to be parallel when the magnetic flux generated by the coil does not cross or passes through only a small part of a polarization magnet.
  • the examples shown in FIGS. 6 to 9 are examples of such polarization.
  • the configuration is then called parallel.
  • the permanent magnets are such that the flux generated by their presence in the magnetic circuits 42 and 48 rotate in the same direction. It is assumed, as shown in FIG. 4, that the air gaps 44a and 44b are almost closed and that the position of the plate is such that the air gaps 44c and 44d are substantially equal to the end-of-plate travel, ie say about 8 mm.
  • the permanent bias magnet 49a creates a magnetic flux 42 flowing in a closed circuit. Polarization inductions Bpa and Bpb are therefore high in air gaps 44a and 44b.
  • the induction Bpc and Bpd is lower because the magnet 49b sees a relatively large air gap, but it is not zero.
  • This induction generates a fairly weak force which slightly reduces the main attraction force generated by the magnet 49a.
  • the use of rather thin magnets allows this force to be very reduced.
  • the inductions Bba and Bbb in the air gaps 44a and 44b add (or retract in the direction of the current) to the induction due to the polarization.
  • the magnetic flux generated by the current in the coil 41 may be in both gyratory directions and follows the same circuit 42 as the polarization magnetic flux.
  • the coil 41 then sees an air gap equivalent to the thickness of the magnet 49a. The thickness of this magnet is therefore advantageously reduced to obtain a high efficiency of actuation by the coil 41.
  • the flux generated by the magnet 49a is added to that generated by the magnet 49b.
  • the flux generated by a current in the coil is added to or subtracted from this sum of the polarization fluxes.
  • FIG. 5 presents a configuration similar to that presented in FIG. 4. These two configuration examples differ in the polarization direction of the permanent magnets 59a and 59b in FIG. 5 which are antiparallel.
  • the magnets are arranged in such a way that the polarization fluxes generated by their presence in the magnetic circuits 52 and 58 rotate in opposite directions.
  • the inversion of the flow of the magnet 59b leads to the reversal of the inductions in the air gaps 54c and 54d. This does not change the forces in the gaps.
  • the plateau the two polarization inductions are in opposite directions and the total polarization flux is smaller compared to the configuration of FIG.
  • FIG. 6 representing a case of parallel polarization.
  • the magnetic circuit 68 in which circulates the magnetic flux generated by the coil 67 of the electromagnet 66 when it is traversed by a current does not include a permanent polarization magnet. It is the same for the magnetic circuit 62 in which circulates the magnetic flux generated by a current in the coil 61.
  • a single magnet has been shown in FIG. 6, but the system functions in the same way with a second magnet as for Figure 8.
  • the magnetic circuit 72 in which the magnetic flux generated by the coil 71 circulates does not include a permanent polarization magnet. It is the same for the magnetic circuit 78 in which circulates the magnetic flux generated by the coil 77 of the electromagnet 76 when it is traversed by a current.
  • the bias magnet 79 generates a flux 72 '. Only one magnet has been shown in Figure 7, but the system works the same way with a second magnet
  • control device needs a very high efficiency at low air gap. This efficiency is to be considered in terms of performance but also in terms of ability to create significant forces.
  • Parallel configurations with short magnets advantageously allow parallel-type operation with large air gap (that is to say open air gap) and series type with small air gap (that is to say closed air gap).
  • Such configurations called parallel serial configurations, are described in the following. They are such that the permanent magnet, although placed out of the shortest magnetic circuit for the electromagnet, is traversed by a portion of the magnetic flux generated by the electromagnet so that said flux passes through two closed air gaps.
  • FIG. 8 and FIG. 9 respectively show two improved configurations of the configurations shown in FIGS. 6 and 7.
  • the permanent magnets implemented are indeed of reduced size so as to allow the flows generated by the coils to pass through them rather than to traverse a large gap, c or d.
  • Figures 8 and 9 have been shown with two magnets, but a single magnet is sufficient to ensure their operation.
  • FIG. 8 compared to the configuration of FIG. 6, the circulation of the polarization flux is unchanged.
  • the tray completely closes the magnetic circuit of the magnets.
  • the difference concerns the circulation of the flow created by the coils. If a flow line 82 generated by the coil 81 is followed, it passes through the gap 84a creating the induced field Bba, then the plate 83, then the gap 84b creating the induced field Bba, then the magnet 89b creating the field induced Bb9b, then returns to the coil 81.
  • the flow line "avoids" therefore in part the large gap c. In principle this flux does not pass through the magnet 89a because the reluctance offered by the plate 83 and the two closed air gaps 84a and 84b is practically zero.
  • the flux generated by a current in the coil 81 borrows a magnetic circuit common to the polarization flux of the magnet 89b.
  • the coil 87 its flow plays a symmetrical role in passing through the magnet 89a, then the gap 84a, the plate 83, and the air gap 84b.
  • the system can therefore operate with a single coil, 81 or 87, or with both coils fed simultaneously. If the plate is in the middle position, stable position generally obtained through springs, for which the four air gaps are identical, the device can start alone.
  • the four polarization inductions Bpa, Bpb, Bpc and Bpd are identical, but the induction created by the coils 81 or 87 increases the fields in the air gaps 84a and 84b and reduces the fields in the gaps 84c and 84d, triggering the start of the device.
  • the configuration of FIG. 9 is such that the circulation of the polarization flux is close.
  • the situation remains unchanged with the ampere turns of the two coils which are added and which see as gap only the thickness of a single magnet. If we follow a flow line generated by the coil 91, this line passes through the gap 94a creating the induced field Bba, then the plate 93, then the air gap 94b creating the induced field Bbb, then the magnet 99b creating the field induced Bb9b, then returns to the coil 91.
  • the flow line "avoids" therefore in part the large gap d.
  • the stream of the coils can pass through a simple small air gap 98 devoid of magnet and crossed by the ampere turns in parallel with the gap which contains the magnets as shown in a dashed circle in Figure 9.
  • This gap is shown in Figure 9, in parallel of the magnet 99a, but similar air gaps can be used in parallel magnets 89a, 89b and 99b. This allows the use of relatively large sections for permanent magnets. In addition, these magnets may not be subject to significant demagnetizing fields, which allows the use of low-end magnets and large section.
  • the coils can operate separately, each coil controlling one of the two closed positions.
  • the polarization flux is reversed in the configuration of FIG. 9 while it remains in the same direction in the configuration of FIG. 8. This can lead to greater induced currents in the configuration of FIG. 9. Given the directions of the flows created by the coils, it is possible to use only one coil which surrounds the two magnetic circuits.
  • the magnetic circuit of the so-called parallel series configurations of FIGS. 8 and 9 is quite simple, and it allows a great variety of embodiments.
  • the magnetic flux can pass through two air gaps (84a and 84c) closed by the plate when it tilts to a position.
  • This makes it possible to use air gaps seen by the relatively small coils, and thus to make the contribution of the coils more efficient than for series polarizations. It has therefore been shown that it is advantageous to use devices with a small magnet thickness to obtain a series behavior for small air gaps and parallel for large air gaps.
  • the set of configurations presented "flat" in Figures 1 and 3 to 9 can be made in 3 dimensions in a similar manner to that presented in perspective in Figure 10.
  • the configuration more precisely presented "folded” in the figure 10 is similar to the configuration shown in FIG. 8.
  • This configuration advantageously operates with a single magnet 109 of large section and relatively thin, and with a single electromagnet 100 including a coil 101, shown in dashed lines.
  • a plate 103 is rotatably mounted about an axis 105 and intended to be placed between two electromagnet branches to form the four air gaps.
  • the plate is located in the middle of the gaps for reasons of simplicity at the level of the variations of the forces on each side of the plate.
  • any other position of the plate such as the latter is mounted in rotation about an axis located between the gaps is concerned by the invention.
  • the two coils can also be powered simultaneously.

Abstract

The invention relates to an electromagnetic control device for the opening and closing of a mechanical element, particularly a valve of an internal combustion engine. The positioning of the mechanical element in at least one position (open or closed) is achieved by the action of at least one solenoid (90) acting on a plate controlling the position of the mechanical element. The device has at least two gaps which are closed by the plate on the positioning of the mechanical element in at least one position, the plate being mounted to rotate such that the axis of rotation of the plate is between the two gaps. The device also has at least one permanent magnet (99b) to polarize the device such as to hold the plate in at least one position in the absence of current through the solenoid (90), said permanent magnet (99b) not being crossed by the principal magnetic flux (92) of the solenoid (90).

Description

l'the
DISPOSITIF DE COMMANDE ELECTROMAGNETIQUE FONCTIONNANT EN BASCULEMENTELECTROMAGNETIC CONTROL DEVICE OPERATING IN TENSION
La présente invention concerne un dispositif de commande électromagnétique de ouverture et de la fermeture d'un élément mécanique, notamment d'une soupape de moteur à combustion interne. Dans un tel dispositif appelé aussi actionneur, le positionnement de l'élément mécanique en au moins une position (ouverte ou fermée) est obtenu par l'action d'un électroaimant agissant sur un plateau, incluant un matériau magnétique, et commandant le positionnement de l'élément mécanique.The present invention relates to an electromagnetic control device for opening and closing a mechanical element, in particular an internal combustion engine valve. In such a device also called an actuator, the positioning of the mechanical element in at least one position (open or closed) is obtained by the action of an electromagnet acting on a plate, including a magnetic material, and controlling the positioning of the mechanical element.
Les dispositifs connus de ce type fonctionnent de façon telle que le plateau se déplace en translation ou en rotation autour d'un axe de rotation situé en dehors de la zone des entrefers des électroaimants et donc assimilable à un mouvement en translation du plateau.Known devices of this type operate in such a way that the plate moves in translation or in rotation around an axis of rotation situated outside the zone of the airfoils of the electromagnets and thus assimilable to a translational movement of the plate.
Le dimensionnement électromagnétique d'un actionneur est conditionné par la force qu'il doit exercer. Cette force est liée à la course du plateau et à la masse de ce dernier. En effet, la masse du plateau conditionne son temps de déplacement et impose donc la raideur des ressorts de rappel destinés à participer à l'actionnement du plateau. La force du dispositif de commande électromagnétique est directement couplée avec la force des ressorts de rappel puisque l'actionneur doit être capable d'exercer une force supérieure à celle des ressorts pour maintenir le plateau en position.The electromagnetic dimensioning of an actuator is conditioned by the force it must exert. This force is related to the course of the plateau and the mass of the latter. In Indeed, the mass of the plate conditions its travel time and therefore imposes the stiffness of the return springs intended to participate in the actuation of the plate. The force of the electromagnetic control device is directly coupled with the force of the return springs since the actuator must be able to exert a force greater than that of the springs to hold the plate in position.
On observe que plus la raideur des ressorts permettant d'obtenir une course de plateau imposée et un temps de déplacement imposé sera importante, plus la taille de l'actionneur sera importante.It is observed that the greater the stiffness of the springs to obtain an imposed plateau travel and imposed travel time will be important, the larger the size of the actuator will be important.
La présente invention résulte de la constatation que plus les performances mécaniques d'un dispositif de commande électromagnétique connu sont importantes, plus ce dispositif est encombrant.The present invention results from the observation that the greater the mechanical performance of a known electromagnetic control device, the more bulky this device.
Elle concerne un dispositif présentant au moins un premier et un second entrefers d'épaisseur variable destinés à être fermés par le plateau lors du positionnement de l'élément mécanique en au moins une position, le plateau étant monté en rotation de manière à ce que l'axe de rotation du plateau passe entre les premier et second entrefers.It relates to a device having at least first and second gaps of variable thickness to be closed by the plate during positioning of the mechanical element in at least one position, the plate being rotated so that the The axis of rotation of the plate passes between the first and second air gaps.
Dans une telle configuration, on note qu'à force exercée comparable, l'inertie du plateau est plus réduite que pour un dispositif fonctionnant en translation. En effet, dans les dispositifs en translation, l'ensemble du plateau se déplace de la totalité de la course. Au lieu de cela, dans un dispositif où le plateau est monté en rotation autour d'un axe positionné entre les deux entrefers, les deux extrémités du plateau se déplacent de la totalité de la course mais les points du plateau situés sur l'axe de rotation sont immobiles. Le déplacement moyen est alors de la moitié de celui observé dans un dispositif en translation. l'l'In such a configuration, it is noted that at comparable exerted force, the inertia of the plate is smaller than for a device operating in translation. Indeed, in the devices in translation, the entire plate moves the entire race. Instead, in a device where the plate is rotatably mounted about an axis positioned between the two air gaps, the two ends of the plate move the entire stroke but the points of the plate located on the axis of rotation are immobile. The average displacement is then half that observed in a device in translation. the the
Cette réduction d'inertie se traduit par une réduction de la raideur des ressorts et par conséquent, de la taille du dispositif.This reduction in inertia results in a reduction in the stiffness of the springs and consequently in the size of the device.
La seconde position de l'élément mécanique est telle que les entrefers sont ouverts ou dits grands entrefers. Un entrefer fermé est aussi dit faible entrefer.The second position of the mechanical element is such that the gaps are open or said large air gaps. A closed air gap is also called a low air gap.
Dans une mise en œuvre de l'invention, le dispositif inclut un troisième et un quatrième entrefer d'épaisseur variable destinés à être fermés par le plateau lors du positionnement de l'élément mécanique en la seconde position, l'axe de rotation du plateau passant entre les premier, deuxième, troisième et quatrième entrefers.In one embodiment of the invention, the device includes a third and a fourth gap of variable thickness to be closed by the plate during the positioning of the mechanical element in the second position, the axis of rotation of the plate passing between the first, second, third and fourth gaps.
Dans cette mise en œuvre, les deux positions de la soupape sont commandées par le plateau qui oscille angulairement entre deux positions commandées par des moyens similaires.In this implementation, the two positions of the valve are controlled by the plate which oscillates angularly between two positions controlled by similar means.
Avantageusement, la seconde position de l'élément mécanique est obtenue par l'action d'un second électroaimant agissant sur le plateau. Ce premier mode de réalisation, sans aimant permanent, est appelé actionneur non polarisé. Dans un autre mode de réalisation, le dispositif comprend au moins un aimant permanent destiné à polariser le dispositif en l'absence de courant dans électroaimant et à linéariser le fonctionnement du système.Advantageously, the second position of the mechanical element is obtained by the action of a second electromagnet acting on the plate. This first embodiment, without a permanent magnet, is called a non-polarized actuator. In another embodiment, the device comprises at least one permanent magnet for polarizing the device in the absence of current in the electromagnet and to linearize the operation of the system.
Dans ce mode de réalisation dit polarisé, le maintien de l'élément mécanique dans une position ouverte ou fermée est assurée par la polarisation permanente générée par l'aimant permanent même en l'absence d'un courant circulant dans la bobine. Dans ce cas, actionneur est dénommé polarisé.In this so-called polarized embodiment, the maintenance of the mechanical element in an open or closed position is ensured by the permanent polarization generated by the permanent magnet even in the absence of a current flowing in the coil. In this case, the actuator is called polarized.
Dans un mode de réalisation polarisé, le flux magnétique généré par l'électroaimant traverse l'aimant permanent. Ce mode de réalisation est appelé polarisation série.In a polarized embodiment, the magnetic flux generated by the electromagnet passes through the permanent magnet. This embodiment is called series polarization.
Avantageusement, l'aimant permanent est mince.Advantageously, the permanent magnet is thin.
Dans un autre mode de réalisation polarisé, le flux magnétique généré par l'électroaimant ne traverse pas l'l'l'In another polarized embodiment, the magnetic flux generated by the electromagnet does not cross the the the
directement l'aimant permanent. Ce mode de réalisation est appelé polarisation parallèle.directly the permanent magnet. This embodiment is called parallel polarization.
Dans un autre mode de réalisation de l'invention, l'aimant permanent, bien que placé hors du circuit magnétique de 1'électroaimant, est traversé par le flux magnétique généré parIn another embodiment of the invention, the permanent magnet, although placed out of the magnetic circuit of the electromagnet, is traversed by the magnetic flux generated by
1'électroaimant de manière à ce que ledit flux traverse deux entrefers fermés.The electromagnet so that said flow passes through two closed air gaps.
Enfin, le matériau magnétique inclus dans le plateau est avantageusement un matériau ferromagnétique.Finally, the magnetic material included in the plate is advantageously a ferromagnetic material.
Selon un autre aspect, l'invention concerne un dispositif de commande électromagnétique de l'ouverture et de la fermeture d'un élément mécanique, le positionnement de l'élément mécanique en au moins une position (ouverte ou fermée) étant obtenu par l'action d'au moins un électroaimant agissant sur un plateau incluant un matériau magnétique et commandant le positionnement de l'élément mécanique, ce dispositif comprenant : au moins un premier et un second entrefer d'épaisseur variable destinés à être fermés par le plateau lors du positionnement de l'élément mécanique en au moins une position, le plateau étant monté en rotation de manière à ce que l'axe de rotation du plateau passe entre les premier et second entrefers, et - au moins un aimant permanent destiné à polariser le dispositif de manière à maintenir le plateau dans au moins une position en l'absence de courant dans électroaimant, cet aimant permanent n'étant pas traversé par le flux magnétique principal de électroaimant.According to another aspect, the invention relates to a device for electromagnetic control of the opening and closing of a mechanical element, the positioning of the mechanical element in at least one position (open or closed) being obtained by the action of at least one electromagnet acting on a plate including a magnetic material and controlling the positioning of the mechanical element, this device comprising: at least a first and a second gap of variable thickness to be closed by the plate during the positioning the mechanical element in at least one position, the plate being mounted in rotation so that the axis of rotation of the plate passes between the first and second air gaps, and - at least one permanent magnet for biasing the device so as to maintain the plate in at least one position in the absence of current in the electromagnet, this permanent magnet not being traversed by the magnetic flux main electromagnet.
Selon une réalisation de l'invention, le flux magnétique généré par électroaimant traverse un entrefer dépourvu d'aimant permanent et situé en parallèle avec un entrefer contenant un aimant permanent. Le fait que le flux magnétique ne traverse pas l'aimant permanent permet de ne pas démagnétiser cet aimant, puisqu'il n'est pas soumis à des champs démagnétisants importants.According to one embodiment of the invention, the magnetic flux generated by electromagnet passes through an air gap devoid of permanent magnet and located in parallel with an air gap containing a permanent magnet. The fact that the magnetic flux does not pass through the permanent magnet makes it possible not to demagnetize this magnet, since it is not subject to significant demagnetizing fields.
Selon une réalisation, le flux magnétique généré par 1'électroaimant traverse, en plus de l'entrefer situé en parallèle avec l'aimant permanent, les deux entrefers fermés par le plateau lors de son basculement dans une position. Les entrefers fermés parcourus par le flux sont vus par les bobines comme relativement petits, ce qui rend la contribution des bobines plus efficace en terme de rendement puisque le flux magnétique rencontre ainsi une reluctance moins grande que s'il traversait des grands entrefers tels que les entrefers laissés ouverts par le plateau.According to one embodiment, the magnetic flux generated by the electromagnet passes, in addition to the air gap located in parallel with the permanent magnet, the two air gaps closed by the plate during its tilting in a position. The closed air gaps traversed by the flux are seen by the coils as relatively small, which makes the contribution of the coils more efficient in terms of efficiency since the magnetic flux thus encounters a smaller reluctance than if it passed through large gaps such as the coils. air gaps left open by the plateau.
D'autres caractéristiques et avantages de l'invention apparaîtront avec la description faite ci-dessous, cette dernière étant effectuée à titre descriptif et non limitatif en faisant référence aux dessins ci-après sur lesquels:Other characteristics and advantages of the invention will become apparent with the description given below, the latter being carried out for descriptive and non-limiting purposes with reference to the following drawings in which:
La figure 1 illustre le fonctionnement d'un dispositif de commande électromagnétique selon l'invention;FIG. 1 illustrates the operation of an electromagnetic control device according to the invention;
Les figures 2a et 2b visent à illustrer l'avantage produit par l'invention par rapport à un dispositif fonctionnant en translation ;Figures 2a and 2b are intended to illustrate the advantage produced by the invention with respect to a device operating in translation;
Les figures 3 à 9 représentent sept exemples de réalisation de l'invention ;Figures 3 to 9 show seven embodiments of the invention;
La figure 10 représente une vue en perspective d'un exemple de réalisation de l'invention.Figure 10 shows a perspective view of an exemplary embodiment of the invention.
Sur les figures, les circuits magnétiques et les flux magnétiques sont représentés par une courbe fermée référencée pour des raisons de clarté par une même référence. En effet, le circuit magnétique est un circuit qui permet de canaliser un flux magnétique. La flèche portée sur une telle courbe fermée indique le sens du flux magnétique de polarisation. Les flux magnétiques sont représentés dans le plan de coupe du plateau.In the figures, the magnetic circuits and the magnetic fluxes are represented by a closed curve referenced for the sake of clarity by the same reference. Indeed, the magnetic circuit is a circuit that can channel a magnetic flux. The arrow on such a closed curve indicates the direction of polarization magnetic flux. The magnetic fluxes are represented in the cutting plane of the plate.
Les symboles utilisés sont identiques pour l'ensemble des figures. Les flèches doubles représentent les directions des flux de polarisation dans les aimants permanents et les directions des flux d'induction créés par ces aimants permanents dans les entrefers. Les flèches simples représentent les directions des flux d'induction générés par les bobines dans les entrefers. Les dispositifs décrits ont de préférence un comportement linéaire et fonctionnent de préférence sans saturation magnétique afin de permettre une grande commandabilité du dispositif. Des dimensionnements corrects des différents éléments des dispositifs permettent de tels comportements.The symbols used are identical for all the figures. The double arrows represent the directions of the polarization fluxes in the permanent magnets and the directions of the induction fluxes created by these permanent magnets in the air gaps. The simple arrows represent the directions of the induction fluxes generated by the coils in the air gaps. The devices described preferably have a linear behavior and preferably operate without magnetic saturation to allow a high controllability of the device. Proper sizing of the different elements of the devices allow such behaviors.
La figure 1 présente la réalisation la plus simple de l'invention dans laquelle un positionnement de l'élément mécanique 17 en une position (ouverte ou fermée) est obtenu par l'action d'un électroaimant 10 incluant une première bobine 11 et un premier circuit magnétique 12. L'électroaimant 10 agit sur un plateau 13 incluant un matériau magnétique, avantageusement un matériau ferro-magnétique. Un aimant permanent peut aussi éventuellement être inclus dans le plateau. Les positions 13i et 132 de ce plateau 13 commandent le positionnement de l'élément mécanique 17. Le dispositif présente deux entrefers dits premier 14a et second 14b entrefers. Ces entrefers 14a et 14b sont destinés à être fermés par le plateau 13 lors du positionnement de l'élément mécanique en position ouverte ou fermée qui correspond sur la figure à la position 13i du plateau 13. Le plateau 13 est monté en rotation pour passer d'une position 13i à l'autre 132 de manière à ce que l'axe de rotation 15 du plateau 13 soit entre le premier et le second entrefer 14a et 14b.FIG. 1 shows the simplest embodiment of the invention in which positioning of the mechanical element 17 in a position (open or closed) is obtained by the action of an electromagnet 10 including a first coil 11 and a first magnetic circuit 12. The electromagnet 10 acts on a plate 13 including a magnetic material, preferably a ferromagnetic material. A permanent magnet may also possibly be included in the tray. The positions 13 1 and 13 2 of this plate 13 control the positioning of the mechanical element 17. The device has two so-called first air gaps 14a and 14b air gaps. These air gaps 14a and 14b are intended to be closed by the plate 13 during the positioning of the mechanical element in the open or closed position which corresponds in the figure to the position 13i of the plate 13. The plate 13 is rotatably mounted to move from a position 13i to the other 13 2 so that the axis of rotation 15 of the plate 13 is between the first and the second gap 14a and 14b.
Dans le cas où l'élément mécanique 17 est une soupape 17, ainsi que représenté sur la figure 1, la liaison du plateau 13 avec la soupape 17 est réalisée à l'aide d'une articulation 16 entre une tige de soupape 17a et le plateau 13. L'articulation 16 est placée à une des extrémités du plateau 13. Lorsque le plateau passe d'une position à l'autre, la tige de soupape 17a a un mouvement linéaire de va-et-vient et entraine la tête de soupape 17b. Des ressorts 18a et 18b et une fixation des ressorts 19 permettent le mouvement de rappel de la soupape 17.In the case where the mechanical element 17 is a valve 17, as shown in FIG. 1, the connection of the plate 13 with the valve 17 is performed using a hinge 16 between a valve stem 17a and the plate 13. The hinge 16 is placed at one end of the plate 13. When the plate passes from a position to the other, the valve stem 17a is linearly reciprocated and drives the valve head 17b. Springs 18a and 18b and attachment of the springs 19 allow the return movement of the valve 17.
La mise en position 13i est réalisée lorsqu'un courant circule dans la première bobine 11. Le maintien en position peut être réalisé grâce à la circulation d'un tel courant ou, ainsi que décrit par la suite, à l'aide d'une polarisation réalisée à l'aide d'un aimant permanent inséré dans le circuit magnétique 12 de l'électroaimant 10 ou dans son voisinage. La mise en position 132 peut être réalisée par un moyen d'une autre nature qu'électromagnétique, par exemple, mécanique ou par un moyen électromagnétique différent de, ou similaire à, celui présenté sur la figure 1.The setting in position 13i is carried out when a current flows in the first coil 11. The holding in position can be achieved through the circulation of such a stream or, as described later, using a polarization carried out using a permanent magnet inserted in the magnetic circuit 12 of the electromagnet 10 or in its vicinity. Positioning 13 2 may be performed by means other than electromagnetic, for example, mechanical or by electromagnetic means other than or similar to that shown in FIG.
Pour mettre en évidence les avantages que procure un dispositif selon l'invention, on remarque tout d'abord que le dimensionnement des dispositifs de commande de soupape est complètement déterminé avec deux paramètres extérieurs : la course et la demi période (c'est-à-dire le temps mis par la soupape pour aller d'une position à l'autre) . La course de la soupape est définie par le fonctionnement du moteur thermique. Cette course 2zo (voir figure 2a et 2b) est imposée.To highlight the advantages that a device according to the invention provides, it is firstly noted that the dimensioning of the valve control devices is completely determined with two external parameters: the stroke and the half period (that is, say the time taken by the valve to go from one position to another). The stroke of the valve is defined by the operation of the engine. This race 2zo (see Figure 2a and 2b) is imposed.
Connaissant la raideur k des ressorts et la course, on obtient directement la force que ces ressorts exercent. F = k Z0 Knowing the stiffness of the springs and the race, we obtain directly the force that these springs exert. F = k Z 0
Le dispositif électromagnétique doit être capable d'exercer une force supérieure à celle des ressorts pour maintenir le plateau dans une des deux positions. Cette force électromagnétique est directement proportionnelle à la section S des entrefers. S = F / αThe electromagnetic device must be able to exert a force greater than that of the springs to maintain the plate in one of the two positions. This electromagnetic force is directly proportional to the section S of the gaps. S = F / α
Le coefficient α est classiquement de l'ordre de 10ON/cm2, 160 au grand maximum.The coefficient α is classically of the order of 10 N / cm 2 , 160 at the most.
La masse du plateau est directement fonction de cette section des entrefers électromagnétiques car la section du plateau doit être dimensionnée pour faire passer le flux magnétique. m = p β S3/2 où p est la densité du matériau du plateau, et β un coefficient de forme.The mass of the plate is directly a function of this section of the electromagnetic gaps because the section of the plate must be sized to pass the magnetic flux. m = p β S 3/2 where p is the density of the material of the plate, and β a form factor.
Quant à la raideur k des ressorts, elle est directement liée à la demi période et la masse du plateau. k = m ( 2π / T)2 As for the stiffness k springs, it is directly related to the half period and the mass of the plateau. k = m (2π / T) 2
Cette demi période T / 2 est liée au fonctionnement du moteur thermique. Elle est de l'ordre de 3 ms.This half period T / 2 is related to the operation of the engine. It is of the order of 3 ms.
Les relations de proportionnalité présentées ne sont qu'une première approximation.The relations of proportionality presented are only a first approximation.
Ces relations montrent surtout que le dimensionnement du dispositif, la masse du plateau et la raideur de ressorts sont directement liés à la course du plateau et à la demi période.These relationships show especially that the dimensioning of the device, the mass of the plate and the stiffness of springs are directly related to the course of the plateau and the half-period.
Les figures 2a et 2b illustrent l'avantage que présente une configuration en rotation selon l'invention par rapport à une configuration en translation telle que celles rencontrées dans l'état de la technique et rencontrant les problèmes d'inertie explicités ci-dessus.FIGS. 2a and 2b illustrate the advantage that a rotating configuration according to the invention has with respect to a configuration in translation such as those encountered in the state of the art and meeting the problems of inertia explained above.
On étudiera d'abord le fonctionnement du plateau en translation. Son mouvement est solution de l'équation: m d2z / dt2 + k z = 0 La solution, qui correspond à une oscillation libre du plateau est du type : z = Z0 cos ω t avec Où2 = k / mWe will first study the operation of the plate in translation. Its motion is solution of the equation: md 2 z / dt 2 + kz = 0 The solution, which corresponds to a free oscillation of the plateau, is of the type: z = Z 0 cos ω t with Where 2 = k / m
Pour la vitesse, on obtient : dz / dt = Z0 ω cos ω t L'énergie stockée par le ressort comprimé vaut en bout de course :For speed, we get: dz / dt = Z 0 ω cos ω t The energy stored by the compressed spring is worth at the end:
Er = H k Z0 2 E r = H k Z 0 2
Quant à l'énergie cinétique, elle est maximale à mi course :As for the kinetic energy, it is maximum at mid-race:
Ect = H m v2 = H m Où2 Z0 2 E ct = H mv 2 = H m Where 2 Z 0 2
L'égalité des deux énergies permet de vérifier qu'un système oscillant fonctionne bien par échange entre l'énergie potentielle stockée dans les ressorts et l'énergie cinétique du plateau.The equality of the two energies makes it possible to verify that an oscillating system functions well by exchange between the potential energy stored in the springs and the kinetic energy of the plate.
Dans le cas d'un dispositif en rotation (ou basculement) , pour pouvoir faire la comparaison avec le dispositif en translation, on supposera que la soupape est poussée par l'extrémité du plateau, dont le déplacement va donc être entre -z0 et +z0.In the case of a device in rotation (or tilting), to make the comparison with the device in translation, it will be assumed that the valve is pushed by the end of the plate, whose displacement will be between -z 0 and + z 0 .
Pour obtenir le même temps de déplacement de la soupape entre les deux positions, il faut que la vitesse tangentielle de l'extrémité du plateau soit la même que pour les dispositifs en translation. En assimilant l'arc à la corde, ce qui est justifié pour les petits angles de rotation, on obtient en bout de plateau la vitesse de : dz / dt = Z0 ω cos ω tTo obtain the same movement time of the valve between the two positions, it is necessary that the tangential speed of the end of the plate is the same as for the devices in translation. By equating the bow with the string, which is justified for the small angles of rotation, we get at the end of the plateau the speed of: dz / dt = Z 0 ω cos ω t
La comparaison « basculement - translation » va être effectuée à course identique et à vitesse maximale identique. Nous allons comparer les énergies cinétiques emmagasinées à mi- course.The "tilting - translation" comparison will be performed at the same stroke and at the same maximum speed. We will compare the kinetic energies stored halfway.
Si le plateau a une section uniforme S et une longueur 2L (figure 9), si on paramètre la position de l'élément dx par sa position x (x est compris entre -1 et +1) , la vitesse de cet élément dx est donnée par :If the plate has a uniform section S and a length 2L (Figure 9), if we set the position of the element dx by its position x (x is between -1 and +1), the speed of this element dx is given by:
V (x) = dz / dt (x) = Z0 x ω cos ω tV (x) = dz / dt (x) = Z 0 x ω cos ω t
En milieu de course, l'énergie cinétique maximale de cet élément dx est donnée par : dEcb = H (p S L dx) (Z0 x ω) 2 = H p S L Z0 22 x2 dx En intégrant dEc pour x variant de -1 à +1, on obtient la valeur de l'énergie cinétique maximale :In the middle of the race, the maximum kinetic energy of this element dx is given by: dE cb = H (p SL dx) (Z 0 x ω) 2 = H p SLZ 0 22 x 2 dx By integrating dE c for x varying from -1 to +1, we obtain the value of the maximum kinetic energy:
Ecb = H (p S 2 L) Z0 2 ω2 (1/3)E cb = H (p S 2 L) Z 0 2 ω 2 (1/3)
Le terme (p S 2 L) représente la masse m du plateau, d'où :The term (p S 2 L) represents the mass m of the plateau, from which:
Ecb = H (m / 3) Z0 22 E cb = H (m / 3) Z 0 2 Where 2
En comparaison avec le système en translation, la masse équivalente du plateau est divisée par 3. L'inertie est donc divisée par 3. Avec le même plateau, pour avoir la même vitesse, il faut donc que la raideur des ressorts soit divisée par 3.In comparison with the system in translation, the equivalent mass of the plate is divided by 3. The inertia is thus divided by 3. With the same plate, to have the same speed, it is necessary that the stiffness of the springs is divided by 3 .
Et si on considère la dépendance entre la force des ressorts, la surface d'attraction des dispositifs, la masse du plateau, la raideur des ressorts, l'introduction dans la boucle d'un facteur 1/3 conduit à une diminution très notable de la taille du dispositif.And if we consider the dependence between the force of the springs, the attraction surface of the devices, the mass of the plate, the stiffness of the springs, the introduction in the loop by a factor 1/3 leads to a very notable decrease of the size of the device.
Le facteur 3 sur la masse doit toutefois être réduit par un coefficient d'efficacité de la force du dispositif.The factor 3 on the mass must however be reduced by a coefficient of effectiveness of the force of the device.
En effet, sur un dispositif de commande en translation, la force de chaque entrefer est une force axiale pleinement utilisable. Il n'en est pas de même pour un dispositif en basculement. Si on veut comparer les forces, il faut ramener la force exercée à l'extrémité du plateau, à couple équivalent. La force d'attraction du dispositif s'exerce sur la surface de contact entre le plateau 13 et la partie du circuit magnétique qui entre en contact avec le plateau à faible entrefer.Indeed, on a translational control device, the force of each air gap is a fully usable axial force. It is not the same for a tilting device. If we want to compare the forces, we must reduce the force exerted at the end of the plateau, equivalent torque. The attraction force of the device is exerted on the contact surface between the plate 13 and the part of the magnetic circuit that comes into contact with the low-gap plate.
Selon la figure 1, la surface en contact varie de xoL à L.According to Figure 1, the area in contact varies from x o L to L.
La force équivalente ramenée à l'extrémité est alors à multiplier par un coefficient d'efficacité γ = ^ (1 + x0) .The equivalent force brought back to the end is then multiplied by a coefficient of efficiency γ = ^ (1 + x 0 ).
Pour un système réel, le paramètre Xo devrait se situer autour de 0,3, qui correspond à 0,65 pour le coefficient γ. Le gain réel n'est donc que de 2/3 du gain de 3 obtenu sur la masse équivalente du plateau. Il en résulte globalement un gain de l'ordre d'un facteur 2.For a real system, the parameter Xo should be around 0.3, which corresponds to 0.65 for the coefficient γ. The real gain is only 2/3 of the gain of 3 obtained on the equivalent mass of the plateau. Overall, this results in a gain of around a factor of 2.
Dans le pire des cas, quand Xo est très réduit, ce coefficient γ reste supérieur à 0,5. Le gain global est donc toujours supérieur à 1,5.In the worst case, when Xo is very small, this coefficient γ remains greater than 0.5. The overall gain is therefore always greater than 1.5.
Ainsi que présenté sur la figure 1, dans un dispositif en basculement selon l'invention, la soupape est, par exemple, raccordée par un système de type bielle à l'extrémité du plateau. Les ressorts de rappel sont alors disposés le long de l'axe de la soupape.As shown in Figure 1, in a tilting device according to the invention, the valve is, for example, connected by a rod-type system at the end of the plate. The return springs are then arranged along the axis of the valve.
Dans les exemples de réalisation décrits ci-après, des moyens électromagnétiques conformes à l'invention sont utilisés pour le positionnement dans les deux positions de la soupape. Dans ce cas, le plateau fonctionne entre quatre entrefers qui fonctionnent en attraction deux par deux et en alternance.In the exemplary embodiments described below, electromagnetic means according to the invention are used for positioning in both positions of the valve. In this case, the plate operates between four gaps that function in attraction two by two and alternately.
Les exemples de réalisation sont basés sur les différentes possibilités de circulation de flux de polarisation dans les entrefers, les différentes possibilités de circulation de flux d'excitation générés par les bobines dans les entrefers quand la polarisation a été définie, la disposition des bobines par rapport au dispositif et la disposition des aimants permanents de polarisation du dispositif.The exemplary embodiments are based on the different possibilities of circulation of polarization flux in the air gaps, the different possibilities of circulation of excitation flux generated by the coils in the air gaps when the polarization has been defined, the arrangement of the coils relative to to the device and the arrangement of the permanent polarization magnets of the device.
Sur les figures 3, 4 et 5, on représente trois dispositifs fonctionnant sur un principe proche de celui présenté sur la figure 1.FIGS. 3, 4 and 5 show three devices operating on a principle similar to that shown in FIG.
La figure 3 présente un cas de dispositif non polarisé à quatre entrefers où les deux positions du plateau 33 sont commandées par deux électroaimants 30 et 36, comprenant respectivement une première et une deuxième bobine 31 et 37 et un premier et second circuit magnétique 32 et 38. Quatre entrefers 34a, 34b et 34c, 34d sont donc présents dans les deux circuits magnétiques 32 et 38 et destinés à être fermés en alternance, deux par deux, en fonction de la position du plateau 33 et donc de la soupape. Cette configuration non polarisée est en fait un double système de base similaire à celui décrit sur la figure 1.FIG. 3 shows a case of non-polarized device with four gaps where the two positions of the plate 33 are controlled by two electromagnets 30 and 36, respectively comprising a first and a second coil 31 and 37 and a first and second magnetic circuit 32 and 38 Four air gaps 34a, 34b and 34c, 34d are therefore present in the two magnetic circuits 32 and 38 and intended to be closed alternately, two by two, depending on the position of the plate 33 and therefore the valve. This unpolarized configuration is in fact a double basic system similar to that described in Figure 1.
Sur l'exemple de la figure 4, des aimants permanents 49a et 49b ont été ajoutés sur un dispositif tel que présenté sur la figure 3. Ils permettent une polarisation des circuits magnétiques 42 et 48 des électroaimants 40 et 46 en l'absence de courant circulant dans les bobines 41 et 47. Une telle polarisation permet un maintien en position du plateau 43 sans consommation d'énergie supplémentaire ou à consommation d'énergie réduite. En effet, grâce à la polarisation, la circulation de courant dans les bobines n'est pas nécessaire pendant le maintien en position.In the example of FIG. 4, permanent magnets 49a and 49b have been added to a device as shown in FIG. 3. They allow polarization of the magnetic circuits 42 and 48 of the electromagnets 40 and 46 in the absence of current. circulating in the coils 41 and 47. Such polarization allows a holding position of the plate 43 without additional energy consumption or reduced energy consumption. Indeed, thanks to the polarization, the flow of current in the coils is not necessary during the holding in position.
Les dispositifs de commande polarisés permettent ainsi un contrôle aisé de l'intensité des courants, en particulier à faible entrefer (ou entrefer fermé) où le plateau peut être maintenu sans effort.The polarized control devices thus allow easy control of the intensity of the currents, in particular with a low air gap (or closed air gap) where the plate can be maintained without effort.
La polarisation est dite série lorsque le flux d'un aimant de polarisation est en série avec le flux de la bobine destinée à réaliser l'actionnement du dispositif. On a alors affaire à une configuration série. Les configurations représentées sur la figure 4 et sur la figure 5 sont des exemples d'une telle polarisation. Ces exemples présentent l'avantage d'être des configurations simples de construction même si les circuits magnétiques qui portent les bobines sont assez complexes, car entrecroisés.The polarization is called series when the flux of a bias magnet is in series with the flow of the coil for performing the actuation of the device. We are dealing with a serial configuration. The configurations shown in Figure 4 and Figure 5 are examples of such polarization. These examples have the advantage of being simple configurations of construction even if the magnetic circuits which carry the coils are rather complex, because crisscrossed.
Dans le cas des configurations série, il est avantageux que les aimants soient aussi minces que possible pour conserver une bonne efficacité des ampères tours des bobines. En effet les aimants constituent un entrefer supplémentaire pour les ampères tours générés par les bobines. Par ailleurs, les aimants sont soumis à des champs démagnétisants qui peuvent être importants quand les champs des bobines sont en opposition avec leur aimantation.In the case of serial configurations, it is advantageous for the magnets to be as thin as possible in order to maintain a good efficiency of the ampere turns of the coils. Indeed the magnets constitute an additional gap for the amp turns generated by the coils. On the other hand, the magnets are subjected to demagnetizing fields which can be important when the fields of the coils are in opposition with their magnetization.
La polarisation est dite parallèle lorsque le flux magnétique engendré par la bobine ne traverse pas ou ne traverse qu'en faible partie un aimant de polarisation. Les exemples représentés sur les figures 6 à 9 sont des exemples d'une telle polarisation. La configuration est alors dénommée parallèle.The polarization is said to be parallel when the magnetic flux generated by the coil does not cross or passes through only a small part of a polarization magnet. The examples shown in FIGS. 6 to 9 are examples of such polarization. The configuration is then called parallel.
Dans les figures 8 et 9, on obtient une optimisation de la polarisation grâce à une configuration appelée série parallèle.In FIGS. 8 and 9, an optimization of the polarization is obtained thanks to a configuration called a parallel series.
Sur la figure 4, les aimants permanents sont tels que les flux générés par leur présence dans les circuits magnétiques 42 et 48 tournent dans le même sens. On suppose, ainsi que représenté sur la figure 4, que les entrefers 44a et 44b sont quasi fermés et que la position du plateau est telle que les entrefers 44c et 44d sont pratiquement égaux à la course en extrémité de plateau, c'est-à-dire de l'ordre de 8 mm. L'aimant permanent de polarisation 49a crée un flux magnétique 42 circulant en circuit fermé. Les inductions de polarisation Bpa et Bpb sont donc élevées dans les entrefers 44a et 44b.In Figure 4, the permanent magnets are such that the flux generated by their presence in the magnetic circuits 42 and 48 rotate in the same direction. It is assumed, as shown in FIG. 4, that the air gaps 44a and 44b are almost closed and that the position of the plate is such that the air gaps 44c and 44d are substantially equal to the end-of-plate travel, ie say about 8 mm. The permanent bias magnet 49a creates a magnetic flux 42 flowing in a closed circuit. Polarization inductions Bpa and Bpb are therefore high in air gaps 44a and 44b.
Dans les entrefers 44c et 44d, l'induction Bpc et Bpd est plus faible car l'aimant 49b voit un entrefer relativement grand, mais elle n'est pas nulle. Cette induction génère une force assez faible qui réduit légèrement la force d'attraction principale engendrée par l'aimant 49a. L'utilisation d'aimants assez minces permet que cette force soit très réduite. Lorsque la bobine 41 est alimentée, les inductions Bba et Bbb dans les entrefers 44a et 44b s'ajoutent (ou se retranchent selon le sens du courant) à l'induction due à la polarisation. Le flux magnétique engendré par le courant dans la bobine 41 peut être dans les deux sens giratoires et suit le même circuit 42 que le flux magnétique de polarisation. La bobine 41 voit alors un entrefer équivalent à l'épaisseur de l'aimant 49a. L'épaisseur de cet aimant est donc avantageusement réduite pour obtenir une grande efficacité d'actionnement par la bobine 41. l'In the gaps 44c and 44d, the induction Bpc and Bpd is lower because the magnet 49b sees a relatively large air gap, but it is not zero. This induction generates a fairly weak force which slightly reduces the main attraction force generated by the magnet 49a. The use of rather thin magnets allows this force to be very reduced. When the coil 41 is energized, the inductions Bba and Bbb in the air gaps 44a and 44b add (or retract in the direction of the current) to the induction due to the polarization. The magnetic flux generated by the current in the coil 41 may be in both gyratory directions and follows the same circuit 42 as the polarization magnetic flux. The coil 41 then sees an air gap equivalent to the thickness of the magnet 49a. The thickness of this magnet is therefore advantageously reduced to obtain a high efficiency of actuation by the coil 41. the
Dans le plateau 43, tous les flux s'ajoutent. En particulier, le flux généré par l'aimant 49a s'ajoute à celui généré par l'aimant 49b. Le flux engendré par un courant dans la bobine s'ajoute ou se retranche à cette somme des flux de polarisation.In the plate 43, all the streams are added. In particular, the flux generated by the magnet 49a is added to that generated by the magnet 49b. The flux generated by a current in the coil is added to or subtracted from this sum of the polarization fluxes.
La figure 5 présente une configuration proche de celle présentée sur la figure 4. Ces deux exemples de configuration diffèrent par la direction de polarisation des aimants permanents 59a et 59b dans la figure 5 qui sont antiparallèles. Ainsi les aimants sont disposés de telle façon que les flux de polarisation générés par leur présence dans les circuits magnétiques 52 et 58 tournent dans des sens opposés. L'inversion du flux de l'aimant 59b conduit au retournement des inductions dans les entrefers 54c et 54d. Cela ne modifie pas les forces dans les entrefers. En revanche, dans le plateau, les deux inductions de polarisation sont en sens inverse et le flux total de polarisation est plus réduit par rapport à la configuration de la figure 4.FIG. 5 presents a configuration similar to that presented in FIG. 4. These two configuration examples differ in the polarization direction of the permanent magnets 59a and 59b in FIG. 5 which are antiparallel. Thus the magnets are arranged in such a way that the polarization fluxes generated by their presence in the magnetic circuits 52 and 58 rotate in opposite directions. The inversion of the flow of the magnet 59b leads to the reversal of the inductions in the air gaps 54c and 54d. This does not change the forces in the gaps. On the other hand, in the plateau, the two polarization inductions are in opposite directions and the total polarization flux is smaller compared to the configuration of FIG.
En position statique, l'étude du fonctionnement des deux configurations des figures 4 et 5 montre que les forces générées sont identiques dans les deux cas. La seule différence apparaît au niveau de la polarisation. Avec un modèle très simplifié de calcul d'induction à flux uniforme, on peut montrer que l'induction dans les entrefers c et d est de l'ordre du dixième de celle existant dans les entrefers a et b. Au niveau des forces, la contribution des entrefers c et d est donc de l'ordre du centième de celle des entrefers a et b. Au niveau du flux dans le plateau, la contribution de l'aimant b serait donc de l'ordre du dixième de celle de l'aimant a. Avec ce flux de polarisation, si on veut pouvoir faire circuler le flux de la bobine sans saturer, il est possible d'utiliser un plateau légèrement plus épais que pour la configuration de la figure 2b puisque induction de polarisation totale y est plus forte.In a static position, the study of the operation of the two configurations of FIGS. 4 and 5 shows that the forces generated are identical in both cases. The only difference appears in the polarization. With a very simplified model of uniform flux induction calculation, it can be shown that the induction in air gaps c and d is of the order of one tenth of that existing in air gaps a and b. At the level of the forces, the contribution of the gaps c and d is therefore of the order of one hundredth of that of the gaps a and b. At the level of the flux in the plate, the contribution of the magnet b would be of the order of one tenth of that of the magnet a. With this polarization flux, if we want to be able to circulate the flux of the coil without saturating, it is possible to use a slightly thicker plate than for the configuration of Figure 2b since induction of total polarization is stronger.
En fonctionnement dynamique, le flux dans le plateau créé par la polarisation reste toujours dans le même sens dans la configuration de la figure 4, alors qu'il s'inverse dans la configuration de la figure 5. Cela signifie que les courants induits dans le plateau sont plus importants dans la configuration de la figure 5 que dans la configuration de la figure 4. Pour le reste du circuit magnétique, le fonctionnement dynamique reste inchangé.In dynamic operation, the flux in the plateau created by the polarization always remains in the same direction in the configuration of Figure 4, while it is reversed in the configuration of Figure 5. This means that the currents induced in the tray are larger in the configuration of Figure 5 that in the configuration of Figure 4. For the rest of the magnetic circuit, the dynamic operation remains unchanged.
Sur la figure 6, représentant un cas de polarisation parallèle. Le circuit magnétique 68 dans lequel circule le flux magnétique engendré par la bobine 67 de l'électroaimant 66 lorsqu'elle est parcourue par un courant n'inclut pas un aimant permanent de polarisation. Il en est de même pour le circuit magnétique 62 dans lequel circule le flux magnétique engendré par un courant dans la bobine 61. Un seul aimant a été représenté sur la figure 6, mais le système fonctionne de la même façon avec un deuxième aimant comme pour la figure 8.In FIG. 6, representing a case of parallel polarization. The magnetic circuit 68 in which circulates the magnetic flux generated by the coil 67 of the electromagnet 66 when it is traversed by a current does not include a permanent polarization magnet. It is the same for the magnetic circuit 62 in which circulates the magnetic flux generated by a current in the coil 61. A single magnet has been shown in FIG. 6, but the system functions in the same way with a second magnet as for Figure 8.
Sur la figure 7, le circuit magnétique 72 dans lequel circule le flux magnétique engendré par la bobine 71 n'inclut pas d'aimant permanent de polarisation. Il en est de même pour le circuit magnétique 78 dans lequel circule le flux magnétique engendré par la bobine 77 de l'électroaimant 76 lorsqu'elle est parcourue par un courant. L'aimant de polarisation 79 génère un flux 72' . Un seul aimant a été représenté sur la figure 7, mais le système fonctionne de la même façon avec un deuxième aimantIn FIG. 7, the magnetic circuit 72 in which the magnetic flux generated by the coil 71 circulates does not include a permanent polarization magnet. It is the same for the magnetic circuit 78 in which circulates the magnetic flux generated by the coil 77 of the electromagnet 76 when it is traversed by a current. The bias magnet 79 generates a flux 72 '. Only one magnet has been shown in Figure 7, but the system works the same way with a second magnet
(représenté en pointillés) comme pour la figure 9. Dans les configurations parallèles présentées sur les figures 6 et 7, les entrefers vus par le circuit magnétique des bobines restent relativement grands, ce qui fait que les ampères tours perdent en efficacité.(In the dotted lines) as in FIG. 9. In the parallel configurations shown in FIGS. 6 and 7, the air gaps seen by the magnetic circuit of the coils remain relatively large, so that the tower amperes lose their efficiency.
Globalement, le dispositif de commande a besoin d'une très grande efficacité à faible entrefer. Cette efficacité est à considérer en terme de rendement mais aussi en terme d'aptitude à créer des forces importantes.Overall, the control device needs a very high efficiency at low air gap. This efficiency is to be considered in terms of performance but also in terms of ability to create significant forces.
Les quatre exemples montrés sur les figures 3 à 7 fonctionnent bien à faible entrefer (appelé aussi entrefer fermé) . Les différences de fonctionnement se situent uniquement au niveau de paramètres complémentaires comme les sections du plateau ou les courants induits.The four examples shown in Figures 3 to 7 work well at low airgap (also called closed air gap). The differences in operation are solely at the level of additional parameters such as plateau sections or induced currents.
Les configurations parallèles avec des aimants courts permettent avantageusement un fonctionnement de type parallèle à grand entrefer (c'est-à-dire entrefer ouvert) et de type série à petit entrefer (c'est-à-dire à entrefer fermé) . De telles configurations, appelées configurations série parallèle, sont décrites dans la suite. Elles sont telles que l'aimant permanent, bien que placé hors du circuit magnétique le plus court pour l'électroaimant, est traversé par une partie du flux magnétique généré par l'électroaimant de manière à ce que ledit flux traverse deux entrefers fermés.Parallel configurations with short magnets advantageously allow parallel-type operation with large air gap (that is to say open air gap) and series type with small air gap (that is to say closed air gap). Such configurations, called parallel serial configurations, are described in the following. They are such that the permanent magnet, although placed out of the shortest magnetic circuit for the electromagnet, is traversed by a portion of the magnetic flux generated by the electromagnet so that said flux passes through two closed air gaps.
La figure 8 et la figure 9 présentent respectivement deux configurations améliorées des configurations représentées sur les figures 6 et 7. Les aimants permanents implémentés sont en effet de taille réduite de manière à permettre aux flux engendrés par les bobines de les traverser plutôt que de parcourir un grand entrefer, c ou d. Les figures 8 et 9 ont été représentées avec deux aimants, mais un seul aimant suffit pour assurer leur fonctionnement.FIG. 8 and FIG. 9 respectively show two improved configurations of the configurations shown in FIGS. 6 and 7. The permanent magnets implemented are indeed of reduced size so as to allow the flows generated by the coils to pass through them rather than to traverse a large gap, c or d. Figures 8 and 9 have been shown with two magnets, but a single magnet is sufficient to ensure their operation.
Sur la figure 8, par rapport à la configuration de la figure 6, la circulation du flux de polarisation est inchangée. Le plateau referme complètement le circuit magnétique des aimants. La différence concerne la circulation du flux créé par les bobines. Si on suit une ligne de flux 82 généré par la bobine 81, elle traverse l'entrefer 84a créant le champ induit Bba, puis le plateau 83, puis l'entrefer 84b créant le champ induit Bba, puis l'aimant 89b créant le champ induit Bb9b, puis revient à la bobine 81. La ligne de flux « évite » donc en partie le grand entrefer c. En principe ce flux ne traverse pas l'aimant 89a car la réluctance offerte par le plateau 83 et les deux entrefers fermés 84a et 84b est pratiquement nulle. Ainsi le flux engendré par un courant dans la bobine 81 emprunte un circuit magnétique commun au flux de polarisation de l'aimant 89b. Quant à la bobine 87, son flux joue un rôle symétrique en traversant l'aimant 89a, puis l'entrefer 84a, le plateau 83, puis l'entrefer 84b. Le système peut donc fonctionner avec une seule bobine, 81 ou 87, ou avec les deux bobines alimentées simultanément. Si le plateau est en position médiane, position stable généralement obtenue grâce à des ressorts, pour laquelle les quatre entrefers sont identiques, le dispositif peut démarrer seul. En effet, dans ce cas non représenté, les quatre inductions de polarisation Bpa, Bpb, Bpc et Bpd sont identiques, mais l'induction créée par les bobines 81 ou 87 augmente les champs dans les entrefers 84a et 84b et réduit les champs dans les entrefers 84c et 84d, déclenchant le démarrage du dispositif.In FIG. 8, compared to the configuration of FIG. 6, the circulation of the polarization flux is unchanged. The tray completely closes the magnetic circuit of the magnets. The difference concerns the circulation of the flow created by the coils. If a flow line 82 generated by the coil 81 is followed, it passes through the gap 84a creating the induced field Bba, then the plate 83, then the gap 84b creating the induced field Bba, then the magnet 89b creating the field induced Bb9b, then returns to the coil 81. The flow line "avoids" therefore in part the large gap c. In principle this flux does not pass through the magnet 89a because the reluctance offered by the plate 83 and the two closed air gaps 84a and 84b is practically zero. Thus the flux generated by a current in the coil 81 borrows a magnetic circuit common to the polarization flux of the magnet 89b. As for the coil 87, its flow plays a symmetrical role in passing through the magnet 89a, then the gap 84a, the plate 83, and the air gap 84b. The system can therefore operate with a single coil, 81 or 87, or with both coils fed simultaneously. If the plate is in the middle position, stable position generally obtained through springs, for which the four air gaps are identical, the device can start alone. Indeed, in this case not shown, the four polarization inductions Bpa, Bpb, Bpc and Bpd are identical, but the induction created by the coils 81 or 87 increases the fields in the air gaps 84a and 84b and reduces the fields in the gaps 84c and 84d, triggering the start of the device.
Par rapport à la configuration de la figure 8, la configuration de la figure 9 est telle que la circulation du flux de polarisation est voisine. Pour la circulation des flux des bobines, la situation reste inchangée avec les ampères tours des deux bobines qui s'ajoutent et qui ne voient comme entrefer que l'épaisseur d'un seul aimant. Si on suit une ligne de flux généré par la bobine 91, cette ligne traverse l'entrefer 94a créant le champ induit Bba, puis le plateau 93, puis l'entrefer 94b créant le champ induit Bbb, puis l'aimant 99b créant le champ induit Bb9b, puis revient à la bobine 91. La ligne de flux « évite » donc en partie le grand entrefer d. En principe ce flux ne traverse pas l'aimant 99a car la réluctance offerte par le plateau 93 et les deux entrefers fermés 94a et 94b est pratiquement nulle. En conséquence, il est possible de n'utiliser qu'une seule bobine à la fois pour le contrôle du dispositif. Comme pour le dispositif précédent, si le plateau est en position médiane, position stable généralement donnée par des ressorts pour laquelle les quatre entrefers sont identiques, le dispositif peut démarrer seul pour les mêmes raisons que ci- dessus.With respect to the configuration of FIG. 8, the configuration of FIG. 9 is such that the circulation of the polarization flux is close. For the circulation of the fluxes of the coils, the situation remains unchanged with the ampere turns of the two coils which are added and which see as gap only the thickness of a single magnet. If we follow a flow line generated by the coil 91, this line passes through the gap 94a creating the induced field Bba, then the plate 93, then the air gap 94b creating the induced field Bbb, then the magnet 99b creating the field induced Bb9b, then returns to the coil 91. The flow line "avoids" therefore in part the large gap d. In principle this flux does not cross the magnet 99a because the reluctance offered by the plate 93 and the two closed air gaps 94a and 94b is practically zero. As a result, it is possible to use only one coil at a time for control of the device. As for the previous device, if the plate is in the middle position, stable position generally given by springs for which the four gaps are identical, the device can start alone for the same reasons as above.
Dans les deux configurations présentées sur les figures 8 et 9, le flux des bobines peut traverser un simple petit entrefer 98 dépourvu d'aimant et traversé par les ampères tours en parallèle avec l'entrefer qui contient les aimants ainsi que représenté dans un cercle en pointillés sur la figure 9. Cet entrefer n'est représenté que sur la figure 9, en parallèle de l'aimant 99a, mais des entrefers analogues peuvent être utilisés en parallèle des aimants 89a, 89b et 99b. Ceci permet d'utiliser des sections relativement grandes pour les aimants permanents. De plus, ces aimants peuvent ne pas être soumis à des champs démagnétisants importants, ce qui permet d'utiliser des aimants bas de gamme et de grande section.In the two configurations shown in FIGS. 8 and 9, the stream of the coils can pass through a simple small air gap 98 devoid of magnet and crossed by the ampere turns in parallel with the gap which contains the magnets as shown in a dashed circle in Figure 9. This gap is shown in Figure 9, in parallel of the magnet 99a, but similar air gaps can be used in parallel magnets 89a, 89b and 99b. This allows the use of relatively large sections for permanent magnets. In addition, these magnets may not be subject to significant demagnetizing fields, which allows the use of low-end magnets and large section.
En fonctionnement statique, dans le plateau pour les configurations des figures 8 et 9, les bobines peuvent fonctionner séparément, chaque bobine contrôlant une des deux positions fermées. En fonctionnement dynamique, le flux de polarisation s'inverse dans la configuration de la figure 9 alors qu'il reste de même sens dans la configuration de la figure 8. Ceci peut conduire à des courants induits plus importants dans la configuration de la figure 9. Etant donné les sens des flux créés par les bobines, il est possible de n'utiliser qu'une seule bobine qui entoure les deux circuits magnétiques.In static operation, in the tray for the configurations of FIGS. 8 and 9, the coils can operate separately, each coil controlling one of the two closed positions. In dynamic operation, the polarization flux is reversed in the configuration of FIG. 9 while it remains in the same direction in the configuration of FIG. 8. This can lead to greater induced currents in the configuration of FIG. 9. Given the directions of the flows created by the coils, it is possible to use only one coil which surrounds the two magnetic circuits.
Le circuit magnétique des configurations dites série parallèle des figures 8 et 9 est assez simple, et il permet une grande variété de réalisations. Par exemple, le flux magnétique peut traverser deux entrefers (84a et 84c) fermés par le plateau lors de son basculement dans une position. Ceci permet d'utiliser des entrefers vus par les bobines relativement petits, et donc de rendre la contribution des bobines plus efficace que pour les polarisations série. On a donc montré qu'il est avantageux d'utiliser des dispositifs à faible épaisseur d'aimant pour obtenir un comportement série pour des petits entrefers et parallèle pour des grands entrefers. l'The magnetic circuit of the so-called parallel series configurations of FIGS. 8 and 9 is quite simple, and it allows a great variety of embodiments. For example, the magnetic flux can pass through two air gaps (84a and 84c) closed by the plate when it tilts to a position. This makes it possible to use air gaps seen by the relatively small coils, and thus to make the contribution of the coils more efficient than for series polarizations. It has therefore been shown that it is advantageous to use devices with a small magnet thickness to obtain a series behavior for small air gaps and parallel for large air gaps. the
Toutefois, il faut faire attention à l'utilisation de ces aimants minces, qui sont relativement fragiles, et qu'il faut protéger contre les chocs.However, we must pay attention to the use of these thin magnets, which are relatively fragile, and must be protected against shocks.
L'ensemble des configurations présentées « à plat » dans les figures 1 et 3 à 9 peuvent être réalisées en 3 dimensions d'une manière similaire à celle présentée en perspective sur la figure 10. La configuration plus précisément présentée « repliée » sur la figure 10 est similaire à la configuration présentée sur la figure 8. Cette configuration fonctionne avantageusement avec un seul aimant 109 de grande section et relativement mince, et avec un seul électroaimant 100 incluant une bobine 101, représentée en pointillés. Un plateau 103 est monté en rotation autour d'un axe 105 et destiné à être placé entre deux branches de électroaimant pour constituer les quatre entrefers.The set of configurations presented "flat" in Figures 1 and 3 to 9 can be made in 3 dimensions in a similar manner to that presented in perspective in Figure 10. The configuration more precisely presented "folded" in the figure 10 is similar to the configuration shown in FIG. 8. This configuration advantageously operates with a single magnet 109 of large section and relatively thin, and with a single electromagnet 100 including a coil 101, shown in dashed lines. A plate 103 is rotatably mounted about an axis 105 and intended to be placed between two electromagnet branches to form the four air gaps.
Il existe de nombreuses possibilités de réaliser des variantes de l'invention. Notamment il existe des alternatives diverses pour l'alimentation commune ou successive des bobines, la structure géométrique du dispositif, etc. Quelques exemples de réalisation ont été décrits, d'autres sont succinctement évoqués ci-après.There are many possibilities of making variants of the invention. In particular, there are various alternatives for the common or successive feeding of the coils, the geometric structure of the device, etc. Some examples of embodiments have been described, others are briefly described below.
Dans l'ensemble des figures, le plateau est situé au milieu des entrefers pour des raisons de simplicité au niveau des variations des forces de chaque côté du plateau. Cependant toute autre position du plateau telle que ce dernier est monté en rotation autour d'un axe situé entre les entrefers est concernée par l'invention.In all of the figures, the plate is located in the middle of the gaps for reasons of simplicity at the level of the variations of the forces on each side of the plate. However, any other position of the plate such as the latter is mounted in rotation about an axis located between the gaps is concerned by the invention.
En ce qui concerne les configurations de type série parallèle, les deux bobines peuvent aussi être alimentées simultanément.As regards the parallel series type configurations, the two coils can also be powered simultaneously.
On remarque également que les applications de l'invention peuvent être diverses. L'invention et ses modes de réalisation présentés peuvent être également appliqués dans des dispositifs de commande dans lequel les forces sont utilisées pour stabiliser la partie mobile au centre de l'entrefer (« palier magnétique ») , et également dans des secteurs d'activité différents tels les disjoncteurs à commande électromagnétique. It is also noted that the applications of the invention may be diverse. The invention and its presented embodiments can also be applied in control devices in which the forces are used to stabilize the moving part at the center of the air gap ("Magnetic Bearing"), and also in different industries such as electromagnetically controlled circuit breakers.

Claims

l'REVENDICATIONS the CLAIMS
1. Dispositif de commande électromagnétique de l'ouverture et de la fermeture d'un élément mécanique (17), le positionnement de l'élément mécanique (17) en au moins une position (ouverte ou fermée) étant obtenu par l'action d'au moins un électroaimant (80) agissant sur un plateau incluant un matériau magnétique et commandant le positionnement de l'élément mécanique(17) , caractérisé en ce qu'il comprend : - au moins un premier (84a) et un second (84b) entrefer d'épaisseur variable destinés à être fermés par le plateau lors du positionnement de l'élément mécanique (17) en au moins une position, le plateau étant monté en rotation de manière à ce que l'axe de rotation du plateau passe entre les premier (84a) et second (84b) entrefers, et1. Device for electromagnetic control of the opening and closing of a mechanical element (17), the positioning of the mechanical element (17) in at least one position (open or closed) being obtained by the action of at least one electromagnet (80) acting on a plate including a magnetic material and controlling the positioning of the mechanical element (17), characterized in that it comprises: - at least one first (84a) and one second (84b) ) gap of variable thickness to be closed by the plate during positioning of the mechanical element (17) in at least one position, the plate being rotated so that the axis of rotation of the plate passes between the first (84a) and second (84b) air gaps, and
- au moins un aimant permanent (89a, 99a) destiné à polariser le dispositif de manière à maintenir le plateau dans au moins une position en l'absence de courant dans 1'électroaimant, cet aimant permanent n'étant pas traversé par le flux magnétique principal de électroaimant.at least one permanent magnet (89a, 99a) for polarizing the device so as to maintain the plate in at least one position in the absence of current in the electromagnet, this permanent magnet not being traversed by the magnetic flux main electromagnet.
2. Dispositif selon la revendication 1, incluant un troisième (84c) et un quatrième (84d) entrefer d'épaisseur variable destinés à être fermés par le plateau lors du positionnement de l'élément mécanique (17) en la seconde position, l'axe de rotation du plateau passant entre les premier, deuxième, troisième et quatrième entrefers.2. Device according to claim 1, including a third (84c) and a fourth (84d) air gap of variable thickness to be closed by the plate during positioning of the mechanical element (17) in the second position, the axis of rotation of the plate passing between the first, second, third and fourth gaps.
3. Dispositif selon l'une des revendications 1 et 2, dans lequel la seconde position de l'élément mécanique (17) est obtenue par l'action d'un second électroaimant agissant sur le plateau. l'l'l'3. Device according to one of claims 1 and 2, wherein the second position of the mechanical element (17) is obtained by the action of a second electromagnet acting on the plate. the the the
4. Dispositif selon l'une des revendications 1 à 3 dans lequel le flux magnétique généré par électroaimant traverse un entrefer (98) dépourvu d'aimant permanent et situé en parallèle avec un entrefer contenant un aimant permanent.4. Device according to one of claims 1 to 3 wherein the magnetic flux generated by electromagnet through a gap (98) devoid of permanent magnet and located in parallel with a gap containing a permanent magnet.
5. Dispositif selon la revendication 4 dans lequel le flux magnétique généré par électroaimant traverse, en plus de l'entrefer (98) situé en parallèle avec l'aimant permanent, les deux entrefers fermés par le plateau (84a et 84c) lors de son basculement dans une position.5. Device according to claim 4 wherein the magnetic flux generated by electromagnet passes, in addition to the gap (98) located in parallel with the permanent magnet, the two gaps closed by the plate (84a and 84c) during its tipping into a position.
6. Dispositif selon l'une quelconque des revendications précédentes, dans lequel le matériau magnétique inclus dans le plateau est un matériau ferromagnétique.6. Device according to any one of the preceding claims, wherein the magnetic material included in the plate is a ferromagnetic material.
7. Dispositif selon l'une quelconque des revendications précédentes, dans lequel électroaimant (80) est constitué d'une bobine (81) et d'un circuit magnétique (82) incluant un noyau magnétique autour duquel s'enroule la bobine et quatre bras dont les quatre extrémités constituent chacune une face d'un entrefer, l'autre face de l'entrefer étant sur le plateau.7. Device according to any one of the preceding claims, wherein the electromagnet (80) consists of a coil (81) and a magnetic circuit (82) including a magnetic core around which the coil and four arms is wound. whose four ends each constitute one face of an air gap, the other face of the gap being on the plate.
8. Dispositif selon l'une quelconque des revendications précédentes, dans lequel l'élément mécanique (17) est une soupape.8. Device according to any one of the preceding claims, wherein the mechanical element (17) is a valve.
9. Dispositif selon l'une quelconque des revendications 1 à 7, dans lequel l'élément mécanique (17) est un disjoncteur à commande électromagnétique. 9. Device according to any one of claims 1 to 7, wherein the mechanical element (17) is an electromagnetically controlled circuit breaker.
EP05787407A 2004-07-16 2005-07-04 Electromagnetic control device operating by switching Withdrawn EP1771868A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0451561A FR2873232B1 (en) 2004-07-16 2004-07-16 ELECTROMAGNETIC CONTROL DEVICE OPERATING IN TENSION
PCT/FR2005/050535 WO2006016081A1 (en) 2004-07-16 2005-07-04 Electromagnetic control device operating by switching

Publications (1)

Publication Number Publication Date
EP1771868A1 true EP1771868A1 (en) 2007-04-11

Family

ID=34950479

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05787407A Withdrawn EP1771868A1 (en) 2004-07-16 2005-07-04 Electromagnetic control device operating by switching

Country Status (5)

Country Link
US (1) US7804386B2 (en)
EP (1) EP1771868A1 (en)
JP (1) JP4902535B2 (en)
FR (1) FR2873232B1 (en)
WO (1) WO2006016081A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2928501B1 (en) * 2008-03-04 2011-04-01 Schneider Electric Ind Sas DEVICE FOR GENERATING ENERGY WITH TWO MOVING PARTS
DE102008001896B4 (en) * 2008-05-21 2023-02-02 Robert Bosch Gmbh Micromechanical component and manufacturing method for a micromechanical component
KR101337287B1 (en) * 2011-12-19 2013-12-06 주식회사 영텍 A electro pneumatic converter with low hysteresis characteristic
JP6241938B2 (en) * 2014-02-26 2017-12-06 樋口 俊郎 Gripper mechanism and moving mechanism
US9742252B2 (en) * 2014-06-17 2017-08-22 Transducing Energy Devices, Llc Magnetic electricity generator
GB2571741B (en) * 2018-03-07 2022-03-23 Sentec Ltd Electricity meter with electrically-controlled electromechanical switch
US11482361B2 (en) * 2020-09-01 2022-10-25 Eaton Intelligent Power Limited Flexible Thomson coil to shape force profile/multi-stage Thomson coil
EP4310880A1 (en) * 2022-07-22 2024-01-24 TE Connectivity Austria GmbH Rotary-segment electromechanical system with reluctance boost
DE102022119118A1 (en) 2022-07-29 2024-02-01 Svm Schultz Verwaltungs-Gmbh & Co. Kg Rotary magnet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2849262A1 (en) * 2002-12-23 2004-06-25 Johnson Controls Tech Co Permanent magnet valve electromagnetic driver having elastic unit valve drive with coil/permanent magnet having magnetic path coil generating passing outside permanent magnet

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB793825A (en) * 1955-11-08 1958-04-23 Telephone Mfg Co Ltd Improvements relating to polarised electromagnetic devices
US2913639A (en) * 1956-01-20 1959-11-17 Richard J Coppola Polarized a. c. operated relay
US3573811A (en) * 1966-08-08 1971-04-06 William A Knecht Magnetically operated two position electrical indicator
US3708723A (en) * 1971-03-05 1973-01-02 Airpax Electronics Low power magnetic circuit breaker
IT974590B (en) * 1972-08-12 1974-07-10 Billi Spa ELECTRIC IMPULSE CONTROL DEVICE FOR YARN GUIDERS OF KNITTING MACHINES AND FOR OTHER USES
US4329672A (en) * 1977-01-29 1982-05-11 Elektro-Mechanik Gmbh Polarized electromagnetic drive for a limited operating range of a control element
JPS5434013A (en) * 1977-08-20 1979-03-13 Shinano Tokki Kk Electromagnetic rotating apparatus
US4186332A (en) * 1978-05-22 1980-01-29 General Scanning Inc. Limited rotation moving iron motor with novel velocity sensing and feedback
US4302720A (en) * 1979-04-20 1981-11-24 Bulova Watch Company Galvanometer-type motor
SU836703A1 (en) * 1979-07-31 1981-06-17 Предприятие П/Я Г-4829 Magnetoelectric transducer
US4387357A (en) * 1981-04-10 1983-06-07 Magic Chef, Inc. Rotary activator
DE3920931A1 (en) * 1989-06-27 1991-01-03 Fev Motorentech Gmbh & Co Kg ELECTROMAGNETIC OPERATING DEVICE
JPH0361310A (en) * 1989-07-27 1991-03-18 Nkk Corp Degass-refining method and degassing vessel
JPH0517850Y2 (en) * 1989-10-13 1993-05-13
US5548263A (en) * 1992-10-05 1996-08-20 Aura Systems, Inc. Electromagnetically actuated valve
US5253619A (en) * 1992-12-09 1993-10-19 North American Philips Corporation Hydraulically powered actuator with pneumatic spring and hydraulic latching
JP2565656B2 (en) * 1994-04-15 1996-12-18 ウエル株式会社 Axial rotation type DC electromagnet
JP2898240B2 (en) * 1995-12-22 1999-05-31 ウエル株式会社 Shaft rotating DC electromagnet
JP3641346B2 (en) * 1997-04-22 2005-04-20 新電元工業株式会社 Self-holding rotary solenoid
FR2773910B1 (en) * 1998-01-16 2000-05-19 Schneider Electric Sa ELECTROMAGNETICALLY CONTROLLED SWITCHING APPARATUS
FR2793944B1 (en) * 1999-05-20 2001-07-13 Schneider Electric Ind Sa OPENING AND / OR CLOSING CONTROL DEVICE, PARTICULARLY FOR A BREAKING APPARATUS SUCH AS A CIRCUIT BREAKER, AND CIRCUIT BREAKER PROVIDED WITH SUCH A DEVICE
JP2001250716A (en) * 2000-03-06 2001-09-14 Shindengen Electric Mfg Co Ltd Self-holding rotary solenoid
FR2808616B1 (en) * 2000-05-02 2002-08-30 Schneider Electric Ind Sa ROTARY ELECTROMAGNET
ITBO20010389A1 (en) * 2001-06-19 2002-12-19 Magneti Marelli Spa METHOD OF CONTROL OF AN ELECTROMAGNETIC ACTUATOR FOR THE CONTROL OF A VALVE OF A MOTOR STARTING FROM A REST CONDITION
JP3996414B2 (en) * 2002-03-12 2007-10-24 シチズンホールディングス株式会社 Actuator device
DE10221015A1 (en) * 2002-05-11 2003-11-27 Daimler Chrysler Ag IC engine has intake valve drives with first and second setting grades, associated with common cylinder, for throttle-free load regulation
FR2849100B1 (en) * 2002-12-23 2006-08-04 Johnson Controls Tech Co MONOBOBIN ELECTROMAGNETIC ACTUATOR WITH SWIVEL PALLET
JP4446066B2 (en) * 2004-06-17 2010-04-07 新電元メカトロニクス株式会社 Rotary solenoid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2849262A1 (en) * 2002-12-23 2004-06-25 Johnson Controls Tech Co Permanent magnet valve electromagnetic driver having elastic unit valve drive with coil/permanent magnet having magnetic path coil generating passing outside permanent magnet

Also Published As

Publication number Publication date
JP2008507121A (en) 2008-03-06
FR2873232A1 (en) 2006-01-20
JP4902535B2 (en) 2012-03-21
FR2873232B1 (en) 2008-10-03
US7804386B2 (en) 2010-09-28
US20070247264A1 (en) 2007-10-25
WO2006016081A1 (en) 2006-02-16

Similar Documents

Publication Publication Date Title
EP1771868A1 (en) Electromagnetic control device operating by switching
EP2250725B1 (en) Power generation device with two mobile parts
FR2898439A1 (en) ELECTRIC MACHINE WITH FLOW SWITCHING AND DOUBLE EXCITATION
FR2688105A1 (en) ROTARY ELECTROMAGNETIC ROTARY ACTUATOR SINGLE-PHASE BETWEEN 60 AND 120 DEGREES.
CA2630554A1 (en) Stand-alone device for generating electrical energy
EP1174595B1 (en) Valve actuator for internal combustion engine
FR2793944A1 (en) Circuit breaker opening/closing command mechanism having permanent magnet/winding and rotating armature stop positions moving.
WO2011069879A1 (en) Electric energy generating device
EP1655755B1 (en) Electromagnetic actuator with movable coil
EP1450011B1 (en) Electromagnetic valve actuator for internal combustion engine and engine comprising such an actuator
EP1581991B1 (en) Hybrid single-phase bistable rotary actuator
EP1792326B1 (en) Bistable electromagnetic actuator with integrated lock
EP1421590B1 (en) Electromagnetic actuator with two stable end-of-travel positions, in particular for controlling air intake duct valves for internal combustion engines
EP1568858B1 (en) Electromagnetic valve drive for internal combustion engine
FR3071678B1 (en) ELECTROMAGNETIC ENERGY CONVERTER
FR2951316A1 (en) Rotary bistable actuator, has magnet generating maintain magnetic flux to maintain reinforcement in one of two stable positions, where magnet is in contact with two magnetic parts so as to polarize reinforcement along longitudinal axis
EP1229560B1 (en) Electromagnetic valve actuator with electromagnet for an internal combustion engine
EP3018690B1 (en) Electromagnetic actuator and electric contactor including such an actuator
FR2694062A1 (en) Solenoid valve for liquid and gaseous media.
FR2812121A1 (en) Internal combustion engine valve linear electromagnetic driver having upper/lower branch magnetic circuit with magnetic coil drive valve section between upper/lower magnetic gap.
BE402488A (en)
BE518405A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FAGEON, CHRISTOPHE

Inventor name: BALDI, CHRISTOPHE

Inventor name: YONNET, JEAN-PAUL

17Q First examination report despatched

Effective date: 20070717

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140103