JP4446066B2 - Rotary solenoid - Google Patents

Rotary solenoid Download PDF

Info

Publication number
JP4446066B2
JP4446066B2 JP2004180091A JP2004180091A JP4446066B2 JP 4446066 B2 JP4446066 B2 JP 4446066B2 JP 2004180091 A JP2004180091 A JP 2004180091A JP 2004180091 A JP2004180091 A JP 2004180091A JP 4446066 B2 JP4446066 B2 JP 4446066B2
Authority
JP
Japan
Prior art keywords
arc
rotor
center
shaped
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004180091A
Other languages
Japanese (ja)
Other versions
JP2006005169A (en
Inventor
信秀 岡田
Original Assignee
新電元メカトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元メカトロニクス株式会社 filed Critical 新電元メカトロニクス株式会社
Priority to JP2004180091A priority Critical patent/JP4446066B2/en
Publication of JP2006005169A publication Critical patent/JP2006005169A/en
Application granted granted Critical
Publication of JP4446066B2 publication Critical patent/JP4446066B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electromagnets (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

本発明は、ロータリソレノイドにかかわり、特に回転子と固定磁極を中心とする部材の構造に関するものである。   The present invention relates to a rotary solenoid, and more particularly to the structure of a member centered on a rotor and a fixed magnetic pole.

一般に知られているロータリソレノイドの基本的な構造は、ソレノイドの筐体となるケース、磁束を発生させるコイル、シャフトに固着され左右両方向に回転可能に支持された回転子、回転子とは径方向で対向し磁束発生により回転子を吸引回転させる固定磁極、消磁の際に復帰方向に回転させるうず巻ばねで構成されている(例えば特許文献1)。   The basic structure of a generally known rotary solenoid is as follows: a case that serves as a casing for the solenoid, a coil that generates magnetic flux, a rotor that is fixed to a shaft and supported so as to be able to rotate in both the left and right directions, and the rotor is a radial direction. The fixed magnetic poles that are opposed to each other and generate a magnetic flux to attract and rotate the rotor, and the spiral springs that rotate in the return direction upon demagnetization (for example, Patent Document 1).

このようなロータリソレノイドの回転子と固定磁極は回転子の回転中心と同位置に中心を持った円弧の磁極形状である。特許文献1より回転子はある角度で形成された凸面の磁極形状を複数もち、固定磁極側も回転子の凸部の磁極形状及び角度に合わせた複数の磁極形状を形成している。また、回転子の凸面の磁極と固定磁極は径方向において常に一定のギャップを保っている。   The rotor and fixed magnetic pole of such a rotary solenoid have a circular arc magnetic pole shape centered at the same position as the rotation center of the rotor. According to Patent Document 1, the rotor has a plurality of convex magnetic pole shapes formed at a certain angle, and the fixed magnetic pole side also has a plurality of magnetic pole shapes matched to the magnetic pole shape and angle of the convex portion of the rotor. The convex magnetic pole and the fixed magnetic pole of the rotor always maintain a constant gap in the radial direction.

しかしながら、このロータリソレノイドはコイルに電圧を印加し、回転子が固定磁極へ引っ張られて回転するにしたがって、トルクは小さくなる方向へ向かう。一般的なロータリソレノイドのトルク特性は回転子と固定磁極の磁極面が向かい合い始める部分で最も大きくなり、前述したように磁極同士の対抗面が増していくにしたがってだんだん小さくなる傾向になっていく。さらに、ロータリソレノイドには電圧を遮断した後に復帰するためのうず巻ばねが備わっている。このうず巻ばねの復帰力と必要とするトルクを考慮した設計をしなければならないため、このようなロータリソレノイドでは電力を上げて必要トルク特性を得るという、非効率的な使用方法を取らざるを得なかった。
特開昭61−157884(5頁、図1)
However, the rotary solenoid applies a voltage to the coil, and the torque decreases in a direction as the rotor is pulled by the fixed magnetic pole and rotates. The torque characteristics of a general rotary solenoid become the largest at the part where the rotor and fixed magnetic poles begin to face each other, and tend to gradually decrease as the opposing surfaces of the magnetic poles increase as described above. Further, the rotary solenoid is provided with a spiral spring for returning after the voltage is cut off. Since it is necessary to design in consideration of the return force of this spiral spring and the required torque, such a rotary solenoid must be inefficiently used to increase the power and obtain the required torque characteristics. I didn't get it.
JP-A-61-157884 (5 pages, FIG. 1)

本発明は、上述した事情に鑑みてなされたもので、従来技術に係るロータリソレノイドよりも磁極形状を工夫することで、回転角度におけるトルク特性を広く一定に保ち、または必要に応じトルク特性を制御することを可能とし、かつ永久磁石を使用しない安価なソレノイドを提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and by devising the magnetic pole shape rather than the rotary solenoid according to the prior art, the torque characteristic at the rotation angle is kept wide and constant, or the torque characteristic is controlled as necessary. An object of the present invention is to provide an inexpensive solenoid that can be used and that does not use a permanent magnet.

上記の課題を解決するために、軸部を中心として左右両方向に回転可能であり、その軸部から突出すると共に磁極をなすように形成された1つ又は複数の弧状凸面を持つ回転子と、前記回転子の弧状凸面と同数形成されると共に前記弧状凸面に対向するように配置された弧状凹面を持つ固定磁極と、前記弧状凸面及び前記弧状凹面の近傍に配置されると共に筒状に形成されたコイルとを備えたソレノイドにおいて、前記回転子の回転中心と、前記弧状凸面の曲率中心は異なり、かつ複数の前記弧状凸面同士においても曲率中心はそれぞれ異なり、さらに前記弧状凹面の曲率中心も前記回転子の回転中心と異なり、かつ複数の前記弧状凹面同士においても曲率中心はそれぞれ異なることを特徴とするものとした。なお、ここでいう「弧状」とは、円弧状と楕円弧状との双方を含む。   In order to solve the above-described problem, a rotor having one or more arc-shaped convex surfaces that are rotatable in both the left and right directions around the shaft portion and project from the shaft portion and are formed to form a magnetic pole; A fixed magnetic pole having an arc-shaped concave surface that is formed in the same number as the arc-shaped convex surface of the rotor and facing the arc-shaped convex surface, and disposed in the vicinity of the arc-shaped convex surface and the arc-shaped concave surface and formed in a cylindrical shape. And the center of curvature of the arc-shaped convex surface is different between the plurality of arc-shaped convex surfaces, and the center of curvature of the arc-shaped concave surface is also different from the center of curvature of the arc-shaped concave surface. Unlike the rotation center of the rotor, the center of curvature is also different between the plurality of arc-shaped concave surfaces. Here, the “arc shape” includes both an arc shape and an elliptic arc shape.

また、前記弧状凸面は前記回転子の回転中心と異なる曲率中心をもつ任意の厚さを持った仮想的な円筒体の側面の一部であり、前記弧状凹面は前記回転子の回転中心と異なる曲率中心をもつ任意の厚さを持った仮想的な円筒体の側面の一部であり、さらに前記弧状凸面と前記弧状凹面とのギャップは、前記回転子の回転開始時に相対的に大きく、前記回転子の回転中に相対的に小さくなるようになされており、前記回転子が所定の角度位置において、前記弧状凸面と前記弧状凹面とのギャップが均一な距離となり、かつ前記弧状凸面と前記弧状凹面が対向するようになされていることとし、前記回転子が回転途中の時点または回転終了の時点においても、前記弧状凸面と前記弧状凹面とのギャップが均一な距離となり、かつ前記弧状凸面と前記弧状凹面が対向するようになされていることを特徴とするものとした。なお、ここでいう「仮想的な円筒体」とは、弧状凹面及び弧状凸面の構成を説明するためのものであり、実体はない。   The arc-shaped convex surface is a part of a side surface of a virtual cylindrical body having an arbitrary thickness having a center of curvature different from the rotation center of the rotor, and the arc-shaped concave surface is different from the rotation center of the rotor. A part of a side surface of a virtual cylindrical body having an arbitrary thickness having a center of curvature, and a gap between the arc-shaped convex surface and the arc-shaped concave surface is relatively large at the start of rotation of the rotor, The rotor becomes relatively small during rotation of the rotor, and when the rotor is at a predetermined angular position, the gap between the arc-shaped convex surface and the arc-shaped concave surface is a uniform distance, and the arc-shaped convex surface and the arc-shaped It is assumed that the concave surfaces are opposed to each other, and the gap between the arc-shaped convex surface and the arc-shaped concave surface is a uniform distance even when the rotor is rotating or at the end of the rotation, and the arc-shaped convex surface and the front surface Arcuate concave surface is assumed to be characterized by being adapted to face. The “virtual cylindrical body” here is for explaining the configuration of the arcuate concave surface and the arcuate convex surface, and has no substance.

本発明は回転子の磁極となる弧状凸面と固定磁極の磁極となる弧状凹面の形状及び配置を工夫することでロータリソレノイドを広い回転角度にわたって、変動のない一定したトルク特性及び必要に応じたトルク特性を得られるものとすることが可能となる。さらに回転子側の磁極には一般的に使われている磁性材料を使用できるので、製作上においても加工しやすく、ソレノイド自体を安価にすることができる。また、永久磁石を使用していないのでコスト低減はもちろんのこと、部品を取り扱う上でのトラブルを極力抑えることができる。   The present invention devised the shape and arrangement of the arcuate convex surface that serves as the magnetic pole of the rotor and the arcuate concave surface that serves as the magnetic pole of the fixed magnetic pole, so that the rotary solenoid has a constant torque characteristic that does not fluctuate over a wide range of rotation and torque as required. It is possible to obtain characteristics. Furthermore, since a magnetic material that is generally used can be used for the magnetic pole on the rotor side, it is easy to process in manufacturing, and the solenoid itself can be made inexpensive. Further, since no permanent magnet is used, not only cost reduction but also troubles in handling parts can be suppressed as much as possible.

本発明の実施の形態においては、回転子の弧状凸面と固定磁極の弧状凹面の形状とその形状の基準となる曲率中心位置を工夫することで、トルク特性を一定又は必要に応じた特性にできることに特徴がある。また、回転子には一般的に使用されている磁性材料を用いることができるので、加工が容易となり、ソレノイド自体を安価にできる。以下に、この特徴を有する実施例について説明する。   In the embodiment of the present invention, by devising the shape of the arcuate convex surface of the rotor and the arcuate concave surface of the fixed magnetic pole and the center of curvature serving as the basis for the shape, the torque characteristic can be made constant or as required. There is a feature. Moreover, since the magnetic material generally used can be used for a rotor, processing becomes easy and solenoid itself can be made cheap. An embodiment having this feature will be described below.

図1(a)〜(d)は、本発明の第1の実施例に係るロータリソレノイドの説明図である。図1において、10はロータリソレノイド、11はシャフト、12は回転子、12aと12bは弧状凸面、12acと12bcは曲率中心、12arと12brは弧状凸面の半径、13は固定磁極、13aと13bは弧状凹面、13acと13bcは曲率中心、13arと13brは弧状凹面の半径、14と15はギャップ、16と17はケース、18と19は軸受け、20と21はコイルを示す。   1A to 1D are explanatory views of a rotary solenoid according to a first embodiment of the present invention. In FIG. 1, 10 is a rotary solenoid, 11 is a shaft, 12 is a rotor, 12a and 12b are arc-shaped convex surfaces, 12ac and 12bc are centers of curvature, 12ar and 12br are radii of the arc-shaped convex surfaces, 13 is a fixed magnetic pole, and 13a and 13b are Arc concave surfaces, 13ac and 13bc are centers of curvature, 13ar and 13br are radii of the arc concave surfaces, 14 and 15 are gaps, 16 and 17 are cases, 18 and 19 are bearings, and 20 and 21 are coils.

ロータリソレノイド10において、回転子12は磁極が回転軸より径方向へ突出する弧状凸面12a、12bを備え、その磁極に対向する固定磁極13は弧状凹面13a、13bを備えており、さらに弧状凸面12a、12bと弧状凹面13a、13bの近傍にはコイル20、21が配置されている。回転子12にはシャフト11が固着され、シャフト11はケース16と17に固着している軸受け18、19に挿通支持され左右両方向に回転可能となっている。   In the rotary solenoid 10, the rotor 12 includes arc-shaped convex surfaces 12a and 12b in which the magnetic pole protrudes in the radial direction from the rotation axis, the fixed magnetic pole 13 facing the magnetic pole includes arc-shaped concave surfaces 13a and 13b, and the arc-shaped convex surface 12a. 12b and the arcuate concave surfaces 13a and 13b, coils 20 and 21 are arranged in the vicinity. A shaft 11 is fixed to the rotor 12, and the shaft 11 is inserted and supported by bearings 18 and 19 fixed to the cases 16 and 17 so as to be rotatable in both left and right directions.

本発明の実施例1においては回転子12の弧状凸面12a、12bと固定磁極の弧状凹面13a、13bの形状及びその形状の基準となる曲率中心12ac、12bc又は13ac、13bcの位置を工夫することで、トルク特性を一定又は必要に応じた特性にすることが可能で、回転子には一般の磁性材料を用いるのでソレノイド自体を安価にできることを特徴とするものである。
以下に、ロータリソレノイド10の主要な構成について説明する。
In the first embodiment of the present invention, the shapes of the arc-shaped convex surfaces 12a, 12b of the rotor 12 and the arc-shaped concave surfaces 13a, 13b of the fixed magnetic pole and the positions of the curvature centers 12ac, 12bc or 13ac, 13bc serving as the reference for the shapes are devised. Thus, the torque characteristic can be made constant or as required, and the solenoid itself can be made inexpensive because a general magnetic material is used for the rotor.
Below, the main structures of the rotary solenoid 10 are demonstrated.

回転子12は磁性材料で形成されており、軸部から径方向に突出された2つの弧状凸面12a及び12bを2等配に備え、中心孔にはシャフト11が固着している。弧状凸面12a及び12bの曲率中心12ac及び12bcは回転子12の回転中心とは異なる位置にあり、かつ弧状凸面12a,12b同士の曲率中心12acと12bcも互いに異なる位置にあり、半径12arと12brの距離で弧状凸面12aと12bを形成させている。また、弧状凸面12aと12bの近傍にはコイル20と21が配されている。   The rotor 12 is made of a magnetic material, has two arc-shaped convex surfaces 12a and 12b protruding radially from the shaft portion, and the shaft 11 is fixed to the center hole. The curvature centers 12ac and 12bc of the arc-shaped convex surfaces 12a and 12b are at different positions from the rotation center of the rotor 12, and the curvature centers 12ac and 12bc of the arc-shaped convex surfaces 12a and 12b are also different from each other, and have radii of 12ar and 12br. Arc-shaped convex surfaces 12a and 12b are formed at a distance. In addition, coils 20 and 21 are arranged in the vicinity of the arcuate convex surfaces 12a and 12b.

固定磁極13は磁性材料で形成されており、回転子12の弧状凸面12aと12bに対向して2等配の弧状凹面13aと13bを備えている。弧状凹面13a及び13bの曲率中心13ac及び13bcは回転子12の回転中心とは異なり、かつ弧状凹面13a、13b同士の曲率中心13acと13bcも互いに異なる位置にあり、半径13arと13brの距離で弧状凹面13aと13bを形成させている。また、弧状凹面13aと13bの近傍にはコイル20と21が配されている。   The fixed magnetic pole 13 is made of a magnetic material, and has two arcuate concave surfaces 13a and 13b facing the arcuate convex surfaces 12a and 12b of the rotor 12. The centers of curvature 13ac and 13bc of the arc-shaped concave surfaces 13a and 13b are different from the rotation center of the rotor 12, and the centers of curvature 13ac and 13bc of the arc-shaped concave surfaces 13a and 13b are also different from each other, and are arc-shaped at a distance of radius 13ar and 13br. Concave surfaces 13a and 13b are formed. In addition, coils 20 and 21 are arranged in the vicinity of the arcuate concave surfaces 13a and 13b.

したがって、コイル20と21に通電された際には、固定磁極13の弧状凹面13a、13bと、回転子12の弧状凸面12a、12bとの間にギャップ14と15を介して磁束が流れるので、弧状凹面13aと13bは弧状凸面12aと12bを吸引しようとする。回転子12の中心孔はシャフト11が固着し、シャフト11は軸受け18と19に挿通し回転可能な状態で支持されているので、シャフト11を軸に回転子12は吸引方向へ回転し、所定の位置で停止する。コイルへの通電を非通電とした際には外部からの復帰力または任意で取り付けるうず巻ばねの反発力で反対方向へ回転し、回転子12は元の位置に戻ることとなる。   Therefore, when the coils 20 and 21 are energized, magnetic flux flows between the arc-shaped concave surfaces 13a and 13b of the fixed magnetic pole 13 and the arc-shaped convex surfaces 12a and 12b of the rotor 12 through the gaps 14 and 15, The arcuate concave surfaces 13a and 13b attempt to attract the arcuate convex surfaces 12a and 12b. Since the shaft 11 is fixed to the center hole of the rotor 12 and the shaft 11 is supported by being inserted into and rotated by the bearings 18 and 19, the rotor 12 rotates in the suction direction around the shaft 11. Stop at the position. When the energization of the coil is not energized, the rotor 12 rotates in the opposite direction by an external restoring force or a repulsive force of a spiral spring attached arbitrarily, and the rotor 12 returns to its original position.

シャフト11は非磁性材料で形成されており、回転子12の中心孔に挿通固着され、さらに軸方向に伸びてケース16と17の中央孔に固着している軸受け18と19に挿通されて回転可能な状態で支持されている。   The shaft 11 is made of a non-magnetic material, inserted into and fixed to the center hole of the rotor 12, and further extended in the axial direction and inserted into bearings 18 and 19 fixed to the center holes of the cases 16 and 17 to rotate. Supported as possible.

コイル20と21は回転子12の弧状凸面12aと12b及び固定磁極13の弧状凹面13aと13bの近傍に設けられ、通電された際には弧状凹面13aと13b及び弧状凸面12aと12bに磁束を供給する。   The coils 20 and 21 are provided in the vicinity of the arc-shaped convex surfaces 12a and 12b of the rotor 12 and the arc-shaped concave surfaces 13a and 13b of the fixed magnetic pole 13, and when energized, magnetic flux is applied to the arc-shaped concave surfaces 13a and 13b and the arc-shaped convex surfaces 12a and 12b. Supply.

ギャップ14と15は回転子12の弧状凸面12aと12bと、固定磁極13の弧状凹面13aと13bとの間にある空隙である。   The gaps 14 and 15 are gaps between the arc-shaped convex surfaces 12 a and 12 b of the rotor 12 and the arc-shaped concave surfaces 13 a and 13 b of the fixed magnetic pole 13.

ケース16と17は非磁性材料で形成されており、固定磁極13の両端面に位置し、中心孔には軸受け18及び19が固着されている。   The cases 16 and 17 are made of a nonmagnetic material, are located on both end faces of the fixed magnetic pole 13, and bearings 18 and 19 are fixed to the center hole.

軸受け18と19は非磁性材料で形成され、ケース16と17の中心孔に固着されている。軸受け18と19の内孔にはシャフト11が挿通し回転可能な状態で支持されている。   The bearings 18 and 19 are made of a nonmagnetic material and are fixed to the center holes of the cases 16 and 17. The shaft 11 is inserted into the inner holes of the bearings 18 and 19 and supported so as to be rotatable.

さらに本発明の実施の形態に係わるロータリソレノイドの動作について、回転子12と固定磁極13を中心に説明する。図2の(a)〜(c)は図1(c)に示したソレノイドの動作を示す断面図であり、符号は図1と同じものを示す。   Further, the operation of the rotary solenoid according to the embodiment of the present invention will be described focusing on the rotor 12 and the fixed magnetic pole 13. FIGS. 2A to 2C are cross-sectional views showing the operation of the solenoid shown in FIG. 1C, and the reference numerals are the same as those in FIG.

図2(a)はコイル20と21に通電する前のロータリソレノイドである。回転子12は外部からの復帰力または任意で取り付けられているうず巻ばねの反発力で固定磁極13と反対方向に静止している。この時の弧状凸面12a、12bと、弧状凹面13a、13bとの間のギャップ14と15は相対的に大きい状態にある。   FIG. 2A shows a rotary solenoid before the coils 20 and 21 are energized. The rotor 12 is stationary in the direction opposite to the fixed magnetic pole 13 by a return force from the outside or a repulsive force of a spiral spring attached arbitrarily. At this time, the gaps 14 and 15 between the arcuate convex surfaces 12a and 12b and the arcuate concave surfaces 13a and 13b are relatively large.

コイル20と21に通電されると固定磁極13と回転子12との間に磁束が供給される。磁束はギャップ14と15を通り回転子12へ流れ、弧状凹面13aと13bが弧状凸面12aと12bを吸引することとなるので回転動作が始まる。図2(b)は回転子12の回転動作が始まってから中間地点における状態を示す。この時の弧状凸面12aと12bと、弧状凹面13aと13bとの間のギャップ14と15は通電する前の状態に比べて小さくなる方向で変化している。   When the coils 20 and 21 are energized, magnetic flux is supplied between the fixed magnetic pole 13 and the rotor 12. The magnetic flux flows through the gaps 14 and 15 to the rotor 12, and the arc-shaped concave surfaces 13a and 13b attract the arc-shaped convex surfaces 12a and 12b, so that the rotation operation starts. FIG. 2B shows a state at an intermediate point after the rotating operation of the rotor 12 starts. At this time, the gaps 14 and 15 between the arc-shaped convex surfaces 12a and 12b and the arc-shaped concave surfaces 13a and 13b are changed in a direction smaller than the state before energization.

さらに回転子12が回転動作し、停止した時を図2(c)に示す。前述した通り回転子12はギャップ14と15が小さくなる方向に回転動作していくが、ある回転角度おいて停止するようストッパーを設けている。このとき回転子12の弧状凸面12aと12bは固定磁極13の弧状凹面13aと13bと完全に対向する形となり、さらにギャップ14と15は両磁極の間で全て均一な距離を保った状態になっている。   Further, FIG. 2C shows when the rotor 12 rotates and stops. As described above, the rotor 12 rotates in the direction in which the gaps 14 and 15 become smaller, but a stopper is provided to stop at a certain rotation angle. At this time, the arc-shaped convex surfaces 12a and 12b of the rotor 12 are completely opposed to the arc-shaped concave surfaces 13a and 13b of the fixed magnetic pole 13, and the gaps 14 and 15 are all kept at a uniform distance between the two magnetic poles. ing.

このような状態になった時のトルク特性は図3に示すように広い回転角度にわたって一定した値を示すこととなる。さらに、回転子12の弧状凸面12a、12bと、固定磁極13の弧状凹面13a、13bの対向した時の形状やギャップの距離を変えることで必要に応じたトルク特性を得ることができるのである。次にその事例について説明する。   As shown in FIG. 3, the torque characteristics at such a state show a constant value over a wide rotation angle. Furthermore, torque characteristics according to necessity can be obtained by changing the shape and gap distance when the arc-shaped convex surfaces 12a and 12b of the rotor 12 and the arc-shaped concave surfaces 13a and 13b of the fixed magnetic pole 13 face each other. Next, the case will be described.

図4は、今回発明のロータリソレノイドにおける回転子12の弧状凸面12aと12b及び固定磁極13の弧状凹面13aと13bの形状の考え方を示したものである。ここにおいて弧状凸面12aと12bは弧状凹面13aと13bに対して均一なギャップ14、15となっており、かつ弧状凸面12a、12bは固定磁極13の弧状凹面13a、13bと対向した状態を示している。また、曲率中心12ac及び12bc(13ac及び13bc)は回転子12の回転中心のX線上にあると仮定する。この状態において弧状凸面12aと弧状凹面13aは曲率中心12ac(13ac)を共有し、さらにこの曲率中心12ac(13ac)は回転軸よりX(−)側へ任意の距離だけずれた位置のオフセット量となっている。ここから半径12arの弧状凸面12aを形成し、さらにエアギャップ14の分だけ外周側に弧状凹面13aを形成している。   FIG. 4 shows the concept of the shapes of the arc-shaped convex surfaces 12a and 12b of the rotor 12 and the arc-shaped concave surfaces 13a and 13b of the fixed magnetic pole 13 in the rotary solenoid of the present invention. Here, the arc-shaped convex surfaces 12a and 12b form uniform gaps 14 and 15 with respect to the arc-shaped concave surfaces 13a and 13b, and the arc-shaped convex surfaces 12a and 12b show a state of facing the arc-shaped concave surfaces 13a and 13b of the fixed magnetic pole 13. Yes. Further, it is assumed that the centers of curvature 12ac and 12bc (13ac and 13bc) are on the X-ray of the rotation center of the rotor 12. In this state, the arc-shaped convex surface 12a and the arc-shaped concave surface 13a share the center of curvature 12ac (13ac), and the center of curvature 12ac (13ac) is offset by an arbitrary distance from the rotation axis to the X (−) side by an arbitrary distance. It has become. From this, an arcuate convex surface 12a having a radius of 12ar is formed, and an arcuate concave surface 13a is formed on the outer peripheral side by the air gap 14.

また、弧状凸面12aと弧状凹面13aと位置的に対称となる弧状凸面12bと弧状凹面13bは曲率中心12bc(13bc)を共有し、この曲率中心12bc(13bc)は回転軸よりX(+)側へ任意の距離だけずれた位置のオフセット量となっている。ここから半径12brの弧状凸面12bを形成し、さらにエアギャップ15の分だけ外周側に弧状凹面13aを形成している。   Further, the arc-shaped convex surface 12b and the arc-shaped concave surface 13b that are positioned symmetrically with the arc-shaped convex surface 12a and the arc-shaped concave surface 13a share the center of curvature 12bc (13bc), and this center of curvature 12bc (13bc) is on the X (+) side from the rotation axis. The offset amount is a position shifted by an arbitrary distance. From this, an arcuate convex surface 12b having a radius of 12br is formed, and an arcuate concave surface 13a is formed on the outer peripheral side by the air gap 15.

この曲率中心12ac(13ac)と12bc(13bc)の点は回転子12の回転中心点からの絶対距離が同じであり、半径12arと12brの距離も基本的に同じである。さらに回転子12の回転中心点からの曲率中心12acと12bc(13acと13bc)のオフセット量を変えることで、ロータリソレノイドのトルク特性を制御することが可能となる。図4(b)は曲率中心12acと12bcのオフセット量を変化させた時の図を示し、例えば回転子12の回転中心点からX(+)及びX(−)側へずらせた場合のオフセット量をe、fとすれば、

Figure 0004446066
である。尚、dはオフセット量が0であるときを示し、これはつまり曲率中心12acと12bc(13acと13bc)が回転子12の回転中心点にあることを示している。 The points of the curvature centers 12ac (13ac) and 12bc (13bc) have the same absolute distance from the rotation center point of the rotor 12, and the distances of the radii 12ar and 12br are basically the same. Further, by changing the offset amounts of the curvature centers 12ac and 12bc (13ac and 13bc) from the rotation center point of the rotor 12, the torque characteristics of the rotary solenoid can be controlled. FIG. 4B shows a diagram when the offset amounts of the curvature centers 12ac and 12bc are changed. For example, the offset amount when the center of rotation of the rotor 12 is shifted to the X (+) and X (−) sides. Let e and f be
Figure 0004446066
It is. Note that d indicates when the offset amount is 0, which indicates that the centers of curvature 12ac and 12bc (13ac and 13bc) are at the rotation center point of the rotor 12.

曲率中心12acと12bc(13acと13bc)のオフセット量を変化させた時のトルク特性を図5に示す。このトルク特性は図4(b)におけるdがトルク特性d、オフセット量e(−)とe(+)がトルク特性e、オフセット量f(−)とf(+)がトルク特性fにあたる。実施例1の図3で示したトルク特性はトルク特性eとなるが、オフセット量をさらに大きくしていくとトルク特性fのように回転角度0度近くではでトルク小であり、回転していくにしたがってトルクが徐々に大きくなる傾向を得ることができる。   FIG. 5 shows torque characteristics when the offset amounts of the curvature centers 12ac and 12bc (13ac and 13bc) are changed. In this torque characteristic, d in FIG. 4B corresponds to the torque characteristic d, offset amounts e (−) and e (+) correspond to the torque characteristic e, and offset amounts f (−) and f (+) correspond to the torque characteristic f. The torque characteristic shown in FIG. 3 of the first embodiment is the torque characteristic e. However, when the offset amount is further increased, the torque is small at a rotation angle near 0 degrees as in the torque characteristic f, and the torque characteristic is rotated. Accordingly, a tendency can be obtained that the torque gradually increases.

また反対にオフセット量をトルク特性eよりも小さくすると、トルク特性dのように回転角度0度でトルク大であり、回転していくにしたがってトルクは徐々に小さくなる傾向になる。   On the other hand, if the offset amount is smaller than the torque characteristic e, the torque is large at a rotation angle of 0 degree as in the torque characteristic d, and the torque tends to gradually decrease as the rotation proceeds.

このようにオフセット量を変化させ、弧状凸面12a、12b、及び弧状凹面13a、13bの形状を微妙に変えることで回転角度に対するトルク特性を設計上の必要に応じて適宜決定させることが容易に可能となるのである。さらに、弧状凸面12a、12b、及び弧状凹面13a、13bの曲率半径や、エアギャップ14、15の大きさを変えれば、トルク特性を必要なものにすることがさらに容易になる。   In this way, by changing the offset amount and changing the shapes of the arc-shaped convex surfaces 12a and 12b and the arc-shaped concave surfaces 13a and 13b, it is possible to easily determine the torque characteristics with respect to the rotation angle as necessary according to the design. It becomes. Furthermore, if the curvature radii of the arc-shaped convex surfaces 12a and 12b and the arc-shaped concave surfaces 13a and 13b and the sizes of the air gaps 14 and 15 are changed, it becomes easier to make the torque characteristics necessary.

本発明の第1の実施例に係わるロータリソレノイドの斜視図である。It is a perspective view of the rotary solenoid concerning the 1st example of the present invention. 本発明の第1の実施例に係わるロータリソレノイドの説明図である。It is explanatory drawing of the rotary solenoid concerning the 1st Example of this invention. 本発明の第1の実施例に係わるロータリソレノイドの図1(b)のC−C断面図である。It is CC sectional drawing of FIG.1 (b) of the rotary solenoid concerning the 1st Example of this invention. 本発明の第1の実施例に係わるロータリソレノイドの図1(b)のD−D断面図である。It is DD sectional drawing of FIG.1 (b) of the rotary solenoid concerning the 1st Example of this invention. 図1(c)に示したロータリソレノイドの動作を示す説明図である。It is explanatory drawing which shows operation | movement of the rotary solenoid shown in FIG.1 (c). 図1(c)に示したロータリソレノイドの動作を示す説明図である。It is explanatory drawing which shows operation | movement of the rotary solenoid shown in FIG.1 (c). 図1(c)に示したロータリソレノイドの動作を示す説明図である。It is explanatory drawing which shows operation | movement of the rotary solenoid shown in FIG.1 (c). 図1に示したロータリソレノイドのトルク特性図である。It is a torque characteristic figure of the rotary solenoid shown in FIG. 図1(c)に示したロータリソレノイドの磁極部の説明図である。It is explanatory drawing of the magnetic pole part of the rotary solenoid shown in FIG.1 (c). 図4に示したロータリソレノイドのトルク特性図である。It is a torque characteristic figure of the rotary solenoid shown in FIG.

符号の説明Explanation of symbols

10 ロータリソレノイド
11 シャフト
12 回転子
12a 弧状凸面
12ac 曲率中心
12ar 弧状凸面の半径
12b 弧状凸面
12bc 曲率中心
12br 弧状凸面の半径
13 固定磁極
13a 弧状凹面
13ac 曲率中心
13ar 弧状凹面の半径
13b 弧状凹面
13bc 曲率中心
13br 弧状凹面の半径
14 エアギャップ
15 エアギャップ
16 ケース
17 ケース
18 軸受け
19 軸受け
20 コイル
21 コイル
DESCRIPTION OF SYMBOLS 10 Rotary solenoid 11 Shaft 12 Rotor 12a Arc-shaped convex surface 12ac Curvature center 12ar Arc-shaped convex surface radius 12b Arc-shaped convex surface 12bc Curvature center 12br Arc-shaped convex radius 13 Fixed magnetic pole 13a Arc-shaped concave surface 13ac Curvature center 13ar Arc-shaped concave surface 13bc Arc-shaped concave surface 13bc 13br Arc concave radius 14 Air gap 15 Air gap 16 Case 17 Case 18 Bearing 19 Bearing 20 Coil 21 Coil

Claims (3)

軸部を中心として左右両方向に回転可能であり、その軸部から突出すると共に磁極をなすように形成された1つ又は複数の弧状凸面を持つ回転子と、
前記回転子の弧状凸面と同数形成されると共に前記弧状凸面に対向するように配置された弧状凹面を持つ固定磁極と、
前記弧状凸面及び前記弧状凹面の近傍に配置されると共に筒状に形成されたコイルとを備えたソレノイドにおいて、
前記回転子の回転中心と、前記弧状凸面の曲率中心は異なり、かつ複数の前記弧状凸面同士においても曲率中心はそれぞれ異なり、
さらに前記弧状凹面の曲率中心も前記回転子の回転中心と異なり、かつ複数の前記弧状凹面同士においても曲率中心はそれぞれ異なることを特徴とするソレノイド。
A rotor having one or a plurality of arc-shaped convex surfaces that are rotatable in both the left and right directions around the shaft portion, projecting from the shaft portion and forming a magnetic pole;
A fixed magnetic pole having an arc-shaped concave surface that is formed in the same number as the arc-shaped convex surface of the rotor and arranged to face the arc-shaped convex surface;
In a solenoid provided with a coil formed in the vicinity of the arcuate convex surface and the arcuate concave surface and formed in a cylindrical shape,
The rotational center of the rotor and the center of curvature of the arc-shaped convex surface are different, and the center of curvature is also different between the plurality of arc-shaped convex surfaces,
Furthermore, the center of curvature of the arc-shaped concave surface is also different from the rotation center of the rotor, and the center of curvature is also different among the plurality of arc-shaped concave surfaces.
前記ソレノイドにおいて、前記弧状凸面は前記回転子の回転中心と異なる曲率中心をもつ任意の厚さを持った仮想的な円筒体の側面の一部であり、
前記弧状凹面は前記回転子の回転中心と異なる曲率中心をもつ任意の厚さを持った仮想的な円筒体の側面の一部であることを特徴とする請求項1に記載のソレノイド。
In the solenoid, the arc-shaped convex surface is a part of a side surface of a virtual cylindrical body having an arbitrary thickness having a center of curvature different from the rotation center of the rotor,
2. The solenoid according to claim 1, wherein the arc-shaped concave surface is a part of a side surface of a virtual cylindrical body having an arbitrary thickness having a center of curvature different from a rotation center of the rotor.
前記ソレノイドにおいて、前記弧状凸面と前記弧状凹面とのギャップは、前記回転子の回転開始時に相対的に大きく、前記回転子の回転中に相対的に小さくなるようになされていることを特徴とする請求項1及び請求項2に記載のソレノイド。 In the solenoid, a gap between the arc-shaped convex surface and the arc-shaped concave surface is relatively large at the start of rotation of the rotor, and is relatively small during rotation of the rotor. The solenoid according to claim 1 and claim 2.
JP2004180091A 2004-06-17 2004-06-17 Rotary solenoid Expired - Lifetime JP4446066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004180091A JP4446066B2 (en) 2004-06-17 2004-06-17 Rotary solenoid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004180091A JP4446066B2 (en) 2004-06-17 2004-06-17 Rotary solenoid

Publications (2)

Publication Number Publication Date
JP2006005169A JP2006005169A (en) 2006-01-05
JP4446066B2 true JP4446066B2 (en) 2010-04-07

Family

ID=35773282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004180091A Expired - Lifetime JP4446066B2 (en) 2004-06-17 2004-06-17 Rotary solenoid

Country Status (1)

Country Link
JP (1) JP4446066B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2873232B1 (en) * 2004-07-16 2008-10-03 Peugeot Citroen Automobiles Sa ELECTROMAGNETIC CONTROL DEVICE OPERATING IN TENSION
KR101415059B1 (en) * 2008-02-13 2014-07-04 엘지전자 주식회사 Electric motor, manufacturing method for electric motor and washing machine with electric motor
US9257888B2 (en) * 2013-01-29 2016-02-09 Johnson Electric S.A. Rotary solenoid
CN106953493B (en) * 2017-04-13 2023-06-20 珠海三吉士健康科技有限公司 Brushless alternating current oscillation micro motor
EP4310880A1 (en) * 2022-07-22 2024-01-24 TE Connectivity Austria GmbH Rotary-segment electromechanical system with reluctance boost

Also Published As

Publication number Publication date
JP2006005169A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
CN110383636A (en) The rotor and rotating electric machine of rotating electric machine
JP5602815B2 (en) Rotor having a protrusion for positioning a permanent magnet and electric motor comprising such a rotor
EP0182652B1 (en) Rotary driving device used for rotary actuator
JP4446066B2 (en) Rotary solenoid
JP6266924B2 (en) Stepping motor
JP4740480B2 (en) Rotating electric machine
US11108287B2 (en) Spherical electromagnetic machine with two degrees of unconstrained rotational freedom
US20060214521A1 (en) Driving device
JPS61180562A (en) Limit angle torque motor
CN107615618B (en) Motor and generator
JP6975129B2 (en) Rotating machine rotor
JP2017158333A (en) Motor
JPH0681475B2 (en) Rotary solenoid
WO2023189970A1 (en) Magnetic levitation motor
JP2000346095A (en) Electromagnetic clutch
JP2019126166A (en) Rotational electric machine
US20170310168A1 (en) Rotating electrical machine comprising stator core, and machine tool comprising the same
JP6658701B2 (en) Magnetic actuator
JP5010906B2 (en) Electromagnetic actuator
JP5891428B2 (en) Actuator device
JP4455095B2 (en) Drive device
JPH07272923A (en) Reluctance type rotary solenoid
JPS60241758A (en) Synchronous motor
JP2005168207A (en) Rotary electric machine
JPS6317211B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4446066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160129

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term