EP1771819A1 - Procede et dispositif pour ameliorer la perceptibilite de differentes structures sur des radiographies - Google Patents

Procede et dispositif pour ameliorer la perceptibilite de differentes structures sur des radiographies

Info

Publication number
EP1771819A1
EP1771819A1 EP04741280A EP04741280A EP1771819A1 EP 1771819 A1 EP1771819 A1 EP 1771819A1 EP 04741280 A EP04741280 A EP 04741280A EP 04741280 A EP04741280 A EP 04741280A EP 1771819 A1 EP1771819 A1 EP 1771819A1
Authority
EP
European Patent Office
Prior art keywords
frequency
intensity distribution
structures
signal components
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP04741280A
Other languages
German (de)
English (en)
Inventor
Michael Thoms
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duerr Dental SE
Original Assignee
Duerr Dental SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duerr Dental SE filed Critical Duerr Dental SE
Publication of EP1771819A1 publication Critical patent/EP1771819A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/10Image enhancement or restoration by non-spatial domain filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/73
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20056Discrete and fast Fourier transform, [DFT, FFT]

Definitions

  • the invention relates to a method for improving the recognizability of different structures on radiation images as well as a suitable image processing device.
  • a certain improvement has been created by the digitization of radiographic images.
  • image processing for example the contrast enhancement within selected image sections, soft tissue structures, for example, may under certain circumstances be emphasized more clearly.
  • this does not make it possible to detect a tendon lying above a bone. Namely, the smaller variations in the signal level of image signal components representing the tendon can not significantly emerge before the high background signal level of the bone.
  • an image screen used for the display shows the slight fluctuations in the signal level even in the best case as intensity fluctuations, these are usually so small that they are hardly recognizable to the naked eye.
  • the object of the invention is therefore to indicate a method and a device for improving the recognizability of structures of different types on radiographic images.
  • the invention is based on the finding that in most cases the structures whose recognizability is to be improved, in terms of their size and fineness of the other on the radiographic image mapped Differentiate structures more or less clearly. Since smaller and finer structures in the Fourier spectrum are represented by higher frequencies than large, coarse structures, a change in the weighting between high-frequency and low-frequency Profsignalantei ⁇ len in the Fourier spectrum amplification of the image contrast can be achieved either for small fine or large coarse structures. Depending on whether the structures, which are difficult to recognize, are finer or coarser than the structures that are easily recognizable, the weighting of the image signal components in the
  • Frequency space changed either in favor of high-frequency or low-frequency image signal components.
  • the frequency space intensity distribution is simply multiplied by a filter function.
  • the filtering can be specifically influenced with relatively few parameters.
  • a Gaussian function is particularly suitable as a profile function since it has the property of a Gaussian function even in the case of the Fourier inverse transformation to stay.
  • the filtering can then be represented in the spatial domain as a convolution of the intensity distribution with a Gaussian function. This prevents the filter from flowing apart in the image as a result of which the intensity distribution abruptly changes and thus has a particularly high contrast.
  • Which frequencies or frequency ranges are changed in their weighting is determined by the average structure size of the structures whose recognizability is to be improved.
  • the average structure size or corresponding frequency ranges can either be fixed or, according to claim 7, freely selectable by means of actuators on the image processing device or via a user interface of a superordinate computer. By changing the relevant filter parameters, a physician can thus improve the recognizability of the structures of interest to him in a variety of fluoroscopic images.
  • the selection of the structures, whose visibility is to be improved, can be done, for example, as indicated in the claims 9 or 10.
  • An additional high-frequency filtering according to claim 11, for example with a Gaussian filter according to claim 12, leads to an increase in the signal-to-noise ratio, since image structures reproducing image signal components are amplified compared to a high-frequency background noise.
  • Such filtering takes account of the fact that in the images frequently to be displayed in practice, the Fourier amplitudes decrease with increasing frequency f.
  • Figure 1 is an X-ray image on which a finger bone and soft tissue structures are visible;
  • FIG. 2 is a block diagram of a Schm ⁇ processing apparatus according to the invention.
  • FIG. 3 shows a one-dimensional periodic spatial intensity distribution I (x);
  • FIG. 4 shows the frequency-space intensity distribution F (f) of the spatial-space intensity distribution I (x) from FIG. 3;
  • FIG. 5 shows a filter as shown in FIG. 4
  • Frequency-space intensity distribution F (f) generates filtered frequency-space intensity distribution F '(f);
  • FIG. 6 shows a spatial-space intensity distribution I '(x) obtained by Fourier inverse transformation of the filtered frequency-space intensity distribution F 1 (f) shown in FIG. 5;
  • FIG. 7 shows a frequency-space intensity distribution F (f) of a one-dimensional spatial-space intensity distribution with two profile functions gi (f) and g 2 (f);
  • FIG. 8 shows a filter as shown in FIG.
  • Frequency-spread intensity distribution F (f) obtained filtered frequency-space intensity distribution F '(f).
  • FIG. 1 shows a typical X-ray image 10 of a finger 12, on which several finger bones 14 as well as the surrounding soft tissue 16 can be seen. Because of their high density in relation to the soft tissue 16, the finger bones 14 are distinguished from it with high contrast, while soft tissue structures such as tendons 18 can hardly be seen on the X-ray image 10. A diagnosis of ⁇ -like structures of the soft tissue 16 using the Rönt ⁇ gensentes 10 is therefore tet behaf- with larger uncertainty. _ ⁇
  • the image processing apparatus 20 comprises a memory MEM in which the digital image data generated in a scanner SCAN can be stored.
  • the memory MEM is connected to a Fourier transformation unit FT, with which digital image data read from the memory MEM can undergo a Fourier transformation.
  • the frequency-space intensity distribution F (f x , f y ) generated by the Fourier transformation unit FT is a complex function over the frequency space spanned by the coordinates f x and f y and illustratively has the meaning of an amplitude density spectrum.
  • the image processing device 20 also comprises a filter unit FIL, with which the frequency space intensity distribution F (f x , f y ) can be filtered in such a way that the weighting of different frequency ranges is changed. This will be explained in more detail below with reference to Figures 3 to 6.
  • the image processing apparatus 20 has a Fourier-back transformation unit FT "1 , which transforms the frequency space intensity distribution F '(f x / f y ) filtered by the filter unit FIL back into the spatial domain, as a result of which a modified spatial intensity intensity distribution I
  • An output 22 of the image processing device 20 can be used to connect a screen 24 on which the modified spatial intensity distribution I '(x, y) can be displayed.
  • the filtering of the frequency space intensity distribution F (f x , f y ) in the filter unit is explained in more detail below with reference to FIGS. 2 to 6.
  • FIG. 3 shows an intensity distribution I (x) in the spatial domain for an image coordinate x, with a periodic distribution being assumed for the sake of simplicity.
  • the intensity distribution I (x) represents a superimposition of a large-scale cosinusoidal intensity distribution with the period Pi with a small-scale cosinusoidal intensity distribution with the period P 2.
  • the large-scale intensity distribution in this simplified example is assumed to be cosinusoidal here
  • the shape of the bone is reproduced, while the small-scale intensity distribution represents the cosinusoidal form of cosinusoidal tissue structures arranged above it in the direction of transillumination, whose characteristic dimensions are significantly smaller than those of the bones.
  • a half period length, ie a wave peak of the cosine function corresponds in each case to the characteristic structure size.
  • FIG. 4 shows the frequency-space intensity distribution F (f) for the spatial-space intensity distribution I (x) shown in FIG.
  • the filtering of the frequency-space intensity distribution F (x) is now performed so that the amplitudes of the contributions with the frequency amount fi reduced and the amplitudes of the contributions with the frequency amount f 2 are increased. This can be achieved, for example, by the following operations:
  • FIG. 6 shows the modified intensity distribution I 1 Ix) which is obtained by Fourier inverse transformation from the filtered frequency-space intensity distribution F '(f).
  • the weighting of the image signal components preferably takes place not only for individual discrete frequencies. zen, but for frequency bands.
  • Each frequency band which is to be changed in its weighting is determined by means of a profile function.
  • a Gaussian function is particularly suitable as a profile function since this has the property of retaining the shape of a Gaussian function even after the Fourier inverse transformation.
  • a weighting of the image signal components by multiplication of the frequency space intensity distribution by a Gaussian function thus corresponds with a Gaussian function in the spatial domain of a convolution of the intensity distribution I (x, y). This in turn leads to the consequence that locations where the intensity distribution changes abruptly and which thus have a particularly high contrast do not appear to spatially disperse after filtering.
  • FIG. 7 shows the frequency-space intensity distribution F (f) for an arbitrary one-dimensional spatial-space intensity distribution, ie, not composed of cosinusoidal distributions.
  • Plotted dashed lines are a first and a second profile function gi (f) and g 2 (f), which in both cases by the equation
  • the filter acts in this example such that the Fourier amplitudes of frequencies which lie within the lying around the central value f Zi profile curve gi (f) can be lowered till. Fourier amplitudes of frequencies which lie within the profile curve g ⁇ Cf lying around the central value f Z 2 are, on the other hand, increased.
  • T F (f) is a filter function given by
  • T F (f) (1 + ri - gi (f)) (l + r 2 -g 2 (f)). (4)
  • the amplification coefficients ri and r ⁇ indicate how much the Fourier amplitudes are to be changed within the frequency ranges predetermined by the profile functions. In the example shown, ri> 0, since the Fourier amplitudes are supposed to be raised by the smaller frequency f Zi . For the amplification coefficient r ⁇ r, r 2 ⁇ 0, which leads to a reduction of the Fourier amplitudes.
  • Filtering with the filter function T F (f) is lowered or lifted.
  • large-scale structures of the finger bones 14 on the image shown in the screen 24 recede relative to small-scale structures such as the tendons 18, so that the latter can be better recognized by a physician.
  • the filtering of the frequency space intensity distributions F (f) is determined by the value pairs (f Z j, Wj) with the aid of the profile functions in the illustrated example.
  • the central values f Zj are preferably to be selected such that the half period lengths corresponding to these frequencies f Zj are approximately of the order of magnitude of those structures determined by the Filtering should be highlighted or attenuated during image display. If these typical feature sizes are the same for all conceivable applications, then the center values f zj and also the profile widths W j can be fixed in the image processing device 10.
  • these parameters are preferably freely selectable by the physician with the aid of operating elements 26, 28 provided on the image processing device 10 in order to improve the recognizability of the soft tissue structures.
  • the image signal components to be changed in their weighting can alternatively also be determined independently by the image processing device 20 by means of an adaptive method. For this purpose, it is to be determined by a doctor to be treated, which soft tissue structures are to be displayed better recognizable.
  • FIG. 1 shows by way of example a marking designated by 30 which the physician can generate, for example, with a cursor on a screen used to display the X-ray image 10 and, in the illustrated example, comprises two points and a line 32 connecting them.
  • the image processing device 20 then executes the above-explained filtering for a multiplicity of frequency ranges and checks in each case to what extent the contrast along the line 32 between the points of the marking 30 is thereby improved.
  • the modified intensity distribution obtained from that filtering, in which the highest contrast was achieved, is then displayed.
  • Equation (3) can then be written taking into account equations (2) and (4) as
  • This choice of profile function takes account of the fact that in the images which are frequently to be shown in practice, the Fourier Amplitudes decrease with increasing frequency f, so that at high frequencies usually always present noise signal outweighs.

Abstract

L'invention concerne un procédé pour améliorer la perceptibilité de différentes structures (18) sur des radiographies (10) au moyen d'un dispositif de traitement d'images (20), ce procédé comportant les opérations suivantes: mémoriser une radiographie (10) se présentant sous forme électronique en tant que répartition espace - intensité; effectuer une transformation de Fourier pour établir une répartition gamme de fréquence intensité; filtrer la répartition gamme de fréquence intensité par modification de la pondération entre les proportions de signaux d'images de haute fréquence et les proportions de signaux d'images de basse fréquence, la fixation des proportions de signaux d'images à pondérer plus fortement étant réalisée en tenant compte d'une grandeur moyenne des structures dont la perceptibilité doit être améliorée; effectuer une transformation de Fourier inverse de la répartition filtrée gamme de fréquence intensité pour obtenir une répartition espace - intensité modifiée, dans laquelle lesdites structures sont plus facilement perceptibles. Des structures difficilement perceptibles sur des radiographies, par ex. des structures de tissus mous, ayant la plupart du temps une grandeur et une texture différentes de celles de structures facilement perceptibles comme des os ou des implants, la modification de pondération des proportions de signaux d'images de haute fréquence relativement aux proportions de signaux d'images de basse fréquence dans le spectre de Fourier permet d'augmenter de manière ciblée le contraste d'image des structures difficilement perceptibles.
EP04741280A 2004-07-27 2004-07-27 Procede et dispositif pour ameliorer la perceptibilite de differentes structures sur des radiographies Ceased EP1771819A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2004/008370 WO2006010372A1 (fr) 2004-07-27 2004-07-27 Procede et dispositif pour ameliorer la perceptibilite de differentes structures sur des radiographies

Publications (1)

Publication Number Publication Date
EP1771819A1 true EP1771819A1 (fr) 2007-04-11

Family

ID=34958081

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04741280A Ceased EP1771819A1 (fr) 2004-07-27 2004-07-27 Procede et dispositif pour ameliorer la perceptibilite de differentes structures sur des radiographies

Country Status (7)

Country Link
US (1) US8244019B2 (fr)
EP (1) EP1771819A1 (fr)
JP (1) JP4755184B2 (fr)
KR (1) KR101036370B1 (fr)
CN (1) CN101052992B (fr)
EA (1) EA011562B1 (fr)
WO (1) WO2006010372A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101689867B1 (ko) * 2010-09-15 2016-12-27 삼성전자주식회사 영상을 처리하는 방법, 이를 수행하는 영상처리장치 및 의료영상시스템
BR112013009801A2 (pt) * 2010-10-25 2016-07-26 Koninkl Philips Electronics Nv sistema de processamento de imagens médicas, estação de trabalho, método de processamento de imagens médicas e produto de programa de computador
US8855394B2 (en) * 2011-07-01 2014-10-07 Carestream Health, Inc. Methods and apparatus for texture based filter fusion for CBCT system and cone-beam image reconstruction
JP5948203B2 (ja) * 2011-10-12 2016-07-06 富士フイルム株式会社 内視鏡システム及びその作動方法
KR101337339B1 (ko) * 2011-10-21 2013-12-06 삼성전자주식회사 엑스선 영상 장치 및 그 제어방법
WO2017089215A1 (fr) * 2015-11-26 2017-06-01 Koninklijke Philips N.V. Appareil ayant une interface utilisateur pour améliorer des images médicales
CN108852385B (zh) * 2018-03-13 2022-03-04 中国科学院上海应用物理研究所 一种x射线造影方法及基于x射线造影的动态阅片方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326252A (en) * 1976-11-29 1982-04-20 Hitachi Medical Corporation Method of reconstructing cross-section image
US4463375A (en) * 1982-09-07 1984-07-31 The Board Of Trustees Of The Leland Standford Junior University Multiple-measurement noise-reducing system
US4729100A (en) * 1984-08-28 1988-03-01 Kabushiki Kaisha Toshiba CT System which convolutes projection data with a frequency varying filter function
JP3370797B2 (ja) * 1994-03-31 2003-01-27 富士写真フイルム株式会社 画像重ね合せ方法およびエネルギーサブトラクション方法
US5774599A (en) * 1995-03-14 1998-06-30 Eastman Kodak Company Method for precompensation of digital images for enhanced presentation on digital displays with limited capabilities
JP2927209B2 (ja) * 1995-05-22 1999-07-28 株式会社島津製作所 ディジタルアンギオグラフィ装置
US6204853B1 (en) * 1998-04-09 2001-03-20 General Electric Company 4D KAPPA5 Gaussian noise reduction
US6181810B1 (en) * 1998-07-30 2001-01-30 Scimed Life Systems, Inc. Method and apparatus for spatial and temporal filtering of intravascular ultrasonic image data
IT1320956B1 (it) * 2000-03-24 2003-12-18 Univ Bologna Metodo, e relativa apparecchiatura, per la rilevazione automatica dimicrocalcificazioni in segnali digitali di tessuto mammario.
DE10214114A1 (de) * 2002-03-28 2003-10-23 Siemens Ag Verfahren und Vorrichtung zur Filterung eines mittels eines medizinischen Gerätes gewonnenen digitalen Bildes mittels eines Ortsfrequenzoperators
US7082211B2 (en) * 2002-05-31 2006-07-25 Eastman Kodak Company Method and system for enhancing portrait images
DE10325632A1 (de) * 2003-06-06 2004-12-23 Dürr Dental GmbH & Co. KG Verfahren und Vorrichtung zur Verbesserung der Erkennbarkeit von unterschiedlichen Strukturen auf Durchstrahlungsbildern
CA2645670C (fr) * 2006-03-14 2016-12-06 Amo Manufacturing Usa, Llc Systeme et procede de capteur de front d'onde de frequence spatiale
DE102009019841A1 (de) * 2009-05-04 2010-11-11 Siemens Aktiengesellschaft Jitterfreie Ortstriggerung eines Detektors eines CT-Systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006010372A1 *

Also Published As

Publication number Publication date
JP2008507998A (ja) 2008-03-21
WO2006010372A1 (fr) 2006-02-02
KR20070049177A (ko) 2007-05-10
US8244019B2 (en) 2012-08-14
KR101036370B1 (ko) 2011-05-23
CN101052992B (zh) 2011-12-28
EA200700347A1 (ru) 2007-08-31
CN101052992A (zh) 2007-10-10
US20090169086A1 (en) 2009-07-02
EA011562B1 (ru) 2009-04-28
JP4755184B2 (ja) 2011-08-24

Similar Documents

Publication Publication Date Title
DE69832357T2 (de) Geräuschverminderung in einem bild
DE69832412T2 (de) Verfahren und gerät zum detektieren von blutspeckle in einem intravaskulären ultraschall-abbildungssystem
DE69936036T2 (de) Verfahren und Gerät zur automatischen Kompensierung von Zeit-Verstärkung und/oder Seitenintensität-Verstärkung bei der B-Mode Ultraschallbildgebung
DE60038382T2 (de) Intravaskuläre ultraschallbildanalyse unter verwendung einer aktiven konturmethode
DE69629445T2 (de) Automatische Tonskalenabstimmung mittels Bildaktivitätsmessungen
DE69931750T2 (de) Verfahren und gerät zur verkalkungsmessung
DE60300462T2 (de) Verfahren zur schärfung eines digitalbildes mit signal-rausch-bewertung
DE2952422C3 (de) Verfahren und Vorrichtung zum Verarbeiten eines Röntgenbildes bei einem Röntgenbild-Kopiersystem
DE102005038940B4 (de) Verfahren zur Filterung tomographischer 3D-Darstellungen nach erfolgter Rekonstruktion von Volumendaten
DE10312018B4 (de) System und Verfahren zur Ultraschall-Bildverarbeitung
DE19921116A1 (de) Artefaktkorrektur für stark dämpfende Objekte
DE102005043051B4 (de) Verfahren und Einrichtung zum Erzeugen eines Röntgenbildes
DE102006005803A1 (de) Verfahren zur Rauschreduktion in bildgebenden Verfahren
EP0938063B1 (fr) Procédé d'imagerie bidimensionelle de structures pour le diagnostic médical
DE102007057013A1 (de) Verfahren und Vorrichtung zur Verarbeitung digitaler Mammogramme
DE102010043975B4 (de) Verfahren zur Reduktion der verwendeten Strahlendosis im Rahmen einer bildgebenden Röntgenuntersuchung und Computersystem
DE10229113A1 (de) Verfahren zur Grauwert-basierten Bildfilterung in der Computer-Tomographie
DE102007013570A1 (de) Verfahren zur Rauschverminderung in digitalen Bildern mit lokal unterschiedlichem und gerichtetem Rauschen
DE10163215B4 (de) System und Verfahren mit automatisch optimierter Bilderzeugung
DE102008023915A1 (de) Verfahren zur Einstellung von wenigstens einer Stellgröße eines Entrauschungsfilters in medizinischen Bildern
DE60202588T2 (de) Verfahren zur Rauschminderung
EP1771819A1 (fr) Procede et dispositif pour ameliorer la perceptibilite de differentes structures sur des radiographies
DE102007058498A1 (de) Verfahren und Vorrichtung zur Rauschunterdrückung in medizinischen Bildern
DE102004056589A1 (de) Verfahren und Vorrichtung zur Durchführung segmentierungsbasierter Bildoperationen
DE10325632A1 (de) Verfahren und Vorrichtung zur Verbesserung der Erkennbarkeit von unterschiedlichen Strukturen auf Durchstrahlungsbildern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070731

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DUERR DENTAL AG

RIN1 Information on inventor provided before grant (corrected)

Inventor name: THOMS, MICHAEL

Inventor name: WEBER, MICHAEL, DIPL.-ING. (FH)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20150627