EP1763411B1 - Method and device for measuring and adjusting the evenness and/or tension of a stainless steel strip or stainless steel film during cold rolling in a 4-roll stand, particularly in a 20-roll sendzimir roll stand - Google Patents

Method and device for measuring and adjusting the evenness and/or tension of a stainless steel strip or stainless steel film during cold rolling in a 4-roll stand, particularly in a 20-roll sendzimir roll stand Download PDF

Info

Publication number
EP1763411B1
EP1763411B1 EP05755571A EP05755571A EP1763411B1 EP 1763411 B1 EP1763411 B1 EP 1763411B1 EP 05755571 A EP05755571 A EP 05755571A EP 05755571 A EP05755571 A EP 05755571A EP 1763411 B1 EP1763411 B1 EP 1763411B1
Authority
EP
European Patent Office
Prior art keywords
planarity
strip
error
regulating
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05755571A
Other languages
German (de)
French (fr)
Other versions
EP1763411A1 (en
Inventor
Matthias Krüger
Olaf Norman Jepsen
Michael Breuer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Siemag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Siemag AG filed Critical SMS Siemag AG
Publication of EP1763411A1 publication Critical patent/EP1763411A1/en
Application granted granted Critical
Publication of EP1763411B1 publication Critical patent/EP1763411B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/42Control of flatness or profile during rolling of strip, sheets or plates using a combination of roll bending and axial shifting of the rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/06Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring tension or compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/14Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories having counter-pressure devices acting on rolls to inhibit deflection of same under load; Back-up rolls
    • B21B13/147Cluster mills, e.g. Sendzimir mills, Rohn mills, i.e. each work roll being supported by two rolls only arranged symmetrically with respect to the plane passing through the working rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips

Definitions

  • the invention relates to a method and a device for measuring and regulating the flatness and / or the strip tensions of a stainless steel strip or a stainless steel foil during cold rolling in a multi-roll stand, in particular in a 20-roll Sendzimir rolling mill, with at least one control loop comprising a plurality of actuators. wherein the actual strip flatness in the outlet of the multi-roll stand is measured via a flatness measuring element due to the band-voltage distribution over the bandwidth.
  • Such multi-roll stands consist of split-block or monoblock design, wherein the upper and lower sets of rolls can be made independently and can result in different stator frame.
  • the initially mentioned method is known from EP 0 349 885 B1 and comprises the formation of measured values which characterize the flatness, in particular the tensile stress distribution, are actuated on the exit side of the rolling stand and in dependence therefrom actuators of the rolling mill which belong to at least one control circuit for the flatness of the rolled sheets and strips.
  • the known method provides for adapting the speeds of the different actuators to each other and for uniforming their travel ranges. However, this does not detect other sources of error.
  • EP 0 647 164 B1 Another known method ( EP 0 647 164 B1 ), a method for obtaining the input signals in the form of nip signals, for control members and regulators for actuators of the work rolls, measures the stress distribution across the strip material, the planarity errors being taken from a mathematical function by minimizing the squares of the deviations is determined by a matrix, with the number of measurement points, the number of lines, the number of basis functions and the number of roll gaps in the measurement points. This procedure also does not take into account the flatness errors that occur in practice and their occurrence.
  • the invention has for its object to achieve due to the more accurately measured and analyzed flatness errors a changed control behavior of the respective actuators, thereby achieving a higher flatness of the final product, so that the rolling speed can be increased.
  • the stated object is achieved by a method with the features of claim 1 in combination.
  • the advantages are ensuring a stable rolling process with a minimum stripper rate and thus an increase in the possible rolling speed.
  • the operator is relieved by the automatic adaptation of the flatness actuators to changing conditions, even in case of errors.
  • a consistent product quality is achieved regardless of the qualifications of the staff.
  • the calculation of the influence functions and a calculation of the control functions can be done in advance in a time-saving manner.
  • the flatness control system as a whole becomes robust against inaccuracies in the calculated control functions.
  • the inaccuracies remain without influence commissioning.
  • the most important components of the flatness error are eliminated with the maximum possible control dynamics.
  • the orthogonal components of the voltage vectors are linearly independent of each other, whereby a mutual influence of the components is excluded.
  • the scalar flatness error components are fed to the individual control modules.
  • the profile of the flatness error is approximated over the bandwidth by a Gaussian approximation 8th order (LSQ method) and then decomposed into the orthogonal components.
  • LSQ method Gaussian approximation 8th order
  • An improvement of the invention is provided by analyzing a residual error vector and switching the residual error vector directly to selected actuators. All flatness errors remaining after the highly dynamic compensation process, which can be influenced by the given influence functions, are eliminated by the residual error removal within the available setting range. It is therefore advantageous, in addition to the abovementioned orthogonal components of the flatness error, to also take into account a residual error which is not fed to the described orthogonal components but directly to the actuators.
  • the assignment of the residual error vectors can be done by weighting functions, which are derived from the influence functions of eccentric actuators and assign the entire upcoming flatness error to the individual eccentrics.
  • a residual variable determined by real numerical values is formed by summing up the residual error vectors assigned to the eccentrics.
  • control for the strip edges is performed separately within the flatness control. This can be a Such regulation may also be switched off completely if it is not absolutely necessary.
  • a further improvement is that the horizontal displacement of the inner intermediate rollers is used as the actuator for the edge tension control.
  • an improvement is proposed in that via the edge tension control a predetermined belt tension in the range of one to two outermost covered zones of a flatness measuring roll is set separately for each band edge.
  • edge voltage control is selectively operated asynchronously or synchronously for the two band edges.
  • the controlled variable for the edge tension control can be determined separately for each band edge by forming the difference between the control differences of the two outermost measured values of the flatness measuring roll.
  • the device for measuring and regulating the flatness and / or strip tension of a stainless steel strip or a stainless steel foil for the Kalzwalz stipulate in a Harbor Searst, in particular in a 20-Walzen-Sendzimir rolling mill, with at least one control loop for actuators, consisting of hydraulic adjusting means, from eccentrics of the outer support rollers, axially displaceable inner cone intermediate rollers and / or their influence functions.
  • a further improvement of the invention is that the comparison signal between the reference curve and the current band flatness is connected via the stand-alone analyzer to the independent third control module for a flatness residual error, whose output led to the coupling connection for the actuator from the eccentrics is.
  • a continuation of the invention in this sense training is that the comparison signal between the reference curve and the current Bandplanheit is connected via a third, third independent analyzer to an independent, fourth control module for the control of edge voltage control and its output to the actuator of the inner cone Intermediate rollers is connected.
  • the further invention is designed in such a way that a dynamic single regulator is provided for each flatness error vector, which is provided as a PI controller with dead band in the input.
  • Another embodiment provides that each individual controller except the first Analsyen Competition upstream of adaptive parameterization and a control display in parallel.
  • the dynamic individual controller can be connected to a control panel.
  • the residual error vector cooperates with the control elements of the eccentric via residual-error control devices.
  • edge tension control provides an analysis device for different strip edge zones of the flatness measuring roll, to which two strip edge control devices are connected.
  • the band edge controllers are connected to the actuators of the cone intermediate rollers.
  • the band edge controllers are independently switchable.
  • an adaptive Verstellgeschwindgkeits control means and a control display are connected to the two band edge controllers.
  • Fig. 1 the stainless steel strip 1 or a stainless steel foil 1 a is rolled in a multi-roll stand 2, a 20-roll Sendzimir rolling mill 2 a by rolling, rolling and rolling.
  • the roller sets 2b form a split-block design.
  • the upper roller set 2b can be adjusted via an actuator 3 and other functions.
  • a control circuit 4 Fig. 6-9
  • These signals originate before the rolling process from an inlet 5a and after rolling from an outlet 5b and are obtained via flatness measuring elements 6, which consist in the embodiment of flatness measuring rollers 6a.
  • a hydraulic adjusting means 17 is shown for the upper roller set 2b as an actuator 3.
  • an eccentric actuator 14 of the outer support rollers 18 A, B, C, D, of which the support rollers A and D, for example, equipped with an eccentric 14 a
  • an axial displacement of inner cone intermediate rollers 19 are available.
  • the positioning behavior of the eccentric employment is characterized by the so-called "influence functions".
  • Two or more of the outer support rollers 18 are each provided with four to eight over the bale width arranged eccentrics 14a, which can be rotated by means of a respective hydraulic piston-cylinder unit, whereby the roll gap profile can be influenced.
  • the inner cone intermediate rollers 19, which are horizontally displaceable by means of a hydraulic displacement device, have a conical grinding in the region of the band edges 15.
  • the ground joint is located at the two upper cone intermediate rolls 19 on the operating side of the cluster roll stand 2, in the lower cone intermediate rolls 19 on the drive side (or vice versa).
  • Fig. 3 is for each of the eight adjustable eccentric 14a of the embodiment, the associated change in the roll gap profile between the band edges 15 within the bandwidth 7 indicated.
  • the procedure is over Fig. 6 can be seen:
  • the current band flatness is measured in the outlet 5b of the cluster roll stand 2 on the flatness measuring roller 6 based on the band voltage distribution (discrete band voltage measurements over the bandwidth 7) and stored in a voltage vector 8.
  • a subtraction from the reference curve 9 (setpoint curve) to be specified by the operator results, after calculation, in the voltage vector 8 of the flatness error 10 (control difference).
  • the course of the flatness error 10 over the bandwidth 7 is approximated in an analysis module 11 by a Gaussian approximation (LSQ method) of the 8th order and then decomposed into the orthogonal components, C1... Cx.
  • the orthogonal components are linearly independent of each other, whereby a mutual influence of the components is excluded.
  • the scalar flatness error components C1, C2, C3, C4 and, if necessary, further, are supplied to a first and second control module 12a and 12b via a first analyzer 11a. Accordingly, the second and third analyzers 11b and 11c are connected to the control modules 12c and a fourth control module 12d.
  • a comparison signal 20 between the reference curve 9 and the current band flatness 22 of the flatness measuring element 6 at the input 23 of the control circuit 4 is connected to a first analyzer 11 a and an independent, first control module 12a for the formation of the voltage vectors 8 (C1 ... Cx) and the output 24 to the respective actuator 3 for the hydraulic adjusting means 17 of Roller set 2b connected.
  • Output signals of the first analyzer 11a continue to reach the second control module 12b.
  • the calculation result (f), from control functions 21, is forwarded via a coupling connection 25 to the actuator 3 of the eccentric 14a.
  • the comparison signal 20 between the reference curve 9 and the current Bandplanheit 22 is connected via the stand-alone analyzer 11 b to the independent, third control module 12c for the flatness residual error 26 whose output 27 to the coupling port 25 for the actuator 3 from the eccentrics 14a is guided.
  • Fig. 6 shown that the comparison signal 20 between the reference curve 9 and the current Bandplanheit 22 via a third, third independent analyzer 11 c connected to a separate, fourth control module 12d for controlling an edge voltage control 16 and its output 28 to the actuator 3 of the inner cone Intermediate rollers 19 is connected.
  • a flatness measuring roller 6a is connected by means of the signal line of the current band flatness 22.
  • a dynamic single controller 30 For each orthogonal component of the flatness error vector ( Fig. 7 ) is in the highly dynamic control loop 29, a dynamic single controller 30 is provided, which is provided as a PI controller 31 with dead band in the input 32. Each individual controller 30 is preceded by adaptive parameterizing means 33 and a control display 34 in parallel connection, apart from the first analyzer 11a. At each individual controller 30 connections 35 are provided for control parameters K i and K p . Possibly. For example, the dynamic individual controllers 30 are to be connected to a user console 36.
  • the individual controller 30 for the C1 component (inclined position) works in the split-block design on the swivel-target value of the hydraulic adjusting means 17, in the monobloc design on the eccentric adjustment as a manipulated variable.
  • the individual controllers 30 for all other components (C2, C3, C4 and, if necessary, higher orders) work on the eccentric actuators 14 of the outer support rollers 18.
  • the Control functions 21 convert a C1, C2, C3 - Vietnamese adjusting movement into a corresponding combination of the individual eccentric setting movements.
  • the mentioned decoupling ensures that an adjusting movement, for example, of the C2 controller 30 does not affect any other orthogonal component except for the C2 component.
  • the corresponding control functions are calculated as a function of the bandwidth 7 and of the number of active eccentrics 14a in advance from the influence functions.
  • the PI controllers used have the adaptive parameterizing means 33 and thus ensure that the theoretically possible optimum control dynamics are achieved for all operating ranges.
  • the chosen approach of calculating the control parameters K i and K p according to the method of the magnitude optimum allows a very simple commissioning, since the adjustment of the control dynamics from the outside takes over a parameter. With the highly dynamic individual controllers 30, depending on the rolling speed, settling times of less than 1 second are achieved.
  • Fig. 8 are error components for which no single controller 30 is provided, for which the associated individual controller 30 is switched off or those caused by inevitable inaccuracies in the calculated control functions, for example. Lack of decoupling, taken into account. Naturally, such occurring error components can not be eliminated by the highly dynamic individual controllers 30 of the orthogonal components. In order nevertheless to eliminate such error components, the flatness control method contains a residual error removal ( Fig. 8 ). The residual error removal works on the eccentrics 14a as actuators 3 and, with the error analysis described above, offers the possibility of fundamentally eliminating all flatness errors in which this is possible due to the given actuator characteristics.
  • the residual error control should be operated only with a comparatively lower dynamics.
  • the latter is based on a parameterizable, constant adjustment speed of the eccentric 14a, so that the control, depending on the rolling speed and control deviation, reaches slightly greater settling times.
  • the residual error vector 13 is connected via residual error controllers 37, 38 and 39 to the actuators 3 of the eccentric 14a for residual error removal.
  • the strip edges 15 are treated separately within the flatness control.
  • the actuator 3 the horizontal displacement of the inner cone intermediate rollers 19 is used.
  • the edge tension control 16 separately according to each band edge 15 Fig. 9 a desired belt tension in the region of the one to two outermost covered zones of the flatness measuring roller 6a.
  • the controlled variable is how out Fig. 9 can be seen, separately for each band edge 15 by difference between the control differences of the two outermost measurements of the flatness measuring roller 6a formed.
  • the edge tension control 16 is independent of the reference curve 9 and decoupled from the other components of the planarity control.
  • an analysis device 40 for the different band edge zones of the flatness measuring roller 6a is provided, to which two band edge controllers 41 and 42 are connected.
  • the belt edge controllers 41, 42 are connected to the actuators 3 of the cone intermediate rollers 19.
  • the band edge controllers 41, 42 are independently switchable.
  • an adaptive Verstell quites control means 43 and a control display 44 is connected to the two band edge controllers 41, 42 respectively.
  • the edge voltage control 16 can thus be operated either asynchronously (independent operation for both band edges 15) or synchronously.
  • the dynamics of the edge tension control 16 is characterized by the allowable displacement speed of the cone-intermediate roll horizontal displacement, which depends on rolling force and rolling speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)
  • Laminated Bodies (AREA)
  • Straightening Metal Sheet-Like Bodies (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

A method and device for measuring and adjusting the evenness and/or tension of a stainless steel strip (1) during cold rolling in a 4-roll stand (2) provided with at least one control loop (4) comprising several actuators (3), resulting in more precise measurement and adjustment due to the fact that an evenness defect (10) is determined by comparing a tension vector (8) with a predefined reference curve (9), whereupon the characteristic of the evenness defect (10) along the width of the strip is broken down into proportional tension vectors (8) in an analysis building block (11) in a mathematically approximated manner and the evenness defect proportions (C1 . . . Cx) determined by real numerical values are supplied to respectively associated control modules (12a; 12b) for actuation of the respective actuator (3).

Description

Die Erfindung betrifft ein Verfahren und eine Einrichtung zum Messen und Regeln der Planheit und / oder der Bandspannungen eines Edelstahlbandes oder einer Edelstahlfolie beim Kaltwalzen in einem Vielwalzengerüst, insbesondere in einem 20-Walzen-Sendzimir-Walzwerk, mit zumindest einem , mehrere Stellglieder umfassenden Regelkreis, wobei die aktuelle Bandplanheit im Auslauf des Vielwalzengerüstes über ein Planheits-Messelement aufgrund der Bandspannungsverteilung über die Bandbreite gemessen wird.The invention relates to a method and a device for measuring and regulating the flatness and / or the strip tensions of a stainless steel strip or a stainless steel foil during cold rolling in a multi-roll stand, in particular in a 20-roll Sendzimir rolling mill, with at least one control loop comprising a plurality of actuators. wherein the actual strip flatness in the outlet of the multi-roll stand is measured via a flatness measuring element due to the band-voltage distribution over the bandwidth.

Derartige Vielwalzengerüste bestehen aus Split-Block oder Monoblock-Ausführung, wobei die oberen und unteren Walzensätze unabhängig voneinander angestellt werden können und sich daraus unterschiedliche Ständerrahmen ergeben können.Such multi-roll stands consist of split-block or monoblock design, wherein the upper and lower sets of rolls can be made independently and can result in different stator frame.

Das eingangs erwähnte Verfahren ist aus der EP 0 349 885 B1 bekannt und umfasst das Bilden von Messwerten, die die Planheit kennzeichnen, insbesondere die Zugspannungsverteilung, auf der Austrittsseite des Walzgerüstes und in Abhängigkeit hiervon Stellglieder des Walzwerkes betätigt werden, die zumindest einem Regelkreis für die Planheit der gewalzten Bleche und Bänder angehören. Um nun das unterschiedliche Zeitverhalten der Stellglieder des Walzwerkes herabzusetzen, sieht das bekannte Verfahren vor, die Geschwindigkeiten der unterschiedlichen Stellglieder aneinander anzupassen und deren Stellwege zu vergleichmäßigen. Dadurch werden jedoch weitere Fehlerquellen nicht erfasst.The initially mentioned method is known from EP 0 349 885 B1 and comprises the formation of measured values which characterize the flatness, in particular the tensile stress distribution, are actuated on the exit side of the rolling stand and in dependence therefrom actuators of the rolling mill which belong to at least one control circuit for the flatness of the rolled sheets and strips. In order to reduce the different time behavior of the actuators of the rolling mill, the known method provides for adapting the speeds of the different actuators to each other and for uniforming their travel ranges. However, this does not detect other sources of error.

Ein anderes bekanntes Verfahren ( EP 0 647 164 B1 ), ein Verfahren zum Gewinnen der Eingangssignale in Gestalt von Walzspaltsignalen, für Steuerglieder und Regler für Stellglieder der Arbeitswalzen, misst die Spannungsverteilung quer zum Bandmaterial, wobei die Planheitsfehler aus einer mathematischen Funktion entnommen werden, indem die Quadrate der Abweichungen ein Minimum annehmen sollen, was durch eine Matrix ermittelt wird, mit der Anzahl von Messpunkten, der Anzahl von Zeilen, der Anzahl von Basisfunktionen und der Anzahl von Walzspalten in den Messpunkten. Diese Vorgehensweise berücksichtigt ebenfalls nicht die in der Praxis auftretenden Planheitsfehler und ihr Zustandekommen.Another known method ( EP 0 647 164 B1 ), a method for obtaining the input signals in the form of nip signals, for control members and regulators for actuators of the work rolls, measures the stress distribution across the strip material, the planarity errors being taken from a mathematical function by minimizing the squares of the deviations is determined by a matrix, with the number of measurement points, the number of lines, the number of basis functions and the number of roll gaps in the measurement points. This procedure also does not take into account the flatness errors that occur in practice and their occurrence.

Der Erfindung liegt die Aufgabe zugrunde, aufgrund der genauer gemessenen und analysierten Planheitsfehler ein verändertes Stellverhalten der jeweiligen Stellglieder zu erzielen, um dadurch eine höhere Planheit des Endproduktes zu erreichen, so dass auch die Walzgeschwindigkeit erhöht werden kann.The invention has for its object to achieve due to the more accurately measured and analyzed flatness errors a changed control behavior of the respective actuators, thereby achieving a higher flatness of the final product, so that the rolling speed can be increased.

Die gestellte Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen von Anspruch 1 in Kombination gelöst. Die Vorteile sind Sicherstellung eines stabilen Walzprozesses mit minimaler Bandreißerquote und damit eine Erhöhung der möglichen Walzgeschwindigkeit. Außerdem wird das Bedienungspersonal durch die automatische Anpassung der Planheits-Stellglieder an veränderte Bedingungen, auch bei Fehlsetzungen, entlastet. Weiter wird eine gleichbleibende Produktqualität unabhängig von der Qualifikation des Personals erreicht. Weiterhin kann die Berechnung der Einflussfunktionen und eine Berechnung der Steuerfunktionen zeitsparend vorab erfolgen. Das PlanheitsRegelungssystem als Ganzes wird robust gegenüber Ungenauigkeiten in den berechneten Steuerfunktionen. Die Ungenauigkeiten bleiben ohne Einfluss auf die Inbetriebnahme. Die wichtigsten Komponenten des Planheitsfehlers werden mit maximal möglicher Regeldynamik beseitigt. Die orthogonalen Anteile der Spannungsvektoren sind linear unabhängig voneinander, wodurch eine gegenseitige Beeinflussung der Anteile untereinander ausgeschlossen ist. Die skalaren Planheits-Fehleranteile werden den einzelnen Regelmodulen zugeführt.The stated object is achieved by a method with the features of claim 1 in combination. The advantages are ensuring a stable rolling process with a minimum stripper rate and thus an increase in the possible rolling speed. In addition, the operator is relieved by the automatic adaptation of the flatness actuators to changing conditions, even in case of errors. Furthermore, a consistent product quality is achieved regardless of the qualifications of the staff. Furthermore, the calculation of the influence functions and a calculation of the control functions can be done in advance in a time-saving manner. The flatness control system as a whole becomes robust against inaccuracies in the calculated control functions. The inaccuracies remain without influence commissioning. The most important components of the flatness error are eliminated with the maximum possible control dynamics. The orthogonal components of the voltage vectors are linearly independent of each other, whereby a mutual influence of the components is excluded. The scalar flatness error components are fed to the individual control modules.

In Ausgestaltung der Erfindung ist vorgesehen, dass der Verlauf des Planheitsfehlers über die Bandbreite durch eine Gauss-Approximation 8. Ordnung (LSQ-Verfahren) angenähert und anschließend in die orthogonalen Anteile zerlegt wird.In an embodiment of the invention, it is provided that the profile of the flatness error is approximated over the bandwidth by a Gaussian approximation 8th order (LSQ method) and then decomposed into the orthogonal components.

Eine Verbesserung der Erfindung ist dadurch gegeben, dass ein Restfehlervektor analysiert wird und der Restfehlervektor unmittelbar ausgewählten Stellgliedern aufgeschaltet wird. Alle nach dem hochdynamischen Ausregelvorgang verbleibenden Planheitsfehler, die mit den gegebenen Einflussfunktionen beeinflussbar sind, werden von der Restfehlerbeseitigung im Rahmen des verfügbaren Stellbereichs eliminiert. Es ist daher vorteilhaft, neben den oben genannten orthogonalen Komponenten des Planheitsfehlers auch noch einen Restfehler zu berücksichtigen, der nicht den beschriebenen orthogonalen Komponenten, sondern unmittelbar den Stellgliedern zugeführt wird.An improvement of the invention is provided by analyzing a residual error vector and switching the residual error vector directly to selected actuators. All flatness errors remaining after the highly dynamic compensation process, which can be influenced by the given influence functions, are eliminated by the residual error removal within the available setting range. It is therefore advantageous, in addition to the abovementioned orthogonal components of the flatness error, to also take into account a residual error which is not fed to the described orthogonal components but directly to the actuators.

Nach weiteren Schritten kann die Zuordnung der Restfehlervektoren durch Gewichtungsfunktionen erfolgen, die aus Einfluss-Funktionen von Exzenter-Stellgliedern abgeleitet werden und die den gesamten anstehenden Planheitsfehler den einzelnen Exzentern zuordnen.After further steps, the assignment of the residual error vectors can be done by weighting functions, which are derived from the influence functions of eccentric actuators and assign the entire upcoming flatness error to the individual eccentrics.

Dabei ist es weiter vorteilhaft, dass aus den den Exzentern zugeordneten Restfehlervektoren durch Aufsummieren eine durch reelle Zahlenwerte bestimmte Fehlergröße gebildet wird.In this case, it is further advantageous that a residual variable determined by real numerical values is formed by summing up the residual error vectors assigned to the eccentrics.

Eine andere Weiterbildung sieht vor, dass die Regelung für die Bandkanten innerhalb der Planheitsregelung separat durchgeführt wird. Dadurch kann eine solche Regelung ggfs. auch ganz abgeschaltet werden, wenn sie nicht zwingend benötigt wird.Another development provides that the control for the strip edges is performed separately within the flatness control. This can be a Such regulation may also be switched off completely if it is not absolutely necessary.

Eine weitere Verbesserung besteht darin, dass als Stellglied für die Kantenspannungsregelung die Horizontalverschiebung der inneren Zwischenwalzen eingesetzt wird.A further improvement is that the horizontal displacement of the inner intermediate rollers is used as the actuator for the edge tension control.

Dazu wird eine Verbesserung dahingehend vorgeschlagen, dass über die Kantenspannungsregelung separat für jede Bandkante eine vorgegebene Bandspannung im Bereich von ein bis zwei äußersten überdeckten Zonen einer Planheits-Messrolle eingestellt wird.For this purpose, an improvement is proposed in that via the edge tension control a predetermined belt tension in the range of one to two outermost covered zones of a flatness measuring roll is set separately for each band edge.

Andere Merkmale sehen vor, dass die Kantenspannungsregelung wahlweise asynchron oder synchron für die beiden Bandkanten betrieben wird.Other features provide that the edge voltage control is selectively operated asynchronously or synchronously for the two band edges.

Dabei kann die Regelgröße für die Kantenspannungsregelung separat für jede Bandkante durch Differenzbildung zwischen den Regeldifferenzen der zwei äußersten Messwerte der Planheits-Messrolle bestimmt werden.In this case, the controlled variable for the edge tension control can be determined separately for each band edge by forming the difference between the control differences of the two outermost measured values of the flatness measuring roll.

Nach dem aufgezeigten Stand der Technik geht die Einrichtung zum Messen und Regeln der Planheit und / oder Bandspannungen eines Edelstahlbandes oder einer Edelstahlfolie für den Kalzwalzbetrieb in einem Vielwalzengerüst, insbesondere in einem 20-Walzen-Sendzimir-Walzwerk, mit zumindest einem Regelkreis für Stellglieder aus, die aus hydraulischen Anstellmitteln, aus Exzentern der äußeren Stützwalzen, aus axialverschiebbaren inneren Konus-Zwischenwalzen und / oder deren Einflussfunktionen bestehen.According to the cited prior art, the device for measuring and regulating the flatness and / or strip tension of a stainless steel strip or a stainless steel foil for the Kalzwalzbetrieb in a Vielwalzengerüst, in particular in a 20-Walzen-Sendzimir rolling mill, with at least one control loop for actuators, consisting of hydraulic adjusting means, from eccentrics of the outer support rollers, axially displaceable inner cone intermediate rollers and / or their influence functions.

Die eingangs gestellte Aufgabe wird daher vorrichtungstechnisch durch eine Vorrichtung mit den Merkmalen von Anspruch 11 in Kombination gelöst.The object stated in the introduction is therefore achieved in terms of device technology by a device having the features of claim 11 in combination.

Dadurch können die mit dem Verfahren verbundenen Vorteile vorrichtungstechnisch umgesetzt werden.As a result, the advantages associated with the method can be implemented in terms of apparatus.

Eine weitere Verbesserung der Erfindung besteht darin, dass das Vergleichssignal zwischen der Referenzkurve und der aktuellen Bandplanheit über das eigenständige Analysengerät an das eigenständige, dritte Regelmodul für einen Planheits-Restfehler angeschlossen ist, dessen Ausgang an den Kopplungs-Anschluss für das Stellglied aus den Exzentern geführt ist.A further improvement of the invention is that the comparison signal between the reference curve and the current band flatness is connected via the stand-alone analyzer to the independent third control module for a flatness residual error, whose output led to the coupling connection for the actuator from the eccentrics is.

Eine in diesem Sinn die Erfindung fortsetzende Ausbildung besteht darin, dass das Vergleichssignal zwischen der Referenzkurve und der aktuellen Bandplanheit über ein weiteres, drittes eigenständiges Analysengerät an ein eigenständiges, viertes Regelmodul für die Kontrolle der Kantenspannungsregelung angeschlossen ist und dessen Ausgang an das Stellglied der inneren Konus-Zwischenwalzen angeschlossen ist.A continuation of the invention in this sense training is that the comparison signal between the reference curve and the current Bandplanheit is connected via a third, third independent analyzer to an independent, fourth control module for the control of edge voltage control and its output to the actuator of the inner cone Intermediate rollers is connected.

Eine genaue Signalerzeugung wird dadurch unterstützt, dass ein im Auslauf angeordnetes Planheits-Messelement an die Signalleitung der aktuellen Bandplanheit angeschlossen ist.Accurate signal generation is assisted by the fact that a flatness measuring element arranged in the outlet is connected to the signal line of the current strip flatness.

Die weitere Erfindung ist dahingehend gestaltet, dass für jeden PlanheitsFehlervektor ein dynamischer Einzelregler vorgesehen ist, der als PI-Regler mit Totband im Eingang versehen ist.The further invention is designed in such a way that a dynamic single regulator is provided for each flatness error vector, which is provided as a PI controller with dead band in the input.

Eine andere Ausgestaltung sieht vor, dass jedem Einzelregler außer dem ersten Analsyengerät adaptive Parametrierungsmittel und eine Steuerungsanzeige in Parallelschaltung vorgeordnet sind.Another embodiment provides that each individual controller except the first Analsyengerät upstream of adaptive parameterization and a control display in parallel.

Weiterhin ist vorteilhaft, dass an jedem Einzelregler Anschlüsse für Regelparameter vorgesehen sind.Furthermore, it is advantageous that connections for control parameters are provided on each individual regulator.

Weitergehend können die dynamischen Einzelregler mit einem Bedienpult verbindbar sein.Furthermore, the dynamic individual controller can be connected to a control panel.

Eine weitere Analogie zu den Verfahrensschritten besteht darin, dass zur Restfehlerbeseitigung der Restfehlervektor über Restfehler-Regelgeräte jeweils mit den Stellgliedern der Exzenter zusammenwirkt.Another analogy to the method steps is that for residual error removal, the residual error vector cooperates with the control elements of the eccentric via residual-error control devices.

Die Unabhängigkeit der Messungen an den Bandkanten wird vorrichtunsgtechnisch dadurch gelöst, dass die Kantenspannungsregelung ein Analysengerät für verschiedene Bandkanten-Zonen der Planheits-Messrolle vorsieht, an das jeweils zwei Bandkanten-Regelgeräte angeschlossen sind.The independence of the measurements at the strip edges is solved device-technically in that the edge tension control provides an analysis device for different strip edge zones of the flatness measuring roll, to which two strip edge control devices are connected.

In Weiterbildung dieser Anordnung sind die Bandkanten-Regelgeräte mit den Stellgliedern der Konus-Zwischenwalzen verbunden.In a further development of this arrangement, the band edge controllers are connected to the actuators of the cone intermediate rollers.

Dadurch sind die Bandkanten-Regelgeräte unabhängig voneinander schaltbar.As a result, the band edge controllers are independently switchable.

Schließlich ist vorgesehen, dass an die beiden Bandkanten-Regelgeräte jeweils ein adaptives Verstellgeschwindgkeits-Regelmittel und eine Steuerungsanzeige angeschlossen sind.Finally, it is provided that an adaptive Verstellgeschwindgkeits control means and a control display are connected to the two band edge controllers.

In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt, die nachstehend näher erläutert werden.In the drawings, embodiments of the invention are shown, which are explained in more detail below.

Es zeigen:

Fig. 1
eine Anlagenkonfiguration eines 20-Walzen-Sendzimir-Walzwerks,
Fig. 2
als vergrößerten Ausschnitt die Walzensätze in Split-Block- Ausführung mit den Ortsbestimmungen für die Planheits-Stellglieder,
Fig. 3
ein Walzspalt / Bandbreite-Diagramm mit den Einfluss-Funktionen der Exzenter auf das Walzspaltprofil,
Fig. 4
ein Diagramm der Änderung des Walzspaltes über der Bandbreite für den Einfluss der Konus-Zwischenwalzen-Verschiebung,
Fig.5A
ein Diagramm zum Planheits-Restfehler (Bandspannung über der Bandbreite),
Fig. 5B
ein Diagramm der Zuordnung des Planheits-Restfehlers zu den ein- zelnen Exzentern,
Fig. 6
ein Übersichts-Blockschaltbild der Planheits-Regelung zum 20- Walzen-Sendzimir-Walzwerk,
Fig. 7
ein strukturelles Blockschaltbild zur Cx-Regelung,
Fig. 8
ein Blockschaltbild zur Struktur der Restfehlerbeseitigung und
Fig. 9
ein Blockschaltbild zur Struktur der Kantenspannungsregelung.
Show it:
Fig. 1
a plant configuration of a 20-roll Sendzimir mill,
Fig. 2
as an enlarged detail the roller sets in split-block design with the local provisions for the planarity actuators,
Fig. 3
a roll gap / bandwidth diagram with the influence functions of the eccentric on the roll gap profile,
Fig. 4
a diagram of the change of the roll gap over the bandwidth for the influence of the cone intermediate roll displacement,
5A
a planarity residual error (band tension over the bandwidth),
Fig. 5B
a diagram of the assignment of the flatness residual error to the individual eccentrics,
Fig. 6
an overview block diagram of the flatness control for the 20-roller Sendzimir rolling mill,
Fig. 7
a structural block diagram for Cx control,
Fig. 8
a block diagram of the structure of the residual error removal and
Fig. 9
a block diagram of the structure of the edge tension control.

Gemäß Fig. 1 wird das Edelstahlband 1 oder eine Edelstahlfolie 1 a in einem Vielwalzengerüst 2, einem 20-Walzen-Sendzimir-Walzwerk 2a durch Abrollen, Walzen und Aufrollen gewalzt. Dabei bilden die Walzensätze 2b eine Split-Block-Ausführung. Der obere Walzensatz 2b kann über ein Stellglied 3 und weitere Funktionen angestellt werden. In einem Regelkreis 4 (Fig. 6 - 9) werden noch zu-beschreibende Signale verarbeitet. Diese Signale stammen vor dem Walzvorgang aus einem Einlauf 5a und nach dem Walzen aus einem Auslauf 5b und werden über Planheits-Messelemente 6 gewonnen, die im Ausführungsbeispiel aus Planheits-Messrollen 6a bestehen.According to Fig. 1 For example, the stainless steel strip 1 or a stainless steel foil 1 a is rolled in a multi-roll stand 2, a 20-roll Sendzimir rolling mill 2 a by rolling, rolling and rolling. The roller sets 2b form a split-block design. The upper roller set 2b can be adjusted via an actuator 3 and other functions. In a control circuit 4 ( Fig. 6-9 ) are processed yet-descriptive signals. These signals originate before the rolling process from an inlet 5a and after rolling from an outlet 5b and are obtained via flatness measuring elements 6, which consist in the embodiment of flatness measuring rollers 6a.

In Fig. 2 ist für den oberen Walzensatz 2b als Stellglied 3 ein hydraulisches Anstellmittel 17 gezeigt. Zur Beeinflussung der Bandplanheit stehen als Stellglieder 3 ein Schwenken des hydraulischen Anstellmittels 17 (nur bei der Split-Block-Ausführung angewendet), ein Exzenter-Stellglied 14 der äußeren Stützwalzen 18 (A, B, C, D, von denen die Stützrollen A und D bspw. mit einem Exzenter 14a ausgerüstet sind) und eine Axialverschiebung von inneren Konus-Zwischenwalzen 19 zur Verfügung.In Fig. 2 For the upper roller set 2b as an actuator 3, a hydraulic adjusting means 17 is shown. To influence the band flatness are as actuators 3 pivoting of the hydraulic adjusting means 17 (only applied to the split-block design), an eccentric actuator 14 of the outer support rollers 18 (A, B, C, D, of which the support rollers A and D, for example, equipped with an eccentric 14 a) and an axial displacement of inner cone intermediate rollers 19 are available.

Das Stellverhalten der Exzenteranstellung ist durch die sog. "Einflussfunktionen" charakterisiert. Zwei oder mehr der äußeren Stützwalzen 18 sind mit jeweils vier bis acht über der Ballenbreite angeordneten Exzentern 14a ausgestattet, die mittels jeweils einer hydraulischen Kolben-Zylinder-Einheit verdreht werden können, wodurch sich das Walzspaltprofil beeinflussen lässt. Die inneren Konus-Zwischenwalzen 19, die über eine hydraulische Verschiebeeinrichtung horizontal verschiebbar sind, besitzen im Bereich der Bandkanten 15 einen konischen Schliff. Der Schliff befindet sich bei den beiden oberen Konus-Zwischenwalzen 19 auf der Bedienseite des Vielwalzengerüstes 2, bei den unteren Konus-Zwischenwalzen 19 auf der Antriebsseite (oder umgekehrt). Somit kann durch synchrones Verschieben jeweils der beiden oberen und unteren Konus-Zwischenwalzen 19 die Spannung an einer der beiden Bandkanten 15 beeinflusst werden.The positioning behavior of the eccentric employment is characterized by the so-called "influence functions". Two or more of the outer support rollers 18 are each provided with four to eight over the bale width arranged eccentrics 14a, which can be rotated by means of a respective hydraulic piston-cylinder unit, whereby the roll gap profile can be influenced. The inner cone intermediate rollers 19, which are horizontally displaceable by means of a hydraulic displacement device, have a conical grinding in the region of the band edges 15. The ground joint is located at the two upper cone intermediate rolls 19 on the operating side of the cluster roll stand 2, in the lower cone intermediate rolls 19 on the drive side (or vice versa). Thus, by synchronously moving each of the two upper and lower intermediate cone rollers 19, the voltage at one of the two band edges 15 can be influenced.

In Fig. 3 ist für jeden der acht verstellbaren Exzenter 14a des Ausführungsbeispiels die zugehörige Veränderung des Walzspaltprofils zwischen den Bandkanten 15 innerhalb der Bandbreite 7 angegeben.In Fig. 3 is for each of the eight adjustable eccentric 14a of the embodiment, the associated change in the roll gap profile between the band edges 15 within the bandwidth 7 indicated.

Entsprechende Einflussfunktionen, die den Einfluss der Konus-Zwischenwalzen-Verschiebeposition auf das Walzspaltprofil beschreiben, sind in Fig. 4 ebenfalls über die Bandbreite 7 bis zu den Bandkanten 15 angegeben. Die Zerlegung des Planheitsfehlervektors in orthogonale Polynome der Spannung σ (x), führt bei entsprechender Analyse zu C1 (1. Ordnung), C2 (2. Ordnung), C3 (3. Ordnung) und C4 (4. Ordnung) in N / mm2.Corresponding influence functions which describe the influence of the cone intermediate roll displacement position on the roll gap profile are in Fig. 4 also indicated over the bandwidth 7 to the band edges 15. The decomposition of the flatness error vector into orthogonal polynomials of the stress σ (x) results in corresponding analysis to C1 (1st order), C2 (2nd order), C3 (3rd order), and C4 (4th order) in N / mm 2 .

Eine Zuordnung von Restfehlern zu den einzelnen Exzentern ergibt sich aus Fig. 5A als Planheits-Restfehler 26 (verblieben nach Stelleingriff durch die Cx-Reglung) mit der Bandspannung (N/mm2) über der Bandbreite 7 zwischen den Bandkanten 15 und in Fig. 5B sind die Gewichtungsfunktionen zur Bewertung des Planheits-Rest-fehlers 26 für die einzelnen Exzenter 14a , abhängig von der Bandbreite 7 zwischen den Bandkanten 15 dargestellt.An assignment of residual errors to the individual eccentrics results from Fig. 5A as planarity residual error 26 (remaining after control by the Cx control) with the band tension (N / mm 2 ) over the bandwidth 7 between the band edges 15 and in Fig. 5B For example, the weighting functions for evaluating the flatness residual error 26 for the individual eccentrics 14a, depending on the bandwidth 7 between the band edges 15, are shown.

Das Verfahren ist aus Fig. 6 ersichtlich: Die aktuelle Bandplanheit wird im Auslauf 5b des Vielwalzengerüstes 2 über die Planheits-Messrolle 6 anhand der Bandspannungsverteilung (diskrete Bandspannungs-Messwerte über die Bandbreite 7) gemessen und in einem Spannungsvektor 8 abgelegt. Eine Subtraktion von der vom Bediener vorzugebenden Referenzkurve 9 (Sollkurve) ergibt nach Berechnung den Spannungsvektor 8 des Planheitsfehlers 10 (Regeldifferenz). Der Verlauf des Planheitsfehlers 10 über die Bandbreite 7 wird in einem Analysenbaustein 11 durch eine Gauss-Approximation (LSQ-Verfahren) 8. Ordnung angenähert und anschließend in die orthogonalen Anteile, C1...Cx zerlegt. Die orthogonalen Anteile sind linear unabhängig voneinander, wodurch eine gegenseitige Beeinflussung der Anteile untereinander ausgeschlossen ist. Die skalaren Planheits-Fehleranteile C1, C2, C3, C4 und ggfs. weitere, werden über ein erstes Analysengerät 11 a einem ersten und zweiten Regelmodul 12a und 12b zugeführt. Entsprechend sind die zweiten und dritten Analysengeräte 11 b und 11 c mit den Regelmodulen 12c und einem vierten Regelmodul 12d verbunden.The procedure is over Fig. 6 can be seen: The current band flatness is measured in the outlet 5b of the cluster roll stand 2 on the flatness measuring roller 6 based on the band voltage distribution (discrete band voltage measurements over the bandwidth 7) and stored in a voltage vector 8. A subtraction from the reference curve 9 (setpoint curve) to be specified by the operator results, after calculation, in the voltage vector 8 of the flatness error 10 (control difference). The course of the flatness error 10 over the bandwidth 7 is approximated in an analysis module 11 by a Gaussian approximation (LSQ method) of the 8th order and then decomposed into the orthogonal components, C1... Cx. The orthogonal components are linearly independent of each other, whereby a mutual influence of the components is excluded. The scalar flatness error components C1, C2, C3, C4 and, if necessary, further, are supplied to a first and second control module 12a and 12b via a first analyzer 11a. Accordingly, the second and third analyzers 11b and 11c are connected to the control modules 12c and a fourth control module 12d.

Im einzelnen ist der Ablauf wie folgt: Ein Vergleichssignal 20 zwischen der Referenzkurve 9 und der aktuellen Bandplanheit 22 des Planheits-Messelementes 6 am Eingang 23 des Regelkreises 4 ist an ein erstes Analysengerät 11 a und ein selbständiges, erstes Regelmodul 12a für die Bildung der Spannungsvektoren 8 (C1...Cx) und mit dem Ausgang 24 an das jeweilige Stellglied 3 für die hydraulischen Anstellmittel 17 des Walzensatzes 2b angeschlossen. Ausgangssignale des ersten Analysengerätes 11 a gelangen weiterhin an das zweite Regelmodul 12b. Das Berechnungsergebnis (f), aus Steuerfunktionen 21, wird über einen Kopplungs-Anschluss 25 an das Stellglied 3 der Exzenter 14a weitergeleitet. Das Vergleichssignal 20 zwischen der Referenzkurve 9 und der aktuellen Bandplanheit 22 wird über das eigenständige Analysengerät 11 b an das eigenständige, dritte Regelmodul 12c für den Planheits-Restfehler 26 angeschlossen, dessen Ausgang 27 an den Kopplungs-Anschluss 25 für das Stellglied 3 aus den Exzentern 14a geführt ist.In detail, the sequence is as follows: A comparison signal 20 between the reference curve 9 and the current band flatness 22 of the flatness measuring element 6 at the input 23 of the control circuit 4 is connected to a first analyzer 11 a and an independent, first control module 12a for the formation of the voltage vectors 8 (C1 ... Cx) and the output 24 to the respective actuator 3 for the hydraulic adjusting means 17 of Roller set 2b connected. Output signals of the first analyzer 11a continue to reach the second control module 12b. The calculation result (f), from control functions 21, is forwarded via a coupling connection 25 to the actuator 3 of the eccentric 14a. The comparison signal 20 between the reference curve 9 and the current Bandplanheit 22 is connected via the stand-alone analyzer 11 b to the independent, third control module 12c for the flatness residual error 26 whose output 27 to the coupling port 25 for the actuator 3 from the eccentrics 14a is guided.

Weiterhin ist in Fig. 6 gezeigt, dass das Vergleichssignal 20 zwischen der Referenzkurve 9 und der aktuellen Bandplanheit 22 über ein weiteres, drittes eigenständiges Analysengerät 11 c an ein eigenständiges, viertes Regelmodul 12d für die Kontrolle einer Kantenspannungsregelung 16 angeschlossen und dessen Ausgang 28 an das Stellglied 3 der inneren Konus-Zwischenwalzen 19 angeschlossen ist. Im Auslauf 5b ist eine Planheits-Messrolle 6a mittels der Signalleitung der aktuellen Bandplanheit 22 verbunden.Furthermore, in Fig. 6 shown that the comparison signal 20 between the reference curve 9 and the current Bandplanheit 22 via a third, third independent analyzer 11 c connected to a separate, fourth control module 12d for controlling an edge voltage control 16 and its output 28 to the actuator 3 of the inner cone Intermediate rollers 19 is connected. In the outlet 5b, a flatness measuring roller 6a is connected by means of the signal line of the current band flatness 22.

Dabei ist es praktikabel, neben den vorstehend genannten Komponenten des Planheitsfehlers 10 auch noch einen Restfehler zu berücksichtigen, der nicht den oben beschriebenen orthogonalen Komponenten, sondern unmittelbar den Exzentern 14a zugeordnet wird. Diese Zuordnung wird gemäß Fig. 5B mit Gewichtungsfunktionen vorgenommen, die aus den Exzenter-Einflussfunktionen abgeleitet werden und die den gesamten anstehenden Planheitsfehlervektor den einzelnen Exzentern 14a zuordnen. Anschließend wird aus den den Exzentern 14a zugeordneten Restfehlervektoren 13 durch Aufsummierung eine skalare Fehlergröße gebildet und diese über jeweils ein Regelmodul 12d den Exzentern 14a zugeordnet.It is practicable, in addition to the above-mentioned components of the flatness 10 also take into account a residual error that is not assigned to the above-described orthogonal components, but directly the eccentrics 14a. This assignment is made according to Fig. 5B with weighting functions derived from the eccentric influence functions and which assign the entire pending planarity error vector to the individual eccentrics 14a. Subsequently, a scalar error variable is formed from the residual error vectors 13 assigned to the eccentrics 14a by adding them up, and these are assigned to the eccentrics 14a via a control module 12d in each case.

Für jede orthogonale Komponente des Planheits-Fehlervektors (Fig. 7) ist in dem hochdynamischen Regelkreis 29 ein dynamischer Einzelregler 30 vorgesehen, der als PI-Regler 31 mit Totband im Eingang 32 versehen ist. Jedem Einzelregler 30 sind außer dem ersten Analysengerät 11a adaptive Parametrierungsmittel 33 und eine Steuerungsanzeige 34 in Parallelschaltung vorgeordnet. An jedem Einzelregler 30 sind Anschlüsse 35 für Regelparameter Ki und Kp vorgesehen. Ggfs. sind die dynamischen Einzelregler 30 mit einem Bedienerpult 36 zu verbinden.For each orthogonal component of the flatness error vector ( Fig. 7 ) is in the highly dynamic control loop 29, a dynamic single controller 30 is provided, which is provided as a PI controller 31 with dead band in the input 32. Each individual controller 30 is preceded by adaptive parameterizing means 33 and a control display 34 in parallel connection, apart from the first analyzer 11a. At each individual controller 30 connections 35 are provided for control parameters K i and K p . Possibly. For example, the dynamic individual controllers 30 are to be connected to a user console 36.

Der Einzelregler 30 für den C1-Anteil (Schräglage) arbeitet bei der Split-Block-Ausführung auf den Schwenk-Soll-Wert der hydraulischen Anstellmittel 17, bei der Monoblock-Bauweise auf die Exzenter-Anstellung als Stellgröße. Die Einzelregler 30 für alle übrigen Anteile (C2, C3, C4 und ggfs. höhere Ordnungen) arbeiten auf die Exzenter-Stellglieder 14 der äußeren Stützwalzen 18. Für die Zuordnung der von den einzelnen dynamischen Einzelreglern 30 gelieferten skalaren Stellgrößen zu den Exzentern 14a werden die Steuerfunktionen 21 eingesetzt. Die Steuerfunktionen 21 setzen eine C1-, C2-, C3-.....-Stellbewegung in eine entsprechende Kombination der einzelnen Exzenter-Stellbewegungen um. Die erwähnte Entkopplung gewährleistet, dass eine Stellbewegung bspw. des C2-Reglers 30 keinen anderen orthogonalen Anteil außer dem C2-Anteil beeinflusst. Die entsprechenden Steuerfunktionen werden abhängig von der Bandbreite 7 und von der Anzahl der aktiven Exzenter 14a vorab aus den Einfluss-Funktionen berechnet. Die eingesetzten PI-Regler besitzen, abhängig von der Stellglied-Dynamik und der Walzgeschwindigkeit, die adaptiven Parametrierungsmittel 33 und gewährleisten hierdurch für alle Betriebsbereiche das Erreichen der theoretisch möglichen, optimalen Regeldynamik. Darüber hinaus ermöglicht der gewählte Ansatz der Berechnung der Regelparameter Ki und Kp nach der Methode des Betragsoptimums eine sehr einfache Inbetriebnahme, da die Einstellung der Regeldynamik von außen übernur einen Parameter erfolgt. Mit den hochdynamischen Einzelreglern 30 werden, abhängig von der Walzgeschwindigkeit, Ausregelzeiten von unter 1 Sekunde erreicht.The individual controller 30 for the C1 component (inclined position) works in the split-block design on the swivel-target value of the hydraulic adjusting means 17, in the monobloc design on the eccentric adjustment as a manipulated variable. The individual controllers 30 for all other components (C2, C3, C4 and, if necessary, higher orders) work on the eccentric actuators 14 of the outer support rollers 18. For the assignment of the supplied from the individual dynamic individual controllers 30 scalar variables to the eccentrics 14a are the Control functions 21 used. The control functions 21 convert a C1, C2, C3 -..... adjusting movement into a corresponding combination of the individual eccentric setting movements. The mentioned decoupling ensures that an adjusting movement, for example, of the C2 controller 30 does not affect any other orthogonal component except for the C2 component. The corresponding control functions are calculated as a function of the bandwidth 7 and of the number of active eccentrics 14a in advance from the influence functions. Depending on the actuator dynamics and the rolling speed, the PI controllers used have the adaptive parameterizing means 33 and thus ensure that the theoretically possible optimum control dynamics are achieved for all operating ranges. In addition, the chosen approach of calculating the control parameters K i and K p according to the method of the magnitude optimum allows a very simple commissioning, since the adjustment of the control dynamics from the outside takes over a parameter. With the highly dynamic individual controllers 30, depending on the rolling speed, settling times of less than 1 second are achieved.

Gemäß Fig. 8 sind Fehleranteile, für die kein Einzelregler 30 vorgesehen ist, für die der zugehörige Einzelregler 30 ausgeschaltet ist oder solche, die durch zwangsläufige Ungenauigkeiten in den berechneten Steuerfunktionen, bspw. fehlende Entkopplung, verursacht werden, berücksichtigt. Solche auftretenden Fehleranteile können naturgemäß von den hochdynamischen Einzelreglern 30 der orthogonalen Komponenten nicht beseitigt werden. Um solche Fehleranteile dennoch zu eliminieren, enthält das Planheits-Regelverfahren eine Restfehlerbeseitigung (Fig. 8). Die Restfehlerbeseitigung arbeitet auf die Exzenter 14a als Stellglieder 3 und bietet mit der vorstehend beschriebenen Fehleranalyse die Möglichkeit, grundsätzlich alle Planheitsfehler zu eliminieren, bei denen dies aufgrund der gegebenen Stellglied-Charak-teristik möglich ist. Aufgrund der bestehen bleibenden Kopplung zwischen den einzelnen Exzentern 14a und aufgrund möglicher Wechselwirkungen mit der hochdynamischen Regelung der orthogonalen Komponenten sollte die Restfehlerregelung nur mit einer vergleichsweisen geringeren Dynamik betrieben werden. Letztere orientiert sich an einer parametrierbaren, konstanten Verstellgeschwindigkeit der Exzenter 14a, so dass die Regelung, je nach Walzgeschwindigkeit und Regelabweichung, etwas größere Ausregelzeiten erreicht. Dementsprechend ist zur Restfehlerbeseitigung der Restfehlervektor 13 über Restfehler-Regelgeräte 37, 38 und 39 jeweils mit den Stellgliedern 3 der Exzenter 14a geschaltet.According to Fig. 8 are error components for which no single controller 30 is provided, for which the associated individual controller 30 is switched off or those caused by inevitable inaccuracies in the calculated control functions, for example. Lack of decoupling, taken into account. Naturally, such occurring error components can not be eliminated by the highly dynamic individual controllers 30 of the orthogonal components. In order nevertheless to eliminate such error components, the flatness control method contains a residual error removal ( Fig. 8 ). The residual error removal works on the eccentrics 14a as actuators 3 and, with the error analysis described above, offers the possibility of fundamentally eliminating all flatness errors in which this is possible due to the given actuator characteristics. Due to the permanent coupling between the individual eccentrics 14a and due to possible interactions with the highly dynamic control of the orthogonal components, the residual error control should be operated only with a comparatively lower dynamics. The latter is based on a parameterizable, constant adjustment speed of the eccentric 14a, so that the control, depending on the rolling speed and control deviation, reaches slightly greater settling times. Accordingly, the residual error vector 13 is connected via residual error controllers 37, 38 and 39 to the actuators 3 of the eccentric 14a for residual error removal.

Um den besonderen Belangen der 20-Walzen-Gerüste und des Dünnband- und Folienwalzens im Hinblick auf die Spannung an den Bandkanten 15 Rechnung zu tragen (etwa auftretende Bandrisse, Bandlauf), werden die Bandkanten 15 innerhalb der Planheitsregelung separat behandelt. Als Stellglied 3 wird die Horizontalverschiebung der inneren Konus-Zwischenwalzen 19 verwendet. Die Kantenspannungsregelung 16 stellt separat für jede Bandkante 15 gemäß Fig. 9 eine gewünschte Bandspannung im Bereich der ein bis zwei äußersten überdeckten Zonen der Planheits-Messrolle 6a ein. Die Regelgröße wird, wie aus Fig. 9 ersichtlich ist, separat für jede Bandkante 15 durch Differenzbildung zwischen den Regeldifferenzen der zwei äußersten Messwerte der Planheits-Messrolle 6a gebildet. Hierdurch wird die Kantenspannungsregelung 16 von der Referenzkurve 9 unabhängig und von den übrigen Komponenten der Planheitsregelung entkoppelt. Für die Kantenspannungsregelung 16 ist ein Analysengerät 40 für die verschiedenen Bandkanten-Zonen der Planheits-Messrolle 6a vorgesehen, an das jeweils zwei Bandkanten-Regelgeräte 41 und 42 angeschlossen sind. Die Bandkanten-Regelgeräte 41, 42 sind mit den Stellgliedern 3 der Konus-Zwischenwalzen 19 verbunden. Die Bandkanten-Regelgeräte 41, 42 sind unabhängig voneinander schaltbar. Außerdem ist an die beiden Bandkanten-Regelgeräte 41, 42 jeweils ein adaptives Verstellgeschwindigkeits-Regelungsmittel 43 und eine Steuerungsanzeige 44 angeschlossen. Die Kantenspannungsregelung 16 kann somit wahlweise asynchron (unabhängiger Betrieb für beide Bandkanten 15) oder synchron betrieben werden. Die Dynamik der Kantenspannungsregelung 16 ist durch die zulässige Verschiebegeschwindigkeit der Konus-Zwischenwalzen-Horizontalverschie-bung geprägt, die von Walzkraft und Walzgeschwindigkeit abhängt.In order to take into account the special concerns of the 20-roll stands and the thin strip and foil rolling with respect to the tension at the strip edges 15 (band breaks occurring, strip running), the strip edges 15 are treated separately within the flatness control. As the actuator 3, the horizontal displacement of the inner cone intermediate rollers 19 is used. The edge tension control 16 separately according to each band edge 15 Fig. 9 a desired belt tension in the region of the one to two outermost covered zones of the flatness measuring roller 6a. The controlled variable is how out Fig. 9 can be seen, separately for each band edge 15 by difference between the control differences of the two outermost measurements of the flatness measuring roller 6a formed. As a result, the edge tension control 16 is independent of the reference curve 9 and decoupled from the other components of the planarity control. For the edge tension control 16, an analysis device 40 for the different band edge zones of the flatness measuring roller 6a is provided, to which two band edge controllers 41 and 42 are connected. The belt edge controllers 41, 42 are connected to the actuators 3 of the cone intermediate rollers 19. The band edge controllers 41, 42 are independently switchable. In addition, an adaptive Verstellgeschwindigkeits control means 43 and a control display 44 is connected to the two band edge controllers 41, 42 respectively. The edge voltage control 16 can thus be operated either asynchronously (independent operation for both band edges 15) or synchronously. The dynamics of the edge tension control 16 is characterized by the allowable displacement speed of the cone-intermediate roll horizontal displacement, which depends on rolling force and rolling speed.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Edelstahlbandstainless steel band
1 a1 a
Edelstahlfoliestainless steel foil
22
VielwalzengerüstA cluster mill
2a2a
Sendzimir-WalzwerkSendzimir mill
2b2 B
Walzensatzroll set
33
Stellgliedactuator
44
Regelkreisloop
5a5a
Einlaufenema
5b5b
Auslaufoutlet
66
Planheits-MesselementFlatness measuring element
6a6a
Planheits-MessrolleFlatness measuring roller
77
Bandbreitebandwidth
88th
Spannungsvektorvoltage vector
99
Referenzkurvereference curve
1010
PlanheitsfehlerFlatness errors
1111
Analysenbausteinanalysis module
11 a11 a
erstes Analysengerätfirst analyzer
11 b11 b
zweites Analysengerätsecond analyzer
11 c11 c
drittes Analysengerätthird analyzer
12a12a
erstes Regelmodulfirst rule module
12b12b
zweites Regelmodulsecond control module
12c12c
drittes Regelmodulthird control module
12d12d
viertes Regelmodulfourth rule module
1313
RestfehlervektorResidual error vector
1414
Exzenter-StellgliedEccentric actuator
14a14a
Exzentereccentric
1515
Bandkanteband edge
1616
KantenspannungsregelungEdges voltage regulation
1717
hydraulische Anstellmittelhydraulic adjusting means
1818
äußere Stützwalzenouter support rollers
1919
Konus-ZwischenwalzenCone intermediate rolls
2020
Vergleichssignalcomparison signal
2121
Steuerfunktionencontrol functions
2222
aktuelle Bandplanheitcurrent band flatness
2323
Eingang des RegelkreisesInput of the control loop
2424
Ausgang des RegelkreisesOutput of the control loop
2525
Kopplungs-AnschlussCoupling terminal
2626
Planheits-RestfehlerFlatness residual error
2727
Ausgang des dritten RegelmodulsOutput of the third control module
2828
Ausgang des vierten RegelmodulsOutput of the fourth control module
2929
hochdynamischer Regelkreishighly dynamic control loop
3030
dynamischer Einzelregler für die orthogonale Komponentesingle dynamic controller for the orthogonal component
3131
PI-Regler mit TotbandPI controller with dead band
3232
Eingangentrance
3333
adaptive Parametrierungsmitteladaptive parameterization means
3434
Steuerungsanzeigecontrol display
3535
Anschlussconnection
3636
Bedienerpultoperator console
3737
Restfehler-RegelgerätResidual error controller
3838
Restfehler-RegelgerätResidual error controller
3939
Restfehler-RegelgerätResidual error-control device
4040
Analysengerät für verschiedene Bandkanten-ZonenAnalyzer for different belt edge zones
4141
Bandkanten-RegelgerätBand-edge controller
4242
Bandkanten-RegelgerätBand-edge controller
4343
adaptive Verstellgeschwindigkeits-Regelungsmitteladaptive adjustment speed control means
4444
Steuerungsanzeigecontrol display

Claims (23)

  1. Method of measuring and regulating the planarity and/or the strip tensions of a stainless steel strip (1) or a stainless steel foil (1 a), for cold-rolling operation in a multi-roll stand (2), particularly in a 20-roll Sendzimir rolling mill (2a), comprising the following steps:
    determining the instantaneous distribution of the planarity (22) of the steel strip over the width (7) thereof on the basis of a measured strip tension, distributed over the strip width (7), in the run-out (5b) of the multi-roll stand (2);
    determining a planarity error (10) by comparison of the determined instantaneous distribution of the strip (22) with a predetermined reference curve (9);
    mathematical approximation of the received planarity error (10) over the strip width (7) in an analysis module and resolution of the approximated planarity error into scalar planarity error components (C1, C2, C3, C4); and
    calculation of first and further regulating output signals from the planarity error components for activation of a plurality of setting elements (3, 14a, 17, 18, 19) of the multi-roll stand (2);
    characterised in that the resolution of the approximated planarity error is carried out in such a manner that the resulting planarity error components (C1, C2, C3, C4) are orthogonal relative to one another;
    a first setting element in the form of a hydraulic adjusting means (17) from the plurality of setting means is, for adjustment of the roll set (2b), activated in response to the first regulating output signal, which is obtained from a first orthogonal component (C1) of the planarity error;
    calculation of the further regulating output signals in the form of scalar setting magnitude components each on the basis of a respective one of the remaining orthogonal components (C2, C3, C4) of the planarity error; and
    combining the scalar setting magnitude components into suitable activation signals for individual eccentric setting elements (14a) of the outer backing rolls (18) of the multi-roll stand from the plurality of setting elements.
  2. Method according to claim 1, characterised in that the course of the planarity error (10) over the strip width (7) is approximated by a Gaussian approximation of 8th order (LSQ method) and subsequently resolved into the orthogonal components (C1 ... Cx).
  3. Method according to one of claims 1 and 2, characterised in that a residual error vector (13) is analysed and the residual error vector (13) is applied directly to selected setting elements (3).
  4. Method according to claim 3, characterised in that the assignment of the residual error vectors (13) is carried out by weighting functions which are derived from influencing functions of eccentric setting elements (14) and which assign all arising planarity errors (10) to the individual eccentrics (14a).
  5. Method according to one of claims 3 and 4, characterised in that an error magnitude determined by real numerical values is formed by summation from the residual error vectors (13) assigned to the eccentrics (14a).
  6. Method according to any one of claims 1 to 5, characterised in that the regulation for the strip edges (5) is carried out separately within the planarity regulation.
  7. Method according to claim 6, characterised in that the horizontal displacement of the inner intermediate rolls (19) is used as setting element (3) for the edge tension regulation (16).
  8. Method according to claim 7, characterised in that a predetermined strip tension in the region of one to two outermost congruent zones of a planarity measuring roller (6a) is used separately for each strip edge (15) by way of the edge tension regulation (16).
  9. Method according to any one of claims 6 to 8, characterised in that the edge tension regulation (16) is operated selectably asynchronously or synchronously for the two strip edges (15).
  10. Method according to claim 7, characterised in that the regulating magnitude for the edge tension regulation (16) is determined separately for each strip edge (15) by difference formation between the regulating differences of the two outermost measurement values of the planarity measuring roller (16a).
  11. Equipment for measuring and regulating the planarity and/or strip tensions of a stainless steel strip (1) or a stainless steel foil (1a), for cold-rolling operation in a multi-roll stand (2), particularly in a 20-roll Sendzimir rolling mill (2a), comprising a planarity measuring element (6) in the run-out of the multi-roll stand (2) for determining the instantaneous distribution of the planarity (22) of the steel strip over the width (7) thereof on the basis of a measured strip tension, distributed over the strip width; equipment for determining a planarity error (8, 20) by comparison of the determined instantaneous distribution of the planarity (22) with a predetermined reference curve; and at least one regulating circuit (4) comprising an analysing device (11) with a first analysing apparatus (11a) for mathematical approximation of the received planarity error (8, 20) and for resolution of the approximated planarity error into scalar planarity error components (C1, C2, C3, C4) and further comprising a first and further regulating modules (30), which are connected downstream of the analysing device and associated with the planarity error components, for activating a plurality of setting elements (3, 14a, 17, 18, 19) of the multi-roll stand (2); characterised in that
    the first analysing element (11a) is constructed to so resolve the received planarity errors which it has approximated that the planarity error components (C1, C2, C3, C4) are orthogonal to one another;
    the first regulating module (30) is provided for actuating a setting element from the plurality of setting elements in the form of a hydraulic adjusting means (17) for adjusting the roll set (2b) on the basis of the received, first orthogonal component (C1) of the planarity error; the further regulating modules for the remaining orthogonal components (C2, C3, C4) of the planarity error are respectively constructed for providing scalar setting magnitude components; and
    a control device (21) is provided for combining the scalar setting magnitude components, which are received from the individual further regulating modules, into suitable setting movements for individual eccentric setting elements (14a) of the outer backing rolls (18) of the multi-roll stand from the plurality of setting elements.
  12. Equipment according to claim 11, characterised in that the comparison signal (20) between the reference curve (9) and the instantaneous strip planarity (22) is applied by way of the independent analysing apparatus (11 b) to the independent third regulating module (12c) for a planarity residual error (26), the output (27) of which is applied to the coupling connection (25) for the setting element (3) consisting of the eccentrics (14a).
  13. Equipment according to one of claims 11 and 12, characterised in that the comparison signal (20) between the reference curve (9) and the instantaneous strip planarity (22) is applied by way of a further, third independent analysing apparatus (11c) to an independent fourth regulating module (12d) for checking the edge tension regulation (16) and the output (28) thereof is applied to the setting element (3) of the conical inner intermediate rolls (19).
  14. Equipment according to any one of claims 11 to 13, characterised in that a planarity measuring element (6) arranged in the run-out (5b) is connected with the signal line of the instantaneous strip planarity (22).
  15. Equipment according to any one of claims 11 to 14, characterised in that a dynamic individual regulator (30), which as a PI (31) is provided with dead strip in the inlet (32), is provided for each planarity error (10).
  16. Equipment according to claim 15, characterised in that apart from the first analysing apparatus (11 a) adaptive parameterising means (33) and a control display (34) are arranged in parallel upstream of each individual regulator (30).
  17. Equipment according to one of claims 15 and 16, characterised in that connections (35) for regulating parameters (Ki, Kp) are provided at each individual regulator (30).
  18. Equipment according to any one of claims 15 to 17, characterised in that the dynamic individual regulators (30) are connectible with a control console (36).
  19. Equipment according to any one of claims 11 to 18, characterised in that for elimination of residual error the residual error vector (13) co-operates by way of residual error regulating apparatus (37, 38, 39) with the respective setting elements (3) of the eccentrics (14a).
  20. Equipment according to claim 19, characterised in that the edge tension regulation (16) provides respective analysing apparatus (40) for different strip edge zones of the planarity measuring roller (6a), two strip edge regulating apparatus (41, 42) being connected with each analysing apparatus.
  21. Equipment according to claim 20, characterised in that the strip edge regulating apparatus (41, 42) are connected with the setting elements (3) of the conical intermediate rolls (19).
  22. Equipment according to one of claims 20 and 21, characterised in that the strip edge regulating apparatus (41, 42) are switchable independently of one another.
  23. Equipment according to any one of claims 20 to 22, characterised in that a respective adaptive adjustment speed regulating means (43) and control display (44) are connected with each of the two strip edge regulating apparatus (41, 42).
EP05755571A 2004-07-06 2005-06-17 Method and device for measuring and adjusting the evenness and/or tension of a stainless steel strip or stainless steel film during cold rolling in a 4-roll stand, particularly in a 20-roll sendzimir roll stand Not-in-force EP1763411B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004032634A DE102004032634A1 (en) 2004-07-06 2004-07-06 Method and device for measuring and controlling the flatness and / or the strip tensions of a stainless steel strip or a stainless steel foil during cold rolling in a multi-roll stand, in particular in a 20-roll Sendizimir rolling mill
PCT/EP2005/006570 WO2006002784A1 (en) 2004-07-06 2005-06-17 Method and device for measuring and adjusting the evenness and/or tension of a stainless steel strip or stainless steel film during cold rolling in a 4-roll stand, particularly in a 20-roll sendzimir roll stand

Publications (2)

Publication Number Publication Date
EP1763411A1 EP1763411A1 (en) 2007-03-21
EP1763411B1 true EP1763411B1 (en) 2011-03-30

Family

ID=34971319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05755571A Not-in-force EP1763411B1 (en) 2004-07-06 2005-06-17 Method and device for measuring and adjusting the evenness and/or tension of a stainless steel strip or stainless steel film during cold rolling in a 4-roll stand, particularly in a 20-roll sendzimir roll stand

Country Status (14)

Country Link
US (1) US7797974B2 (en)
EP (1) EP1763411B1 (en)
JP (1) JP2008504970A (en)
KR (1) KR101138715B1 (en)
CN (1) CN1980752B (en)
AT (1) ATE503594T1 (en)
BR (1) BRPI0510241A (en)
CA (1) CA2570339C (en)
DE (2) DE102004032634A1 (en)
ES (1) ES2361278T3 (en)
RU (1) RU2333811C2 (en)
TW (1) TWI344872B (en)
WO (1) WO2006002784A1 (en)
ZA (1) ZA200606386B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101618403B (en) * 2008-06-30 2013-04-24 矿山机械和轧钢机械制造有限公司 The measurement of planeness roller and the method that are used for the flatness error of definite band

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106905A1 (en) 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha Process for production of polypeptide by regulation of assembly
US7849722B2 (en) 2006-03-08 2010-12-14 Nucor Corporation Method and plant for integrated monitoring and control of strip flatness and strip profile
EP4218801A3 (en) 2006-03-31 2023-08-23 Chugai Seiyaku Kabushiki Kaisha Antibody modification method for purifying bispecific antibody
DE102008015828A1 (en) * 2007-09-26 2009-04-02 Sms Demag Ag Rolling device and method for its operation
SI2202245T1 (en) 2007-09-26 2016-10-28 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in cdr
AR066172A1 (en) 2007-09-28 2009-07-29 Chugai Pharmaceutical Co Ltd METHOD FOR THE PREPARATION OF AN ANTIGLIPICAN ANTIBODY 3 WITH PLASMATIC KINETIC MODULATE THROUGH VARIATION OF THE PLASMATIC SEMIVIDE.
DE102008009902A1 (en) * 2008-02-19 2009-08-27 Sms Demag Ag Rolling device, in particular push roll stand
CL2009000647A1 (en) * 2008-04-04 2010-06-04 Chugai Pharmaceutical Co Ltd Pharmaceutical composition for treating or preventing liver cancer comprising a combination of a chemotherapeutic agent and an anti-glypican 3 antibody; agent for attenuating a side effect comprising said antibody; method of treating or preventing liver cancer of a subject.
PL2275443T3 (en) 2008-04-11 2016-05-31 Chugai Pharmaceutical Co Ltd Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
CN101690940B (en) * 2008-12-25 2011-07-20 山西太钢不锈钢股份有限公司 Method for rolling precision stainless steel strips with Sendzimir rolling mill
TWI667257B (en) 2010-03-30 2019-08-01 中外製藥股份有限公司 Antibodies with modified affinity to fcrn that promote antigen clearance
ES2437469T3 (en) 2011-03-28 2014-01-10 Abb Research Ltd. Flatness control method in the lamination of a band and corresponding control system
CN102886384B (en) * 2011-07-19 2014-12-03 宝山钢铁股份有限公司 Flatness defect identification method of 20-roller Sendzimir rolling mill based on support vector machine
TW201817745A (en) 2011-09-30 2018-05-16 日商中外製藥股份有限公司 Therapeutic antigen-binding molecule with a FcRn-binding domain that promotes antigen clearance
DE102012224351A1 (en) * 2012-12-21 2014-06-26 Sms Siemag Ag Method and device for winding a metal strip
ES2618487T3 (en) * 2013-03-25 2017-06-21 Abb Schweiz Ag Procedure and control system to adjust the flatness control in a rolling mill
EP3050896B1 (en) 2013-09-27 2021-07-07 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
DE102014007381A1 (en) 2014-05-20 2015-07-23 Asinco GmbH Method for measuring and controlling the flatness of a belt produced by belt rolling
CN104275349B (en) * 2014-07-02 2016-05-25 浙江富春环保新材料有限公司 A kind of milling train with the pressure adjusting structure that tests the speed
MA40764A (en) 2014-09-26 2017-08-01 Chugai Pharmaceutical Co Ltd THERAPEUTIC AGENT INDUCING CYTOTOXICITY
KR101585804B1 (en) * 2014-11-28 2016-01-15 주식회사 포스코 Apparatus and method of controlling shape of cold rolled steel plate
EP3168570A1 (en) * 2015-11-10 2017-05-17 Primetals Technologies France SAS Method and device for measuring the planarity of a metal product
CN106269902B (en) * 2016-08-25 2019-04-23 新万鑫(福建)精密薄板有限公司 A kind of orientation silicon steel clapboard board-shape control method
ES2950107T3 (en) * 2016-12-30 2023-10-05 Outokumpu Oy Flexible metal strip rolling method and device
JP6880306B2 (en) 2017-07-21 2021-06-02 ノベリス・インコーポレイテッドNovelis Inc. Systems and methods for controlling the flatness of metal substrates by low pressure rolling
EP3461567A1 (en) * 2017-10-02 2019-04-03 Primetals Technologies Germany GmbH Flatness control with optimiser
CN108917692B (en) * 2018-07-17 2024-02-09 广西南南铝箔有限责任公司 Aluminum foil flatness detection device
CN110479770B (en) * 2019-08-07 2021-04-06 武汉钢铁有限公司 Optimized control method for twenty-high rolling mill plate shape
CN113732073B (en) * 2020-05-29 2023-04-11 宝山钢铁股份有限公司 Correction method for flatness defect of finish rolling outlet strip steel
CN113894164B (en) * 2021-10-14 2023-08-04 江苏科瑞德智控自动化科技有限公司 Tension control method and detection system for lithium battery pole piece rolling mill

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649203B2 (en) * 1986-03-17 1994-06-29 株式会社神戸製鋼所 Non-linear control method of plate shape in multi-high rolling mill
DE3823202A1 (en) * 1988-07-08 1990-01-11 Betr Forsch Inst Angew Forsch METHOD FOR COLD ROLLING SHEETS AND STRIPS
JPH07102380B2 (en) * 1990-08-30 1995-11-08 株式会社神戸製鋼所 Shape control method of rolled material in multi-high rolling mill
JP2558173B2 (en) * 1990-09-12 1996-11-27 新日本製鐵株式会社 Method for producing carbon material having fine pores
JP3034928B2 (en) * 1990-09-19 2000-04-17 株式会社日立製作所 Multi-high rolling mill, cluster-type rolling mill, sendzimer-type multi-high rolling mill, and method of controlling multi-high rolling mill
US5255548A (en) * 1992-03-02 1993-10-26 Mesta International Method for roller levelling of heavy plate
SE500100C2 (en) * 1992-06-22 1994-04-18 Asea Brown Boveri Procedure and apparatus for flatness control of strips in rolling mills
US5680784A (en) * 1994-03-11 1997-10-28 Kawasaki Steel Corporation Method of controlling form of strip in rolling mill
JP2677964B2 (en) * 1994-03-11 1997-11-17 川崎製鉄株式会社 Rolling mill shape control initial setting method
US5758533A (en) * 1994-04-15 1998-06-02 Clecim Imbricated roll planisher and process for its use
CN1082851C (en) * 1994-07-08 2002-04-17 石川岛播磨重工业株式会社 Rolling method using both displacement and bending of roller, rolling machine and roller used for same
JP3747786B2 (en) * 2001-02-05 2006-02-22 株式会社日立製作所 Rolling method and rolling equipment for plate rolling machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101618403B (en) * 2008-06-30 2013-04-24 矿山机械和轧钢机械制造有限公司 The measurement of planeness roller and the method that are used for the flatness error of definite band

Also Published As

Publication number Publication date
US7797974B2 (en) 2010-09-21
TWI344872B (en) 2011-07-11
DE102004032634A1 (en) 2006-02-16
EP1763411A1 (en) 2007-03-21
KR20070027534A (en) 2007-03-09
CN1980752B (en) 2013-07-24
ATE503594T1 (en) 2011-04-15
CA2570339A1 (en) 2006-01-12
CA2570339C (en) 2011-10-11
RU2006135845A (en) 2008-04-20
WO2006002784A1 (en) 2006-01-12
CN1980752A (en) 2007-06-13
KR101138715B1 (en) 2012-04-24
BRPI0510241A (en) 2007-10-23
ES2361278T3 (en) 2011-06-15
JP2008504970A (en) 2008-02-21
DE502005011193D1 (en) 2011-05-12
TW200602135A (en) 2006-01-16
ZA200606386B (en) 2007-11-28
RU2333811C2 (en) 2008-09-20
US20080271508A1 (en) 2008-11-06

Similar Documents

Publication Publication Date Title
EP1763411B1 (en) Method and device for measuring and adjusting the evenness and/or tension of a stainless steel strip or stainless steel film during cold rolling in a 4-roll stand, particularly in a 20-roll sendzimir roll stand
EP3595824B1 (en) Method for operating a roller straightener
EP1819456B2 (en) Method and mill train for improving the slipping out of a metal rolled strip whose rolled strip end runs out at a rolling speed
EP1711283B1 (en) Control method and control device for a roll stand
DE102014215397B4 (en) Band position control with optimized controller design
AT390900B (en) ARRANGEMENT FOR REGULATING THE POSITIONS OF THE WORK ROLLS IN A QUARTO ROLLING MILL FOR ROLLING METAL
AT522234A1 (en) Method and device for straightening wire or strip material
DE69811615T2 (en) Method for controlling the drawing of rolling stock
EP4103339B1 (en) Determining a sensitivity of a target size of a rolling stock for an operating variable of a hot rolling mill
EP4061552B1 (en) Method, control device and rolling mill for the adjustment of an outlet temperature of a metal strip exiting a rolling train
EP2477763B1 (en) Cold roller path with mass flow regulation on a roller frame
DE69201395T2 (en) Stretch roller leveler.
DE19704337A1 (en) Method and device for regulating the course of a rolled strip
DE10159608C5 (en) Rolling process and rolling train for a band with a weld
DE102005053489B3 (en) Industrial apparatus control system, e.g. for rolling mill, has multivariable controller with main control module which receives measured or observed parameters of industrial apparatus
EP1018376A2 (en) Rolling train for rolling bar-shaped rolling stock, e.g. steel bars or wire
EP1230992A2 (en) Method for operating a rolling-mill train and control system for a rolling-mill train
AT503568B1 (en) - Process for measuring the planarity of a strip on rolling in a rolling unit where the measured and target values are compared with a predetermined desired planarity value
WO2017178145A1 (en) Robust band tension control
DE102021205063A1 (en) DEVICE FOR CONTROLLING A PLANT AND METHOD FOR CONTROLLING A PLANT
AT408074B (en) Method and device for carrying out pass plan change during rolling in a multistand hot strip mill
DE102023202284A1 (en) TAX SYSTEM AND TAX METHOD
DE3331335A1 (en) Method and circuit arrangement for controlling planarity in cold-rolling mills
DE102022210509A1 (en) CONTROL DEVICE, CONTROL SYSTEM, CONTROL METHOD AND PROGRAM
EP1448321A1 (en) Inclined position adjustment

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070608

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMS SIEMAG AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005011193

Country of ref document: DE

Owner name: SMS GROUP GMBH, DE

Free format text: FORMER OWNER: SMS DEMAG AG, 40237 DUESSELDORF, DE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502005011193

Country of ref document: DE

Date of ref document: 20110512

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005011193

Country of ref document: DE

Effective date: 20110512

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2361278

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110615

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110701

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110730

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20110614

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

26N No opposition filed

Effective date: 20120102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005011193

Country of ref document: DE

Effective date: 20120102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005011193

Country of ref document: DE

Representative=s name: HEMMERICH & KOLLEGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005011193

Country of ref document: DE

Owner name: SMS GROUP GMBH, DE

Free format text: FORMER OWNER: SMS SIEMAG AG, 40237 DUESSELDORF, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210625

Year of fee payment: 17

Ref country code: NL

Payment date: 20210618

Year of fee payment: 17

Ref country code: DE

Payment date: 20210618

Year of fee payment: 17

Ref country code: FI

Payment date: 20210621

Year of fee payment: 17

Ref country code: FR

Payment date: 20210622

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210618

Year of fee payment: 17

Ref country code: AT

Payment date: 20210621

Year of fee payment: 17

Ref country code: BE

Payment date: 20210618

Year of fee payment: 17

Ref country code: GB

Payment date: 20210625

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210825

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005011193

Country of ref document: DE

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220617

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 503594

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220617

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220618

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220617

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230103

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220618