EP1760401A2 - Method and device for monitoring the building of deposits in combustion chambers - Google Patents

Method and device for monitoring the building of deposits in combustion chambers Download PDF

Info

Publication number
EP1760401A2
EP1760401A2 EP06017618A EP06017618A EP1760401A2 EP 1760401 A2 EP1760401 A2 EP 1760401A2 EP 06017618 A EP06017618 A EP 06017618A EP 06017618 A EP06017618 A EP 06017618A EP 1760401 A2 EP1760401 A2 EP 1760401A2
Authority
EP
European Patent Office
Prior art keywords
walls
combustion chamber
infrared
infrared camera
firebox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06017618A
Other languages
German (de)
French (fr)
Other versions
EP1760401A3 (en
EP1760401B1 (en
Inventor
Ralf Dr. Koschack
Günter Hoven
Bernhard Sobotta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CMV Systems GmbH and Co KG
Original Assignee
CMV Systems GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CMV Systems GmbH and Co KG filed Critical CMV Systems GmbH and Co KG
Priority to PL06017618T priority Critical patent/PL1760401T3/en
Publication of EP1760401A2 publication Critical patent/EP1760401A2/en
Publication of EP1760401A3 publication Critical patent/EP1760401A3/en
Application granted granted Critical
Publication of EP1760401B1 publication Critical patent/EP1760401B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/56Boiler cleaning control devices, e.g. for ascertaining proper duration of boiler blow-down
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/48Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J3/00Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
    • F23J3/02Cleaning furnace tubes; Cleaning flues or chimneys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M11/00Safety arrangements
    • F23M11/04Means for supervising combustion, e.g. windows

Definitions

  • the invention relates to a method for monitoring the formation of deposits by deposits of solid particles from a hot, dust-laden flue gas on the flowed through by a cooling medium, made of tightly welded together pipes walls of a rectangular combustion chamber of a boiler with the features of the preamble of claim 1 and a Apparatus for carrying out the method.
  • the batches are cleaned by means of high pressure water jets from water or water lance blowers.
  • the aim is to clean off the approaches as completely as possible and to avoid the other, to hit clean Walker vom Kunststoff Kunststoffe with the water jet.
  • the latter leads to unnecessary material loading of the pipe walls of the heating surfaces due to thermal shock and consequent boiler damage.
  • the aim is to clean as often as necessary to avoid power losses through the cleaning process.
  • the reduction of the heat transfer of the heating surface is diagnosed and triggered the cleaning process.
  • the heating surfaces arranged in the firebox largely belong to the evaporator, which can only be thermally diagnosed as a whole. Thus, the cleaning of the entire evaporator heating surface is always triggered without sparing clean areas.
  • the heat flow from the flue gas to the working medium is measured selectively, and the heating surfaces are cleaned section by section on the basis of the measured values. This makes it possible to clean dirty areas and to spare clean areas.
  • the installation and maintenance of the heat flow probes are very expensive. Therefore, only a few measuring points are installed, so that each measuring point is assigned several hundred square meters of heating surface. It is thus not ensured that the punctual measurement is representative of the associated Edelocc Anlagen, ie, the vast majority of the area may, for. For example, be clean while the spot meter indicates contamination.
  • infrared camera systems for assessing the degree of contamination of heating surfaces and to determine the geometric dimensions of the approaches by computer-aided evaluation of the infrared images ( DE 195 47 269 A1 ).
  • the approaches are removed by a shock generator.
  • the infrared cameras are arranged in hatches and inspection flaps of the combustion chamber downstream and contacting heating surfaces receiving flue gas.
  • About the education of the infrared cameras and the evaluation of the measurement results is in the DE 195 47 269 A1 nothing else executed.
  • an infrared image of the walls of the furnace of a boiler using an infrared camera is recorded.
  • the infrared camera used works in the near infrared range at a wavelength of 1.5 to 2.1 ⁇ m.
  • the known method can only be used for ash approaches with a high degree of reflection.
  • the method also requires a non-cleanable reference area on the furnace wall. The intensity ratio between the area to be cleaned and the reference area is the measure of the contamination of the area to be cleaned. A complete cleaning of the entire wall is not possible.
  • the invention has for its object to make the monitoring of the formation of approaches on the walls of fire chambers with the help of infrared cameras easier and universally applicable.
  • the heating surface soiling Due to their heat-insulating effect, the heating surface soiling has a higher surface temperature than unpolluted heating surfaces and must therefore be clearly localized in a thermal image and qualitatively evaluated in terms of their thickness.
  • the firebox atmosphere which is clouded by solid particles and primarily contains infrared radiation-absorbing constituents such as H 2 O and CO 2 , has its maximum possible transparency, which makes it possible to open the firebox walls detect.
  • the combustion chamber of a power plant boiler fired with pulverized coal is delimited by walls 1 in which burner openings 2 for receiving burners and openings 3 for the exit of the secondary air are recessed.
  • the walls 1 of the firebox are constructed of tubes which are welded together gas-tight by webs.
  • the furnace has a rectangular cross-section and ends in a funnel 4 with an outlet slot 5 for the removal of ash. At the upper end of the furnace is in a flue, not shown on.
  • the tubes of the walls 1 of the firebox are connected as evaporators and flows through water and steam as working or cooling medium.
  • Part of the solid particles remaining during combustion of the pulverized coal is carried along by the flue gas rising in the combustion chamber.
  • more or less large areas of lugs 6 form on the inside of the walls 1 by deposition of solid particles from the flue gas. Since such approaches 6 heat-insulating effect and affect the heat transfer from the flue gas to the flowing in the tubes of the walls 1 cooling medium, the walls 1 are cleaned by means of water or water lances blowers or other cleaning systems and thereby freed from the lugs 6.
  • the infrared camera system described below is used.
  • an infrared camera 7 In two adjacent, so at right angles to each other arranged walls 1 of the rectangular firebox ever an infrared camera 7 is installed.
  • the two infrared cameras 7 are combined to form an assembly.
  • the infrared cameras 7 operate in the mid-infrared range with a wavelength of 3 to 5 microns.
  • a wavelength of 3.9 microns is selected, because for the infrared radiation with this wavelength, the optimum transparency in the furnace atmosphere is achieved.
  • Infrared cameras suitable for use in fire chambers are made of EP 1 347 325 A1 known. They consist of a lens body 8, a reversing system and projecting into the interior of the firebox lens head 9. The lens head 9 is provided with an oblique view 10.
  • the objective head 9 and the reversing system each contain a lens system which can have different image angles (wide-angle or normal objective) depending on the place of use and intended use. As indicated in FIG. 1 by the dashed lines, the angle of inclination of the oblique view 10 and / or the angle of view of the lens system are chosen so that the infrared camera 7 can detect the entire width of a wall 1. Depending on the size of the wall 1, several infrared cameras 7 can be installed above or next to one another in a wall 1.
  • Each infrared camera 7 is rotatable about its longitudinal axis 11 by 360 °. When the two infrared cameras 7 connected to an assembly are rotated, two opposing walls 1 and therefore the entire inner surfaces of the combustion chamber can be completely detected. The two infrared cameras 7 thus form a composite thermal image of all the walls 1 of the firebox.
  • the described infrared camera system works in the following way.
  • the infrared cameras 7 are gradually controlled via a connected commercial, not shown central unit and rotated defined. In each position, an infrared film is stored in the connected commercially available, not shown, central unit over a certain period of time.
  • the openings 3 for the exit of the secondary air do not pollute the openings 3 and have a known constant temperature. It will be the apparent temperature at the Openings 3 for the exit of the secondary air measured in the thermal image. From the known actual temperature and the temperature measured in the thermal image, the size of the radiation influence of the solid particles contained in the flue gas is determined on the basis of a usual mathematical-physical radiation model of solid particles in the flue gas from the central unit, not shown. On the basis of the mathematical-physical radiation model and the determined parameters, the radiation influence of the solid particles contained in the flue gas is determined for each pixel and eliminated via the central unit, not shown.
  • the thermal image obtained is geometrically equalized in the central unit and combined in the coordinate system XY (FIG. 2) in a coordinate-accurate manner to form a jacket of the walls 1 of the firebox.
  • the composite thermal image of the Mantelabwicklung is then largely free from the influence of radiation of the solid particles in the flue gas.
  • the measured at any point of the inner shell of the wall 1 of the furnace surface temperature is used at a predetermined heat flux density, temperature of flowing in the tubes of the walls 1 of the furnace cooling medium, wall thickness of the pipes and thermal conductivity of the pipe material based on known physical laws to the cooling medium to determine transferred heat flow using the central unit, not shown.
  • the thus determined transferred heat flow is set in relation to the heat flow that would be transferred from the wall 6 free of lugs 6 at the same time to the cooling medium.
  • the relative to each other set heat flows form the so-called Schuvidtechnischmaschine, which is between zero and one. With the determined Walker vomwertmaschineen the central unit, not shown, allows a cleaning system to clear the lugs 6 on the walls 1 accurately and with an adapted to the strength of the approaches intensity.
  • the heat flux density is measured with a known mobile measuring probe at several points of the combustion chamber wall during the commissioning of the infrared camera system. There is an interpolation between the measuring points.
  • the determined distribution of Wärznestrom ashamed on the wall 1 of the furnace is stored for each operating state in the evaluation of the central unit, not shown.
  • data from the process control system of the boiler is electronically transferred to the evaluation computer.
  • the identification of the current operating state takes place.
  • the distribution of the heat flow density over the walls 1 of the firebox deposited for the current operating state is used for the determination of the heating surface valences.
  • the wall 1 of the firebox are small areas that are not formed by cooling medium flowed pipes, but by uncooled masonry.
  • the heat flow passing through the wall 1 of the combustion chamber in the small areas is negligibly small. From when operating the infrared camera system of such Positionally known range by means of infrared camera measured surface temperature can thus be determined on the basis of known physical laws that impinge on this area heat flux density. Interpolation takes place between the small-area uncooled regions serving as measuring points, so that the distribution of the heat flux density across the wall 1 of the firebox is determined directly from the thermal image of the jacket development and used for the determination of the heating surface valences.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Incineration Of Waste (AREA)
  • Solid-Fuel Combustion (AREA)

Abstract

The method involves using infrared cameras (7) to measure the exact surface temperature of the walls (1) of a rectangular combustion chamber and to take pictures of the walls of the combustion chamber. The measured surface temperature is then compared with the temperature of the cooling medium flowing through the pipes on the walls of the combustion chamber. The thickness of the walls and pipes based on the photographed image is then compared with the predetermined thickness of the walls and pipes to determine formation of deposits (6) on the walls of the combustion chamber. The deposits, such as dust-loaded solid particles, may be formed on the walls of the combustion chamber due to the reaction of the cooling medium, flowing through the pipes on the walls of the combustion chamber, with heat. The total thickness of the formed deposits can be calculated by comparing the predetermined thickness and surface temperature of the walls of the combustion chamber with the measured thickness and surface temperature of the walls of the combustion chamber from the infrared cameras. The infrared cameras are installed in the combustion chamber. An independent claim is included for the monitoring device.

Description

Die Erfindung betrifft ein Verfahren zur Überwachung der Bildung von Ansätzen durch Ablagerungen von Feststoffpartikeln aus einem heißen, staubbeladenen Rauchgas auf den von einem Kühlmedium durchströmten, aus dicht miteinander verschweißten Rohren gebildeten Wänden eines rechteckigen Feuerraumes eines Kessels mit den Merkmalen des Oberbegriffes des Anspruches 1 sowie eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a method for monitoring the formation of deposits by deposits of solid particles from a hot, dust-laden flue gas on the flowed through by a cooling medium, made of tightly welded together pipes walls of a rectangular combustion chamber of a boiler with the features of the preamble of claim 1 and a Apparatus for carrying out the method.

Bei der Befeuerung von Kesseln mit festem Brennstoff kommt es an den Heizflächen rauchgasseitig zur Bildung von Ansätzen durch Ablagerungen von Feststoffpartikeln, wie z. B. Asche. Aufgrund ihrer wärmeisolierenden Wirkung behindern solche Ansätze auf den Heizflächen die Wärmeübertragung vom Rauchgas auf das Arbeitsmedium (Wasser/Wasserdampf) in den Rohrwänden der Heizflächen, so dass der Kessel-Wirkungsgrad sinkt.When firing boilers with solid fuel it comes to the heating surfaces on the flue gas side to the formation of deposits by deposits of solid particles, such. Ashes. Due to their heat-insulating effect such approaches hinder on the heating surfaces, the heat transfer from the flue gas to the working fluid (water / steam) in the tube walls of the heating surfaces, so that the boiler efficiency drops.

Im Bereich des Feuerraumes werden die Ansätze mittels Hochdruck-Wasserstrahlen aus Wasser- oder Wasserlanzenbläsern abgereinigt. Dabei wird angestrebt, die Ansätze zum einen möglichst vollständig abzureinigen und zum anderen zu vermeiden, saubere Heizflächenbereiche mit dem Wasserstrahl zu treffen. Letzteres führt zu einer unnötigen Materialbelastung der Rohrwände der Heizflächen infolge Thermoschock und daraus resultierend zu Kesselschäden. Weiterhin wird angestrebt, zur Vermeidung von Leistungsverlusten durch den Reinigungsvorgang nur so oft wie nötig zu reinigen. Zur Steuerung der Reinigungseinrichtungen in dem Feuerraum kommen nach derzeitigem stand der Technik folgende Verfahren zur Anwendung:In the area of the firebox, the batches are cleaned by means of high pressure water jets from water or water lance blowers. The aim is to clean off the approaches as completely as possible and to avoid the other, to hit clean Heizflächenbereiche with the water jet. The latter leads to unnecessary material loading of the pipe walls of the heating surfaces due to thermal shock and consequent boiler damage. Furthermore, the aim is to clean as often as necessary to avoid power losses through the cleaning process. For controlling the cleaning devices in the furnace, according to the current state of the art, the following methods are used:

a) Zeitsteuerung:a) Timing:

Basierend auf Erfahrungswerten wird der gesamte Feuerraum nach Ablauf fester Zeitintervalle gereinigt. Dabei werden weder die gebildeten Ansätze gezielt bekämpft, noch sauber gebliebene Bereiche verschont.Based on empirical values, the entire combustion chamber is cleaned after fixed time intervals. In doing so, neither the targeted approaches are combated, nor areas that have remained clean are spared.

b) Wärmetechnische Diagnose des Wärmeübertragungsvermögens der Heizflächen:b) Thermal diagnosis of the heat transfer capacity of the heating surfaces:

Über eine Messung von Ein- und Austrittsparametern des Arbeitsmediums wird die Verminderung der Wärmeübertragung der Heizfläche diagnostiziert und der Reinigungsvorgang ausgelöst. Die in dem Feuerraum angeordneten Heizflächen gehören zum größten Teil zum Verdampfer, der wärmetechnisch nur als Ganzes zu diagnostizieren ist. Somit wird immer die Reinigung der gesamten verdampferheizfläche ausgelöst, ohne saubere Bereiche zu verschonen.By measuring inlet and outlet parameters of the working medium, the reduction of the heat transfer of the heating surface is diagnosed and triggered the cleaning process. The heating surfaces arranged in the firebox largely belong to the evaporator, which can only be thermally diagnosed as a whole. Thus, the cleaning of the entire evaporator heating surface is always triggered without sparing clean areas.

c) Lokalisierung von Ansätzen mittels in die Heizflächen eingeschweißter Wärmestromdichtesonden:c) Localization of batches by means of heat flow density probes welded into the heating surfaces:

Der Wärmestrom vom Rauchgas zum Arbeitsmedium wird punktuell gemessen, und die Heizflächen werden abschnittsweise auf der Basis der Messwerte gereinigt. Das ermöglicht, gezielt verschmutzte Bereiche zu reinigen und saubere Bereiche zu verschonen. Die Installation und Wartung der Wärmestromdichtesonden sind sehr aufwendig. Daher werden nur wenige Messstellen installiert, so dass jedem Messpunkt mehrere hundert Quadratmeter Heizfläche zugeordnet sind. Es ist somit nicht sichergestellt, dass die punktuelle Messung repräsentativ für den zugeordneten Heizflächenbereich ist, d. h. der überwiegende Teil des Bereiches kann z. B. sauber sein, während die Punktmessung Verschmutzung anzeigt.The heat flow from the flue gas to the working medium is measured selectively, and the heating surfaces are cleaned section by section on the basis of the measured values. This makes it possible to clean dirty areas and to spare clean areas. The installation and maintenance of the heat flow probes are very expensive. Therefore, only a few measuring points are installed, so that each measuring point is assigned several hundred square meters of heating surface. It is thus not ensured that the punctual measurement is representative of the associated Heizflächenbereich, ie, the vast majority of the area may, for. For example, be clean while the spot meter indicates contamination.

d) Lokalisierung von Ansätzen mit Infrarotkamerasystemen:d) Localization of approaches with infrared camera systems:

Es ist bekannt, Infrarotkamerasysteme zur Beurteilung des Verschmutzungsgrades von Heizflächen einzusetzen und durch rechnergestützte Auswertung der Infrarotaufnahmen die geometrischen Ausmaße der Ansätze zu ermitteln ( DE 195 47 269 A1 ). Nach Maßgabe einer Auswertung werden die Ansätze durch einen Stoßgenerator entfernt. Zur Durchführung des bekannten Verfahrens werden die Infrarotkameras in Luken und Revisionsklappen des dem Feuerraum nachgeschalteten und Berührungsheizflächen aufnehmenden Rauchgaszuges angeordnet. Über die Ausbildung der Infrarotkameras und die Auswertung der Messergebnisse wird in der DE 195 47 269 A1 nichts weiteres ausgeführt.It is known to use infrared camera systems for assessing the degree of contamination of heating surfaces and to determine the geometric dimensions of the approaches by computer-aided evaluation of the infrared images ( DE 195 47 269 A1 ). According to an evaluation, the approaches are removed by a shock generator. To carry out the known method, the infrared cameras are arranged in hatches and inspection flaps of the combustion chamber downstream and contacting heating surfaces receiving flue gas. About the education of the infrared cameras and the evaluation of the measurement results is in the DE 195 47 269 A1 nothing else executed.

Bei dem aus der DE 41 39 738 C2 bekannten Verfahren wird ein Infrarotbild der Wände des Feuerraumes eines Kessels mit Hilfe einer Infrarotkamera aufgenommen. Die verwendete Infrarotkamera arbeitet im nahen Infrarot-Bereich bei einer Wellenlänge von 1,5 bis 2,1 µm. Das bekannte Verfahren ist nur für Ascheansätze mit einem hohen Reflektionsgrad einsetzbar. Das Verfahren setzt außerdem einen nicht zu reinigenden Bezugsbereich auf der Feuerraumwand voraus. Das Intensitätsverhältnis zwischen dem zu reinigenden Bereich und dem Bezugsbereich ist das Maß für die Verschmutzung des zu reinigenden Bereiches. Eine vollständige Reinigung der gesamten Wand ist damit nicht möglich.In the from the DE 41 39 738 C2 known method, an infrared image of the walls of the furnace of a boiler using an infrared camera is recorded. The infrared camera used works in the near infrared range at a wavelength of 1.5 to 2.1 μm. The known method can only be used for ash approaches with a high degree of reflection. The method also requires a non-cleanable reference area on the furnace wall. The intensity ratio between the area to be cleaned and the reference area is the measure of the contamination of the area to be cleaned. A complete cleaning of the entire wall is not possible.

Der Erfindung liegt die Aufgabe zugrunde, die Überwachung der Bildung von Ansätzen auf den Wänden von Feuerräumen mit Hilfe von Infrarotkameras einfacher und universell einsetzbar zu gestalten.The invention has for its object to make the monitoring of the formation of approaches on the walls of fire chambers with the help of infrared cameras easier and universally applicable.

Die Aufgabe wird bei einem gattungsgemäßen Verfahren erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruches 1 gelöst. Eine Vorrichtung zur Durchführung des Verfahrens ist Gegenstand des Anspruches 6. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.The object is achieved in a generic method according to the invention by the characterizing features of claim 1. An apparatus for carrying out the method is the subject of claim 6. Advantageous embodiments of the invention are specified in the subclaims.

Die Heizflächenverschmutzungen weisen aufgrund ihrer wärmeisolierenden Wirkung eine höhere Oberflächentemperatur auf als unverschmutzte Heizflächen und sind daher in einem Wärmebild eindeutig zu lokalisieren und qualitativ in ihrer Mächtigkeit zu bewerten. Bei einer im mittleren Infrarotbereich liegenden bevorzugten Wellenlänge von 3,9 µm weist die Feuerraumatmosphäre, die durch Feststoffpartikel getrübt ist und vor allem Infrarotstrahlung absorbierende Bestandteile wie H2O und CO2 enthält, ihre maximal mögliche Transparenz auf, die es ermöglicht, die Feuerraumwände zu erkennen.Due to their heat-insulating effect, the heating surface soiling has a higher surface temperature than unpolluted heating surfaces and must therefore be clearly localized in a thermal image and qualitatively evaluated in terms of their thickness. With a preferred wavelength of 3.9 μm in the mid-infrared range, the firebox atmosphere, which is clouded by solid particles and primarily contains infrared radiation-absorbing constituents such as H 2 O and CO 2 , has its maximum possible transparency, which makes it possible to open the firebox walls detect.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im Folgenden näher erläutert. Es zeigen:

  • Fig. 1 schematisch die Seitenansicht eines Feuerraumes und
  • Fig. 2 die Abwicklung des Feuerraumes nach Fig. 1.
An embodiment of the invention is illustrated in the drawing and will be explained in more detail below. Show it:
  • Fig. 1 shows schematically the side view of a combustion chamber and
  • 2 shows the development of the combustion chamber according to FIG. 1.

Der Feuerraum eines mit Kohlenstaub befeuerten Kraftwerkskessels ist durch Wände 1 begrenzt, in denen Brenneröffnungen 2 zur Aufnahme von Brennern sowie Öffnungen 3 für den Austritt der Sekundärluft ausgespart sind. Die Wände 1 des Feuerraumes sind aus Rohre aufgebaut, die durch Stege gasdicht miteinander verschweißt sind. Der Feuerraum weist einen rechteckigen Querschnitt auf und endet in einem Trichter 4 mit einem Austrittsschlitz 5 für den Abzug von Asche. Am oberen Ende geht der Feuerraum in einen nicht gezeigten Rauchgaszug über. Die Rohre der Wände 1 des Feuerraumes sind als Verdampfer geschaltet und von Wasser und Wasserdampf als Arbeits- oder Kühlmedium durchströmt.The combustion chamber of a power plant boiler fired with pulverized coal is delimited by walls 1 in which burner openings 2 for receiving burners and openings 3 for the exit of the secondary air are recessed. The walls 1 of the firebox are constructed of tubes which are welded together gas-tight by webs. The furnace has a rectangular cross-section and ends in a funnel 4 with an outlet slot 5 for the removal of ash. At the upper end of the furnace is in a flue, not shown on. The tubes of the walls 1 of the firebox are connected as evaporators and flows through water and steam as working or cooling medium.

Ein Teil der bei der Verbrennung des Kohlenstaubes zurückbleibenden Feststoffpartikel wird von dem in dem Feuerraum aufsteigenden Rauchgas mitgeführt. Je nach Menge und Zusammensetzung der Feststoffpartikel bilden sich auf der Innenseite der Wände 1 mehr oder weniger große Flächen von Ansätzen 6 durch Ablagerung von Feststoffpartikeln aus dem Rauchgas. Da solche Ansätze 6 wärmeisolierend wirken und den Wärmeübergang von dem Rauchgas auf das in den Rohren der Wände 1 strömende Kühlmedium beeinträchtigen, werden die Wände 1 mit Hilfe von Wasser- oder Wasserlanzenbläsern oder durch andere Reinigungssysteme abgereinigt und dadurch von den Ansätzen 6 befreit. Um zum Schutz der Wände 1 die Ansätze 6 gezielt zu entfernen, wird das nachfolgend beschriebene Infrarotkamerasystem eingesetzt.Part of the solid particles remaining during combustion of the pulverized coal is carried along by the flue gas rising in the combustion chamber. Depending on the amount and composition of the solid particles, more or less large areas of lugs 6 form on the inside of the walls 1 by deposition of solid particles from the flue gas. Since such approaches 6 heat-insulating effect and affect the heat transfer from the flue gas to the flowing in the tubes of the walls 1 cooling medium, the walls 1 are cleaned by means of water or water lances blowers or other cleaning systems and thereby freed from the lugs 6. In order to protect the lugs 6 targeted to protect the walls 1, the infrared camera system described below is used.

In zwei benachbarten, also im rechten Winkel zueinander angeordneten Wänden 1 des rechteckigen Feuerraumes ist je eine Infrarotkamera 7 installiert. Die beiden Infrarotkameras 7 sind zu einer Baugruppe zusammengefasst. Die Infrarotkameras 7 arbeiten im mittleren Infrarotbereich mit einer Wellenlänge von 3 bis 5 µm. Vorzugsweise wird eine Wellenlänge von 3,9 µm gewählt, weil für die Infrarotstrahlung mit dieser Wellenlänge die optimale Transparenz in der Feuerraumatmosphäre erreicht wird.In two adjacent, so at right angles to each other arranged walls 1 of the rectangular firebox ever an infrared camera 7 is installed. The two infrared cameras 7 are combined to form an assembly. The infrared cameras 7 operate in the mid-infrared range with a wavelength of 3 to 5 microns. Preferably, a wavelength of 3.9 microns is selected, because for the infrared radiation with this wavelength, the optimum transparency in the furnace atmosphere is achieved.

Für den Einsatz in Feuerräumen geeignete Infrarotkameras sind aus der EP 1 347 325 A1 bekannt. Sie bestehen aus einem Objektivkörper 8, einem Umkehrsystem und einem in das Innere des Feuerraumes hineinragenden Objektivkopf 9. Der Objektivkopf 9 ist mit einem Schrägausblick 10 versehen.Infrared cameras suitable for use in fire chambers are made of EP 1 347 325 A1 known. They consist of a lens body 8, a reversing system and projecting into the interior of the firebox lens head 9. The lens head 9 is provided with an oblique view 10.

Der Objektivkopf 9 und das Umkehrsystem enthalten jeweils ein Linsensystem, das je nach Einsatzort und Verwendungszweck unterschiedliche Bildwinkel (Weitwinkel- oder Normalobjektiv) aufweisen kann. Wie in Fig. 1 durch die gestrichelten Linien angedeutet ist, sind der Neigungswinkel des Schrägausblicks 10 und/oder der Bildwinkel des Linsensystems so gewählt, dass die Infrarotkamera 7 die gesamte Breite einer Wand 1 erfassen kann. Je nach Größe der Wand 1 können auch mehrere Infrarotkameras 7 über- oder nebeneinander in einer Wand 1 installiert sein.The objective head 9 and the reversing system each contain a lens system which can have different image angles (wide-angle or normal objective) depending on the place of use and intended use. As indicated in FIG. 1 by the dashed lines, the angle of inclination of the oblique view 10 and / or the angle of view of the lens system are chosen so that the infrared camera 7 can detect the entire width of a wall 1. Depending on the size of the wall 1, several infrared cameras 7 can be installed above or next to one another in a wall 1.

Jede Infrarotkamera 7 ist um 360° um ihre Längsachse 11 drehbar. Bei einer Drehung der beiden zu einer Baugruppe verbundenen Infrarotkameras 7 können jeweils zwei gegenüberliegende Wände 1 und damit insgesamt die Innenflächen des Feuerraumes vollständig erfasst werden. Die beiden Infrarotkameras 7 bilden damit im Verbund ein Wärmebild von allen Wänden 1 des Feuerraumes ab.Each infrared camera 7 is rotatable about its longitudinal axis 11 by 360 °. When the two infrared cameras 7 connected to an assembly are rotated, two opposing walls 1 and therefore the entire inner surfaces of the combustion chamber can be completely detected. The two infrared cameras 7 thus form a composite thermal image of all the walls 1 of the firebox.

Das beschriebene Infrarotkamerasystem arbeitet auf folgende Weise. Die Infrarotkameras 7 werden schrittweise über eine angeschlossene handelsübliche, nicht dargestellte Zentraleinheit gesteuert und definiert gedreht. In jeder Position wird über einen bestimmten Zeitraum ein Infrarot-Film in der angeschlossenen handelsüblichen, nicht dargestellten Zentraleinheit abgespeichert.The described infrared camera system works in the following way. The infrared cameras 7 are gradually controlled via a connected commercial, not shown central unit and rotated defined. In each position, an infrared film is stored in the connected commercially available, not shown, central unit over a certain period of time.

Aus den Infrarot-Filmen wird durch eine übliche elektronische Bildverarbeitung in der nicht dargestellten Zentraleinheit ein Wärmebild mit bestmöglicher Abbildungsqualität der Wände 1 des Feuerraumes gewonnen. Dabei wird der Strahlungseinfluss der im Rauchgas enthaltenen Feststoffpartikel wie folgt eliminiert:From the infrared films is obtained by a conventional electronic image processing in the central unit, not shown, a thermal image with the best possible image quality of the walls 1 of the furnace. The radiation influence of the solid particles contained in the flue gas is eliminated as follows:

Die Öffnungen 3 für den Austritt der Sekundärluft verschmutzen nicht an den Öffnungen 3 und weisen eine bekannte konstante Temperatur auf. Es wird die scheinbare Temperatur an den Öffnungen 3 für den Austritt der Sekundärluft im Wärmebild gemessen. Aus der bekannten tatsächlichen Temperatur und der im Wärmebild gemessenen Temperatur wird die Größe des Strahlungseinflusses der im Rauchgas enthaltenen Feststoffpartikel auf der Grundlage eines üblichen mathematisch-physikalischen Strahlungsmodells von Feststoffpartikeln im Rauchgas von der nicht dargestellten Zentraleinheit ermittelt. Anhand des mathematisch-physikalischen Strahlungsmodells und den ermittelten Parametern wird für jeden Bildpunkt der Strahlungseinfluss der im Rauchgas enthaltenen Feststoffpartikel bestimmt und über die nicht dargestellte Zentraleinheit eleminiert.The openings 3 for the exit of the secondary air do not pollute the openings 3 and have a known constant temperature. It will be the apparent temperature at the Openings 3 for the exit of the secondary air measured in the thermal image. From the known actual temperature and the temperature measured in the thermal image, the size of the radiation influence of the solid particles contained in the flue gas is determined on the basis of a usual mathematical-physical radiation model of solid particles in the flue gas from the central unit, not shown. On the basis of the mathematical-physical radiation model and the determined parameters, the radiation influence of the solid particles contained in the flue gas is determined for each pixel and eliminated via the central unit, not shown.

Das gewonnene Wärmebild wird in der Zentraleinheit geometrisch entzerrt und in dem Koordinatensystem XY (Fig. 2) koordinatengenau zu einer Mantelabwicklung der Wände 1 des Feuerraumes zusammengesetzt. Das zusammengesetzte Wärmebild der Mantelabwicklung ist dann weitgehend frei vom Strahlungseinfluss der Feststoffpartikel im Rauchgas.The thermal image obtained is geometrically equalized in the central unit and combined in the coordinate system XY (FIG. 2) in a coordinate-accurate manner to form a jacket of the walls 1 of the firebox. The composite thermal image of the Mantelabwicklung is then largely free from the influence of radiation of the solid particles in the flue gas.

Die Wärmeübertragung zwischen Rauchgas und den Wänden 1 der Heizflächen des Feuerraumes erfolgt durch Wärmestrahlung. Die Wärmestromdichte in Kilowatt pro Quadratmeter ist dabei definiert als die auf eine Fläche der Wand des Feuerraumes auftreffende Halbraumstrahlung. Die Wärmestromdichte hängt von der Temperatur und der Zusammensetzung der Rauchgase ab. Dabei variiert die Wärmestromdichte über die Höhe des Feuerraumes und bei wechselnden Betriebszuständen der Feuerung.The heat transfer between flue gas and the walls 1 of the heating surfaces of the furnace takes place by thermal radiation. The heat flux in kilowatts per square meter is defined as the half-space radiation striking an area of the wall of the furnace. The heat flow density depends on the temperature and the composition of the flue gases. In this case, the heat flux density varies over the height of the combustion chamber and with changing operating conditions of the furnace.

Das gewonnene Wärmebild der Mantelabwicklung gibt die vorhandene Oberflächentemperatur auf den Wänden 1 des Feuerraumes wieder. Aus der Betriebsweise und der Konstruktion des Feuerraumes sind die Temperatur des in den Rohren der Wände 1 des Feuerraumes strömenden Kühlmediums sowie die Wanddicke der Rohre und die Wärmeleitfähigkeit des Rohrwerkstoffes bekannt. Aus den bekannten vorgegebenen Werten lassen sich bei vorbestimmter Wärmestromdichte in Kilowatt pro Quadratmeter die Oberflächentemperatur und der unter Berücksichtigung des Wärmeüberganges an das Kühlmedium übertragene Wärmestrom einer von Ansätzen 6 freien Wand 1 ermitteln. Die dann an einer beliebigen Stelle auf herkömmliche Weise gemessene Oberflächentemperatur wird mit der ermittelten Oberflächentemperatur einer von Ansätzen 6 freien Wand 1 in der nicht dargestellten Zentraleinheit verglichen. Nach dem erfolgten Vergleich gibt das Wärmebild Auskunft über die Lage der Ansätze 6 auf den Wänden 1 des Feuerraumes und eine qualitative Bewertung der Dicke der festgestellten Ansätze aufgrund von deren wärmeisolierenden Wirkung.The thermal image of the jacket developed gives the existing surface temperature on the walls 1 of the firebox. From the operation and design of the furnace, the temperature of the flowing in the tubes of the walls 1 of the furnace cooling medium and the wall thickness of the tubes and the Thermal conductivity of the pipe material known. From the known given values can be determined at predetermined heat flow density in kilowatts per square meter, the surface temperature and, taking into account the heat transfer to the cooling medium transferred heat flow of a wall 6 free wall 1. The then measured at any point in a conventional manner surface temperature is compared with the determined surface temperature of a wall 6 free of lugs 1 in the central unit, not shown. After the comparison has been made, the thermal image provides information about the position of the lugs 6 on the walls 1 of the furnace and a qualitative assessment of the thickness of the lugs detected due to their heat-insulating effect.

Die an einer beliebigen Stelle des Innenmantels der Wand 1 des Feuerraumes gemessene Oberflächentemperatur wird dazu verwendet, bei vorbestimmter Wärmestromdichte, Temperatur des in den Rohren der Wände 1 des Feuerraumes strömenden Kühlmediums, Wanddicke der Rohre und Wärmeleitfähigkeit des Rohrwerkstoffes anhand bekannter physikalischer Gesetze den an das Kühlmedium übertragenen Wärmestrom mit Hilfe der nicht dargestellten Zentraleinheit zu ermitteln. Der so ermittelte übertragene Wärmestrom wird ins Verhältnis gesetzt zu dem Wärmestrom, den die von Ansätzen 6 freie Wand 1 zum selben Zeitpunkt an das Kühlmedium übertragen würde. Die zueinander ins Verhältnis gesetzten Wärmeströme bilden die sogenannte Heizflächenwertigkeit, die zwischen Null und Eins liegt. Mit den ermittelten Heizflächenwertigkeiten ermöglicht die nicht dargestellte Zentraleinheit einem Reinigungssystem, die Ansätze 6 an den Wänden 1 zielgenau und mit einer an die Stärke der Ansätze angepassten Intensität abzureinigen.The measured at any point of the inner shell of the wall 1 of the furnace surface temperature is used at a predetermined heat flux density, temperature of flowing in the tubes of the walls 1 of the furnace cooling medium, wall thickness of the pipes and thermal conductivity of the pipe material based on known physical laws to the cooling medium to determine transferred heat flow using the central unit, not shown. The thus determined transferred heat flow is set in relation to the heat flow that would be transferred from the wall 6 free of lugs 6 at the same time to the cooling medium. The relative to each other set heat flows form the so-called Heizflächenwertigkeit, which is between zero and one. With the determined Heizflächenwertigkeiten the central unit, not shown, allows a cleaning system to clear the lugs 6 on the walls 1 accurately and with an adapted to the strength of the approaches intensity.

Für die Ermittlung der Heizflächenwertigkeiten ist die Kenntnis der Wärmestromdichte erforderlich, nämlich die auf eine Fläche der Feuerraumwand auftreffende Halbraumstrahlung in Kilowatt pro Quadratmeter. Die Bestimmung der Wärmestromdichte ist dabei mit zwei unterschiedlichen Verfahren möglich, welche abhängig vom konstruktiven Aufbau des Feuerraumes alternativ oder in Kombination miteinander zur Anwendung kommen.Knowledge of the heat flux density, namely the half-space radiation in kilowatts per square meter impinging on an area of the combustion chamber wall, is required for determining the heating surface valences. The determination of the heat flux density is possible with two different methods, which are used depending on the structural design of the firebox alternatively or in combination with each other.

Verfahren 1:Method 1:

Für jeden definierten Betriebszustand des Kessels wird die Wärmestromdichte mit einer bekannten mobilen Messsonde an mehreren Punkten der Feuerraumwand im Zuge der Inbetriebnahme des Infrarotkamerasystems gemessen. Zwischen den Messpunkten erfolgt eine Interpolation. Die ermittelte Verteilung der Wärznestromdichte über die Wand 1 des Feuerraumes wird für jeden Betriebszustand im Auswerterechner der nicht dargestellten Zentraleinheit hinterlegt. Beim Betrieb des Infrarotkamerasystems werden Daten aus dem Prozessleitsystem des Kessels elektronisch an den Auswerterechner übertragen. Anhand der übertragenen Betriebsdaten erfolgt die Identifikation des aktuellen Betriebszustandes. Die für den aktuellen Betriebszustand hinterlegte Verteilung der Wärmestromdichte über die Wände 1 des Feuerraumes kommt für die Bestimmung der Heizflächenwertigkeiten zur Anwendung.For each defined operating condition of the boiler, the heat flux density is measured with a known mobile measuring probe at several points of the combustion chamber wall during the commissioning of the infrared camera system. There is an interpolation between the measuring points. The determined distribution of Wärznestromdichte on the wall 1 of the furnace is stored for each operating state in the evaluation of the central unit, not shown. When operating the infrared camera system, data from the process control system of the boiler is electronically transferred to the evaluation computer. On the basis of the transmitted operating data, the identification of the current operating state takes place. The distribution of the heat flow density over the walls 1 of the firebox deposited for the current operating state is used for the determination of the heating surface valences.

Verfahren 2:Method 2:

In der Wand 1 des Feuerraumes befinden sich kleinflächige Bereiche, die nicht von kühlmediumdurchströmten Rohren, sondern von ungekühltem Mauerwerk gebildet werden. Der in den kleinflächigen Bereichen durch die Wand 1 des Feuerraumes hindurchtretende Wärmestrom ist vernachlässigbar klein. Aus der beim Betrieb des Infrarotkamerasystems von einem solchen positionsmäßig bekannten Bereich mittels Infrarotkamera gemessenen Oberflächentemperatur lässt sich somit anhand bekannter physikalischer Gesetze die auf diesen Bereich auftreffende Wärmestromdichte ermitteln. Zwischen den kleinflächigen, als Messpunkte dienenden ungekühlten Bereichen erfolgt eine Interpolation, so dass die Verteilung der Wärmestromdichte über die Wand 1 des Feuerraumes direkt aus dem Wärmebild der Mantelabwicklung bestimmt wird und für die Bestimmung der Heizflächenwertigkeiten zur Anwendung kommt.In the wall 1 of the firebox are small areas that are not formed by cooling medium flowed pipes, but by uncooled masonry. The heat flow passing through the wall 1 of the combustion chamber in the small areas is negligibly small. From when operating the infrared camera system of such Positionally known range by means of infrared camera measured surface temperature can thus be determined on the basis of known physical laws that impinge on this area heat flux density. Interpolation takes place between the small-area uncooled regions serving as measuring points, so that the distribution of the heat flux density across the wall 1 of the firebox is determined directly from the thermal image of the jacket development and used for the determination of the heating surface valences.

Bei der Bestimmung der Heizflächenwertigkeiten geht der mit nur begrenzter Genauigkeit bekannte und zeitlich veränderliche Emissionsgrad der Ansätze 6 der Wände 1 als Fehlergröße in die Bestimmung der Heizflächenwertigkeiten ein. Da die zur Bestimmung der Wärmestromdichte nach Verfahren 2 herangezogenen ungekühlten Bereiche mit Ansätzen 6 gleicher Art und damit gleichen Emissionsgrades bedeckt sind wie andere Bereiche der Wände 1 des Feuerraumes, kompensiert sich weitestgehend der emissionsgradbedingte Fehler bei der Bestimmung der Wärmestromdichte nach Verfahren 2 mit dem emissionsgradbedingten Fehler bei der Ermittlung der Heizflächenwertigkeiten. Bei Anwendung von Verfahren 2 oder einer Kombination der Verfahren 1 und 2 zur Bestimmung der Wärmestromdichte ist somit der Fehlereinfluss des mit nur begrenzter Genauigkeit bekannten und zeitlich veränderlichen Emissionsgrades der Ansätze 6 der Wände 1 auf die Bestimmung der Heizflächenwertigkeiten sehr gering.When determining the Heizflächenwertigkeiten the known with limited accuracy and time-varying emissivity of the lugs 6 of the walls 1 as error size in the determination of Heizflächenwertigkeiten. Since the uncooled regions used for determining the heat flux density according to method 2 are covered with lugs 6 of the same kind and thus the same emissivity as other regions of the walls 1 of the furnace, the emission-related error in determining the heat flux density according to method 2 largely compensates for the emission-related error in the determination of the heating surface valences. When using method 2 or a combination of methods 1 and 2 for determining the heat flux density, the error influence of the known with only limited accuracy and time-varying emissivity of the projections 6 of the walls 1 on the determination of Heizflächenwertigkeiten is very low.

Claims (8)

Verfahren zur Überwachung der Bildung von Ansätzen (6) durch Ablagerungen von Feststoffpartikeln aus einem heißen, staubbeladenen Rauchgas auf den von einem Kühlmedium durchströmten, aus dicht miteinander verschweißten Rohren gebildeten Wänden (1) eines rechteckigen Feuerraumes eines Kessels durch die Aufnahme eines Infrarotbildes der Wände (1) mit Hilfe einer Infrarotkamera (7), dadurch gekennzeichnet, dass über die gesamte Fläche der Wände (1) des Feuerraumes die genaue Oberflächentemperatur mit zwei um 90° zueinander versetzten Infrarotkameras (7) über ein gewonnenes Wärmebild der Mantelabwicklung des Feuerraumes erfasst wird, dass die erfasste genaue Oberflächentemperatur mit der an der jeweiligen Messstelle bekannten Temperatur des Kühlmediums unter Berücksichtigung der Wanddicke und der Wärmeleitfähigkeit der Rohre der Wände (1) des Feuerraums verglichen wird, dass die von jeder Infrarotkamera (7) aufgenommenen Einzelaufnahmen zu einer Gesamtabwicklung der Wände (1) des Innenmantels der Feuerraumes zusammengesetzt werden und dass aus der Gesamtabwicklung die Koordinaten und aus dem Temperaturvergleich die Dicke der Ansätze (6) auf den Wänden (1) ermittelt werden.Method for monitoring the formation of lugs (6) by depositing solid particles from a hot, dust-laden flue gas on the walls (1) of a rectangular combustion chamber of a boiler through which a cooling medium flows, tightly welded together, by taking an infrared image of the walls ( 1) with the aid of an infrared camera (7), characterized in that over the entire surface of the walls (1) of the combustion chamber, the exact surface temperature is detected with two 90 ° offset from each other infrared cameras (7) on a recovered thermal image of Mantelabwicklung the firebox, in that the detected exact surface temperature is compared with the temperature of the cooling medium known at the respective measuring point, taking into account the wall thickness and the thermal conductivity of the tubes of the walls (1) of the firebox, that the individual exposures recorded by each infrared camera (7) result in a total unwinding of the W nde (1) of the inner shell of the combustion chamber are assembled, and that are determined from the total processing the coordinates and from the temperature comparing the thickness of the lugs (6) on the walls (1). Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Koordinaten und die Dicke der Ansätze (6) auf den Wänden (1) an ein Reinigungssystem zur zielgenauen und intensitätsgenauen Entfernung der Ansätze (6) weitergeleitet werden.A method according to claim 1, characterized in that the coordinates and the thickness of the projections (6) on the walls (1) are forwarded to a cleaning system for accurate and intensity-accurate removal of the lugs (6). Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Erfassung der genauen Oberflächentemperatur im mittleren Infrarot-Bereich von 3,0 bis 5,0 µm durchgeführt wird.A method according to claim 1 or 2, characterized in that the detection of the exact surface temperature in the mid-infrared range of 3.0 to 5.0 microns performed becomes. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Erfassung der genauen Oberflächentemperatur bei einer Wellenlänge von 3,9 µm durchgeführt wird.A method according to claim 3, characterized in that the detection of the exact surface temperature at a wavelength of 3.9 microns is performed. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Strahlungseinfluss der im Rauchgas enthaltenen Feststoffpartikel mit einem mathematisch-physikalischen Strahlungsmodell und den ermittelten Parametern für jeden Bildpunkt bestimmt und eliminiert wird.Method according to one of claims 1 to 4, characterized in that the radiation influence of the solid particles contained in the flue gas is determined and eliminated with a mathematical-physical radiation model and the determined parameters for each pixel. Verfahren nach einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, dass eine auf jeden Punkt der Wände (1) des Feuerraumes auftreffende wärmestromdichte ermittelt wirdMethod according to one of claims 1 to 5, characterized in that a heat flux density impinging on each point of the walls (1) of the firebox is determined Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in zwei benachbarten Wänden (1) eines rechteckigen Feuerraumes eines Kessels jeweils mindestens eine Infrarotkamera (7) angeordnet ist, dass jede Infrarotkamera (7) um 360° um ihre Längsachse (11) schrittweise drehbar angeordnet und mit einem Schrägausblick (10) versehen ist, dass die Infrarotkamera (7) einen vorbestimmten Neigungswinkel des Schrägausblicks (10) in Verbindung mit dem Bildwinkel der Infrarotkamera (7) aufweist und dass die Infrarotkamera (7) die gesamte Breite einer Wand (1) des Feuerraumes für eine Bildzusammensetzung, Bildverarbeitung und Bildauswertung erfasst.Device for carrying out the method according to one of claims 1 to 6, characterized in that in two adjacent walls (1) of a rectangular firebox of a boiler in each case at least one infrared camera (7) is arranged, that each infrared camera (7) 360 ° to their A longitudinal axis (11) is rotatably arranged stepwise and provided with an oblique view (10) that the infrared camera (7) has a predetermined inclination angle of the oblique view (10) in conjunction with the angle of view of the infrared camera (7) and in that the infrared camera (7) entire width of a wall (1) of the firebox for an image composition, image processing and image analysis detected. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Infrarotkameras (7) um 90° versetzt zueinander in den Wänden (1) des Feuerraumes angeordnet sind.Apparatus according to claim 7, characterized in that the infrared cameras (7) offset by 90 ° to each other in the walls (1) of the furnace are arranged.
EP06017618A 2005-08-29 2006-08-24 Method and device for monitoring the building of deposits in combustion chambers Not-in-force EP1760401B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL06017618T PL1760401T3 (en) 2005-08-29 2006-08-24 Method and device for monitoring the building of deposits in combustion chambers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005041004A DE102005041004A1 (en) 2005-08-29 2005-08-29 Monitoring procedure for formation of deposits in combustion chamber, involves comparing predetermined surface temperature and thickness of combustion chamber walls with wall surface temperature and thickness measured using infrared cameras

Publications (3)

Publication Number Publication Date
EP1760401A2 true EP1760401A2 (en) 2007-03-07
EP1760401A3 EP1760401A3 (en) 2009-03-04
EP1760401B1 EP1760401B1 (en) 2011-08-03

Family

ID=37453042

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06017618A Not-in-force EP1760401B1 (en) 2005-08-29 2006-08-24 Method and device for monitoring the building of deposits in combustion chambers

Country Status (7)

Country Link
US (1) US7607825B2 (en)
EP (1) EP1760401B1 (en)
KR (1) KR20070026066A (en)
AT (1) ATE519075T1 (en)
DE (1) DE102005041004A1 (en)
ES (1) ES2369276T3 (en)
PL (1) PL1760401T3 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI118743B (en) * 2004-11-04 2008-02-29 Andritz Oy Control of a filament bed in the recovery boiler
US9939395B2 (en) * 2007-05-18 2018-04-10 Environmental Energy Services, Inc. Method for measuring ash/slag deposition in a utility boiler
PL2669651T3 (en) * 2007-06-13 2021-10-25 Oy Halton Group, Ltd. Fouling detector for detecting grease fouling in a duct
US8147130B2 (en) * 2008-04-18 2012-04-03 General Electric Company Heat flux measurement device for estimating fouling thickness
JP5804255B2 (en) * 2011-07-13 2015-11-04 東京電力株式会社 Transparent member
FI124057B (en) * 2012-12-05 2014-02-28 Metso Power Oy Arrangements in a thermal process and method for measuring the thickness of a soil layer
CN103217221B (en) * 2013-03-22 2015-03-11 北京航空航天大学 Air-cooling condenser radiating surface temperature field measuring method based on image stitching
US10060688B2 (en) 2014-07-25 2018-08-28 Integrated Test & Measurement (ITM) System and methods for detecting, monitoring, and removing deposits on boiler heat exchanger surfaces using vibrational analysis
US9927231B2 (en) * 2014-07-25 2018-03-27 Integrated Test & Measurement (ITM), LLC System and methods for detecting, monitoring, and removing deposits on boiler heat exchanger surfaces using vibrational analysis
WO2016097723A1 (en) * 2014-12-16 2016-06-23 Isis Innovation Limited Detecting composition of a sample based on thermal properties
CN105927996B (en) * 2016-05-24 2018-11-20 广州特种承压设备检测研究院 Intelligent ash blowing method and system based on 3-dimensional reconstruction
DE102016214854B4 (en) 2016-08-10 2020-02-13 Technische Universität Dresden Method and device for characterizing deposits
US20210108917A1 (en) * 2018-04-17 2021-04-15 National University Corporation Tokyo University Of Marine Science And Technology Scale thickness estimation system, scale thickness estimation method, and scale thickness estimation program
CN109028562B (en) * 2018-07-03 2021-06-11 朱国琴 Take flame to survey oil fired boiler of function
FI3708910T3 (en) * 2019-03-13 2023-05-04 Alfa Laval Corp Ab Boiler
US11650173B2 (en) * 2019-11-01 2023-05-16 Caterpillar Inc. Grading a piston with deposits using thermal scan data
US11386530B2 (en) * 2020-02-26 2022-07-12 Flir Systems Ab Digital filter for turbulence reduction and gas detection in thermal images
JP7401874B2 (en) * 2020-03-31 2023-12-20 横河電機株式会社 Estimation system, estimation device and estimation method
KR102415318B1 (en) * 2021-06-30 2022-06-30 삼회산업 (주) Angle view lens tube that can view images with a lens tube with an angle through the clinker of the boiler tube even at high temperature inside the boiler
CN113357657A (en) * 2021-07-07 2021-09-07 烟台龙源电力技术股份有限公司 Boiler heating surface soot blowing control system and control method
CN114018982B (en) * 2021-10-14 2023-11-07 国网江西省电力有限公司电力科学研究院 Visual monitoring method for dust deposit of air preheater
CN115452646B (en) * 2022-08-24 2023-05-30 淮南矿业(集团)有限责任公司顾桥煤矿 Quick detection device and method for ash content of coal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952118A (en) 1982-09-20 1984-03-26 Babcock Hitachi Kk Method for cleaning wall surface of combustion device
DE4139718A1 (en) 1990-12-03 1992-06-04 Babcock & Wilcox Co MONITOR FOR MONITORING THE PURITY OF A FIRE WITH REGARD TO ASH WITH A HIGH REFLECTION LEVEL
DE19547269A1 (en) 1995-12-19 1997-06-26 Dynamit Nobel Ag Removal of cinders and ashes from fire grates in boiler plants

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE281448C (en)
JPS5925118A (en) 1982-08-02 1984-02-09 オムロン株式会社 Method of producing pushbutton switch
JPS5949420A (en) * 1982-09-11 1984-03-22 Babcock Hitachi Kk Controlling method of soot blower
DE3414694A1 (en) * 1984-04-18 1985-10-24 Klöckner-Humboldt-Deutz AG, 5000 Köln Device for measuring temperatures in the interior of a moving reactor having a refractory inner lining
DD281448B5 (en) * 1987-07-15 1996-09-05 Ver Energiewerke Ag Method for determining a slagging area on the inner wall surfaces of a combustion chamber of a pulverized coal furnace
US5180300A (en) * 1988-03-16 1993-01-19 Bloom Engineering Company, Inc. Low NOx regenerative burner
AT407197B (en) * 1993-11-03 2001-01-25 Johann Gigerl Thermographic measurement method for measuring the wall thickness of melting troughs, crucibles (pots), vessels or containers by using aids (accessories, auxiliary equipment) during full service (full scale operation)
US5462358A (en) * 1994-01-03 1995-10-31 At&T Ipm Corp. Selectively extracting infrared radiation from bioler interior to determine the temperature of individual boiler tubes
DE19640337A1 (en) * 1996-09-20 1998-03-26 Ver Energiewerke Ag Method of assessing and removing slag deposits on a heating surface
DE10211985A1 (en) * 2002-03-18 2003-10-02 Sobotta Gmbh Sondermaschb Objective, especially combustion chamber objective
JP3088718U (en) 2002-03-20 2002-09-27 株式会社 フォルクス Replacement glasses at the front
US7060991B2 (en) * 2002-04-11 2006-06-13 Reilly Thomas L Method and apparatus for the portable identification of material thickness and defects along uneven surfaces using spatially controlled heat application
DE10348013A1 (en) * 2003-10-15 2005-05-19 Josef Seelen Gmbh Soot blower control system for boiler or furnace flues uses optical acoustic or electromagnetic imaging system to produce picture to be compared with reference picture stored in computer
SE0700910L (en) * 2007-04-13 2008-10-14 Aga Ab Procedure for measuring the temperature of an oven

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952118A (en) 1982-09-20 1984-03-26 Babcock Hitachi Kk Method for cleaning wall surface of combustion device
DE4139718A1 (en) 1990-12-03 1992-06-04 Babcock & Wilcox Co MONITOR FOR MONITORING THE PURITY OF A FIRE WITH REGARD TO ASH WITH A HIGH REFLECTION LEVEL
DE19547269A1 (en) 1995-12-19 1997-06-26 Dynamit Nobel Ag Removal of cinders and ashes from fire grates in boiler plants

Also Published As

Publication number Publication date
PL1760401T3 (en) 2011-12-30
ATE519075T1 (en) 2011-08-15
DE102005041004A1 (en) 2007-03-01
KR20070026066A (en) 2007-03-08
EP1760401A3 (en) 2009-03-04
US7607825B2 (en) 2009-10-27
US20080298426A1 (en) 2008-12-04
ES2369276T3 (en) 2011-11-29
EP1760401B1 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
EP1760401B1 (en) Method and device for monitoring the building of deposits in combustion chambers
EP2399108B1 (en) Measuring device for a heat exchanger
EP1979701B1 (en) Device with fluid distributor and measured value recording and method for operating of a boiler
EP0555294B1 (en) Operational monitoring of a condenser with tubes with measurements at selected tubes
EP1910768B1 (en) Boiler of a combustion plant and cleaning method
DE2547832C2 (en) Arrangement for measuring the degree of contamination in a pipeline, in particular in a heat exchanger
DE102011018441A1 (en) Cleaning device for a thermal power plant, method for setting up a cleaning device and method for cleaning a thermal power plant
EP2185866A2 (en) Device for cleaning a boiler of a combustor, and method for the operation thereof
EP2992312B1 (en) Device and method for measuring changes in materials caused by gas streams
EP1416266B1 (en) Method for inspecting the structure of through-holes of a material
DE102009009426A1 (en) Gaseous and/or vaporous fluid flow's characteristic e.g. viscosity, determining method, involves finding speed difference between particles and fluid flow and flow speed based on characteristics of flow and size, form and particles speed
EP1655570B1 (en) Method for optically and geometrically surveying the inner space of a thermal processing unit
DE102016214854B4 (en) Method and device for characterizing deposits
DE2756526C2 (en) Device for recording surface temperature distributions
EP2737273B1 (en) Method for enhancing the efficiency of an incineration plant, in particular of a waste incineration biomass power plant
DE19640337A1 (en) Method of assessing and removing slag deposits on a heating surface
EP2028464A1 (en) Method for calculating and monitoring the material usage level of pipes in heating areas in steam creation assemblies lit with fossil fuels
DE10348013A1 (en) Soot blower control system for boiler or furnace flues uses optical acoustic or electromagnetic imaging system to produce picture to be compared with reference picture stored in computer
DE102021116921B4 (en) Method for determining an operating variable, heat exchanger and flue gas system
DD281448B5 (en) Method for determining a slagging area on the inner wall surfaces of a combustion chamber of a pulverized coal furnace
DE2227010C3 (en) Device for measuring the dew point of smoke gases
DE102020116607A1 (en) Apparatus and method for determining a specific heat flow
DD289113A5 (en) METHOD FOR DETERMINING SMOKE-LAYER DEPOSITS ON HEAT TRANSFER PIPES AND FOR DETERMINING THE SURFACE TEMPERATURE OF A LACQUER LAYER ON THE TUBE SYSTEM OF A COMBUSTION CHAMBER OR HEATING SYSTEM
DD239656A1 (en) METHOD FOR OPERATING LANCE BLADES
Isdale Generic studies for industrial heat exchanger fouling

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090819

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006009946

Country of ref document: DE

Effective date: 20110929

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2369276

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111129

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110803

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111205

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111203

BERE Be: lapsed

Owner name: CMV SYSTEMS G.M.B.H. & CO. KG

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111104

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E012711

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

26N No opposition filed

Effective date: 20120504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006009946

Country of ref document: DE

Effective date: 20120504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120821

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 519075

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120906

Year of fee payment: 7

Ref country code: ES

Payment date: 20120828

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130824

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20140814

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130825

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20140821

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150824

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150825

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20160725

Year of fee payment: 11

Ref country code: CZ

Payment date: 20160823

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180724

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006009946

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200303