EP1759958B1 - Impact absorbing component for a vehicle structure or for the chassis of a motor vehicle - Google Patents
Impact absorbing component for a vehicle structure or for the chassis of a motor vehicle Download PDFInfo
- Publication number
- EP1759958B1 EP1759958B1 EP06014779A EP06014779A EP1759958B1 EP 1759958 B1 EP1759958 B1 EP 1759958B1 EP 06014779 A EP06014779 A EP 06014779A EP 06014779 A EP06014779 A EP 06014779A EP 1759958 B1 EP1759958 B1 EP 1759958B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- component
- wedge
- component according
- wedge body
- wedge bodies
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 238000005266 casting Methods 0.000 claims description 9
- 230000006978 adaptation Effects 0.000 claims description 5
- 229910000838 Al alloy Inorganic materials 0.000 claims description 3
- 239000008186 active pharmaceutical agent Substances 0.000 claims description 3
- 238000005058 metal casting Methods 0.000 description 12
- 238000010521 absorption reaction Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F7/00—Vibration-dampers; Shock-absorbers
- F16F7/12—Vibration-dampers; Shock-absorbers using plastic deformation of members
- F16F7/125—Units with a telescopic-like action as one member moves into, or out of a second member
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D21/00—Understructures, i.e. chassis frame on which a vehicle body may be mounted
- B62D21/15—Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
- B62D21/152—Front or rear frames
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R19/00—Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
- B60R19/02—Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
- B60R19/24—Arrangements for mounting bumpers on vehicles
- B60R19/26—Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
- B60R19/34—Arrangements for mounting bumpers on vehicles comprising yieldable mounting means destroyed upon impact, e.g. one-shot type
Definitions
- the invention relates to a crashrelevantes component of a vehicle structure or a chassis of a motor vehicle having the features in the preamble of claim 1.
- a crash element in particular for a motor vehicle in the form of a hollow profile, which has at least one circumferential region in which the hollow profile wall has a, essentially jumping sleeve / step-like offset and wherein the offset is designed as a predetermined breaking point, which in a crash in a breaks up predetermined crash force.
- the resulting in the event of a crash hollow profile parts are energy absorbing and telescopically inserted into each other in the region of the offset.
- This crash element is produced by hydroforming a hollow section blank.
- the invention has the object to show a crashrelevantes component of a vehicle structure or a chassis of a motor vehicle, which is inexpensive to produce and at the same time meets the required crash characteristics.
- a very essential feature of the structural component according to the invention is that the deformation element does not have to be welded between the metal casting components, but is produced in one piece, ie monolithically with them in a casting process. This considerably reduces the number of components. It eliminates a costly separate production, positioning and of course the previously required connection process, the is called welding. As a result of the omission of the welding heat, less distortion also occurs in the structural component.
- the decisive factor is that the deformation component is able to fulfill the required crash properties.
- a plurality of funnel-shaped wedge body arranged in series are provided, which are connected via predetermined breaking webs with the respective adjacent wedge bodies.
- the wedge bodies are matched in their diameters to one another such that they are telescopically delimited when they reach a limit load while destroying the breakaway webs. As a result, they jam together pushed wedge body self-locking, so that after the breaking of a predetermined breaking web, the first metal casting component is connected with sufficient certainty with the second metal casting.
- the funnel-shaped design of the wedge body allows self-centering of the adjacent wedge body, so that the metal casting components occupy a predetermined position despite a change in their relative position even in a crash.
- the self-locking of the wedged together wedged body prevents unintentional release of the metal casting components from each other.
- the self-locking can be improved in particular by the fact that the mutually facing surfaces of the abutting walls of the wedge body at least partially have a surface structure which deforms when pushed into each other by mutual friction. Due to the casting technology used, relatively high surface roughness results. These flow as an essential parameter in the determination of pitch angle, wall thickness and dimensioning of the predetermined breaking webs, so that in a given tolerance corridor optimum energy absorption by deformation and friction at a given length reduction occurs. Under surface structure in the context of the invention, not only the casting-related surface roughness are to be understood, but also additional formations, such as small ribs or webs, which interlock and ensure solely that the nested wedge body are clamped together. In particular, the surfaces may have a geometry that causes a twist, that is, a rotation about the longitudinal axis of a wedge body. Due to the mutual rotation pulling apart with rectilinear motion is excluded, so that the wedge body are still securely held together.
- the deformation element also extends in the vehicle longitudinal direction and can absorb the present in particular from the front impact force to some extent.
- the deformation element shortens in a crash by a predetermined length with simultaneous energy absorption and, above all, while maintaining the load-bearing capacity after the crash.
- the deformation component prefferably be arranged at a suitable transverse angle to the vehicle longitudinal direction, in particular at a transverse angle of 45 ° to 135 °, in particular 90 °.
- the deformation element can also be used in side-impact-relevant areas of the motor vehicle.
- pitch angle For the energy absorption of the deformation element, besides the choice of material, the following parameters are of particular importance: pitch angle, wall thickness, dimensioning of the predetermined breaking rings and surface roughness or surface geometry.
- the mutually facing surfaces of the walls of the wedge bodies which come into abutment against one another have mutually matched pitch angles. If the pitch angle is too large, the deformation component after the crash would not be able to serve as a structural component. Although a too small dimensioned pitch angle leads to safe self-locking, but this increases the overall length of the deformation unit. Essential in the selection of the pitch angle is therefore to find the optimum between safe self-locking and minimum length.
- the wedge body is not destroyed in a crash. Only the breaking ridges should break. Their resilience is therefore chosen so that they reach a chosen maximum measured in the circumferential direction tensile and compressive stress in the wedge body to be destroyed.
- the breakaway rings are therefore designed so that they break with appropriate reserve against material breakage of the wedge body.
- the load capacity of the breakaway webs is also set so that they break according to the order of the wedge body. This means that with increasing force, the predetermined break rings break one after the other and not at the same time.
- the previously connected wedge bodies slide telescopically to a limited depth. Already hereby an adjustable energy absorption takes place. When a maximum penetration depth has been reached, the subsequent breakaway web breaks. This process continues until all predetermined break webs are broken and all wedge body abut each other. The maximum penetration depth can also be equated to a maximum force level.
- the adaptation of the deformation component to the cast components takes place via adapter pieces.
- an adaptation piece the transition of the geometry of the metal casting component to the geometry of the wedge piece takes place.
- the adaptation pieces are integrally connected by casting technology with the wedge bodies and the respectively connected cast component.
- the wall thicknesses of the wedge bodies may be sized differently.
- the wall thickness of a wedge body whose breaking point web breaks first smaller than the wall thickness of the subsequent wedge body.
- the wall thickness itself can be constant over the longitudinal extension of the wedge body, but it can also increase in the direction of its funnel-shaped extension. This is expedient because the smaller diameter, inner wall portion is compressed, while the larger-diameter wall portion is pushed when pushing inside from the inside out.
- the adjacent wedge body are designed and matched to each other, that when telescoping an adjustable energy absorption by plastic material expansion of the outer wall portion and compression of the inner wall portion, as well as by the friction when telescoping takes place, without causing material breakage of the walls.
- the maximum outer diameters of the wedge bodies may increase from a first wedge body to a last wedge body.
- metal cast components of very different dimensions can be connected to each other. Extreme diameter variations can be compensated by appropriate adaptation pieces between the deformation component and the metal cast components.
- the casting component produced by deformation is preferably made of aluminum or an aluminum alloy. In principle, it is also possible within the scope of the invention to use other suitable cast materials.
- the deformation component may have at least one opening on the circumference, so that no hollow casting process is used must be used.
- the deformation component can therefore have a differently pronounced open cross-section.
- the deformation component can be used in addition to the use in the front of the vehicle area for crash-related purposes in structural components or chassis parts in the rear area / rear area.
- FIG. 1 is a schematic structural component 1 shown in a highly simplified design.
- the structural component 1 comprises two side parts 2 which extend in the direction of travel and are connected to one another via transverse members 3a, 3b extending transversely to the direction of travel.
- Each side member 2 is divided into three sections: a first metal casting member 4 to which the first cross member 3a is fixed; a subsequent thereto deformation member 5 and finally a second metal casting member 6, on which a transverse member 3b is arranged in this embodiment.
- the concrete shape of the metal cast components 4, 6 is irrelevant with respect to the inventive concept.
- the design of the deformation component 5 is important.
- the deformation components 5 are intended to absorb forces introduced during a crash and to convert them into deformation work.
- the drawn arrows F illustrate the force application direction, ie the force F is introduced via a bumper arrangement 19 into the front metal casting components 6 and into the deformation components 5, which in turn are supported on the adjacent metal casting component 4.
- Each side part 2 of the structural component 1 is complete in this embodiment and formed in a cast as a metal casting component. Joining methods between the metal cast components 4, 6 and the deformation component 5 are not required.
- FIG. 2 shows in a sectional view of the closer structure of the deformation component 5.
- the deformation member 5 has in this embodiment, five funnel-shaped wedge body, which are marked with the letters S, A, B, C and E.
- S stands for a so-called start-wedge body
- E stands for an end-stop wedge body.
- the start wedge body S is integrally connected to an adapter piece 7.
- the stop wedge body E is also connected to an adapter piece 8.
- the adapter pieces 7, 8 are configured tubular in this embodiment and have according to the connection diameters of the starting wedge body S and the stop wedge body E thereon matched diameter.
- the diameter of the adapter piece 7 connected to the starting wedge body S is smaller than the diameter DE of the adapter piece 8 connected to the stop wedge body E.
- Both the adapter pieces 7, 8 and the wedge bodies S, A, B and E therebetween lie on top a common longitudinal axis LA. It can be seen that the outer diameter DS, DE of the wedge body S, A, B, C, E increases from the starting wedge body S towards the stop wedge body E out. Furthermore, it can be seen that all wedge bodies S, A, B, C, E have matched pitch angles W, so that the mutually facing surfaces 9, 10 of the abutting walls 11, 12 can be brought into abutment flatly and self-locking when plugged into each other.
- each wedge body S, A, B, C, E is connected via a predetermined breaking web 13-16 with the respective subsequent wedge body S, A, B, C, E.
- the predetermined breaking webs 13-16 are arranged in this embodiment on the stop wedge body E facing funnel-shaped end portion of the respective wedge body S, A, B, C and protrude in a radial plane to the inside, where, for example, the wall 11 of the outer wedge body S with the wall 12 of the engaging in the previous wedge body wedge body A connect.
- the engagement depth T of a wedge body A, B, C, E in the respective preceding wedge body S, A. , B, C is just so large that the wedge body S, A, B, C, E are connected via the intermediate predetermined breaking webs 13-16 and beyond a opposite side guide the wedge body S, A, B, C, E is guaranteed , if a breaking bridge 13 - 16 breaks. Therefore, the engagement depth T is insignificantly greater than twice the width of a predetermined breaking web 13-16.
- each wedge body S, A, B, C, E increases in the direction of the respective subsequent wedge body A, B, C, E out. Furthermore, the average wall thickness of the individual wedge bodies S, A, B, C, E increases from the start wedge body S to the stop wedge body E.
- FIG. 3 shows the chronological sequence of a crash in five separate illustrations.
- the uppermost diagram shows the initial state before the action of force in a crash.
- This representation corresponds to the representation of FIG. 2 .
- a certain force level which is illustrated by the length of the arrow F1
- the predetermined breaking web 13 breaks between the starting wedge body S and the adjoining wedge body A.
- the starting wedge body S is pushed onto the wedge body A.
- energy is consumed by the breakage of the predetermined breaking web 13 and the friction occurring between the wedge bodies S, A.
- the outer wall portion 17 of the starting wedge body S is stretched, while the inner wall portion 18, which is enclosed by the wall portion 17, is compressed.
- the wall sections 17, 18 are pressed into one another so tightly that the wedge body S, A on the one hand safely against each other.
- a desired Length reduction by the amount L1 that is, the deformation member 5 behaves limited yielding up to a certain level of force.
- the bottom diagram shows the maximum possible compression of the deformation component 5.
- crashrelevanten component according to the invention With the crashrelevanten component according to the invention and the integrated deformation element, it is possible to absorb a certain amount of energy by deformation, friction and destruction of the predetermined breaking webs 13, so that a component manufactured by casting behaves impact-soft despite the relatively low ductility caused by production and at the same time a solid composite of each other coupled cast components allows.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Vibration Dampers (AREA)
- Body Structure For Vehicles (AREA)
Description
Die Erfindung betrifft ein crashrelevantes Bauteil einer Fahrzeugstruktur oder eines Fahrwerks eines Kraftfahrzeugs mit den Merkmalen im Oberbegriff des Patentanspruchs 1.The invention relates to a crashrelevantes component of a vehicle structure or a chassis of a motor vehicle having the features in the preamble of claim 1.
Im Vorder- oder Hintenivagenbereich eines Kraftfahrzeugs kommen insbesondere im Zusammenhang mit crashrelevanten Strukturbau- und Fahrwerksteilen kompliziert gestaltete Metallgussteile zum Einsatz. Die Verwendung von Gussbauteilen aus Aluminium, Aluminiumlegierungen oder anderen geeigneten Gusswerkstoffen ermöglichen hohe Gewichtseinsparungen bei gleichzeitiger Realisierung komplexer Strukturen.In the front or Hinterivivagenbereich a motor vehicle are especially in connection with crashrelanten structural and chassis parts complicated designed metal castings used. The use of cast components made of aluminum, aluminum alloys or other suitable cast materials enables high weight savings while at the same time realizing complex structures.
Aufgrund der im Vorderwagenbereich geforderten Anprallnachgiebigkeit war es bislang erforderlich, die relativ dickwandigen und unnachgiebigen Gussbauteile mit dünnwandigen Deformationsbauteilen zu koppeln, beispielsweise durch Einschweißen eines Strangpressprofils. Der Herstellungsaufwand zur Verbindung von Gussbauteilen mit zwischengeschaltetem Deformationsbauteil ist erheblich, heblich, da mehrere Einzelteile gesondert gefertigt, gehändelt, positioniert und miteinander verschweißt werden müssen. Infolge des Verzugs durch Schweißwärme lassen sich zahlreiche Funktionsflächen und Bohrungen erst nach dem Zusammenbau auf zulässige Toleranzen bearbeiten. Auch nach der mechanischen Bearbeitung ist ein derart konstruiertes Bauteil verzugsanfällig und erfordert einen speziellen Transportschutz.Due to the required in the front of the car impact resistance, it has hitherto been necessary to couple the relatively thick-walled and unyielding cast components with thin-walled deformation components, for example by welding an extruded profile. The production cost for the connection of cast components with an intermediate deformation component is considerable, important, since several items must be made separately, handled, positioned and welded together. Due to the warping caused by welding heat, numerous functional surfaces and holes can only be machined to allowable tolerances after assembly. Even after the mechanical processing such a constructed component is prone to failure and requires a special transport protection.
Aus der
Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, ein crashrelevantes Bauteil einer Fahrzeugstruktur oder eines Fahrwerks eines Kraftfahrzeugs aufzuzeigen, welches kostengünstig herstellbar ist und gleichzeitig die erforderlichen Crasheigenschaften erfüllt.On this basis, the invention has the object to show a crashrelevantes component of a vehicle structure or a chassis of a motor vehicle, which is inexpensive to produce and at the same time meets the required crash characteristics.
Diese Aufgabe ist bei einem Strukturbauteil mit den Merkmalen des Patentanspruchs 1 gelöst.This object is achieved with a structural component having the features of patent claim 1.
Vorteilhafte Weiterbildungen des Erfndungsgedankens sind Gegenstand der Unteransprüche.Advantageous developments of Erfndungsgedankens are the subject of the dependent claims.
Ein ganz wesentliches Merkmal des erfindungsgemäßen Strukturbauteils ist, dass das Deformationselement nicht zwischen die Metallgussbauteile geschweißt werden muss, sondern einstückig, also monolithisch mit diesen in einem Gießverfahren hergestellt wird. Dadurch wird die Anzahl der Bauteile erheblich reduziert. Es entfällt eine aufwendige separate Fertigung, Positionierung und selbstverständlich der bislang erforderliche Verbindungsvorgang, das heißt das Schweißen. Mit dem Wegfall der Schweißwärme tritt folglich auch weniger Verzug im Strukturbauteil auf.A very essential feature of the structural component according to the invention is that the deformation element does not have to be welded between the metal casting components, but is produced in one piece, ie monolithically with them in a casting process. This considerably reduces the number of components. It eliminates a costly separate production, positioning and of course the previously required connection process, the is called welding. As a result of the omission of the welding heat, less distortion also occurs in the structural component.
Entscheidend ist, dass das Deformationsbauteil in der Lage ist, die erforderten Crasheigenschaften zu erfüllen. Dies wird dadurch erreicht, dass mehrere in Reihe angeordnete trichterförmige Keilkörper vorgesehen sind, die über Sollbruchstege mit den jeweils benachbarten Keilkörpern verbunden sind. Die Keilkörper sind in ihren Durchmessern derart aufeinander abgestimmt, dass sie bei Erreichen einer Grenzbelastung unter Zerstörung der Sollbruchstege teleskopartig begrenzt ineinanderschiebbar sind. Dadurch verklemmen die ineinander geschobenen Keilkörper selbsthemmend, so dass nach dem Bruch eines Sollbruchstegs das erste Metallgussbauteil mit hinreichender Sicherheit mit dem zweiten Metallgussbauteil verbunden ist. Die trichterförmige Gestaltung der Keilkörper ermöglicht eine Selbstzentrierung der aneinander anliegenden Keilkörper, so dass die Metallgussbauteile trotz Veränderung ihrer Relativlage auch bei einem Crash eine vorgegebene Position einnehmen. Die Selbsthemmung der miteinander verklemmten Keilkörper verhindert ein unbeabsichtigtes Lösen der Metallgussbauteile voneinander. Mit der Erfindung gelingt es, ein vollkommen in Gusstechnik hergestelltes Strukturbauteil oder Fahrwerkteil bereitzustellen, das einerseits gewichtsoptimiert und anforderungsgerecht konstruiert ist, des Weiteren aber die Fähigkeit besitzt, Crashenergie in Verformungs-energie umzuwandeln.The decisive factor is that the deformation component is able to fulfill the required crash properties. This is achieved in that a plurality of funnel-shaped wedge body arranged in series are provided, which are connected via predetermined breaking webs with the respective adjacent wedge bodies. The wedge bodies are matched in their diameters to one another such that they are telescopically delimited when they reach a limit load while destroying the breakaway webs. As a result, they jam together pushed wedge body self-locking, so that after the breaking of a predetermined breaking web, the first metal casting component is connected with sufficient certainty with the second metal casting. The funnel-shaped design of the wedge body allows self-centering of the adjacent wedge body, so that the metal casting components occupy a predetermined position despite a change in their relative position even in a crash. The self-locking of the wedged together wedged body prevents unintentional release of the metal casting components from each other. With the invention, it is possible to provide a structural component or chassis part produced entirely by casting, which on the one hand is weight-optimized and constructed in accordance with the requirements, but which furthermore has the ability to convert crash energy into deformation energy.
Die Selbsthemmung kann insbesondere dadurch verbessert werden, dass die einander zugewandten Oberflächen der aneinander zur Anlage gelangenden Wände der Keilkörper zumindest bereichsweise eine Oberflächenstruktur aufweisen, die sich beim Ineinanderschieben durch gegenseitige Reibung verformt. Aufgrund der eingesetzten Gusstechnologie ergeben sich relativ hohe Oberflächenrauhigkeiten. Diese fließen als wesentlicher Parameter in die Festlegung von Steigungswinkel, Wanddicke und Bemessung der Sollbruchstege ein, so dass in einem vorgegebenen Toleranzkorridor eine optimale Energieabsorption durch Verformung und Reibung bei vorgegebener Längenreduktion erfolgt. Unter Oberflächenstruktur im Sinne der Erfindung sind nicht nur die gießtechnisch bedingten Oberflächenrauhigkeiten zu verstehen, sondern auch zusätzliche Ausformungen, wie beispielsweise kleine Rippen oder Stege, die sich ineinander verhaken und allein dadurch gewährleisten, dass die ineinander geschobenen Keilkörper miteinander verklemmt sind. Insbesondere können die Oberflächen eine Geometrie aufweisen, die einen Drall, das heißt eine Drehung um die Längsachse eines Keilkörpers hervorruft. Durch die gegenseitige Verdrehung ist ein Auseinanderziehen mit geradliniger Bewegung ausgeschlossen, so dass die Keilkörper noch sicher aneinander gehalten sind.The self-locking can be improved in particular by the fact that the mutually facing surfaces of the abutting walls of the wedge body at least partially have a surface structure which deforms when pushed into each other by mutual friction. Due to the casting technology used, relatively high surface roughness results. These flow as an essential parameter in the determination of pitch angle, wall thickness and dimensioning of the predetermined breaking webs, so that in a given tolerance corridor optimum energy absorption by deformation and friction at a given length reduction occurs. Under surface structure in the context of the invention, not only the casting-related surface roughness are to be understood, but also additional formations, such as small ribs or webs, which interlock and ensure solely that the nested wedge body are clamped together. In particular, the surfaces may have a geometry that causes a twist, that is, a rotation about the longitudinal axis of a wedge body. Due to the mutual rotation pulling apart with rectilinear motion is excluded, so that the wedge body are still securely held together.
Die Vorteile der Erfindung kommen insbesondere dann zum Tragen, wenn es sich bei dem Bauteil um in Fahrzeuglängsrichtung erstreckende Strukturbauteile bzw. Fahrwerkteile handelt. In diesem Fall erstreckt sich das Deformationselement ebenfalls in Fahrzeuglängsrichtung und kann die insbesondere von vorne anstehende Anprallkraft in einem gewissen Maße aufnehmen. Das Deformationselement verkürzt sich bei einem Crash um eine vorgegebene Länge bei gleichzeitiger Energieabsorption und vor allem unter Erhaltung der Tragfähigkeit nach dem Crash.The advantages of the invention come into play, in particular, when the component is structural components or chassis parts extending in the vehicle longitudinal direction. In this case, the deformation element also extends in the vehicle longitudinal direction and can absorb the present in particular from the front impact force to some extent. The deformation element shortens in a crash by a predetermined length with simultaneous energy absorption and, above all, while maintaining the load-bearing capacity after the crash.
Es ist im Rahmen der Erfindung auch möglich, dass das Deformationsbauteil in einem geeigneten Querwinkel zur Fahrzeuglängsrichtung, insbesondere in einem Querwinkel von 45° bis 135°, insbesondere 90°, angeordnet ist. Dadurch kann das Deformationselement auch in seitencrashrelevanten Bereichen des Kraftfahrzeugs zum Einsatz kommen.It is also possible within the scope of the invention for the deformation component to be arranged at a suitable transverse angle to the vehicle longitudinal direction, in particular at a transverse angle of 45 ° to 135 °, in particular 90 °. As a result, the deformation element can also be used in side-impact-relevant areas of the motor vehicle.
Für die Energieabsorption des Deformationselements sind neben der Materialwahl folgende Parameter von wesentlicher Bedeutung: Steigungswinkel, Wanddicke, Bemessung der Sollbruchringe und Oberflächenrauhigkeiten bzw. Oberflächengeometrie.For the energy absorption of the deformation element, besides the choice of material, the following parameters are of particular importance: pitch angle, wall thickness, dimensioning of the predetermined breaking rings and surface roughness or surface geometry.
Um eine Selbsthemmung zu erreichen ist vorgesehen, dass die einander zugewandten Oberflächen der aneinander zur Anlage gelangenden Wände der Keilkörper aufeinander abgestimmte Steigungswinkel haben. Ist der Steigungswinkel zu groß, wäre das Deformationsbauteil nach dem Crash nicht in der Lage, als tragendes Bauteil zu dienen. Ein zu klein bemessener Steigungswinkel führt zwar zur sicheren Selbsthemmung, allerdings nimmt dadurch die Baulänge der Deformationseinheit zu. Wesentlich bei der Auswahl des Steigungswinkels ist es daher, das Optimum zu finden zwischen sicherer Selbsthemmung und minimaler Baulänge.In order to achieve self-locking, it is provided that the mutually facing surfaces of the walls of the wedge bodies which come into abutment against one another have mutually matched pitch angles. If the pitch angle is too large, the deformation component after the crash would not be able to serve as a structural component. Although a too small dimensioned pitch angle leads to safe self-locking, but this increases the overall length of the deformation unit. Essential in the selection of the pitch angle is therefore to find the optimum between safe self-locking and minimum length.
Wichtig für die Gewährleistung der Tragfunktion ist, dass die Keilkörper bei einem Crash nicht zerstört werden. Lediglich die Sollbruchstege sollen brechen. Ihre Belastbarkeit ist daher so gewählt, dass sie vor Erreichen einer gewählten maximalen in Umfangsrichtung gemessenen Zug- und Druckspannung im Keilkörper zerstört werden. Die Sollbruchringe sind daher so ausgelegt, dass sie mit angemessener Reserve vor Materialbruch der Keilkörper brechen. Die Belastbarkeit der Sollbruchstege ist ferner so eingestellt, dass sie entsprechend der Reihenfolge der Keilkörper brechen. Das bedeutet, dass mit steigender Krafteinwirkung die Sollbruchringe nacheinander und nicht gleichzeitig brechen. Nach dem Bruch eines Sollbruchrings schieben sich die zuvor verbundenen Keilkörper teleskopartig bis zu einer begrenzten Tiefe ineinander. Bereits hierdurch erfolgt eine einstellbare Energieabsorption. Wenn eine maximale Eindringtiefe erreicht worden ist, bricht der nachfolgende Sollbruchsteg. Dieser Vorgang setzt sich so lange fort, bis sämtliche Sollbruchstege gebrochen sind und alle Keilkörper aneinander anliegen. Die maximale Eindringtiefe kann auch einem maximalen Kraftniveau gleichgesetzt werden.Important for ensuring the support function is that the wedge body is not destroyed in a crash. Only the breaking ridges should break. Their resilience is therefore chosen so that they reach a chosen maximum measured in the circumferential direction tensile and compressive stress in the wedge body to be destroyed. The breakaway rings are therefore designed so that they break with appropriate reserve against material breakage of the wedge body. The load capacity of the breakaway webs is also set so that they break according to the order of the wedge body. This means that with increasing force, the predetermined break rings break one after the other and not at the same time. After breaking a predetermined breaking ring, the previously connected wedge bodies slide telescopically to a limited depth. Already hereby an adjustable energy absorption takes place. When a maximum penetration depth has been reached, the subsequent breakaway web breaks. This process continues until all predetermined break webs are broken and all wedge body abut each other. The maximum penetration depth can also be equated to a maximum force level.
Die Anpassung des Deformationsbauteils an die Gussbauteile erfolgt über Adaptionsstücke. In einem Adaptionsstück erfolgt der Übergang der Geometrie des Metallgussbauteils auf die Geometrie des Keilstücks. Auch die Adaptionsstücke sind gießtechnisch einstückig mit den Keilkörpern und dem jeweils angeschlossenen Gussbauteil verbunden.The adaptation of the deformation component to the cast components takes place via adapter pieces. In an adaptation piece, the transition of the geometry of the metal casting component to the geometry of the wedge piece takes place. Also, the adaptation pieces are integrally connected by casting technology with the wedge bodies and the respectively connected cast component.
Aufgrund der kaskadierten Anordnung der Keilkörper und aufgrund des unterschiedlichen Lastniveaus, das jeder Keilkörper aufzunehmen bzw. zu übertragen hat, können die Wandstärken der Keilkörper unterschiedlich bemessen sein. Insbesondere ist die Wandstärke eines Keilkörpers, dessen Sollbruchsteg zuerst bricht, kleiner als die Wandstärke des nachfolgenden Keilkörpers. Die Wandstärke selbst kann über die Längserstreckung des Keilkörpers konstant sein, sie kann aber auch in Richtung ihrer trichterförmigen Erweiterung zunehmen. Dies ist zweckmäßig, da der im Durchmesser kleinere, innen liegende Wandabschnitt zusammengedrückt wird, während der im Durchmesser größere Wandabschnitt beim Ineinanderschieben von innen nach außen gedrängt wird. Die benachbarten Keilkörper sind so ausgelegt und aufeinander abgestimmt, dass beim Ineinanderschieben eine einstellbare Energieabsorption durch plastische Materialdehnung des außen liegenden Wandabschnitts und Zusammendrücken des innen liegenden Wandabschnitts, sowie durch die Reibung beim Ineinanderschieben erfolgt, ohne dass es zu Materialbruch der Wände kommt.Due to the cascaded arrangement of the wedge bodies and due to the different load levels that each wedge body has to accommodate or transmit, the wall thicknesses of the wedge bodies may be sized differently. In particular, the wall thickness of a wedge body whose breaking point web breaks first, smaller than the wall thickness of the subsequent wedge body. The wall thickness itself can be constant over the longitudinal extension of the wedge body, but it can also increase in the direction of its funnel-shaped extension. This is expedient because the smaller diameter, inner wall portion is compressed, while the larger-diameter wall portion is pushed when pushing inside from the inside out. The adjacent wedge body are designed and matched to each other, that when telescoping an adjustable energy absorption by plastic material expansion of the outer wall portion and compression of the inner wall portion, as well as by the friction when telescoping takes place, without causing material breakage of the walls.
Die maximalen Außendurchmesser der Keilkörper, gemessen an ihrem trichterförmig erweiterten Abschnitt, können von einem ersten Keilkörper zu einem letzten Keilkörper hin zunehmen. Dadurch können auch Metallgussbauteile stark unterschiedlicher Abmessungen miteinander verbunden werden. Extreme Durchmesserschwankungen können durch entsprechende Adaptionsstücke zwischen dem Deformationsbauteil und den Metallgussbauteilen ausgeglichen werden.The maximum outer diameters of the wedge bodies, measured at their funnel-shaped widened portion, may increase from a first wedge body to a last wedge body. As a result, metal cast components of very different dimensions can be connected to each other. Extreme diameter variations can be compensated by appropriate adaptation pieces between the deformation component and the metal cast components.
Entscheidend für die Funktion des Deformationsbauteils ist das Zusammenspiel aus Kegelwinkel, Wanddicke, Belastbarkeit der Sollbruchstege und der Oberflächenstruktur. Hinsichtlich des Querschnitts der Keilkörper sind unterschiedlichste Varianten möglich. In erster Linie wird es als zweckmäßig angesehen, wenn der Keilkörper die Geometrie eines hohlen Kegelstumpfs besitzt, da bei dieser Bauform die Selbstzentrierung auf einer gemeinsamen Mittellängsachse der Keilkörper am besten gewährleistet werden kann. Hiervon abweichende Geometrien, wie beispielsweise hohle Pyramidenstümpfe oder hohle Keilstümpfe sind ebenso denkbar. Auch Keilkörper mit wenigstens einer sich in Längsrichtung erstreckenden Führungsfläche, insbesondere mehreckige Keilkörper, z.B. sternförmige Keilkörper sind möglich. In gewissen Grenzen kann hierdurch ein gegenseitiges Verdrehen der Keilkörper beim Ineinanderschieben unterbunden oder bei einer schraubenlinienartigen Geometrie gezielt gefördert werden.Decisive for the function of the deformation component is the interaction of cone angle, wall thickness, load capacity of the predetermined breaking webs and the surface structure. With regard to the cross section of the wedge body a wide variety of variants are possible. In the first place, it is considered expedient if the wedge body has the geometry of a hollow truncated cone, since in this design, the self-centering can be best ensured on a common central longitudinal axis of the wedge body. Deviating geometries, such as, for example, hollow truncated pyramids or hollow truncated wedges are also conceivable. Also wedge body with at least one longitudinally extending guide surface, in particular polygonal wedge body, e.g. Star-shaped wedge bodies are possible. Within certain limits, thereby a mutual rotation of the wedge body when telescoping prevented or specifically promoted in a helical geometry.
Das gusstechnisch hergestellte Deformationsbauteil ist bevorzugt aus Aluminium oder einer Aluminiumlegierung hergestellt. Grundsätzlich ist es im Rahmen der Erfindung auch möglich, andere geeignete Gusswerkstoffe zu verwenden.The casting component produced by deformation is preferably made of aluminum or an aluminum alloy. In principle, it is also possible within the scope of the invention to use other suitable cast materials.
Um die Herstellung zu erleichtern, kann das Deformationsbauteil umfangsseitig wenigstens eine Öffnung aufweisen, so dass kein Hohlgussverfahren eingesetzt werden muss. Das Deformationsbauteil kann daher einen verschiedenartig ausgeprägten offenen Querschnitt aufweisen.In order to facilitate the production, the deformation component may have at least one opening on the circumference, so that no hollow casting process is used must be used. The deformation component can therefore have a differently pronounced open cross-section.
Das Deformationsbauteil kann neben dem Einsatz im Vorderwagenbereich auch für crashrelevante Zwecke bei Strukturbauteilen oder Fahrwerksteilen im Hinterwagenbereich/Heckbereich eingesetzt werden.The deformation component can be used in addition to the use in the front of the vehicle area for crash-related purposes in structural components or chassis parts in the rear area / rear area.
Die Erfindung wird nachfolgend anhand eines in schematischen Zeichnungen dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:
- Figur 1
- eine Draufsicht auf ein crashrelevantes Strukturbauteil in Gussbauweise;
Figur 2- im Längsschnitt eine erste Ausführungsform eines Deformationsbauteils und
Figur 3- in schematischer Darstellung den Ablauf des Ineinanderschiebens des Deformationsbauteils bei einem Crash.
- FIG. 1
- a plan view of a Crashrelevantes structural component in a cast construction;
- FIG. 2
- in longitudinal section a first embodiment of a deformation component and
- FIG. 3
- a schematic representation of the sequence of the telescoping of the deformation component in a crash.
In
Aus
Die Funktionsweise des Deformationsbauteils wird nachfolgend anhand der
Wenn die angreifende Kraft ein höheres vorbestimmtes Kraftniveau (F2) überschreitet, bricht der nächste Sollbruchsteg 14, der den Keilkörper A mit dem nachfolgenden Keilkörper B verbindet. Dies ist in der dritten Darstellung erkennbar. Das Deformationsbauteil 5 ist in diesem Fall um das Maß L2 verkürzt. Weitere Energie wurde durch den Bruch des Sollbruchstegs, gegenseitige Reibung und Dehnung der gegeneinander gepressten Keilkörper aufgenommen.When the engaging force exceeds a higher predetermined force level (F2), the
Wird die angreifende Kraft F3 noch größer (Darstellung 3) erfolgt eine weitere Verkürzung um das Maß L3 bzw. schließlich um das Maß L4 im Zusammenhang mit der Kraft F4 bei gleichzeitig zunehmender Energieaufnahme. Die unterste Darstellung zeigt die maximal mögliche Stauchung des Deformationsbauteils 5.If the attacking force F3 becomes even greater (FIG. 3), a further shortening takes place by the dimension L3 or, finally, by the dimension L4 in connection with the force F4 with simultaneously increasing energy absorption. The bottom diagram shows the maximum possible compression of the
Mit dem erfindungsgemäßen crashrelevanten Bauteil und dem integrierten Deformationselement ist es möglich, eine bestimmte Energiemenge durch Verformung, Reibung und Zerstörung der Sollbruchstege 13 aufzunehmen, so dass sich ein gusstechnisch hergestelltes Bauteil trotz der herstellungsbedingten relativ geringen Duktilität begrenzt anprallweich verhält und zugleich einen festen Verbund der miteinander gekoppelten Gussbauteile ermöglicht.With the crashrelevanten component according to the invention and the integrated deformation element, it is possible to absorb a certain amount of energy by deformation, friction and destruction of the predetermined breaking
- 1 -1 -
- Strukturbauteilstructural component
- 2-2
- Seitenteil v. 1Side panel v. 1
- 3a-3a
- Querteilcross section
- 3b-3b-
- Querteilcross section
- 4-4
- MetallgussbauteilMetal cast component
- 5-5
- Deformationsbauteildeformation component
- 6-6
- MetallgussbauteilMetal cast component
- 7-7-
- Adaptionsstückadapter piece
- 8-8th-
- Adaptionsstückadapter piece
- 9-9-
- Oberfläche v. SSurface v. S
- 10-10-
- Oberfläche v. ASurface v. A
- 11 -11 -
- Wand v. SWall v. S
- 12 -12 -
- Wand v. AWall v. A
- 13 -13 -
- SollbruchstegBreaking bridge
- 14 -14 -
- SollbruchstegBreaking bridge
- 15 -15 -
- SollbruchstegBreaking bridge
- 16 -16 -
- SollbruchstegBreaking bridge
- 17 -17 -
- Wandabschnitt v. SWall section v. S
- 18 -18 -
- Wandabschnitt v. AWall section v. A
- 19 -19 -
- Stoßfängeranordnungbumper assembly
- S -S -
- Start-KeilkörperStart wedge body
- A -A -
- Keilkörperwedge body
- B -B -
- Keilkörperwedge body
- C -C -
- Keilkörperwedge body
- S -S -
- Stopp-KeilkörperStop wedge body
- D -D -
- WandstärkeWall thickness
- F1 -F1 -
- Kraftforce
- F2 -F2 -
- Kraftforce
- F3 -F3 -
- Kraftforce
- F4 -F4 -
- Kraftforce
- L1 -L1 -
- Stauchungupsetting
- L2 -L2 -
- Stauchungupsetting
- L3 -L3 -
- Stauchungupsetting
- L4 -L4 -
- Stauchungupsetting
- LA -LA -
- Längsachselongitudinal axis
- T -T -
- Eingriffstiefedepth of engagement
- W -W -
- Steigungswinkellead angle
Claims (17)
- Crash-related component of a vehicle structure or of a chassis of a motor vehicle, with an energy-absorbing deformation component (5) which comprises a plurality of funnel-shaped wedge bodies (S, A, B, C, E) which are arranged in a row and are coordinated with one another in their diameters (DS, DE) via predetermined breaking webs (13-16) with respectively adjacent wedge bodies (S, A, B, C, E) in such a manner that, when a limit load is reached, they can be pushed telescopically one inside another to a limited extent, with the predetermined breaking webs (13, 16) being destroyed, such that the wedge bodies (S, A, B, C, E) which are pushed one inside another are clamped to one another in a self-locking manner, characterized in that the deformation component (5) is a metal cast component which, in a casting process, is connected integrally with an adjacent first metal cast component (4) and with a second metal cast component (6), which components are connected to each other via the deformation component (5), with the mutually facing surfaces (9, 10) of those walls (10, 11) of the wedge bodies (S, A, B, C, E) which come into contact with each other having, at least in some regions, a surface structure which is deformed by mutual friction when said wedge bodies are pushed one inside another.
- Component according to Claim 1, characterized in that the deformation component (5) is arranged in the longitudinal direction of the vehicle.
- Component according to Claim 1, characterized in that the deformation component (5) is arranged at a transverse angle with respect to the longitudinal direction of the vehicle.
- Component according to Claim 3, characterized in that the transverse angle is between 45° and 135° and is in particular 90°.
- Component according to one of Claims 1 to 4, characterized in that the mutually facing surfaces (9, 10) of the walls (10, 11) which come into contact with each other have mutually coordinated pitch angles (W) which are selected in such a manner that wedge bodies (S, A, B, C, E) which are pushed one inside another are clamped to one another in a self-locking manner.
- Component according to Claim 1, characterized in that the surface structure is selected in such a manner that wedge bodies (S, A, B, C, E) which are pushed one inside another are clamped to one another.
- Component according to one of Claims 1 to 6, characterized in that the load-bearing capacity of the predetermined breaking webs (13-16) is selected in such a manner that they break before a selected, maximum tensile or compressive stress, as measured in the circumferential direction, in the wedge body (S, A, B, C, E) is reached.
- Component according to one of Claims 1 to 7, characterized in that the load-bearing capacity of the predetermined breaking webs (13-16) is selected in such a manner that they break in a manner corresponding to the sequence of the wedge bodies (S, A, B, C, E).
- Component according to one of Claims 1 to 8, characterized in that the wedge bodies (S, E) which are connected to the metal cast components (4, 6) are connected to the cast components (4, 6) via adaptation elements (7, 8).
- Component according to one of Claims 1 to 9, characterized in that the wall thickness of a first wedge body (S, A, B, C) is smaller than the wall thickness of the following wedge body (A, B, C, E).
- Component according to one of Claims 1 to 10, characterized in that the wall thickness (D) of the wedge bodies (S, A, B, C, E) increases in the direction of their funnel-shaped widened portion.
- Component according to one of Claims 1 to 11, characterized in that the maximum outside diameters (DS, DE) of the wedge bodies (S, A, B, C, E) increase from a first wedge body (S) to a last wedge body (E).
- Component according to one of Claims 1 to 12, characterized in that the wedge bodies (S, A, B, C, E) have the geometry of a hollow truncated cone.
- Component according to one of Claims 1 to 12, characterized in that the wedge bodies have the geometry of a hollow truncated pyramid.
- Component according to one of Claims 1 to 12, characterized in that the wedge bodies have the geometry of a hollow truncated wedge.
- Component according to one of Claims 1 to 15, characterized in that the metal cast components (4, 6) and the deformation component (5) are produced from an aluminium alloy.
- Component according to one of Claims 1 to 16, characterized in that the deformation component (5) has at least one opening on the circumference.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005041021A DE102005041021B4 (en) | 2005-08-29 | 2005-08-29 | Crash-relevant component of a vehicle structure or chassis of a motor vehicle |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1759958A2 EP1759958A2 (en) | 2007-03-07 |
EP1759958A3 EP1759958A3 (en) | 2007-08-22 |
EP1759958B1 true EP1759958B1 (en) | 2009-01-14 |
Family
ID=36758402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06014779A Not-in-force EP1759958B1 (en) | 2005-08-29 | 2006-07-15 | Impact absorbing component for a vehicle structure or for the chassis of a motor vehicle |
Country Status (3)
Country | Link |
---|---|
US (1) | US7357445B2 (en) |
EP (1) | EP1759958B1 (en) |
DE (2) | DE102005041021B4 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009024829A1 (en) * | 2009-06-13 | 2010-12-16 | Volkswagen Ag | Crash-optimized bumper bracket for body structure of vehicle, particularly motor vehicle, is made of small ductile material, and is formed by closed or open hollow section |
US10737707B2 (en) | 2015-03-05 | 2020-08-11 | Axtone Spolka Akcyjna | Impact energy absorber |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8123263B2 (en) * | 2001-09-27 | 2012-02-28 | Shape Corp. | Energy management beam |
DE102005018828B3 (en) * | 2005-04-22 | 2006-08-03 | Daimlerchrysler Ag | Impact protected front frame structure for trucks has lower longitudinal support elements, which is formed areawise as collision force absorbing deformation bodies and are completely integrated in frame structure |
DE102005034445A1 (en) * | 2005-07-23 | 2007-01-25 | GM Global Technology Operations, Inc., Detroit | Front end for a motor vehicle |
US20070205066A1 (en) * | 2006-03-06 | 2007-09-06 | Sridharan Vinayagamurthy | Multimodular multistage high impact collision energy absorber |
DE102006015876A1 (en) * | 2006-04-05 | 2007-10-11 | GM Global Technology Operations, Inc., Detroit | Crashbox and damping arrangement with Crasbox |
DE502006004531D1 (en) * | 2006-10-19 | 2009-09-24 | Voith Turbo Scharfenberg Gmbh | Energy Consumption Device for multi-unit vehicles |
DE102007012962B4 (en) * | 2007-03-14 | 2013-09-05 | Benteler Automobiltechnik Gmbh | Safety device for a motor vehicle |
JP4943913B2 (en) * | 2007-03-28 | 2012-05-30 | 株式会社日立製作所 | Transport aircraft |
US7695052B2 (en) * | 2007-03-30 | 2010-04-13 | Ford Global Technologies, Llc | Front rail having controlled thickness for energy absorption |
US7484781B1 (en) * | 2007-11-28 | 2009-02-03 | Isaak Garber | Constant deceleration bumper |
US8539737B2 (en) | 2008-09-19 | 2013-09-24 | Ford Global Technologies, Llc | Twelve-cornered strengthening member |
US9187127B2 (en) | 2008-09-19 | 2015-11-17 | Ford Global Technologies, Llc | Twelve-cornered strengthening member, assemblies including a twelve-cornered strengthening member, and methods of manufacturing and joining the same |
US8641129B2 (en) * | 2008-09-19 | 2014-02-04 | Ford Global Technologies, Llc | Twelve-cornered strengthening member |
US9533710B2 (en) * | 2008-09-19 | 2017-01-03 | Ford Global Technologies, Llc | Twelve-cornered strengthening member |
US20100102580A1 (en) * | 2008-10-23 | 2010-04-29 | Brooks Ryan J | Energy absorber with differentiating angled walls |
JP5484481B2 (en) * | 2008-11-27 | 2014-05-07 | ポスコ | Vehicle collision energy absorber having multiple collision energy absorption stages |
JP4738474B2 (en) * | 2008-12-26 | 2011-08-03 | 豊田鉄工株式会社 | Shock absorbing member for vehicle |
DE102009024670B4 (en) | 2009-06-12 | 2022-04-14 | Kirchhoff Automotive Deutschland Gmbh | Device for fastening bumpers or bumpers |
KR101022784B1 (en) * | 2009-08-19 | 2011-03-17 | 한국과학기술원 | Apparutus for absorbing colliding energy of car with varable length |
JP5507971B2 (en) * | 2009-11-16 | 2014-05-28 | アイシン精機株式会社 | Shock absorber and bumper device for vehicle |
US8276955B2 (en) * | 2010-03-26 | 2012-10-02 | Ford Global Technologies, Llc | Zero stack-up telescopically collapsible energy absorbing rail and bracket assembly |
DE102010027859B4 (en) * | 2010-04-16 | 2017-11-16 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Strut device for a cell, cell and vehicle |
JP5741041B2 (en) * | 2011-02-14 | 2015-07-01 | マツダ株式会社 | Crush can made of die-cast aluminum alloy |
US8459726B2 (en) | 2011-04-15 | 2013-06-11 | Ford Global Technologies, Llc. | Multi-cornered strengthening members |
JP2013067324A (en) * | 2011-09-26 | 2013-04-18 | Aisin Seiki Co Ltd | Crash box and vehicle bumper apparatus including the same |
DE102011089992A1 (en) * | 2011-12-27 | 2013-06-27 | Robert Bosch Gmbh | A personal protective device for a vehicle with a pedestrian protection device and method for inserting a pedestrian protection device that can be coupled to a passenger protection device for a vehicle |
DE102012200410A1 (en) * | 2012-01-12 | 2013-07-18 | Thermoplast Composite Gmbh | Energy-absorbing support structure and method for producing this |
DE102013004585B4 (en) * | 2013-03-15 | 2019-10-17 | Audi Ag | Side member assembly for a vehicle body |
CN105121230B (en) | 2013-03-20 | 2017-05-24 | 夏伊洛工业公司 | Energy absorbing assembly for vehicle |
US8844988B1 (en) * | 2013-04-12 | 2014-09-30 | GM Global Technology Operations LLC | Energy absorber system and energy absorber thereof |
DE102013012650A1 (en) * | 2013-07-30 | 2015-02-05 | Lukasz Szymanski | The energy absorbing device |
JP5791676B2 (en) * | 2013-09-10 | 2015-10-07 | 富士重工業株式会社 | Shock absorber |
FR3011520B1 (en) * | 2013-10-09 | 2016-12-16 | Autotech Eng A I E | SHOCK ABSORBER SYSTEM FOR MOTOR VEHICLE |
WO2016007661A1 (en) * | 2014-07-09 | 2016-01-14 | Magna International Inc. | Cast bumper assembly and method of manufacturing same |
US10202091B2 (en) | 2014-07-09 | 2019-02-12 | Magna International Inc. | Cast bumper system and method of manufacturing same |
US10407011B2 (en) | 2014-07-09 | 2019-09-10 | Magna International Inc. | Cast bumper system and method of manufacturing same |
US9637076B2 (en) | 2014-09-03 | 2017-05-02 | Ford Global Technologies, Llc | Energy absorbing device for bumper assembly |
US10315698B2 (en) | 2015-06-24 | 2019-06-11 | Ford Global Technologies, Llc | Sixteen-cornered strengthening member for vehicles |
US9944323B2 (en) | 2015-10-27 | 2018-04-17 | Ford Global Technologies, Llc | Twenty-four-cornered strengthening member for vehicles |
US9457746B1 (en) * | 2015-11-09 | 2016-10-04 | Ford Global Technologies, Llc | Energy absorbing system for vehicular impacts |
US9889887B2 (en) | 2016-01-20 | 2018-02-13 | Ford Global Technologies, Llc | Twelve-cornered strengthening member for a vehicle with straight and curved sides and an optimized straight side length to curved side radius ratio |
US9789906B1 (en) * | 2016-03-23 | 2017-10-17 | Ford Global Technologies, Llc | Twenty-eight-cornered strengthening member for vehicles |
US10393315B2 (en) | 2016-04-26 | 2019-08-27 | Ford Global Technologies, Llc | Cellular structures with twelve-cornered cells |
US10704638B2 (en) | 2016-04-26 | 2020-07-07 | Ford Global Technologies, Llc | Cellular structures with twelve-cornered cells |
US10473177B2 (en) | 2016-08-23 | 2019-11-12 | Ford Global Technologies, Llc | Cellular structures with sixteen-cornered cells |
US10220881B2 (en) | 2016-08-26 | 2019-03-05 | Ford Global Technologies, Llc | Cellular structures with fourteen-cornered cells |
US10300947B2 (en) | 2016-08-30 | 2019-05-28 | Ford Global Technologies, Llc | Twenty-eight-cornered strengthening member for vehicles |
US10279842B2 (en) | 2016-08-30 | 2019-05-07 | Ford Global Technologies, Llc | Twenty-eight-cornered strengthening member for vehicles |
US10429006B2 (en) | 2016-10-12 | 2019-10-01 | Ford Global Technologies, Llc | Cellular structures with twelve-cornered cells |
DE102017113943A1 (en) * | 2017-06-23 | 2018-12-27 | Hans-Georg Glöckler | Impact energy absorbing component |
DE102017006977A1 (en) * | 2017-07-22 | 2019-01-24 | Audi Ag | Pedestrian protection device for a vehicle |
US20190184923A1 (en) * | 2017-12-18 | 2019-06-20 | Ford Global Technologies, Llc | Vehicle impact absorbing system |
CN108909665A (en) * | 2018-05-25 | 2018-11-30 | 北京北汽模塑科技有限公司 | A kind of anti-rear end collision safety rear bumper |
US11292522B2 (en) | 2019-12-04 | 2022-04-05 | Ford Global Technologies, Llc | Splayed front horns for vehicle frames |
EP4110654A4 (en) * | 2020-02-27 | 2024-04-17 | Tesseract Structural Innovations, Inc. | Multilayer uniform deceleration unit |
CN112193189B (en) * | 2020-10-10 | 2021-12-17 | 宁波昌扬机械工业有限公司 | Rear anti-collision beam of automobile |
EP4240986A1 (en) * | 2020-11-04 | 2023-09-13 | Zephyros Inc. | Energy absorption member |
PL443624A1 (en) * | 2023-01-29 | 2024-08-05 | Politechnika Rzeszowska im. Ignacego Łukasiewicza | Kinetic energy absorber |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19625295A1 (en) * | 1995-06-30 | 1997-01-02 | Volkswagen Ag | Deforming element for support of section added to structure |
JP3337964B2 (en) * | 1997-12-19 | 2002-10-28 | 小島プレス工業株式会社 | Shock absorbing structure for vehicle interior parts |
FR2785965B1 (en) * | 1998-11-17 | 2001-01-19 | Tricoflex Sa | MULTILAYER HOSE FOR THE TRANSPORT OF HIGHLY SOLVENT CHEMICALS |
JP3446679B2 (en) * | 1999-09-08 | 2003-09-16 | 日産自動車株式会社 | Intermediate joint of side member |
US7070217B2 (en) * | 2002-04-19 | 2006-07-04 | Magna International Inc. | Collision energy-absorbing device |
DE10331862C5 (en) * | 2003-07-14 | 2016-04-14 | Volkswagen Ag | Vehicle frame protection element and method for controlling an occupant protection device |
DE10358492A1 (en) * | 2003-12-13 | 2005-07-14 | Daimlerchrysler Ag | Crash element in the form of a hollow profile |
-
2005
- 2005-08-29 DE DE102005041021A patent/DE102005041021B4/en not_active Expired - Fee Related
-
2006
- 2006-07-15 DE DE502006002631T patent/DE502006002631D1/en active Active
- 2006-07-15 EP EP06014779A patent/EP1759958B1/en not_active Not-in-force
- 2006-08-28 US US11/467,761 patent/US7357445B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009024829A1 (en) * | 2009-06-13 | 2010-12-16 | Volkswagen Ag | Crash-optimized bumper bracket for body structure of vehicle, particularly motor vehicle, is made of small ductile material, and is formed by closed or open hollow section |
US10737707B2 (en) | 2015-03-05 | 2020-08-11 | Axtone Spolka Akcyjna | Impact energy absorber |
Also Published As
Publication number | Publication date |
---|---|
DE502006002631D1 (en) | 2009-03-05 |
US7357445B2 (en) | 2008-04-15 |
EP1759958A2 (en) | 2007-03-07 |
DE102005041021A1 (en) | 2007-03-08 |
EP1759958A3 (en) | 2007-08-22 |
DE102005041021B4 (en) | 2007-09-20 |
US20070114804A1 (en) | 2007-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1759958B1 (en) | Impact absorbing component for a vehicle structure or for the chassis of a motor vehicle | |
EP1625978B1 (en) | Crashbox | |
DE69706597T2 (en) | Rail vehicle with a driver's cab that has an energy-absorbing structure with progressive deformation | |
AT501877B1 (en) | RIVET | |
EP0725000B1 (en) | Steering shaft for motor vehicle steering system | |
EP3631219B1 (en) | Steering shaft for a motor vehicle | |
DE2600937C2 (en) | ||
EP1541424B1 (en) | Crash element shaped as a hollow profile | |
DE2460598A1 (en) | Impact absorbing telescopic tubes on car - are radially expanded by tapered ram on impact | |
DE69522781T2 (en) | Energy-absorbing device for a motor vehicle steering column | |
EP2230147B1 (en) | Energy consumption element and impact protection with an energy consumption element | |
DE102008000936A1 (en) | Wheel suspension for vehicle i.e. motor vehicle, has two wheel suspension components e.g. axle carrier and control arm, and connection element connecting wheel suspension components in energy-absorbing and articulated manner | |
EP1740435B1 (en) | Plunger buffer | |
EP0913599A2 (en) | Energy absorbing structure for vehicles | |
DE10333748B3 (en) | Deformation system for steering column has deforming cone with at least one projection or recess | |
DE29808143U1 (en) | Impact absorbers for motor vehicles | |
WO2002018816A1 (en) | Device for absorbing impact force | |
DE10249517B4 (en) | Shock-absorbing, load-limiting connection device and rotary wing aircraft with such a connection device | |
DE102014001232B4 (en) | Carrier profile for a vehicle body with different failure modes | |
WO2001059324A1 (en) | Transversely loadable composite with structural piece and deformation element | |
DE102020205196B4 (en) | Crash element, chassis part and vehicle | |
DE10355434B4 (en) | Vehicle bumper arrangement has tube element with at least 2 tube layers with surfaces in contact over most of length, outer layer connected to longitudinal bearer, other end of inner layer joined to adjacent layer by preferred break point | |
DE10105634B4 (en) | Steering column for a motor vehicle | |
DE202017100169U1 (en) | Crumple element for a safety steering column | |
DE10062802B4 (en) | Deformation element for a motor vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B62D 21/15 20060101AFI20060810BHEP Ipc: F16F 7/12 20060101ALI20070718BHEP |
|
17P | Request for examination filed |
Effective date: 20070913 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB IT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 502006002631 Country of ref document: DE Date of ref document: 20090305 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20091015 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20110520 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20120719 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20120730 Year of fee payment: 7 Ref country code: FR Payment date: 20120806 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130201 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502006002631 Country of ref document: DE Effective date: 20130201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130715 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130715 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130715 |