EP1756369B1 - Supporting structure with a device for damping oscillations - Google Patents

Supporting structure with a device for damping oscillations Download PDF

Info

Publication number
EP1756369B1
EP1756369B1 EP05750676A EP05750676A EP1756369B1 EP 1756369 B1 EP1756369 B1 EP 1756369B1 EP 05750676 A EP05750676 A EP 05750676A EP 05750676 A EP05750676 A EP 05750676A EP 1756369 B1 EP1756369 B1 EP 1756369B1
Authority
EP
European Patent Office
Prior art keywords
supporting structure
structure according
mass
bridge
mass bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05750676A
Other languages
German (de)
French (fr)
Other versions
EP1756369A1 (en
Inventor
Rüdiger KÖRLIN
Uwe Starossek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Freyssinet SAS
Original Assignee
Technische Universitaet Hamburg TUHH
Tutech Innovation GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Hamburg TUHH, Tutech Innovation GmbH filed Critical Technische Universitaet Hamburg TUHH
Publication of EP1756369A1 publication Critical patent/EP1756369A1/en
Application granted granted Critical
Publication of EP1756369B1 publication Critical patent/EP1756369B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D11/00Suspension or cable-stayed bridges
    • E01D11/02Suspension bridges

Definitions

  • the invention relates to a carrier with a device for damping a flapping motion in the structure, in particular in a bridge.
  • the critical wind speed (Ucr) is the structural characteristic for the flutter stability of bridges. It is known that Ucr decreases with decreasing stiffness and damping of the bridge. Straight bridges with a large span, however, have a low rigidity, so that the problem of fluttering occurs for them.
  • the passive vibration damping refers essentially to structural measures, such as increasing the torsional stiffness of the carrier, the addition of additional stay cables and cross braces or the use of multi-part bridge girders.
  • the active vibration dampers can be divided into active mechanical and active aerodynamic vibration dampers.
  • the latter are based on the approach of suitably modifying the flow field forming the bridge carrier so as to achieve a stabilizing effect.
  • the torsional vibration of the bridge girder is checked, for example, by an additionally applied torsional moment.
  • the additional torsional moment is generated by horizontally displaceable damper masses in the bridge girder.
  • the invention has for its object to provide a damper device for damping a flapping motion for a structure that increases with simple means and the least possible use of energy, the critical wind speed for a flutter.
  • the device according to the invention for damping a flapping motion in a supporting structure has at least one pair of mass bodies.
  • the mass bodies are arranged on the opposite sides of an axis about which a rotational movement or a torsional movement of the structure takes place during the flapping motion.
  • Each of the mass bodies is pivotally mounted, such that the mass of each body is distributed eccentrically to a bearing point.
  • a drive is provided, the at least one of Mass body adjusted by a predetermined angle in a plane perpendicular to the axis.
  • the mass body is mounted eccentrically about a bearing point, so that, for example, can be clearly defined by the connection of the center of gravity and bearing point a direction for the mass body, the compound is in the plane perpendicular to the axis.
  • This direction of at least one of the mass bodies is changed by the drive.
  • the change in angle is effected by a control unit which, depending on measured values, actuates at least one drive for changing the angular position of the mass body.
  • Unlike a rotating damping mass is not exclusively worked with the torque of a damping mass in the inventive device. Rather, in the device according to the invention an adjustment of two mass bodies in each case takes place relative to the supporting structure, so as to occur To dampen flapping motion and / or to give the structure a sufficient damping torque.
  • each mass body is adjustable in a pair of mass bodies in its angular position.
  • each mass body is pivotally mounted via a pivot arm.
  • the eccentrically arranged mass body has a comparatively large moment of inertia.
  • the pivot arms are each connected via springs to the structure.
  • the springs hold the Schwenkann in a rest position, which ensures a balanced mass distribution to the structure in the event that no wind forces attack.
  • the mass bodies of a pair of mass bodies are equidistantly spaced from the axis so that the pair is symmetrical about the axis.
  • an electric motor is provided as the drive for a pair of mass bodies.
  • it can be provided as a drive and a hydraulic actuator.
  • the pivotal movement of the mass body takes place within a limited angular range.
  • the angle range here is preferably arranged symmetrically about a rest position of the mass body.
  • the support structure to be damped is preferably a bridge, in particular a suspension bridge, wherein the mass bodies are preferably arranged on both sides of the central longitudinal axis of the bridge girders.
  • a plurality of pairs of mass bodies may be arranged along the bridge girders, it being possible for one or more pairs of mass bodies to be provided in the bridge girder, depending on the length of the bridge girders.
  • a sensor which detects a shift and / or a time derivative of the displacement of the structure.
  • the measurement results are available at the control unit.
  • the time derivation may be, for example, the second derivative, which is then detected via an acceleration sensor.
  • the displacement of the structure is measured in the central longitudinal axis.
  • a sensor which detects a rotation and / or a time derivative of the rotation of the structure and abut the measurement results of the control unit.
  • the twist is a measure of the torsion of the bridge girder.
  • the sensor detects the rotation preferably about the central longitudinal axis.
  • control unit calculates, taking into account the frequency and amplitude of the measured values, the angular position for the mass body to be controlled.
  • control unit can also specify the angular velocity or the angular acceleration.
  • Fig. 1 shows a bridge girder 10 in the neck, as it occurs in suspension bridges.
  • the bridge body 12 is held by suspension cables / hangers 14 to a rope 16 stretched between the pylons of the bridge.
  • the bridge girder 10 has due to its design, its suspension, the materials used, its dimensions and other sizes a certain stiffness and a certain damping.
  • the vibration behavior of the bridge carrier is also influenced by the stiffness and damping of the pylons.
  • Fig. 2 shows the body of the bridge girder 12 in cross section.
  • the longitudinal axis of the bridge girder is marked with 18. Laterally from the longitudinal axis 18, two drives 20 and 22 are arranged.
  • the mass bodies 24 and 26 are each connected via a lever arm 28 and 30 with the associated drives.
  • the lever arms 28 and 30 are mounted in the points 32 and 34 in the bridge girder (not shown in detail).
  • the bearing points 32 and 34 lie on a horizontal axis 36, based on the resting state of the bridge girder.
  • the bearing points 30 and 32 may be suspended resiliently and damped in the bridge girder.
  • Fig. 2 shows an example of an angular interval 38, in which the mass body 24 and 26 can be adjusted independently of each other.
  • Fig. 3 schematically shows the physical model underlying the control of the displacement of the mass bodies.
  • the flapping motion is broken down into a movement with two degrees of freedom.
  • the first degree of freedom denotes the displacement h, which describes a lifting and lowering of the bridge girder relative to the bridge girders.
  • the second degree of freedom is a torsion twist about the angle ⁇ .
  • a lateral shift, ie a shift transversely to the direction h, is not explicitly taken into account in this model, but could still be included.
  • the model now assumes, for the displacement h, that it is a damped vibration caused by a spring element 40 and a damper 42 in FIG Fig. 3 is shown.
  • a spring element 44 and a damping element 46 is assumed.
  • a linear restoring force is applied to the model.
  • non-linear terms in particular in the range of large amplitudes, may also be included in the calculation.
  • the solution of the lateral vibration equations for h (t) and ⁇ (t) describes the movement of the bearing points 32 and 34. Starting from the position at the bearing points 32 and 34, the angles ⁇ 1 and ⁇ 2 for the deflection of the mass bodies 24 and 26 are determined. Here, the angle can be counted as the deflection angle of the lever arm relative to the imaginary connection 48 between the bearing points 32 and 34 or with respect to the horizontal axis 36. Preferred first variant.
  • the regulation made to dampen and suppress the flapping motion can be done in different ways.
  • the structural displacements h and ⁇ and their time derivative dh / dt and ⁇ / dt are measured.
  • the position of the bearing points 32 and 34 and the pivot arms is also measured.
  • setpoint values for the deflection angles ⁇ 1 and ⁇ 2 are determined on the basis of an underlying model. It is also possible, depending on the selected drive, to specify desired values for the first or second time derivative of the rotational angles ⁇ 1 and ⁇ 2 .
  • the greater proportion of the occurring torques of the electric motors is used to overcome the weight of the eccentrically arranged damper mass. As a result, the desired Schwenkarmamba can be ensured about the horizontal center axis 36.
  • the device according to the invention for damping a flapping motion in a supporting structure is not limited to use in suspension bridges, but can also be used, for example for damping horizontal vibrations in towers.
  • the axis 18 extends in the vertical direction. The advantage here is that the weight of the mass body does not have to be overcome.
  • Fig. 4 finally shows a comparison of the energy requirements of various possible mass systems.
  • the energy consumption was normalized for a mass ratio, ie quotient of damper mass and building mass, from 1% to an energy requirement of 100% for the method of a centric rotation body (ZRA) known in the prior art.
  • ZRA centric rotation body
  • HA In the process referred to as HA, work is done with a horizontally displaceable mass.
  • the inventive method of eccentrically pivoting mass damper is called ERA. Fig. 4 It can be seen that the energy required for flutter control in the invention is significantly lower than in the known method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Portable Nailing Machines And Staplers (AREA)

Abstract

The invention relates to a device for damping the oscillations of a supporting structure. Said device comprises: at least one pair of mass elements (24, 26), which are located on opposite sides of an axis (18), about which a torsional motion of the supporting structure occurs during an oscillation, each mass element being pivotally mounted in such a way that the mass of each element is distributed eccentrically around a bearing point (32, 34); at least one drive (20, 22), which adjusts the mass element by a predetermined angle on a plane running perpendicular to the axis; and a control unit, which controls at least one drive for modifying the angular position of the mass element, based on measured values of the position and/or motion of the supporting structure.

Description

Die Erfindung betrifft ein Tragewerk mit einer Vorrichtung zur Dämpfung einer Flatterbewegung bei dem Tragwerk, insbesondere bei einer Brücke.The invention relates to a carrier with a device for damping a flapping motion in the structure, in particular in a bridge.

Es besteht das Bedürfnis nach immer größeren Spannweiten im Brückenbau. So besitzt beispielsweise die Ende der 90er Jahre in Japan errichtete Akashi Kaikyo Brücke eine Spannweite von fast 2000 m. Die für die Überquerung der Meerenge von Messina in Italien geplante Brücke soll eine Spannweite von über 3 km besitzen. Mit diesen extremen Brückenlängen rückt zunehmends die Problematik der Schwingungsanfälligkeit dieser Tragwerke in den Vordergrund. Bei der Auslegung weit gespannter Brückenträger ist ein besonders wichtiger Effekt die sogenannte Flatterstabilität der Brücke. Hierbei handelt es sich um ein aeroelastisches Phänomen des windinduzierten Brückenflatters, bei dem gekoppelte Biege- und Torsionsschwingungen des Brückenträgers auftreten. Bei selbstinduzierten Biege- und Torsionsschwingungen handelt es sich im Gegensatz zu sogenannten fremdinduzierten Schwingungen, die beispielsweise durch Luft-Böen oder durch Luft-Strömungsturbulenzen hervorgerufen werden, bei der Selbstinduktion um angreifende Erregerkräfte, die allein durch eine strukturelle Verschiebung der Brücke hervorgerufen werden. Die an dem Tragwerk angreifenden Luftkräfte beeinflussen die dynamischen Eigenschaften der Brückenstruktur, also insbesondere Steifigkeit und Dämpfungsparameter. Diese Änderungen treten auch bei zeitlich konstanter Windgeschwindigkeit auf. Erreicht die Windgeschwindigkeit einen bestimmten kritischen Wert, wird die Strukturdämpfung des Brückenträgers weitgehend aufgehoben. Bei einem weiteren Anwachsen der Windgeschwindigkeit kann eine Struktur mit negativer Gesamtdämpfung auftreten, bei der eine kleine Initialverschiebung zu einer anwachsenden Schwingung mit nahezu unbegrenzter Amplitude und so zum Versagen des Brückentragwerks führt. Die kritische Windgeschwindigkeit (Ucr) ist der strukturelle Kennwert für die Flatterstabilität von Brücken. Es ist bekannt, dass Ucr mit abnehmender Steifigkeit und Dämpfung der Brücke abnimmt. Gerade Brücken mit einer großen Spannweite besitzen jedoch eine geringe Steifigkeit, so dass für diese das Problem des Flatterns auftritt.There is a need for ever larger spans in bridge construction. For example, in the late 1990s, the Akashi Kaikyo Bridge, built in Japan, has a span of nearly 2000 meters. The bridge planned to cross the strait of Messina in Italy will have a span of over 3 km. With these extreme bridge lengths, the problem of the susceptibility to vibration of these structures is increasingly coming to the fore. In the design of wide-span bridge girders, a particularly important effect is the so-called chipping stability of the bridge. This is an aeroelastic phenomenon of the wind-induced bridge flap, in which coupled bending and torsional vibrations of the bridge girder occur. In self-induced bending and torsional vibrations, in contrast to so-called externally induced vibrations, which are caused, for example, by air gusts or by air flow turbulences, in self-induction are attacking excitation forces, which are caused solely by a structural displacement of the bridge. The air forces acting on the structure influence the dynamic properties of the bridge structure, in particular stiffness and damping parameters. These changes occur even with temporally constant wind speed. If the wind speed reaches a certain critical value, the structural damping of the bridge girder is largely eliminated. As the wind speed increases further, a structure with negative overall attenuation may occur, with a small initial shift to one increasing vibration with almost unlimited amplitude and thus leads to failure of the bridge structure. The critical wind speed (Ucr) is the structural characteristic for the flutter stability of bridges. It is known that Ucr decreases with decreasing stiffness and damping of the bridge. Straight bridges with a large span, however, have a low rigidity, so that the problem of fluttering occurs for them.

Zur Stabilisierung flattergefährdeter Brückenträger können verschiedene schwingungsdämpfende Verfahren und Vorrichtungen eingesetzt werden. Grundsätzlich lassen sich hierbei aktive und passive Verfahren unterscheiden. Die passive Schwingungsdämpfung bezieht sich im wesentlichen auf strukturelle Maßnahmen, wie beispielsweise die Erhöhung der Torsionssteifigkeit des Trägers, das Hinzufügen von zusätzlichen Schrägseilen und Querhängern oder die Verwendung von mehrteiligen Brückenträgern.In order to stabilize fly-endangered bridge girders, various vibration-damping methods and devices can be used. In principle, active and passive methods can be distinguished. The passive vibration damping refers essentially to structural measures, such as increasing the torsional stiffness of the carrier, the addition of additional stay cables and cross braces or the use of multi-part bridge girders.

Die aktiven Schwingungsdämpfer lassen sich in aktive mechanische sowie aktive aerodynamische Schwingungsdämpfer unterscheiden. Die Letztgenannten beruhen auf dem Ansatz, das sich um den Brückenträger ausbildende Strömungsfeld geeignet zu modifizieren, um so eine stabilisierende Wirkung zu erzielen. Beispielsweise können an dem Brückenträger seitlich Klappen vorgesehen sein, die so in den Wind gestellt werden, dass durch die vorbeiströmende Luft eine stabilisierende Kraft ausgeübt wird. Bei der aktiven mechanischen Flatterkontrolle erfolgt eine Kontrolle der Torsionsschwingung des Brückenträgers beispielsweise durch ein zusätzlich aufgebrachtes Torsionsmoment. Zu einer Ausgestaltung wird durch horizontal verschiebbare Dämpfermassen im Brückenträger das zusätzliche Torsionsmoment erzeugt. Es gibt auch Überlegungen, durch eine im Zentrum des Brückenquerschnitts rotierende Massen ein stabilisierendes Drehmoment für die Brückenträger zu erzeugen.The active vibration dampers can be divided into active mechanical and active aerodynamic vibration dampers. The latter are based on the approach of suitably modifying the flow field forming the bridge carrier so as to achieve a stabilizing effect. For example, can be provided on the bridge girder side flaps, which are placed in the wind that a stabilizing force is exerted by the passing air. In the active mechanical flutter control, the torsional vibration of the bridge girder is checked, for example, by an additionally applied torsional moment. For an embodiment, the additional torsional moment is generated by horizontally displaceable damper masses in the bridge girder. There are also considerations to create a stabilizing torque for the bridge girders by means of a mass rotating in the center of the bridge cross-section.

Aus Patent Abstracts of Japan, Band 2000, Nr. 04, vom 31. August 2000 zu JP 2000/001815 ist eine Vorrichtung zur Dämpfung einer Flatterbewegung bei einer Brücke bekannt, mit einem Massenkörper, der entlang einer gebogenen Schiene verfahrbar ist.Out Patent Abstracts of Japan, Vol. 2000, No. 04, Aug. 31, 2000 to JP 2000/001815 a device for damping a flapping motion in a bridge is known, with a mass body which is movable along a curved rail.

Aus Patent Abstracts of Japan, Band 017, 584, vom 25. Oktober 1993 zu JP 051 71 837 ist eine Dämpfungseinrichtung für eine Brücke bekannt, bei der ein Massekörper entlang einer Querrichtung des Tragwerks über einen Seilzug verfahren wird.Out Patent Abstracts of Japan, vol. 017, 584, October 25, 1993 to JP 051 71 837 a damping device for a bridge is known in which a mass body is moved along a transverse direction of the structure via a cable.

Der Erfindung liegt die Aufgabe zugrunde, eine Dämpfervorrichtung zur Dämpfung einer Flatterbewegung für ein Tragwerk bereit zu stellen, die mit einfachen Mitteln und möglichst geringem Energieeinsatz die kritische Windgeschwindigkeit für eine Flatterbewegung erhöht.The invention has for its object to provide a damper device for damping a flapping motion for a structure that increases with simple means and the least possible use of energy, the critical wind speed for a flutter.

Erfindungsgemäß wird die Aufgabe durch ein Tragwerk mit einer Vorrichtung mit den Merkmalen aus Anspruch 1 gelöst. Vorteilhafte Ausgestaltung bilden die Gegenstände der Unteransprüche.According to the invention the object is achieved by a supporting structure with a device having the features of claim 1. Advantageous embodiment form the subject of the dependent claims.

Die erfindungsgemäße Vorrichtung zur Dämpfung einer Flatterbewegung bei einem Tragwerk besitzt mindestens ein Paar von Massenkörpern. Die Massenkörper sind auf den gegenüberliegenden Seiten einer Achse angeordnet, um die eine Drehbewegung bzw. eine Torsionsbewegung des Tragwerks bei der Flatterbewegung erfolgt. Jeder der Massenkörper ist dabei schwenkbar gelagert, derart, daß die Masse von jedem Körper exzentrisch zu einem Lagerpunkt verteilt ist. Ferner ist bei der erfindungsgemäßen Vorrichtung ein Antrieb vorgesehen, der mindestens einen der Massenkörper um einen vorbestimmten Winkel in einer Ebene senkrecht zur Achse verstellt. Der Massenkörper ist exzentrisch um einen Lagerpunkt gelagert, so dass sich beispielsweise durch die Verbindung von Massenschwerpunkt und Lagerpunkt eindeutig eine Richtung für den Massenkörper definieren läßt, wobei die Verbindung in der Ebene senkrecht zu der Achse liegt. Diese Richtung von mindestens einem der Massenkörper wird durch den Antrieb geändert. Die Winkeländerung erfolgt durch eine Steuereinheit, die abhängig von gemessenen Werten mindestens einen Antrieb zur Änderung der Winkelposition des Massenkörpers ansteuert. Anders als bei einer rotierenden Dämpfungsmasse wird bei der erfindungsgemäßen Vorrichtung nicht ausschließlich mit dem Drehmoment einer Dämpfungsmasse gearbeitet. Vielmehr findet bei der erfindungsgemäßen Vorrichtung eine Verstellung von zwei Massenkörpern jeweils relativ zu dem Tragwerk statt, um so eine auftretende Flatterbewegung zu dämpfen und/oder dem Tragwerk ein ausreichendes Dämpfungsmoment zu verleihen.The device according to the invention for damping a flapping motion in a supporting structure has at least one pair of mass bodies. The mass bodies are arranged on the opposite sides of an axis about which a rotational movement or a torsional movement of the structure takes place during the flapping motion. Each of the mass bodies is pivotally mounted, such that the mass of each body is distributed eccentrically to a bearing point. Furthermore, in the device according to the invention, a drive is provided, the at least one of Mass body adjusted by a predetermined angle in a plane perpendicular to the axis. The mass body is mounted eccentrically about a bearing point, so that, for example, can be clearly defined by the connection of the center of gravity and bearing point a direction for the mass body, the compound is in the plane perpendicular to the axis. This direction of at least one of the mass bodies is changed by the drive. The change in angle is effected by a control unit which, depending on measured values, actuates at least one drive for changing the angular position of the mass body. Unlike a rotating damping mass is not exclusively worked with the torque of a damping mass in the inventive device. Rather, in the device according to the invention an adjustment of two mass bodies in each case takes place relative to the supporting structure, so as to occur To dampen flapping motion and / or to give the structure a sufficient damping torque.

Bevorzugt ist jeder Massenkörper in einem Paar von Massenkörpern in seiner Winkelposition verstellbar.Preferably, each mass body is adjustable in a pair of mass bodies in its angular position.

In einer bevorzugten Ausgestaltung der erfindungsgemäßen Dämpfungsvorrichtung ist jeder Massenkörper über einen Schwenkarm schwenkbar gelagert. Der derartig exzentrisch angeordnete Massenkörper besitzt eine vergleichsweise großes Trägheitsmoment.In a preferred embodiment of the damping device according to the invention, each mass body is pivotally mounted via a pivot arm. The eccentrically arranged mass body has a comparatively large moment of inertia.

In einer bevorzugten Ausgestaltung sind die Schwenkarme jeweils über Federn mit dem Tragwerk verbunden. Bevorzugt halten die Federn den Schwenkann in einer Ruheposition, die für den Fall, dass keine Windkräfte angreifen, eine ausgeglichene Massenverteilung an dem Tragwerk sicherstellt.In a preferred embodiment, the pivot arms are each connected via springs to the structure. Preferably, the springs hold the Schwenkann in a rest position, which ensures a balanced mass distribution to the structure in the event that no wind forces attack.

Zweckmäßigerweise sind die Massenkörper eines Paares von Massenkörpern im gleichen Abstand von der Achse gelagert, so dass das Paar symmetrisch zu der Achse angeordnet ist.Conveniently, the mass bodies of a pair of mass bodies are equidistantly spaced from the axis so that the pair is symmetrical about the axis.

Bevorzugt ist als Antrieb für eine Paar von Massenkörpern jeweils ein Elektromotor vorgesehen. Alternativ kann als Antrieb auch ein hydraulischer Aktuator vorgesehen sein.Preferably, an electric motor is provided as the drive for a pair of mass bodies. Alternatively it can be provided as a drive and a hydraulic actuator.

In einer ganz besonders bevorzugten Ausgestaltung der erfindungsgemäßen Dämpfungsvorrichtung erfolgt die Schwenkbewegung der Massenkörper innerhalb eines beschränkten Winkelbereichs. Der Winkelbereich ist hierbei bevorzugt symmetrisch um eine Ruhelage des Massenkörpers angeordnet.In a very particularly preferred embodiment of the damping device according to the invention, the pivotal movement of the mass body takes place within a limited angular range. The angle range here is preferably arranged symmetrically about a rest position of the mass body.

Bevorzugt handelt es sich bei dem zu dämpfenden Tragwerk um eine Brücke, insbesondere eine Hängebrücke, wobei bevorzugt die Massenkörper auf beiden Seiten der Mittellängsachse der Brückenträger angeordnet sind. Zweckmäßigerweise können mehrere Paare von Massenkörpern entlang den Brückenträgern angeordnet sein, wobei es je nach Länge der Brückenträger ein oder mehrere Paare von Massenkörpem in dem Brückenträger vorgesehen sein können.The support structure to be damped is preferably a bridge, in particular a suspension bridge, wherein the mass bodies are preferably arranged on both sides of the central longitudinal axis of the bridge girders. Conveniently, a plurality of pairs of mass bodies may be arranged along the bridge girders, it being possible for one or more pairs of mass bodies to be provided in the bridge girder, depending on the length of the bridge girders.

Bevorzugt ist ein Sensor vorgesehen, der eine Verschiebung und/oder eine zeitliche Ableitung der Verschiebung des Tragwerks erfasst. Die Messergebnisse liegen an der Steuereinheit an. Bei der zeitlichen Ableitung kann es sich beispielsweise um die zweite Ableitung handeln, die dann über einen Beschleunigungssensor erfaßt wird. Zweckmäßigerweise wird die Verschiebung des Tragwerks in der Mittellängsachse gemessen.Preferably, a sensor is provided which detects a shift and / or a time derivative of the displacement of the structure. The measurement results are available at the control unit. The time derivation may be, for example, the second derivative, which is then detected via an acceleration sensor. Appropriately, the displacement of the structure is measured in the central longitudinal axis.

Ebenfalls bevorzugt ist ein Sensor vorgesehen, der eine Verdrehung und/oder eine zeitliche Ableitung der Verdrehung des Tragwerks erfaßt und dessen Messergebnisse an der Steuereinheit anliegen. Die Verdrehung ist ein Maß für die Torsion des Brückenträgers. Zweckmäßigerweise erfaßt der Sensor die Verdrehung bevorzugt um die Mittellängsachse.Also preferably, a sensor is provided which detects a rotation and / or a time derivative of the rotation of the structure and abut the measurement results of the control unit. The twist is a measure of the torsion of the bridge girder. Advantageously, the sensor detects the rotation preferably about the central longitudinal axis.

Aus den Daten berechnet die Steuereinheit unter Berücksichtigung von Frequenz und Amplitude der gemessenen Werte die anzusteuernde Winkelposition für den Massenkörper. Alternativ kann von der Steuereinheit auch die Winkelgeschwindigkeit oder die Winkelbeschleunigung vorgegeben werden.From the data, the control unit calculates, taking into account the frequency and amplitude of the measured values, the angular position for the mass body to be controlled. Alternatively, the control unit can also specify the angular velocity or the angular acceleration.

Ein bevorzugtes Ausführungsbeispiel der erfindungsgemäßen Dämpfungsvorrichtung wird nachfolgend anhand der Figuren näher erläutert.A preferred embodiment of the damping device according to the invention will be explained in more detail with reference to FIGS.

Es zeigt

Fig. 1
ausschnittsweise einen Brückenträger in einer perspektivischen Ansicht,
Fig. 2
eine schematische Ansicht des Brückenträgers im Querschnitt,
Fig. 3
ein vereinfachtes Modell zur Beschreibung der Bewegungsvorgänge und
Fig. 4
relativer Energieverbrauch, abhängig von einem Quotient aus Dämpfermasse und Bauwerksmasse.
It shows
Fig. 1
partial view of a bridge girder in a perspective view,
Fig. 2
a schematic view of the bridge carrier in cross section,
Fig. 3
a simplified model describing the motion processes and
Fig. 4
Relative energy consumption, depending on a quotient of damper mass and building mass.

Fig. 1 zeigt einen Brückenträger 10 im Ausschnitt, wie er bei Hängebrücken auftritt. der Brückenkörper 12 wird durch Tragseile/Hänger 14 an einem zwischen den Pylonen der Brücke gespannten Seil 16 gehalten. Der Brückenträger 10 besitzt aufgrund seiner Bauart, seiner Aufhängung, den verwendeten Materialien, seinen Abmessungen und weiterer Größen eine bestimmte Steifigkeit und eine bestimmte Dämpfung. Das Schwingungsverhalten des Brückenträgers wird zudem noch durch die Steifigkeit und Dämpfung der Pylonen beeinflußt. Insgesamt besteht die Gefahr, daß auch bei einem zeitlich konstanten, quer zur Brückenlängsrichtung angreifenden Wind sich die Dämpfungs- und Steifigkeitseigenschaften so ändern, dass negative Dämpfungswerte auftreten, die dazu führen, daß geringe Verschiebungen in dem Brückenträger sich aufschaukeln und beispielsweise zu einer Zerstörung der Hängebrücke führen, wie beispielsweise bei der Tacoma Narrows Bridge 1940. Das Auftreten von negativen Dämpfungswerten, die zu einer sich aufschaukelnden Schwingung der Brücke führen, bedürfen keiner periodischen Anregung, beispielsweise durch Böen oder Luftwirbel, sondern lediglich einer geringen Verschiebung des Brückenträgers aus seiner Ruhelage. Fig. 1 shows a bridge girder 10 in the neck, as it occurs in suspension bridges. the bridge body 12 is held by suspension cables / hangers 14 to a rope 16 stretched between the pylons of the bridge. The bridge girder 10 has due to its design, its suspension, the materials used, its dimensions and other sizes a certain stiffness and a certain damping. The vibration behavior of the bridge carrier is also influenced by the stiffness and damping of the pylons. Overall, there is a risk that even with a temporally constant, transversely to the bridge longitudinal direction acting wind the damping and stiffness properties change so that negative damping values occur, which cause small shifts in the bridge girder aufschaukeln and, for example, to a destruction of the suspension bridge The occurrence of negative attenuation values, which lead to an oscillating oscillation of the bridge, require no periodic excitation, for example by gusts or swirls of air, but only a slight displacement of the bridge carrier from its rest position.

Fig. 2 zeigt den Körper des Brückenträgers 12 im Querschnitt. Die Längsachse des Brückenträgers ist mit 18 gekennzeichnet. Seitlich von der Längsachse 18 sind zwei Antriebe 20 und 22 angeordnet. Die Massenkörper 24 und 26 sind jeweils über einen Hebelarm 28 und 30 mit den zugeordneten Antrieben verbunden. Die Hebelarme 28 und 30 sind in den Punkten 32 und 34 in dem Brückenträger gelagert (nicht näher dargestellt). Die Lagerpunkte 32 und 34 liegen auf einer horizontalen Achse 36, bezogen auf den Ruhezustand des Brückenträgers. Die Lagerpunkte 30 und 32 können federnd und gedämpft in dem Brückträger aufgehangen sein. Fig. 2 shows the body of the bridge girder 12 in cross section. The longitudinal axis of the bridge girder is marked with 18. Laterally from the longitudinal axis 18, two drives 20 and 22 are arranged. The mass bodies 24 and 26 are each connected via a lever arm 28 and 30 with the associated drives. The lever arms 28 and 30 are mounted in the points 32 and 34 in the bridge girder (not shown in detail). The bearing points 32 and 34 lie on a horizontal axis 36, based on the resting state of the bridge girder. The bearing points 30 and 32 may be suspended resiliently and damped in the bridge girder.

Fig. 2 zeigt beispielhaft einen Winkelintervall 38, in dem die Massenkörper 24 und 26 jeweils unabhängig voneinander verstellt werden können. Fig. 2 shows an example of an angular interval 38, in which the mass body 24 and 26 can be adjusted independently of each other.

Fig. 3 zeigt schematisch das bei der Steuerung der Auslenkung der Massenkörper zugrunde liegende physikalische Modell. Die Flatterbewegung wird in eine Bewegung mit zwei Freiheitsgraden zerlegt. Der erste Freiheitsgrad bezeichnet die Verschiebung h, die bezogen auf die Brückenträger ein Heben und Senken des Brückenträgers beschreibt. Der zweite Freiheitsgrad ist eine Torsionsverdrehung um den Winkel α. Eine seitliche Verschiebung, also eine Verschiebung quer zur Richtung h wird in diesem Modell nicht explizit berücksichtigt, könnte aber noch mit einbezogen werden. Das Modell nimmt nun für die Verschiebung h an, daß es sich um eine gedämpfte Schwingung handelt, die durch ein Federelement 40 und einen Dämpfer 42 in Fig. 3 dargestellt ist. Auch für die Torsionsbewegung α wird in dem Modell ein Federelement 44 und ein Dämpfungselement 46 angenommen. Bevorzugt wird bei dem Modell eine lineare Rückstellkraft angesetzt. Je nach Komplexität der Steuereinheit können aber auch nicht lineare Terme, insbesondere im Bereich großer Amplituden, in die Rechnung einbezogen werden. Die Lösung der seitlichen Schwingungsgleichungen für h (t) und α (t) beschreibt die Bewegung der Lagerpunkte 32 und 34. Ausgehend von der Position an den Lagerpunkten 32 und 34 werden die Winkel γ1 und γ2 für die Auslenkung der Massenkörper 24 und 26 bestimmt. Hierbei kann der Winkel als der Auslenkungswinkel des Hebelarms gegenüber der gedachten Verbindung 48 zwischen den Lagerpunkten 32 und 34 gezählt werden oder gegenüber der horizontalen Achse 36. Bevorzugt wird erstgenannte Variante. Fig. 3 schematically shows the physical model underlying the control of the displacement of the mass bodies. The flapping motion is broken down into a movement with two degrees of freedom. The first degree of freedom denotes the displacement h, which describes a lifting and lowering of the bridge girder relative to the bridge girders. The second degree of freedom is a torsion twist about the angle α. A lateral shift, ie a shift transversely to the direction h, is not explicitly taken into account in this model, but could still be included. The model now assumes, for the displacement h, that it is a damped vibration caused by a spring element 40 and a damper 42 in FIG Fig. 3 is shown. Also for the torsional movement α in the model, a spring element 44 and a damping element 46 is assumed. Preferably, a linear restoring force is applied to the model. Depending on the complexity of the control unit, non-linear terms, in particular in the range of large amplitudes, may also be included in the calculation. The solution of the lateral vibration equations for h (t) and α (t) describes the movement of the bearing points 32 and 34. Starting from the position at the bearing points 32 and 34, the angles γ 1 and γ 2 for the deflection of the mass bodies 24 and 26 are determined. Here, the angle can be counted as the deflection angle of the lever arm relative to the imaginary connection 48 between the bearing points 32 and 34 or with respect to the horizontal axis 36. Preferred first variant.

Die vorgenommene Regelung zur Dämpfung und Unterdrückung der Flatterbewegung kann auf unterschiedliche Art erfolgen.The regulation made to dampen and suppress the flapping motion can be done in different ways.

Als Eingangswert für die Regelung werden die Tragwerksverschiebungen h und α und deren Zeitableitung dh/dt und α/dt gemessen. Die Position der Lagerpunkte 32 und 34 und der Schwenkarme wird ebenfalls gemessen. Aus den Messwerten werden aufgrund eines zugrunde liegenden Modells Sollwerte für die Auslenkungswinkel γ1 und γ2 bestimmt. Auch ist es möglich, je nach gewähltem Antrieb Sollwerte für die erste oder zweite zeitliche Ableitung der Drehwinkel γ1 und γ2 vorzugeben.As an input value for the control, the structural displacements h and α and their time derivative dh / dt and α / dt are measured. The position of the bearing points 32 and 34 and the pivot arms is also measured. From the measured values, setpoint values for the deflection angles γ 1 and γ 2 are determined on the basis of an underlying model. It is also possible, depending on the selected drive, to specify desired values for the first or second time derivative of the rotational angles γ 1 and γ 2 .

Zur Verdeutlichung seien beispielhaft eine Hängebrücke mit einer Hauptspannweite von 1500 m als Abstand zwischen zwei Pylonen betrachtet. Als zusätzliche Dämpfermasse mit den Massenkörpem werden auf jeder Seite der Brücke insgesamt 100 t verwendet, was zu einer Gesamtdämpfermasse von 200 t führt. Die Dämpfermasse wird beispielsweise auf 15 Paaren von Schwenkarmen aufgeteilt. Jeder Schwenkarm besitzt eine Länge von 3 m. Bei Elektromotoren als Aktuatoren für die Schwenkarme sind hier die auftretenden Motormomente zu begrenzen. Für das Maximalmoment sei beispielsweise 5500 Nm bei maximal 750 U/min angesetzt. Durch ein Getriebe kann das Moment an der Motorlast erhöht werden. Damit wird jedoch die Drehzahl reduziert, die erforderliche Dynamik muss weiterhin gewährleistet sein. Beispielsweise kann also ein Getriebe mit einer Untersetzung von 50:1 gewählt werden, so daß das maximale Motorelement sich zu 4600 Nm ergibt.To illustrate, for example, consider a suspension bridge with a main span of 1500 m as the distance between two pylons. As additional damper mass with the Massenkörpem 100 t are used on each side of the bridge, resulting in a total damper mass of 200 t. The damper mass is divided, for example, 15 pairs of swing arms. Each swivel arm has a length of 3 m. In electric motors as actuators for the pivot arms, the occurring engine torques are here to limit. For the maximum torque, for example, 5500 Nm at a maximum of 750 U / min is used. A gearbox can increase the torque on the engine load. This, however, the speed is reduced, the required dynamics must continue to be guaranteed be. For example, so a transmission can be selected with a reduction of 50: 1, so that the maximum motor element results in 4600 Nm.

Der größere Anteil der auftretenden Drehmomente der Elektromotoren wird genutzt, um das Eigengewicht der exzentrisch angeordneten Dämpfermasse zu überwinden. Hierdurch können die gewünschten Schwenkarmbewegungen um die horizontale Mittelachse 36 gewährleistet werden.The greater proportion of the occurring torques of the electric motors is used to overcome the weight of the eccentrically arranged damper mass. As a result, the desired Schwenkarmbewegungen can be ensured about the horizontal center axis 36.

Zum Einstellen einer horizontalen Ruhelage der Schwenkarme sind unterschiedliche Ansätze möglich, hierzu zählt beispielsweise ein Getriebe mit innerer Reibung oder eine federnde Lagerung der Schwenkanne. Bei letztgenannter Möglichkeit sind die Schwenkanne nahe am Motor mit dem Brückenträger durch Federn verbunden. Anstatt der Einleitung der Stellkräfte mit Elektromotoren ist auf die Verwendung hydraulischer Aktuatoren, welche sich ebenfalls nahe zu dem Drehpunkt befinden, möglich.To set a horizontal rest position of the pivot arms different approaches are possible, this includes, for example, a transmission with internal friction or a resilient mounting the Schwenkanne. In the latter possibility, the pan near the engine are connected to the bridge girder by springs. Instead of introducing the actuating forces with electric motors, it is possible to use hydraulic actuators, which are also close to the fulcrum.

Die erfindungsgemäße Vorrichtung zur Dämpfung einer Flatterbewegung bei einem Tragwerk ist jedoch nicht auf den Einsatz bei Hängebrücken beschränkt, sondern kann ebenfalls, beispielsweise zur Dämpfung horizontaler Schwingungen bei Türmen, eingesetzt werden. Hierbei verläuft die Achse 18 in vertikaler Richtung. Der Vorteil hierbei ist, daß die Gewichtskraft der Massekörper nicht überwunden werden muß.However, the device according to the invention for damping a flapping motion in a supporting structure is not limited to use in suspension bridges, but can also be used, for example for damping horizontal vibrations in towers. In this case, the axis 18 extends in the vertical direction. The advantage here is that the weight of the mass body does not have to be overcome.

Fig. 4 zeigt abschließend einen Vergleich des Energiebedarfs verschiedener möglicher Massensysteme. Der Energieverbrauch wurde für ein Massenverhältnis, d.h. Quotient von Dämpfermasse und Bauwerksmasse, von 1 % auf einen Energiebedarf von 100 % für das im Stand der Technik bekannte Verfahren eines zentrischen Rotationskörpers (ZRA) normiert. Fig. 4 finally shows a comparison of the energy requirements of various possible mass systems. The energy consumption was normalized for a mass ratio, ie quotient of damper mass and building mass, from 1% to an energy requirement of 100% for the method of a centric rotation body (ZRA) known in the prior art.

Bei dem als HA bezeichneten Verfahren wird mit einer horizontal verschiebbaren Masse gearbeitet. Das erfindungsgemäße Verfahren von exzentrisch schwenkbarem Massendämpfern ist mit ERA bezeichnet. Fig. 4 ist zu entnehmen, daß der Energiebedarf für die Flatterkontrolle bei dem erfindungsgemäßen deutlich niedriger als bei dem bekannten Verfahren ist.In the process referred to as HA, work is done with a horizontally displaceable mass. The inventive method of eccentrically pivoting mass damper is called ERA. Fig. 4 It can be seen that the energy required for flutter control in the invention is significantly lower than in the known method.

Claims (17)

  1. Supporting structure with a device for damping oscillations, with
    - at least one pair of mass bodies (24, 26), which are arranged on opposite-lying sides of an axis (18), around which a torsional movement of the supporting structure takes place in the case of oscillations,
    - wherein the mass bodies (24, 26) are each swivel-mounted such that the mass (24, 26) of each body is distributed eccentrically around a supporting point (32, 34),
    - at least one drive (20, 22), which shifts at least one mass body (24, 26) by a predetermined angle (γ1, γ2) in a plane that is perpendicular to the axis, and
    - a control unit, which controls at least one drive (20, 22) for the changing of the angle position (γ1, γ2) of the mass body (24, 26) depending on the measured values of the supporting structure position and/or movement.
  2. Supporting structure according to claim 1, characterized in that the angle position (γ1, γ2) of each mass body (24, 26) can be shifted.
  3. Supporting structure according to claim 1 or 2, characterized in that each mass body (24, 26) is fastened to a pivot arm (28, 30), which is swivel-mounted.
  4. Supporting structure according to claim 3, characterized in that the pivot arms (28, 30) are each connected to the supporting structure via springs.
  5. Supporting structure according to one of claims 1 through 4, characterized in that each mass body (24, 26) of a pair of mass bodies is mounted the same distance from the axis (18).
  6. Supporting structure according to one of claims 1 through 4, characterized in that one electromotor is provided as the drive (20, 22) for each pair of mass bodies.
  7. Supporting structure according to one of claims 1 through 6, characterized in that one hydraulic actuator is provided as the drive for each pair of mass bodies (24, 26).
  8. Supporting structure according to one of claims 1 through 7, characterized in that each mass body (24, 26) can be pivoted in a restricted angular range (38).
  9. Supporting structure according to claim 8, characterized in that the angular range is aligned symmetrically around a rest position (36) of the mass bodies.
  10. Supporting structure according to one of claims 1 through 10, characterized in that the supporting structure to be damped is a bridge with one or more bridge supports.
  11. Supporting structure according to claim 10, characterized in that the mass bodies are arranged on both sides of the middle longitudinal axis of the bridge support.
  12. Supporting structure according claim 10 or 11, characterized in that several pairs of mass bodies are arranged along the bridge support(s).
  13. Supporting structure according to one of claims 10 through 12, characterized in that at least one sensor is provided, which captures a shift (h) and/or a temporal derivation of the shift of the bridge support, wherein the measurement results are supplied to the control unit.
  14. Supporting structure according to one of claims 1 through 13, characterized in that the shift of the supporting structure in the axis (18) is measured.
  15. Supporting structure according to one of claims 1 through 14, characterized in that at least one sensor is provided, which captures a torsion (α) and/or a temporal derivation of the torsion of the supporting structure, wherein the measurement results are supplied to the control unit.
  16. Supporting structure according to claim 15, characterized in that a torsion (α) of the supporting structure around axis (18) is captured.
  17. Supporting structure according to one of claims 13 through 16, characterized in that the control unit controls the mass bodies taking into consideration the frequency and amplitude of the measured values (h, α), the angle positions (γ1, γ2), the first temporal derivation of the angles (dγ1/dt, dγ2/dt) or the second temporal derivation of the angles (d2γ1/dt2, d2γ2/dt2) of the mass bodies.
EP05750676A 2004-05-26 2005-05-25 Supporting structure with a device for damping oscillations Not-in-force EP1756369B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004025761A DE102004025761A1 (en) 2004-05-26 2004-05-26 Device for damping a flapping motion in a supporting structure
PCT/EP2005/005663 WO2005116340A1 (en) 2004-05-26 2005-05-25 Device for damping the oscillations of a supporting structure

Publications (2)

Publication Number Publication Date
EP1756369A1 EP1756369A1 (en) 2007-02-28
EP1756369B1 true EP1756369B1 (en) 2008-07-09

Family

ID=34970111

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05750676A Not-in-force EP1756369B1 (en) 2004-05-26 2005-05-25 Supporting structure with a device for damping oscillations

Country Status (4)

Country Link
EP (1) EP1756369B1 (en)
AT (1) ATE400703T1 (en)
DE (2) DE102004025761A1 (en)
WO (1) WO2005116340A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006059189B4 (en) * 2006-12-15 2008-08-14 Tutech Innovation Gmbh Device for vibration control of a construction
DE102011109070B4 (en) 2011-07-30 2016-05-12 Tutech Innovation Gmbh Device and set of devices for controlling mechanical vibrations
DE202016005517U1 (en) 2016-09-12 2016-10-12 Esm Energie- Und Schwingungstechnik Mitsch Gmbh Devices and systems with elastic unbalance drive for modifying vibration states
CN106978933A (en) * 2017-02-27 2017-07-25 大连理工大学 A kind of active mass damping unit based on rotation excitation actuator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2668990B2 (en) * 1988-10-06 1997-10-27 石川島播磨重工業株式会社 Structure damping device
JPH05171837A (en) * 1991-12-25 1993-07-09 Nkk Corp Flutter vibration absorber of bridge girder
JP3732353B2 (en) * 1998-04-16 2006-01-05 株式会社神戸製鋼所 Damping structure of bridge

Also Published As

Publication number Publication date
EP1756369A1 (en) 2007-02-28
WO2005116340A1 (en) 2005-12-08
ATE400703T1 (en) 2008-07-15
DE102004025761A1 (en) 2005-12-22
DE502005004653D1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
EP1815068B1 (en) Device for damping vibrations in a building
DE102006059189B4 (en) Device for vibration control of a construction
EP2929098B1 (en) Vibration-limiting module and device, structural segment for a structural installation, and wind turbine having a vibration-limiting module
DE19856500B4 (en) vibration absorber
DE102010026569B4 (en) Control device for reducing a vibration movement of a spring-loaded oscillating device
EP2964506B1 (en) Running chassis for rail vehicles
DE3136320C2 (en) Method and device for suppressing the external load wing flutter of aircraft
WO2018189245A1 (en) Vibration damping of a wind turbine tower
EP1756369B1 (en) Supporting structure with a device for damping oscillations
DE102007063082A1 (en) Method for operating a wind energy plant
DE102008045492A1 (en) Vehicle oscillation damping system for two vehicle units, has two throttle controls connected with gas line, where gas line has adjustable passage valve
EP3433509A1 (en) Compact spatial ellipsoid mass pendulum
DE1908266C3 (en) Device for stabilizing a body against twisting or oscillating angular displacement
EP1800020A1 (en) Device for damping vibrations in a building
DE2715584A1 (en) Impeller of wind driven turbine - has blade linkage to vary pitch in response to forces due to changing wind speeds
DE102009015806A1 (en) gyrocopter
EP4244502A1 (en) Building damper for protecting buildings against vibrations, and building comprising such a building damper
DE102008050192B4 (en) Vehicle vibration damping system
DE3935925C2 (en)
WO2021164938A1 (en) Adaptive tuned mass damper for damping low excitation frequencies
EP0009052A1 (en) Aerodynamically self-governed wind turbine
DE202007019622U1 (en) System for damping vibrations in a building
EP2730799A1 (en) Vibration absorber assembly for reducing oscillations
DE102004030701B4 (en) Device for limiting the absorption of vibration energy by a vibratory system
JPH11343608A (en) Vibration control structure of bridge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STAROSSEK, UWE

Inventor name: KOERLIN, RUEDIGER

17Q First examination report despatched

Effective date: 20070615

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: SUPPORTING STRUCTURE WITH A DEVICE FOR DAMPING OSCILLATIONS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502005004653

Country of ref document: DE

Date of ref document: 20080821

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: FREYSSINET S.A.S.

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081109

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081209

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081020

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081009

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

26N No opposition filed

Effective date: 20090414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

BERE Be: lapsed

Owner name: TECHNISCHE UNIVERSITAT HAMBURG-HARBURG

Effective date: 20090531

Owner name: TUTECH INNOVATION G.M.B.H.

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091201

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120625

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531