EP1756369B1 - Supporting structure with a device for damping oscillations - Google Patents
Supporting structure with a device for damping oscillations Download PDFInfo
- Publication number
- EP1756369B1 EP1756369B1 EP05750676A EP05750676A EP1756369B1 EP 1756369 B1 EP1756369 B1 EP 1756369B1 EP 05750676 A EP05750676 A EP 05750676A EP 05750676 A EP05750676 A EP 05750676A EP 1756369 B1 EP1756369 B1 EP 1756369B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- supporting structure
- structure according
- mass
- bridge
- mass bodies
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D11/00—Suspension or cable-stayed bridges
- E01D11/02—Suspension bridges
Definitions
- the invention relates to a carrier with a device for damping a flapping motion in the structure, in particular in a bridge.
- the critical wind speed (Ucr) is the structural characteristic for the flutter stability of bridges. It is known that Ucr decreases with decreasing stiffness and damping of the bridge. Straight bridges with a large span, however, have a low rigidity, so that the problem of fluttering occurs for them.
- the passive vibration damping refers essentially to structural measures, such as increasing the torsional stiffness of the carrier, the addition of additional stay cables and cross braces or the use of multi-part bridge girders.
- the active vibration dampers can be divided into active mechanical and active aerodynamic vibration dampers.
- the latter are based on the approach of suitably modifying the flow field forming the bridge carrier so as to achieve a stabilizing effect.
- the torsional vibration of the bridge girder is checked, for example, by an additionally applied torsional moment.
- the additional torsional moment is generated by horizontally displaceable damper masses in the bridge girder.
- the invention has for its object to provide a damper device for damping a flapping motion for a structure that increases with simple means and the least possible use of energy, the critical wind speed for a flutter.
- the device according to the invention for damping a flapping motion in a supporting structure has at least one pair of mass bodies.
- the mass bodies are arranged on the opposite sides of an axis about which a rotational movement or a torsional movement of the structure takes place during the flapping motion.
- Each of the mass bodies is pivotally mounted, such that the mass of each body is distributed eccentrically to a bearing point.
- a drive is provided, the at least one of Mass body adjusted by a predetermined angle in a plane perpendicular to the axis.
- the mass body is mounted eccentrically about a bearing point, so that, for example, can be clearly defined by the connection of the center of gravity and bearing point a direction for the mass body, the compound is in the plane perpendicular to the axis.
- This direction of at least one of the mass bodies is changed by the drive.
- the change in angle is effected by a control unit which, depending on measured values, actuates at least one drive for changing the angular position of the mass body.
- Unlike a rotating damping mass is not exclusively worked with the torque of a damping mass in the inventive device. Rather, in the device according to the invention an adjustment of two mass bodies in each case takes place relative to the supporting structure, so as to occur To dampen flapping motion and / or to give the structure a sufficient damping torque.
- each mass body is adjustable in a pair of mass bodies in its angular position.
- each mass body is pivotally mounted via a pivot arm.
- the eccentrically arranged mass body has a comparatively large moment of inertia.
- the pivot arms are each connected via springs to the structure.
- the springs hold the Schwenkann in a rest position, which ensures a balanced mass distribution to the structure in the event that no wind forces attack.
- the mass bodies of a pair of mass bodies are equidistantly spaced from the axis so that the pair is symmetrical about the axis.
- an electric motor is provided as the drive for a pair of mass bodies.
- it can be provided as a drive and a hydraulic actuator.
- the pivotal movement of the mass body takes place within a limited angular range.
- the angle range here is preferably arranged symmetrically about a rest position of the mass body.
- the support structure to be damped is preferably a bridge, in particular a suspension bridge, wherein the mass bodies are preferably arranged on both sides of the central longitudinal axis of the bridge girders.
- a plurality of pairs of mass bodies may be arranged along the bridge girders, it being possible for one or more pairs of mass bodies to be provided in the bridge girder, depending on the length of the bridge girders.
- a sensor which detects a shift and / or a time derivative of the displacement of the structure.
- the measurement results are available at the control unit.
- the time derivation may be, for example, the second derivative, which is then detected via an acceleration sensor.
- the displacement of the structure is measured in the central longitudinal axis.
- a sensor which detects a rotation and / or a time derivative of the rotation of the structure and abut the measurement results of the control unit.
- the twist is a measure of the torsion of the bridge girder.
- the sensor detects the rotation preferably about the central longitudinal axis.
- control unit calculates, taking into account the frequency and amplitude of the measured values, the angular position for the mass body to be controlled.
- control unit can also specify the angular velocity or the angular acceleration.
- Fig. 1 shows a bridge girder 10 in the neck, as it occurs in suspension bridges.
- the bridge body 12 is held by suspension cables / hangers 14 to a rope 16 stretched between the pylons of the bridge.
- the bridge girder 10 has due to its design, its suspension, the materials used, its dimensions and other sizes a certain stiffness and a certain damping.
- the vibration behavior of the bridge carrier is also influenced by the stiffness and damping of the pylons.
- Fig. 2 shows the body of the bridge girder 12 in cross section.
- the longitudinal axis of the bridge girder is marked with 18. Laterally from the longitudinal axis 18, two drives 20 and 22 are arranged.
- the mass bodies 24 and 26 are each connected via a lever arm 28 and 30 with the associated drives.
- the lever arms 28 and 30 are mounted in the points 32 and 34 in the bridge girder (not shown in detail).
- the bearing points 32 and 34 lie on a horizontal axis 36, based on the resting state of the bridge girder.
- the bearing points 30 and 32 may be suspended resiliently and damped in the bridge girder.
- Fig. 2 shows an example of an angular interval 38, in which the mass body 24 and 26 can be adjusted independently of each other.
- Fig. 3 schematically shows the physical model underlying the control of the displacement of the mass bodies.
- the flapping motion is broken down into a movement with two degrees of freedom.
- the first degree of freedom denotes the displacement h, which describes a lifting and lowering of the bridge girder relative to the bridge girders.
- the second degree of freedom is a torsion twist about the angle ⁇ .
- a lateral shift, ie a shift transversely to the direction h, is not explicitly taken into account in this model, but could still be included.
- the model now assumes, for the displacement h, that it is a damped vibration caused by a spring element 40 and a damper 42 in FIG Fig. 3 is shown.
- a spring element 44 and a damping element 46 is assumed.
- a linear restoring force is applied to the model.
- non-linear terms in particular in the range of large amplitudes, may also be included in the calculation.
- the solution of the lateral vibration equations for h (t) and ⁇ (t) describes the movement of the bearing points 32 and 34. Starting from the position at the bearing points 32 and 34, the angles ⁇ 1 and ⁇ 2 for the deflection of the mass bodies 24 and 26 are determined. Here, the angle can be counted as the deflection angle of the lever arm relative to the imaginary connection 48 between the bearing points 32 and 34 or with respect to the horizontal axis 36. Preferred first variant.
- the regulation made to dampen and suppress the flapping motion can be done in different ways.
- the structural displacements h and ⁇ and their time derivative dh / dt and ⁇ / dt are measured.
- the position of the bearing points 32 and 34 and the pivot arms is also measured.
- setpoint values for the deflection angles ⁇ 1 and ⁇ 2 are determined on the basis of an underlying model. It is also possible, depending on the selected drive, to specify desired values for the first or second time derivative of the rotational angles ⁇ 1 and ⁇ 2 .
- the greater proportion of the occurring torques of the electric motors is used to overcome the weight of the eccentrically arranged damper mass. As a result, the desired Schwenkarmamba can be ensured about the horizontal center axis 36.
- the device according to the invention for damping a flapping motion in a supporting structure is not limited to use in suspension bridges, but can also be used, for example for damping horizontal vibrations in towers.
- the axis 18 extends in the vertical direction. The advantage here is that the weight of the mass body does not have to be overcome.
- Fig. 4 finally shows a comparison of the energy requirements of various possible mass systems.
- the energy consumption was normalized for a mass ratio, ie quotient of damper mass and building mass, from 1% to an energy requirement of 100% for the method of a centric rotation body (ZRA) known in the prior art.
- ZRA centric rotation body
- HA In the process referred to as HA, work is done with a horizontally displaceable mass.
- the inventive method of eccentrically pivoting mass damper is called ERA. Fig. 4 It can be seen that the energy required for flutter control in the invention is significantly lower than in the known method.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Vibration Prevention Devices (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Portable Nailing Machines And Staplers (AREA)
Abstract
Description
Die Erfindung betrifft ein Tragewerk mit einer Vorrichtung zur Dämpfung einer Flatterbewegung bei dem Tragwerk, insbesondere bei einer Brücke.The invention relates to a carrier with a device for damping a flapping motion in the structure, in particular in a bridge.
Es besteht das Bedürfnis nach immer größeren Spannweiten im Brückenbau. So besitzt beispielsweise die Ende der 90er Jahre in Japan errichtete Akashi Kaikyo Brücke eine Spannweite von fast 2000 m. Die für die Überquerung der Meerenge von Messina in Italien geplante Brücke soll eine Spannweite von über 3 km besitzen. Mit diesen extremen Brückenlängen rückt zunehmends die Problematik der Schwingungsanfälligkeit dieser Tragwerke in den Vordergrund. Bei der Auslegung weit gespannter Brückenträger ist ein besonders wichtiger Effekt die sogenannte Flatterstabilität der Brücke. Hierbei handelt es sich um ein aeroelastisches Phänomen des windinduzierten Brückenflatters, bei dem gekoppelte Biege- und Torsionsschwingungen des Brückenträgers auftreten. Bei selbstinduzierten Biege- und Torsionsschwingungen handelt es sich im Gegensatz zu sogenannten fremdinduzierten Schwingungen, die beispielsweise durch Luft-Böen oder durch Luft-Strömungsturbulenzen hervorgerufen werden, bei der Selbstinduktion um angreifende Erregerkräfte, die allein durch eine strukturelle Verschiebung der Brücke hervorgerufen werden. Die an dem Tragwerk angreifenden Luftkräfte beeinflussen die dynamischen Eigenschaften der Brückenstruktur, also insbesondere Steifigkeit und Dämpfungsparameter. Diese Änderungen treten auch bei zeitlich konstanter Windgeschwindigkeit auf. Erreicht die Windgeschwindigkeit einen bestimmten kritischen Wert, wird die Strukturdämpfung des Brückenträgers weitgehend aufgehoben. Bei einem weiteren Anwachsen der Windgeschwindigkeit kann eine Struktur mit negativer Gesamtdämpfung auftreten, bei der eine kleine Initialverschiebung zu einer anwachsenden Schwingung mit nahezu unbegrenzter Amplitude und so zum Versagen des Brückentragwerks führt. Die kritische Windgeschwindigkeit (Ucr) ist der strukturelle Kennwert für die Flatterstabilität von Brücken. Es ist bekannt, dass Ucr mit abnehmender Steifigkeit und Dämpfung der Brücke abnimmt. Gerade Brücken mit einer großen Spannweite besitzen jedoch eine geringe Steifigkeit, so dass für diese das Problem des Flatterns auftritt.There is a need for ever larger spans in bridge construction. For example, in the late 1990s, the Akashi Kaikyo Bridge, built in Japan, has a span of nearly 2000 meters. The bridge planned to cross the strait of Messina in Italy will have a span of over 3 km. With these extreme bridge lengths, the problem of the susceptibility to vibration of these structures is increasingly coming to the fore. In the design of wide-span bridge girders, a particularly important effect is the so-called chipping stability of the bridge. This is an aeroelastic phenomenon of the wind-induced bridge flap, in which coupled bending and torsional vibrations of the bridge girder occur. In self-induced bending and torsional vibrations, in contrast to so-called externally induced vibrations, which are caused, for example, by air gusts or by air flow turbulences, in self-induction are attacking excitation forces, which are caused solely by a structural displacement of the bridge. The air forces acting on the structure influence the dynamic properties of the bridge structure, in particular stiffness and damping parameters. These changes occur even with temporally constant wind speed. If the wind speed reaches a certain critical value, the structural damping of the bridge girder is largely eliminated. As the wind speed increases further, a structure with negative overall attenuation may occur, with a small initial shift to one increasing vibration with almost unlimited amplitude and thus leads to failure of the bridge structure. The critical wind speed (Ucr) is the structural characteristic for the flutter stability of bridges. It is known that Ucr decreases with decreasing stiffness and damping of the bridge. Straight bridges with a large span, however, have a low rigidity, so that the problem of fluttering occurs for them.
Zur Stabilisierung flattergefährdeter Brückenträger können verschiedene schwingungsdämpfende Verfahren und Vorrichtungen eingesetzt werden. Grundsätzlich lassen sich hierbei aktive und passive Verfahren unterscheiden. Die passive Schwingungsdämpfung bezieht sich im wesentlichen auf strukturelle Maßnahmen, wie beispielsweise die Erhöhung der Torsionssteifigkeit des Trägers, das Hinzufügen von zusätzlichen Schrägseilen und Querhängern oder die Verwendung von mehrteiligen Brückenträgern.In order to stabilize fly-endangered bridge girders, various vibration-damping methods and devices can be used. In principle, active and passive methods can be distinguished. The passive vibration damping refers essentially to structural measures, such as increasing the torsional stiffness of the carrier, the addition of additional stay cables and cross braces or the use of multi-part bridge girders.
Die aktiven Schwingungsdämpfer lassen sich in aktive mechanische sowie aktive aerodynamische Schwingungsdämpfer unterscheiden. Die Letztgenannten beruhen auf dem Ansatz, das sich um den Brückenträger ausbildende Strömungsfeld geeignet zu modifizieren, um so eine stabilisierende Wirkung zu erzielen. Beispielsweise können an dem Brückenträger seitlich Klappen vorgesehen sein, die so in den Wind gestellt werden, dass durch die vorbeiströmende Luft eine stabilisierende Kraft ausgeübt wird. Bei der aktiven mechanischen Flatterkontrolle erfolgt eine Kontrolle der Torsionsschwingung des Brückenträgers beispielsweise durch ein zusätzlich aufgebrachtes Torsionsmoment. Zu einer Ausgestaltung wird durch horizontal verschiebbare Dämpfermassen im Brückenträger das zusätzliche Torsionsmoment erzeugt. Es gibt auch Überlegungen, durch eine im Zentrum des Brückenquerschnitts rotierende Massen ein stabilisierendes Drehmoment für die Brückenträger zu erzeugen.The active vibration dampers can be divided into active mechanical and active aerodynamic vibration dampers. The latter are based on the approach of suitably modifying the flow field forming the bridge carrier so as to achieve a stabilizing effect. For example, can be provided on the bridge girder side flaps, which are placed in the wind that a stabilizing force is exerted by the passing air. In the active mechanical flutter control, the torsional vibration of the bridge girder is checked, for example, by an additionally applied torsional moment. For an embodiment, the additional torsional moment is generated by horizontally displaceable damper masses in the bridge girder. There are also considerations to create a stabilizing torque for the bridge girders by means of a mass rotating in the center of the bridge cross-section.
Aus
Aus
Der Erfindung liegt die Aufgabe zugrunde, eine Dämpfervorrichtung zur Dämpfung einer Flatterbewegung für ein Tragwerk bereit zu stellen, die mit einfachen Mitteln und möglichst geringem Energieeinsatz die kritische Windgeschwindigkeit für eine Flatterbewegung erhöht.The invention has for its object to provide a damper device for damping a flapping motion for a structure that increases with simple means and the least possible use of energy, the critical wind speed for a flutter.
Erfindungsgemäß wird die Aufgabe durch ein Tragwerk mit einer Vorrichtung mit den Merkmalen aus Anspruch 1 gelöst. Vorteilhafte Ausgestaltung bilden die Gegenstände der Unteransprüche.According to the invention the object is achieved by a supporting structure with a device having the features of
Die erfindungsgemäße Vorrichtung zur Dämpfung einer Flatterbewegung bei einem Tragwerk besitzt mindestens ein Paar von Massenkörpern. Die Massenkörper sind auf den gegenüberliegenden Seiten einer Achse angeordnet, um die eine Drehbewegung bzw. eine Torsionsbewegung des Tragwerks bei der Flatterbewegung erfolgt. Jeder der Massenkörper ist dabei schwenkbar gelagert, derart, daß die Masse von jedem Körper exzentrisch zu einem Lagerpunkt verteilt ist. Ferner ist bei der erfindungsgemäßen Vorrichtung ein Antrieb vorgesehen, der mindestens einen der Massenkörper um einen vorbestimmten Winkel in einer Ebene senkrecht zur Achse verstellt. Der Massenkörper ist exzentrisch um einen Lagerpunkt gelagert, so dass sich beispielsweise durch die Verbindung von Massenschwerpunkt und Lagerpunkt eindeutig eine Richtung für den Massenkörper definieren läßt, wobei die Verbindung in der Ebene senkrecht zu der Achse liegt. Diese Richtung von mindestens einem der Massenkörper wird durch den Antrieb geändert. Die Winkeländerung erfolgt durch eine Steuereinheit, die abhängig von gemessenen Werten mindestens einen Antrieb zur Änderung der Winkelposition des Massenkörpers ansteuert. Anders als bei einer rotierenden Dämpfungsmasse wird bei der erfindungsgemäßen Vorrichtung nicht ausschließlich mit dem Drehmoment einer Dämpfungsmasse gearbeitet. Vielmehr findet bei der erfindungsgemäßen Vorrichtung eine Verstellung von zwei Massenkörpern jeweils relativ zu dem Tragwerk statt, um so eine auftretende Flatterbewegung zu dämpfen und/oder dem Tragwerk ein ausreichendes Dämpfungsmoment zu verleihen.The device according to the invention for damping a flapping motion in a supporting structure has at least one pair of mass bodies. The mass bodies are arranged on the opposite sides of an axis about which a rotational movement or a torsional movement of the structure takes place during the flapping motion. Each of the mass bodies is pivotally mounted, such that the mass of each body is distributed eccentrically to a bearing point. Furthermore, in the device according to the invention, a drive is provided, the at least one of Mass body adjusted by a predetermined angle in a plane perpendicular to the axis. The mass body is mounted eccentrically about a bearing point, so that, for example, can be clearly defined by the connection of the center of gravity and bearing point a direction for the mass body, the compound is in the plane perpendicular to the axis. This direction of at least one of the mass bodies is changed by the drive. The change in angle is effected by a control unit which, depending on measured values, actuates at least one drive for changing the angular position of the mass body. Unlike a rotating damping mass is not exclusively worked with the torque of a damping mass in the inventive device. Rather, in the device according to the invention an adjustment of two mass bodies in each case takes place relative to the supporting structure, so as to occur To dampen flapping motion and / or to give the structure a sufficient damping torque.
Bevorzugt ist jeder Massenkörper in einem Paar von Massenkörpern in seiner Winkelposition verstellbar.Preferably, each mass body is adjustable in a pair of mass bodies in its angular position.
In einer bevorzugten Ausgestaltung der erfindungsgemäßen Dämpfungsvorrichtung ist jeder Massenkörper über einen Schwenkarm schwenkbar gelagert. Der derartig exzentrisch angeordnete Massenkörper besitzt eine vergleichsweise großes Trägheitsmoment.In a preferred embodiment of the damping device according to the invention, each mass body is pivotally mounted via a pivot arm. The eccentrically arranged mass body has a comparatively large moment of inertia.
In einer bevorzugten Ausgestaltung sind die Schwenkarme jeweils über Federn mit dem Tragwerk verbunden. Bevorzugt halten die Federn den Schwenkann in einer Ruheposition, die für den Fall, dass keine Windkräfte angreifen, eine ausgeglichene Massenverteilung an dem Tragwerk sicherstellt.In a preferred embodiment, the pivot arms are each connected via springs to the structure. Preferably, the springs hold the Schwenkann in a rest position, which ensures a balanced mass distribution to the structure in the event that no wind forces attack.
Zweckmäßigerweise sind die Massenkörper eines Paares von Massenkörpern im gleichen Abstand von der Achse gelagert, so dass das Paar symmetrisch zu der Achse angeordnet ist.Conveniently, the mass bodies of a pair of mass bodies are equidistantly spaced from the axis so that the pair is symmetrical about the axis.
Bevorzugt ist als Antrieb für eine Paar von Massenkörpern jeweils ein Elektromotor vorgesehen. Alternativ kann als Antrieb auch ein hydraulischer Aktuator vorgesehen sein.Preferably, an electric motor is provided as the drive for a pair of mass bodies. Alternatively it can be provided as a drive and a hydraulic actuator.
In einer ganz besonders bevorzugten Ausgestaltung der erfindungsgemäßen Dämpfungsvorrichtung erfolgt die Schwenkbewegung der Massenkörper innerhalb eines beschränkten Winkelbereichs. Der Winkelbereich ist hierbei bevorzugt symmetrisch um eine Ruhelage des Massenkörpers angeordnet.In a very particularly preferred embodiment of the damping device according to the invention, the pivotal movement of the mass body takes place within a limited angular range. The angle range here is preferably arranged symmetrically about a rest position of the mass body.
Bevorzugt handelt es sich bei dem zu dämpfenden Tragwerk um eine Brücke, insbesondere eine Hängebrücke, wobei bevorzugt die Massenkörper auf beiden Seiten der Mittellängsachse der Brückenträger angeordnet sind. Zweckmäßigerweise können mehrere Paare von Massenkörpern entlang den Brückenträgern angeordnet sein, wobei es je nach Länge der Brückenträger ein oder mehrere Paare von Massenkörpem in dem Brückenträger vorgesehen sein können.The support structure to be damped is preferably a bridge, in particular a suspension bridge, wherein the mass bodies are preferably arranged on both sides of the central longitudinal axis of the bridge girders. Conveniently, a plurality of pairs of mass bodies may be arranged along the bridge girders, it being possible for one or more pairs of mass bodies to be provided in the bridge girder, depending on the length of the bridge girders.
Bevorzugt ist ein Sensor vorgesehen, der eine Verschiebung und/oder eine zeitliche Ableitung der Verschiebung des Tragwerks erfasst. Die Messergebnisse liegen an der Steuereinheit an. Bei der zeitlichen Ableitung kann es sich beispielsweise um die zweite Ableitung handeln, die dann über einen Beschleunigungssensor erfaßt wird. Zweckmäßigerweise wird die Verschiebung des Tragwerks in der Mittellängsachse gemessen.Preferably, a sensor is provided which detects a shift and / or a time derivative of the displacement of the structure. The measurement results are available at the control unit. The time derivation may be, for example, the second derivative, which is then detected via an acceleration sensor. Appropriately, the displacement of the structure is measured in the central longitudinal axis.
Ebenfalls bevorzugt ist ein Sensor vorgesehen, der eine Verdrehung und/oder eine zeitliche Ableitung der Verdrehung des Tragwerks erfaßt und dessen Messergebnisse an der Steuereinheit anliegen. Die Verdrehung ist ein Maß für die Torsion des Brückenträgers. Zweckmäßigerweise erfaßt der Sensor die Verdrehung bevorzugt um die Mittellängsachse.Also preferably, a sensor is provided which detects a rotation and / or a time derivative of the rotation of the structure and abut the measurement results of the control unit. The twist is a measure of the torsion of the bridge girder. Advantageously, the sensor detects the rotation preferably about the central longitudinal axis.
Aus den Daten berechnet die Steuereinheit unter Berücksichtigung von Frequenz und Amplitude der gemessenen Werte die anzusteuernde Winkelposition für den Massenkörper. Alternativ kann von der Steuereinheit auch die Winkelgeschwindigkeit oder die Winkelbeschleunigung vorgegeben werden.From the data, the control unit calculates, taking into account the frequency and amplitude of the measured values, the angular position for the mass body to be controlled. Alternatively, the control unit can also specify the angular velocity or the angular acceleration.
Ein bevorzugtes Ausführungsbeispiel der erfindungsgemäßen Dämpfungsvorrichtung wird nachfolgend anhand der Figuren näher erläutert.A preferred embodiment of the damping device according to the invention will be explained in more detail with reference to FIGS.
Es zeigt
- Fig. 1
- ausschnittsweise einen Brückenträger in einer perspektivischen Ansicht,
- Fig. 2
- eine schematische Ansicht des Brückenträgers im Querschnitt,
- Fig. 3
- ein vereinfachtes Modell zur Beschreibung der Bewegungsvorgänge und
- Fig. 4
- relativer Energieverbrauch, abhängig von einem Quotient aus Dämpfermasse und Bauwerksmasse.
- Fig. 1
- partial view of a bridge girder in a perspective view,
- Fig. 2
- a schematic view of the bridge carrier in cross section,
- Fig. 3
- a simplified model describing the motion processes and
- Fig. 4
- Relative energy consumption, depending on a quotient of damper mass and building mass.
Die vorgenommene Regelung zur Dämpfung und Unterdrückung der Flatterbewegung kann auf unterschiedliche Art erfolgen.The regulation made to dampen and suppress the flapping motion can be done in different ways.
Als Eingangswert für die Regelung werden die Tragwerksverschiebungen h und α und deren Zeitableitung dh/dt und α/dt gemessen. Die Position der Lagerpunkte 32 und 34 und der Schwenkarme wird ebenfalls gemessen. Aus den Messwerten werden aufgrund eines zugrunde liegenden Modells Sollwerte für die Auslenkungswinkel γ1 und γ2 bestimmt. Auch ist es möglich, je nach gewähltem Antrieb Sollwerte für die erste oder zweite zeitliche Ableitung der Drehwinkel γ1 und γ2 vorzugeben.As an input value for the control, the structural displacements h and α and their time derivative dh / dt and α / dt are measured. The position of the bearing points 32 and 34 and the pivot arms is also measured. From the measured values, setpoint values for the deflection angles γ 1 and γ 2 are determined on the basis of an underlying model. It is also possible, depending on the selected drive, to specify desired values for the first or second time derivative of the rotational angles γ 1 and γ 2 .
Zur Verdeutlichung seien beispielhaft eine Hängebrücke mit einer Hauptspannweite von 1500 m als Abstand zwischen zwei Pylonen betrachtet. Als zusätzliche Dämpfermasse mit den Massenkörpem werden auf jeder Seite der Brücke insgesamt 100 t verwendet, was zu einer Gesamtdämpfermasse von 200 t führt. Die Dämpfermasse wird beispielsweise auf 15 Paaren von Schwenkarmen aufgeteilt. Jeder Schwenkarm besitzt eine Länge von 3 m. Bei Elektromotoren als Aktuatoren für die Schwenkarme sind hier die auftretenden Motormomente zu begrenzen. Für das Maximalmoment sei beispielsweise 5500 Nm bei maximal 750 U/min angesetzt. Durch ein Getriebe kann das Moment an der Motorlast erhöht werden. Damit wird jedoch die Drehzahl reduziert, die erforderliche Dynamik muss weiterhin gewährleistet sein. Beispielsweise kann also ein Getriebe mit einer Untersetzung von 50:1 gewählt werden, so daß das maximale Motorelement sich zu 4600 Nm ergibt.To illustrate, for example, consider a suspension bridge with a main span of 1500 m as the distance between two pylons. As additional damper mass with the Massenkörpem 100 t are used on each side of the bridge, resulting in a total damper mass of 200 t. The damper mass is divided, for example, 15 pairs of swing arms. Each swivel arm has a length of 3 m. In electric motors as actuators for the pivot arms, the occurring engine torques are here to limit. For the maximum torque, for example, 5500 Nm at a maximum of 750 U / min is used. A gearbox can increase the torque on the engine load. This, however, the speed is reduced, the required dynamics must continue to be guaranteed be. For example, so a transmission can be selected with a reduction of 50: 1, so that the maximum motor element results in 4600 Nm.
Der größere Anteil der auftretenden Drehmomente der Elektromotoren wird genutzt, um das Eigengewicht der exzentrisch angeordneten Dämpfermasse zu überwinden. Hierdurch können die gewünschten Schwenkarmbewegungen um die horizontale Mittelachse 36 gewährleistet werden.The greater proportion of the occurring torques of the electric motors is used to overcome the weight of the eccentrically arranged damper mass. As a result, the desired Schwenkarmbewegungen can be ensured about the
Zum Einstellen einer horizontalen Ruhelage der Schwenkarme sind unterschiedliche Ansätze möglich, hierzu zählt beispielsweise ein Getriebe mit innerer Reibung oder eine federnde Lagerung der Schwenkanne. Bei letztgenannter Möglichkeit sind die Schwenkanne nahe am Motor mit dem Brückenträger durch Federn verbunden. Anstatt der Einleitung der Stellkräfte mit Elektromotoren ist auf die Verwendung hydraulischer Aktuatoren, welche sich ebenfalls nahe zu dem Drehpunkt befinden, möglich.To set a horizontal rest position of the pivot arms different approaches are possible, this includes, for example, a transmission with internal friction or a resilient mounting the Schwenkanne. In the latter possibility, the pan near the engine are connected to the bridge girder by springs. Instead of introducing the actuating forces with electric motors, it is possible to use hydraulic actuators, which are also close to the fulcrum.
Die erfindungsgemäße Vorrichtung zur Dämpfung einer Flatterbewegung bei einem Tragwerk ist jedoch nicht auf den Einsatz bei Hängebrücken beschränkt, sondern kann ebenfalls, beispielsweise zur Dämpfung horizontaler Schwingungen bei Türmen, eingesetzt werden. Hierbei verläuft die Achse 18 in vertikaler Richtung. Der Vorteil hierbei ist, daß die Gewichtskraft der Massekörper nicht überwunden werden muß.However, the device according to the invention for damping a flapping motion in a supporting structure is not limited to use in suspension bridges, but can also be used, for example for damping horizontal vibrations in towers. In this case, the
Bei dem als HA bezeichneten Verfahren wird mit einer horizontal verschiebbaren Masse gearbeitet. Das erfindungsgemäße Verfahren von exzentrisch schwenkbarem Massendämpfern ist mit ERA bezeichnet.
Claims (17)
- Supporting structure with a device for damping oscillations, with- at least one pair of mass bodies (24, 26), which are arranged on opposite-lying sides of an axis (18), around which a torsional movement of the supporting structure takes place in the case of oscillations,- wherein the mass bodies (24, 26) are each swivel-mounted such that the mass (24, 26) of each body is distributed eccentrically around a supporting point (32, 34),- at least one drive (20, 22), which shifts at least one mass body (24, 26) by a predetermined angle (γ1, γ2) in a plane that is perpendicular to the axis, and- a control unit, which controls at least one drive (20, 22) for the changing of the angle position (γ1, γ2) of the mass body (24, 26) depending on the measured values of the supporting structure position and/or movement.
- Supporting structure according to claim 1, characterized in that the angle position (γ1, γ2) of each mass body (24, 26) can be shifted.
- Supporting structure according to claim 1 or 2, characterized in that each mass body (24, 26) is fastened to a pivot arm (28, 30), which is swivel-mounted.
- Supporting structure according to claim 3, characterized in that the pivot arms (28, 30) are each connected to the supporting structure via springs.
- Supporting structure according to one of claims 1 through 4, characterized in that each mass body (24, 26) of a pair of mass bodies is mounted the same distance from the axis (18).
- Supporting structure according to one of claims 1 through 4, characterized in that one electromotor is provided as the drive (20, 22) for each pair of mass bodies.
- Supporting structure according to one of claims 1 through 6, characterized in that one hydraulic actuator is provided as the drive for each pair of mass bodies (24, 26).
- Supporting structure according to one of claims 1 through 7, characterized in that each mass body (24, 26) can be pivoted in a restricted angular range (38).
- Supporting structure according to claim 8, characterized in that the angular range is aligned symmetrically around a rest position (36) of the mass bodies.
- Supporting structure according to one of claims 1 through 10, characterized in that the supporting structure to be damped is a bridge with one or more bridge supports.
- Supporting structure according to claim 10, characterized in that the mass bodies are arranged on both sides of the middle longitudinal axis of the bridge support.
- Supporting structure according claim 10 or 11, characterized in that several pairs of mass bodies are arranged along the bridge support(s).
- Supporting structure according to one of claims 10 through 12, characterized in that at least one sensor is provided, which captures a shift (h) and/or a temporal derivation of the shift of the bridge support, wherein the measurement results are supplied to the control unit.
- Supporting structure according to one of claims 1 through 13, characterized in that the shift of the supporting structure in the axis (18) is measured.
- Supporting structure according to one of claims 1 through 14, characterized in that at least one sensor is provided, which captures a torsion (α) and/or a temporal derivation of the torsion of the supporting structure, wherein the measurement results are supplied to the control unit.
- Supporting structure according to claim 15, characterized in that a torsion (α) of the supporting structure around axis (18) is captured.
- Supporting structure according to one of claims 13 through 16, characterized in that the control unit controls the mass bodies taking into consideration the frequency and amplitude of the measured values (h, α), the angle positions (γ1, γ2), the first temporal derivation of the angles (dγ1/dt, dγ2/dt) or the second temporal derivation of the angles (d2γ1/dt2, d2γ2/dt2) of the mass bodies.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004025761A DE102004025761A1 (en) | 2004-05-26 | 2004-05-26 | Device for damping a flapping motion in a supporting structure |
PCT/EP2005/005663 WO2005116340A1 (en) | 2004-05-26 | 2005-05-25 | Device for damping the oscillations of a supporting structure |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1756369A1 EP1756369A1 (en) | 2007-02-28 |
EP1756369B1 true EP1756369B1 (en) | 2008-07-09 |
Family
ID=34970111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05750676A Not-in-force EP1756369B1 (en) | 2004-05-26 | 2005-05-25 | Supporting structure with a device for damping oscillations |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1756369B1 (en) |
AT (1) | ATE400703T1 (en) |
DE (2) | DE102004025761A1 (en) |
WO (1) | WO2005116340A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006059189B4 (en) * | 2006-12-15 | 2008-08-14 | Tutech Innovation Gmbh | Device for vibration control of a construction |
DE102011109070B4 (en) | 2011-07-30 | 2016-05-12 | Tutech Innovation Gmbh | Device and set of devices for controlling mechanical vibrations |
DE202016005517U1 (en) | 2016-09-12 | 2016-10-12 | Esm Energie- Und Schwingungstechnik Mitsch Gmbh | Devices and systems with elastic unbalance drive for modifying vibration states |
CN106978933A (en) * | 2017-02-27 | 2017-07-25 | 大连理工大学 | A kind of active mass damping unit based on rotation excitation actuator |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2668990B2 (en) * | 1988-10-06 | 1997-10-27 | 石川島播磨重工業株式会社 | Structure damping device |
JPH05171837A (en) * | 1991-12-25 | 1993-07-09 | Nkk Corp | Flutter vibration absorber of bridge girder |
JP3732353B2 (en) * | 1998-04-16 | 2006-01-05 | 株式会社神戸製鋼所 | Damping structure of bridge |
-
2004
- 2004-05-26 DE DE102004025761A patent/DE102004025761A1/en not_active Withdrawn
-
2005
- 2005-05-25 AT AT05750676T patent/ATE400703T1/en not_active IP Right Cessation
- 2005-05-25 DE DE502005004653T patent/DE502005004653D1/en not_active Expired - Fee Related
- 2005-05-25 WO PCT/EP2005/005663 patent/WO2005116340A1/en active IP Right Grant
- 2005-05-25 EP EP05750676A patent/EP1756369B1/en not_active Not-in-force
Also Published As
Publication number | Publication date |
---|---|
EP1756369A1 (en) | 2007-02-28 |
WO2005116340A1 (en) | 2005-12-08 |
ATE400703T1 (en) | 2008-07-15 |
DE102004025761A1 (en) | 2005-12-22 |
DE502005004653D1 (en) | 2008-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1815068B1 (en) | Device for damping vibrations in a building | |
DE102006059189B4 (en) | Device for vibration control of a construction | |
EP2929098B1 (en) | Vibration-limiting module and device, structural segment for a structural installation, and wind turbine having a vibration-limiting module | |
DE19856500B4 (en) | vibration absorber | |
DE102010026569B4 (en) | Control device for reducing a vibration movement of a spring-loaded oscillating device | |
EP2964506B1 (en) | Running chassis for rail vehicles | |
DE3136320C2 (en) | Method and device for suppressing the external load wing flutter of aircraft | |
WO2018189245A1 (en) | Vibration damping of a wind turbine tower | |
EP1756369B1 (en) | Supporting structure with a device for damping oscillations | |
DE102007063082A1 (en) | Method for operating a wind energy plant | |
DE102008045492A1 (en) | Vehicle oscillation damping system for two vehicle units, has two throttle controls connected with gas line, where gas line has adjustable passage valve | |
EP3433509A1 (en) | Compact spatial ellipsoid mass pendulum | |
DE1908266C3 (en) | Device for stabilizing a body against twisting or oscillating angular displacement | |
EP1800020A1 (en) | Device for damping vibrations in a building | |
DE2715584A1 (en) | Impeller of wind driven turbine - has blade linkage to vary pitch in response to forces due to changing wind speeds | |
DE102009015806A1 (en) | gyrocopter | |
EP4244502A1 (en) | Building damper for protecting buildings against vibrations, and building comprising such a building damper | |
DE102008050192B4 (en) | Vehicle vibration damping system | |
DE3935925C2 (en) | ||
WO2021164938A1 (en) | Adaptive tuned mass damper for damping low excitation frequencies | |
EP0009052A1 (en) | Aerodynamically self-governed wind turbine | |
DE202007019622U1 (en) | System for damping vibrations in a building | |
EP2730799A1 (en) | Vibration absorber assembly for reducing oscillations | |
DE102004030701B4 (en) | Device for limiting the absorption of vibration energy by a vibratory system | |
JPH11343608A (en) | Vibration control structure of bridge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20061123 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: STAROSSEK, UWE Inventor name: KOERLIN, RUEDIGER |
|
17Q | First examination report despatched |
Effective date: 20070615 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: SUPPORTING STRUCTURE WITH A DEVICE FOR DAMPING OSCILLATIONS |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 502005004653 Country of ref document: DE Date of ref document: 20080821 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: FREYSSINET S.A.S. |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081109 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080709 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080709 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080709 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081209 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081020 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081009 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080709 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080709 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080709 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080709 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080709 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080709 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080709 |
|
26N | No opposition filed |
Effective date: 20090414 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080709 |
|
BERE | Be: lapsed |
Owner name: TECHNISCHE UNIVERSITAT HAMBURG-HARBURG Effective date: 20090531 Owner name: TUTECH INNOVATION G.M.B.H. Effective date: 20090531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090531 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090531 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080709 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091201 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081010 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080709 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080709 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20120625 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130531 |