EP1815068B1 - Device for damping vibrations in a building - Google Patents

Device for damping vibrations in a building Download PDF

Info

Publication number
EP1815068B1
EP1815068B1 EP05795034.7A EP05795034A EP1815068B1 EP 1815068 B1 EP1815068 B1 EP 1815068B1 EP 05795034 A EP05795034 A EP 05795034A EP 1815068 B1 EP1815068 B1 EP 1815068B1
Authority
EP
European Patent Office
Prior art keywords
mechanical
control surface
building
absorber
vibrations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05795034.7A
Other languages
German (de)
French (fr)
Other versions
EP1815068A1 (en
Inventor
Uwe Starossek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soletanche Freyssinet SA
Original Assignee
Soletanche Freyssinet SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soletanche Freyssinet SA filed Critical Soletanche Freyssinet SA
Publication of EP1815068A1 publication Critical patent/EP1815068A1/en
Application granted granted Critical
Publication of EP1815068B1 publication Critical patent/EP1815068B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D11/00Suspension or cable-stayed bridges
    • E01D11/02Suspension bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D11/00Suspension or cable-stayed bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/16Suspension cables; Cable clamps for suspension cables ; Pre- or post-stressed cables
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges

Definitions

  • the invention relates to a device for damping oscillatory movements in a building, in particular in a bridge.
  • Structural stabilization refers to structural measures, such as increasing the torsional rigidity of the beam or adding additional stay cables.
  • passive vibration dampers passively swinging additional masses come into consideration, which are referred to as absorber.
  • the active vibration dampers can be divided into active mechanical and active aerodynamic vibration dampers.
  • the latter are based on the approach of suitably modifying the flow field forming the bridge carrier so as to achieve a stabilizing effect.
  • the active mechanical flutter control for example, the torsional vibration of the bridge girder is checked by an additionally applied torsional moment.
  • the additional torsional moment is generated by horizontally displaceable damper masses in the bridge girder.
  • the aforementioned devices have, inter alia, the disadvantage of a relatively large energy requirement and thereby reduced reliability.
  • the invention has for its object to provide a device for damping vibrations in construction and structures that suppresses externally induced vibrations at high reliability with simple means and the lowest possible use of power-energy and the critical wind speed for self-induced vibrations (eg flutter) effectively elevated. Both torsional vibrations and vibrations in certain directions should be suppressed.
  • the device according to the invention serves to damp vibrations in structures. It has at least one aerodynamic control surface which is rotatably and / or displaceably mounted on the building. Furthermore, at least one mechanical absorber is provided, which is kinematically coupled to the control surface is.
  • the device according to the invention also referred to as an aeroelastic absorber, serves to damp vibrations in structures. It has at least one aerodynamic control surface lying in the wind, rotatable and / or displaceably mounted, which can be designed as a control sign, movable edge or wing element, wherein the control surface with the mechanical absorber is positively kinematically coupled.
  • the forcibly kinematic coupling is preferably effected by movable mechanical elements, such as gear lever or transmission gear.
  • the mechanical absorber has a spring member which applies a restoring force to a predetermined position on the mechanical lifter.
  • the mechanical absorber is a vibratory secondary system that has a favorable influence on the vibration behavior of the structure (main system). Furthermore, the mechanical absorber is provided with at least one mass body.
  • the device according to the invention thus has no drive which makes an external power supply necessary.
  • the mechanical absorber in addition to the wing element on a damper element.
  • the mechanical absorber is connected with its comparatively small mass via the spring element and via the damper element with the building, in particular with its supporting structure. Its degree of freedom of movement is the rotation about a fixed pole relative to the structure or the displacement relative to the structure in a given direction.
  • the absorber effect is due to the inertial forces of the mass and the damping forces in the possibly added damper element.
  • Mechanical absorbers themselves have long been known.
  • the flow forces acting on the aerodynamic control surface can also act on the vibration of the mechanical absorber via the existing positive connection.
  • this influence is not required for the effectiveness of the device and, if disruptive, can be minimized by suitable storage of the control surface or otherwise.
  • the coupling between the mechanical absorber and the control surface can be made such that amplitude, phase and / or frequency relationships between a vibrational movement of the mechanical absorber and the oscillatory motion of the aerodynamic control surface can be adjusted.
  • the tuning can thus be adapted to changing operating conditions, such as a variable wind speed.
  • a controller may be provided which controls the amplitude, phase and / or frequency ratios accordingly.
  • the aerodynamic control surface can be formed as a movable edge or wing element, which connects directly to the building and is mounted rotatably about a stationary point relative to the building.
  • the aerodynamic control surface can be formed as a detached from the building sign, which is rotatably connected via pylons and / or slidably connected to the building.
  • the movement of the shield can also be performed so that a rotation about a, relative to the building, not fixed point occurs.
  • the aerodynamic control surface is designed as a wing element which protrudes freely from the structure with a section.
  • the wing element with its mass arranged on both sides of the bearing point forms the mechanical absorber in interaction with a spring between the wing element and the structure.
  • the wing element is formed with an arm which projects into the building and is connected there by means of a spring to the building. Wing element, arm and spring together form the mechanical absorber.
  • the arm of the wing element has a mass body at its end.
  • At least two aeroelastic absorbers are arranged in pairs on opposite sides of an axis, both Torsionsschwingungen around the axis as well as vibrations in certain directions to be damped or eradicated.
  • the attachment points are preferably distributed spatially in the building or structure.
  • Fig. 1 shows a bridge girder 10 in the cutout, as used in suspension bridges.
  • the stiffening beam 12 is held by hanger 14 at between the masts of the bridge tensioned ropes 16.
  • On the stiffening carrier 12 are rotatably mounted on both sides wings elements connected.
  • Fig. 2 shows the body of the bridge girder 12 in cross section.
  • the longitudinal axis of the bridge girder is marked with 18.
  • On the side of the bridge girder are two wing elements 20, 22 which are each pivotally mounted in a bearing point 24, 26 and form the aerodynamic control surfaces.
  • On its inside, in the bridge girder 12, the wing elements 20, 22 have arms 28, 30, at the ends of which in each case a mass body 32, 34 is provided.
  • Each arm 28 or 30 is connected via a spring element 36 or 40 and a damper element 38 or 42 to the bridge girder 12.
  • Wing elements 20, 22 and mass bodies 32, 34 and springs 36, 40 are each arranged so that the wing elements 20, 22 remain in a predetermined position without external force influence. A deflection of the wing elements from their rest position leads to a vibration which damps the movement of the bridge girder 12.
  • Fig. 2 consists of the mechanical absorber of several respectively involved masses (mass body 32 and 34, arm 28 and 30, wing member 20 and 22), a spring 36 and 40 and a damper element 38 and 42. Its degree of freedom of movement is the rotation to the bearing point 24 and 26, respectively. It is excited to vibrate by vertical and torsional vibrations of the bridge girder. The vibration excitation of the absorber and thus its effectiveness generally require an imbalance of the mass distribution and thus a bias of the spring 36 or 40 in the static rest position.
  • the mass of the wing elements should be as small as possible in the interest of great effectiveness of the mechanical absorber.
  • the zwang furnishede kinematic coupling between the mechanical absorber and aerodynamic control surface consists in this embodiment simply from the two elements connecting arm 28 and 30th
  • the absorber effect of the mechanical absorber is due to the inertial forces of the masses involved and the damping forces in the damper element.
  • the rotation of the mechanical absorber (relative to the bridge) is transferred to the aerodynamic control surface 20 or 22, which lies in the wind current and is rotatably mounted, which is assigned to the respective mechanical absorber.
  • the flow field is changed dynamically and additionally induced time-varying air forces.
  • the mechanical absorber according to the invention can also oscillate in a predetermined straight direction and, instead of the lever rigidly connected to the aerodynamic control surface, can also have other positive connections, such as transmission levers and gearboxes.
  • the tuning of the aeroelastic damper is done by the choice of mass m, spring constant k and damping constant c as the central mechanical characteristics, the choice of the distance of the mechanical absorber of the bridge axis, the choice of its degree of freedom of movement, the kinematics of the positive kinematic connections and the contour and the mass of the aerodynamic control surfaces.
  • the main effect of the aeroelastic damper is to direct the flow of air on the building by a swinging movement of the aerodynamic control surface in such a way that a rocking-up is prevented and the building is stabilized.
  • Simultaneously with the control of the flow forces by the movement of the absorber can on the aerodynamic control surface acting flow forces on the existing zwang dormitore connection also act back on the vibration of the mechanical absorber.
  • this influence can have a supporting or disturbing effect.
  • this reaction can be suppressed to the mechanical absorber.
  • FIG Fig. 3 An embodiment in which this reaction is suppressed by the storage of the control surface is shown in FIG Fig. 3 shown.
  • the aerodynamic control surface of a remote from the building connected to the building by a holding device 46 plate 44.
  • the shield is rotatably mounted about a bearing point 48 in the central region of the shield.
  • the zwang consequently kinematic coupling with the interior of the bridge carrier located mechanical absorber 60 via a movable link member 50 which is selectively coupled via a link member 52 or 56 with the shield 44.
  • the aeroelastic absorber can be provided on one or both sides (relative to the bridge longitudinal axis). With bilateral arrangement, both absorbers can also be coupled or operated independently of each other. The latter case is in Fig. 2 shown. If both absorbers are coupled (not shown), then a corresponding positive kinematic connection must be provided between the two absorbers. If, on the other hand, both absorbers are independent of each other, it is possible to lock them on one side, eg leeward.
  • a zwang conspiracye kinematic coupling between mechanical absorber and aerodynamic control surface which allows frequency ratios between the vibration of the mechanical absorber and the Adjust the oscillation of the aerodynamic control surface.
  • the amplitude ratio can be in the case of a translation linkage z. B. by moving the connection points of the linkage members, as in Fig. 3 shown or similar.
  • a hinge 58 is fixedly connected to the first link member 52 and locked within a slot 54 in the second link member 50. The adjustment can thus be made steplessly by moving the swivel joint 58 in the slot 54.
  • the amplitude ratio can be stepped or continuously adjusted with a corresponding manual or continuously variable transmission.
  • the preferred embodiment of the invention has been described in the context of a bridge but is by no means limited to bridges in its use. Rather, the device according to the invention can also be used for horizontal vibrations, as they occur, for example, in towers. Here, the axis 18 then runs in the vertical direction.
  • the aeroelastic absorber has a special advantage, due to the dispensability of external energy supply, a high degree of efficiency and a high degree of operational safety.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Bridges Or Land Bridges (AREA)

Description

Die Erfindung betrifft eine Vorrichtung zur Dämpfung von Schwingungsbewegungen bei einem Bauwerk, insbesondere bei einer Brücke.The invention relates to a device for damping oscillatory movements in a building, in particular in a bridge.

Es besteht das Bedürfnis nach immer größeren Spannweiten im Brückenbau. So besitzt beispielsweise die Ende der 90er Jahre in Japan errichtete Akashi Kaikyo Brücke eine Spannweite von fast 2000 m. Die für die Überquerung der Meerenge von Messina in Italien geplante Brücke soll eine Spannweite von über 3 km besitzen. Mit diesen extremen Brückenlängen rückt zunehmends die Problematik der Schwingungsanfälligkeit dieser Tragwerke in den Vordergrund. Bei der Auslegung weit gespannter Brückenträger ist ein besonders wichtiger Effekt die sogenannte Flatterstabilität der Brücke. Hierbei handelt es sich um ein aeroelastisches Phänomen des windinduzierten Brückenflatters, bei dem selbstinduzierte, gekoppelte Biege- und Torsionsschwingungen oder entkoppelte Torsionsschwingungen des Brückenträgers auftreten. Bei selbstinduzierten Schwingungen handelt es sich im Gegensatz zu sogenannten fremdinduzierten Schwingungen, die beispielsweise durch Windböen oder durch periodische Wirbelablösungen hervorgerufen werden, um Erregerkräfte, die durch eine Verschiebung der Brücke hervorgerufen werden. Die an dem Tragwerk angreifenden Luftkräfte beeinflussen die dynamischen Eigenschaften des aeroelastischen Gesamtsystems, also insbesondere Steifigkeit und Dämpfungsparameter. Diese Änderungen treten auch bei zeitlich konstanter Windgeschwindigkeit auf. Erreicht die Windgeschwindigkeit einen bestimmten kritischen Wert, wird die Strukturdämpfung des Brückenträgers aufgehoben. Bei einem weiteren Anwachsen der Windgeschwindigkeit kann ein System mit negativer Gesamtdämpfung auftreten, bei der eine kleine Initialverschiebung zu einer anwachsenden Schwingung mit nahezu unbegrenzter Amplitude und so zum Versagen des Brückentragwerks führt. Die kritische Windgeschwindigkeit (Ucr) ist der strukturelle Kennwert für die Flatterstabilität von Brücken. Es ist bekannt, dass Ucr mit abnehmender Steifigkeit und Dämpfung der Brücke abnimmt. Gerade Brücken mit einer großen Spannweite besitzen jedoch eine geringe Steifigkeit, so dass für diese das Problem des Flatterns auftritt.There is a need for ever larger spans in bridge construction. For example, in the late 1990s, the Akashi Kaikyo Bridge, built in Japan, has a span of nearly 2000 meters. The bridge planned to cross the strait of Messina in Italy will have a span of over 3 km. With these extreme bridge lengths, the problem of the susceptibility to vibration of these structures is increasingly coming to the fore. In the design of wide-span bridge girders, a particularly important effect is the so-called chipping stability of the bridge. This is an aeroelastic phenomenon of the wind-induced bridge flap, in which self-induced, coupled bending and torsional vibrations or decoupled torsional vibrations of the bridge girder occur. Self-induced vibrations, in contrast to so-called externally induced vibrations, which are caused, for example, by gusts of wind or by periodic vortex shedding, are excitation forces which are caused by a displacement of the bridge. The air forces acting on the structure influence the dynamic properties of the overall aeroelastic system, in particular stiffness and damping parameters. These changes occur even with temporally constant wind speed. If the wind speed reaches a certain critical value, the structural damping of the bridge girder is canceled. With a further increase of the wind speed, a system with negative Overall attenuation occur in which a small initial shift to an increasing vibration with almost unlimited amplitude and thus leads to failure of the bridge structure. The critical wind speed (Ucr) is the structural characteristic for the flutter stability of bridges. It is known that Ucr decreases with decreasing stiffness and damping of the bridge. Straight bridges with a large span, however, have a low rigidity, so that the problem of fluttering occurs for them.

Zur Stabilisierung flattergefährdeter Brückenträger können verschiedene Verfahren und Vorrichtungen eingesetzt werden. Grundsätzlich lassen sich hierbei konstruktive, aktive und passive Verfahren unterscheiden. Die konstruktive Stabilisierung bezieht sich auf strukturelle Maßnahmen, wie beispielsweise die Erhöhung der Torsionssteifigkeit des Trägers oder das Hinzufügen von zusätzlichen Schrägseilen. Als passive Schwingungsdämpfer kommen passiv schwingende Zusatzmassen in Betracht, die als Tilger bezeichnet werden.Various methods and devices can be used to stabilize bridge members susceptible to flooding. In principle, constructive, active and passive methods can be distinguished. Structural stabilization refers to structural measures, such as increasing the torsional rigidity of the beam or adding additional stay cables. As passive vibration dampers passively swinging additional masses come into consideration, which are referred to as absorber.

Die aktiven Schwingungsdämpfer lassen sich in aktive mechanische sowie aktive aerodynamische Schwingungsdämpfer unterscheiden. Die Letztgenannten beruhen auf dem Ansatz, das sich um den Brückenträger ausbildende Strömungsfeld geeignet zu modifizieren, um so eine stabilisierende Wirkung zu erzielen. Beispielsweise können an dem Brückenträger seitlich Klappen vorgesehen sein, die so in den Wind gestellt werden, dass durch die vorbeiströmende Luft eine stabilisierende Kraft ausgeübt wird, vergleiche beispielsweise EP 0 627 031 B1 . Bei der aktiven mechanischen Flatterkontrolle erfolgt eine Kontrolle beispielsweise der Torsionsschwingung des Brückenträgers durch ein zusätzlich aufgebrachtes Torsionsmoment. Zu einer Ausgestaltung wird durch horizontal verschiebbare Dämpfermassen im Brückenträger das zusätzliche Torsionsmoment erzeugt. Es gibt auch Überlegungen, durch eine im Zentrum des Brückenquerschnitts rotierende Massen ein stabilisierendes Drehmoment für die Brückenträger zu erzeugen. Die vorgenannten Vorrichtungen haben u.a. den Nachteil eines verhältnismäßig großen Energiebedarfs und dadurch verminderter Betriebssicherheit.The active vibration dampers can be divided into active mechanical and active aerodynamic vibration dampers. The latter are based on the approach of suitably modifying the flow field forming the bridge carrier so as to achieve a stabilizing effect. For example, can be provided on the bridge girder side flaps, which are placed in the wind that a stabilizing force is exerted by the passing air, for example, compare EP 0 627 031 B1 , In the case of the active mechanical flutter control, for example, the torsional vibration of the bridge girder is checked by an additionally applied torsional moment. For an embodiment, the additional torsional moment is generated by horizontally displaceable damper masses in the bridge girder. There are also considerations, by a rotating in the center of the bridge cross-section Masses to create a stabilizing torque for the bridge girders. The aforementioned devices have, inter alia, the disadvantage of a relatively large energy requirement and thereby reduced reliability.

Neben dem vorbeschriebenen kritischen Phänomen des Flatterns bei Brücken treten ähnliche Schwingungsphänomene auch bei Gebäuden auf, wo diese dann als Galloping bezeichnet werden. Neben diesen die Standfestigkeit gefährdenden Schwingungsphänomenen, treten bei Bau- und Tragwerken auch durch Wind, Verkehr, Erdbeben und weitere äußere Einflüsse fremdinduzierte Schwingungen auf, die sowohl die Gebrauchsfähigkeit als auch die Standsicherheit beeinträchtigen können, und die ebenfalls zu dämpfen und zu unterdrücken sind. Eine für den Einbau an einem Bauwerk vorgesehene Vorrichtung, die eine aerodynamische Kontrollfläche und ein Federelement aufweist, ist in US 2 270 537 A beschrieben. Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zum Dämpfen von Schwingungen an Bau- und Tragwerken bereit zu stellen, die bei hoher Betriebssicherheit mit einfachen Mitteln und möglichst geringem Kraft-Energieeinsatz fremdinduzierte Schwingungen unterdrückt und die kritische Windgeschwindigkeit für selbstinduzierte Schwingungen (z.B. Flattern) wirksam erhöht. Sowohl Torsionsschwingungen als auch Schwingungen in bestimmte Richtungen sollen dabei unterdrückt werden.In addition to the above-described critical phenomenon of fluttering in bridges, similar vibrational phenomena also occur in buildings, where these are then referred to as galloping. In addition to these vibrational phenomena endangering stability, construction-related and structural structures also involve wind, traffic, earthquakes and other external influences, causing externally induced vibrations which can impair both their usability and stability, and which must also be damped and suppressed. An intended for installation on a building device having an aerodynamic control surface and a spring element is in US 2 270 537 A described. The invention has for its object to provide a device for damping vibrations in construction and structures that suppresses externally induced vibrations at high reliability with simple means and the lowest possible use of power-energy and the critical wind speed for self-induced vibrations (eg flutter) effectively elevated. Both torsional vibrations and vibrations in certain directions should be suppressed.

Erfindungsgemäß wird die Aufgabe durch eine Vorrichtung mit den Merkmalen aus Anspruch 1 gelöst. Vorteilhafte Ausgestaltung bilden die Gegenstände der Unteransprüche 2 bis 24.According to the invention the object is achieved by a device having the features of claim 1. Advantageous embodiments form the subject of the dependent claims 2 to 24.

Die erfindungsgemäße Vorrichtung dient zum Dämpfen von Schwingungen an Bauwerken. Sie besitzt mindestens eine aerodynamische Kontrollfläche, die drehbar und/oder verschieblich an dem Bauwerk gelagert ist. Ferner ist mindestens ein mechanischer Tilger vorgesehen, der mit der Kontrollfläche kinematisch gekoppelt ist. Die erfindungsgemäße Vorrichtung, auch als aeroelastischer Tilger bezeichnet, dient zum Dämpfen von Schwingungen an Bauwerken. Sie besitzt mindestens eine im Windstrom liegende, drehbar und/oder verschieblich gelagerte aerodynamische Kontrollfläche, die als Kontrollschild, bewegliche Kante oder Flügelelement ausgebildet sein kann, wobei die Kontrollfläche mit dem mechanischen Tilger zwangläufig kinematisch gekoppelt ist. Die zwangläufig kinematische Kopplung wird bevorzugt durch bewegliche mechanische Elemente, wie beispielsweise Übersetzungshebel oder Übersetzungsgetriebe, bewirkt. Der mechanische Tilger besitzt ein Federelement, das eine rückstellende Kraft in eine vorbestimmte Position auf den mechanischen Tilger ausübt. Der mechanische Tilger ist ein schwingungsfähiges Sekundärsystem, das das Schwingungsverhalten des Bauwerks (Hauptsystem) günstig beeinflusst. Ferner ist der mechanische Tilger mit mindestens einem Massekörper versehen. Die erfindungsgemäße Vorrichtung besitzt somit keinen Antrieb, der eine externe Energiezufuhr notwendig macht. Ferner weist der mechanische Tilger zusätzlich zu dem Flügelelement noch ein Dämpferelement auf. Der mechanische Tilger ist mit seiner vergleichsweise kleinen Masse über das Federelement und über das Dämpferelement mit dem Bauwerk, insbesondere mit dessen Tragwerk, verbunden. Sein Bewegungsfreiheitsgrad ist die Drehung um einen, bezogen auf das Bauwerk, ortsfesten Pol oder die Verschiebung relativ zum Bauwerk in eine vorgegebene Richtung. Die Tilgerwirkung entsteht durch die Trägheitskräfte der Masse und die Dämpfungskräfte in dem eventuell hinzugefügten Dämpferelement. Mechanische Tilger an sich sind seit langem bekannt.The device according to the invention serves to damp vibrations in structures. It has at least one aerodynamic control surface which is rotatably and / or displaceably mounted on the building. Furthermore, at least one mechanical absorber is provided, which is kinematically coupled to the control surface is. The device according to the invention, also referred to as an aeroelastic absorber, serves to damp vibrations in structures. It has at least one aerodynamic control surface lying in the wind, rotatable and / or displaceably mounted, which can be designed as a control sign, movable edge or wing element, wherein the control surface with the mechanical absorber is positively kinematically coupled. The forcibly kinematic coupling is preferably effected by movable mechanical elements, such as gear lever or transmission gear. The mechanical absorber has a spring member which applies a restoring force to a predetermined position on the mechanical lifter. The mechanical absorber is a vibratory secondary system that has a favorable influence on the vibration behavior of the structure (main system). Furthermore, the mechanical absorber is provided with at least one mass body. The device according to the invention thus has no drive which makes an external power supply necessary. Furthermore, the mechanical absorber in addition to the wing element on a damper element. The mechanical absorber is connected with its comparatively small mass via the spring element and via the damper element with the building, in particular with its supporting structure. Its degree of freedom of movement is the rotation about a fixed pole relative to the structure or the displacement relative to the structure in a given direction. The absorber effect is due to the inertial forces of the mass and the damping forces in the possibly added damper element. Mechanical absorbers themselves have long been known.

Bei dem aeroelastischen Tilger wirken, zusätzlich zu den bei dem mechanischen Tilger wirkenden Trägheits- und Dämpfungskräften, Strömungskräfte an der aerodynamischen Kontrollfläche und an dem Bauwerk. Infolge der zwangläufigen kinematischen Kopplung übertragen sich die Schwingungen des Tilgers auf die Kontrollfläche, womit sich Anstellwinkel und/oder Lage der Kontrollfläche in ebenfalls schwingender Weise zeitlich verändern. Die auf die Kontrollfläche und das Bauwerk wirkenden Strömungskräfte sind deshalb, mit der Schwingung des Tilgers, zeitlich veränderlich, und üben bei richtiger Abstimmung und ausreichender Windgeschwindigkeit eine zusätzliche Tilgerwirkung auf das Bauwerk aus. Die Tilgerwirkung des aeroelastischen Tilgers übersteigt die Trägheits- und Dämpfungskräfte des mechanischen Tilgers erheblich. Schwingungsanfachenden Kräften wird durch den aeroelastischen Tilger effektiv entgegengewirkt, fremdinduzierte Schwingungen werden unterdrückt und die kritische Windgeschwindigkeit für selbstinduzierte Schwingungen (beispielsweise Flattern) wird erhöht.In the aeroelastic absorber, in addition to the inertia and damping forces acting on the mechanical absorber, flow forces act on the aerodynamic control surface and on the structure. As a result of the compulsory kinematic coupling, the oscillations of the absorber transferred to the control surface, whereby the angle of attack and / or position of the control surface in a likewise oscillating manner temporally change. The forces acting on the control surface and the structure flow forces are therefore, with the vibration of the absorber, temporally variable, and exercise with proper tuning and sufficient wind speed, an additional Tilgerwirkung on the building. The absorber action of the aeroelastic absorber significantly exceeds the inertia and damping forces of the mechanical absorber. Vibration inducing forces are effectively counteracted by the aeroelastic damper, extraneous induced vibrations are suppressed, and the critical wind speed for self-induced vibrations (eg, flutter) is increased.

Gleichzeitig mit der Steuerung der Strömungskräfte durch die Bewegung des Tilgers können die auf die aerodynamische Kontrollfläche wirkenden Strömungskräfte über die bestehende zwangläufige Verbindung auch auf die Schwingung des mechanischen Tilgers zurückwirken. Dieser Einfluss ist für die Wirksamkeit der Vorrichtung allerdings nicht erforderlich und kann, sofern störend, durch geeignete Lagerung der Kontrollfläche oder auf andere Weise minimiert werden.Simultaneously with the control of the flow forces by the movement of the absorber, the flow forces acting on the aerodynamic control surface can also act on the vibration of the mechanical absorber via the existing positive connection. However, this influence is not required for the effectiveness of the device and, if disruptive, can be minimized by suitable storage of the control surface or otherwise.

In einer bevorzugten Ausgestaltung kann die Kopplung zwischen mechanischem Tilger und Kontrollfläche derart hergestellt werden, dass Amplituden-, Phasen- und/oder Frequenzverhältnisse zwischen einer Schwingungsbewegung des mechanischen Tilgers und der Schwingungsbewegung der aerodynamischen Kontrollfläche eingestellt werden können. Die Abstimmung kann damit an wechselnde Betriebsbedingungen, etwa eine veränderliche Windgeschwindigkeit, angepasst werden.In a preferred embodiment, the coupling between the mechanical absorber and the control surface can be made such that amplitude, phase and / or frequency relationships between a vibrational movement of the mechanical absorber and the oscillatory motion of the aerodynamic control surface can be adjusted. The tuning can thus be adapted to changing operating conditions, such as a variable wind speed.

In einer bevorzugten Ausgestaltung kann eine Steuerung vorgesehen sein, die die Amplituden-, Phasen- und/oder Frequenzverhältnisse entsprechend ansteuert.In a preferred embodiment, a controller may be provided which controls the amplitude, phase and / or frequency ratios accordingly.

Die aerodynamische Kontrollfläche kann als bewegliche Kante oder Flügelelement ausgebildet werden, das direkt an das Bauwerk anschließt und um einen, bezogen auf das Bauwerk, ortsfesten Punkt drehbar gelagert ist. Alternativ kann die aerodynamische Kontrollfläche als ein vom Bauwerk abgesetzter Schild ausgebildet werden, der über Pylone drehbar und/oder verschieblich mit dem Bauwerk verbunden ist. Durch geeignete Gestänge kann die Bewegung des Schilds auch so geführt werden, dass eine Drehung um einen, bezogen auf das Bauwerk, nicht ortsfesten Punkt eintritt.The aerodynamic control surface can be formed as a movable edge or wing element, which connects directly to the building and is mounted rotatably about a stationary point relative to the building. Alternatively, the aerodynamic control surface can be formed as a detached from the building sign, which is rotatably connected via pylons and / or slidably connected to the building. By suitable linkage, the movement of the shield can also be performed so that a rotation about a, relative to the building, not fixed point occurs.

In einer möglichen Ausgestaltung des aeroelastischen Tilgers ist die aerodynamische Kontrollfläche als ein Flügelelement ausgebildet, das mit einem Abschnitt frei aus dem Bauwerk vorsteht.In one possible embodiment of the aeroelastic absorber, the aerodynamic control surface is designed as a wing element which protrudes freely from the structure with a section.

In einer möglichen Ausgestaltung bildet das Flügelelement mit seiner zu beiden Seiten des Lagerpunkts angeordneten Masse im Zusammenspiel mit einer Feder zwischen Flügelelement und Bauwerk den mechanischen Tilger. In einer alternativen Ausgestaltung ist das Flügelelement mit einem Arm ausgebildet, der in das Bauwerk hineinragt und dort mittels einer Feder mit dem Bauwerk verbunden ist. Hier bilden Flügelelement, Arm und Feder gemeinsam den mechanischen Tilger.In one possible embodiment, the wing element with its mass arranged on both sides of the bearing point forms the mechanical absorber in interaction with a spring between the wing element and the structure. In an alternative embodiment, the wing element is formed with an arm which projects into the building and is connected there by means of a spring to the building. Wing element, arm and spring together form the mechanical absorber.

In einer bevorzugten Weiterführung der erfindungsgemäßen Vorrichtung weist der Arm des Flügelelements an seinem Ende einen Massenkörper auf.In a preferred embodiment of the device according to the invention, the arm of the wing element has a mass body at its end.

In einer bevorzugten Ausgestaltung sind mindestens zwei aeroelastische Tilger paarweise an gegenüberliegenden Seiten einer Achse angeordnet, wobei sowohl Torsionsschwingungen um die Achse als auch Schwingungen in bestimmte Richtungen gedämpft oder getilgt werden sollen.In a preferred embodiment, at least two aeroelastic absorbers are arranged in pairs on opposite sides of an axis, both Torsionsschwingungen around the axis as well as vibrations in certain directions to be damped or eradicated.

Je nach vorgesehener Federkonstante und gegebenenfalls auch Dämpfungskonstante, können auch jeweils mehrere Feder- oder Dämpferelemente vorgesehen sein, deren Befestigungspunkte in dem Bau- oder Tragwerk bevorzugt räumlich verteilt sind.Depending on the intended spring constant and optionally also damping constant, a plurality of spring or damper elements may be provided in each case, the attachment points are preferably distributed spatially in the building or structure.

Zwei bevorzugte Ausgestaltungen der erfindungsgemäßen Vorrichtung werden anhand von Ausführungsbeispielen näher erläutert.Two preferred embodiments of the device according to the invention will be explained in more detail with reference to embodiments.

Es zeigt:

Fig. 1
eine perspektivische Ansicht eines Ausschnitts einer Hängebrücke und
Fig. 2
eine schematische Ansicht des Brückenträgers im Querschnitt mit zwei erfindungsgemäßen Dämpfungseinrichtungen einer ersten Ausgestaltung, jeweils eine auf jeder Seite des Brückenträgers, und
Fig. 3
eine schematische Ansicht eines Bauwerks mit einer erfindungsgemäßen Dämpfungseinrichtung in einer zweiten Ausgestaltung, bei der die Kontrollfläche von dem Bauwerk abgesetzt ist.
It shows:
Fig. 1
a perspective view of a section of a suspension bridge and
Fig. 2
a schematic view of the bridge carrier in cross section with two damping devices according to the invention a first embodiment, one on each side of the bridge girder, and
Fig. 3
a schematic view of a structure with a damping device according to the invention in a second embodiment, in which the control surface is offset from the building.

Fig. 1 zeigt einen Brückenträger 10 im Ausschnitt, wie er bei Hängebrücken verwendet wird. Der Versteifungsträger 12 wird durch Hänger 14 an zwischen den Masten der Brücke gespannten Seilen 16 gehalten. An dem Versteifungsträger 12 sind beidseitig drehbar gelagerte Flügelelemente angeschlossen. Fig. 1 shows a bridge girder 10 in the cutout, as used in suspension bridges. The stiffening beam 12 is held by hanger 14 at between the masts of the bridge tensioned ropes 16. On the stiffening carrier 12 are rotatably mounted on both sides wings elements connected.

Fig. 2 zeigt den Körper des Brückenträgers 12 im Querschnitt. Die Längsachse des Brückenträgers ist mit 18 gekennzeichnet. Seitlich an dem Brückenträger stehen zwei Flügelelemente 20, 22 vor, die jeweils in einem Lagerpunkt 24, 26 schwenkbar gelagert sind und die aerodynamische Kontrollflächen bilden. Auf ihrer Innenseite, in dem Brückenträger 12, besitzen die Flügelelemente 20, 22 Arme 28, 30, an deren Enden jeweils ein Massenkörper 32, 34 vorgesehen ist. Fig. 2 shows the body of the bridge girder 12 in cross section. The longitudinal axis of the bridge girder is marked with 18. On the side of the bridge girder are two wing elements 20, 22 which are each pivotally mounted in a bearing point 24, 26 and form the aerodynamic control surfaces. On its inside, in the bridge girder 12, the wing elements 20, 22 have arms 28, 30, at the ends of which in each case a mass body 32, 34 is provided.

In dem dargestellten Ausführungsbeispiel von Fig. 2 ist jeder Arm 28 oder 30 über ein Federelement 36 bzw. 40 und ein Dämpferelement 38 bzw. 42 mit dem Brückenträger 12 verbunden. Flügelelemente 20, 22 sowie Massenkörper 32, 34 und Federn 36, 40 sind jeweils so angeordnet, dass ohne äußeren Krafteinfluss die Flügelelemente 20, 22 in einer vorbestimmten Position verbleiben. Eine Auslenkung der Flügelelemente aus ihrer Ruhelage führt zu einer Schwingung, die die Bewegung des Brückenträgers 12 dämpft.In the illustrated embodiment of Fig. 2 Each arm 28 or 30 is connected via a spring element 36 or 40 and a damper element 38 or 42 to the bridge girder 12. Wing elements 20, 22 and mass bodies 32, 34 and springs 36, 40 are each arranged so that the wing elements 20, 22 remain in a predetermined position without external force influence. A deflection of the wing elements from their rest position leads to a vibration which damps the movement of the bridge girder 12.

In dem Ausführungsbeispiel von Fig. 2 besteht der mechanische Tilger aus mehreren jeweils beteiligten Massen (Massenkörper 32 bzw. 34, Arm 28 bzw. 30, Flügelelement 20 bzw. 22), aus einer Feder 36 bzw. 40 und einem Dämpferelement 38 bzw. 42. Sein Bewegungsfreiheitsgrad ist die Drehung um den Lagerpunkt 24 bzw. 26. Er wird durch Vertikal- und Torsionsschwingungen des Brückenträgers zu Schwingungen angeregt. Die Schwingungsanregung des Tilgers und damit seine Wirksamkeit erfordern im Allgemeinen eine Unausgewogenheit der Massenverteilung und damit eine Vorspannung der Feder 36 bzw. 40 in der statischen Ruhelage. In dem dargestellten Ausführungsbeispiel sollte die Masse der Flügelelemente im Interesse großer Wirksamkeit des mechanischen Tilgers möglichst klein sein. Die zwangläufige kinematische Kopplung zwischen mechanischem Tilger und aerodynamischer Kontrollfläche besteht in diesem Ausführungsbeispiel einfach aus dem beide Elemente verbindenden Arm 28 bzw. 30.In the embodiment of Fig. 2 consists of the mechanical absorber of several respectively involved masses (mass body 32 and 34, arm 28 and 30, wing member 20 and 22), a spring 36 and 40 and a damper element 38 and 42. Its degree of freedom of movement is the rotation to the bearing point 24 and 26, respectively. It is excited to vibrate by vertical and torsional vibrations of the bridge girder. The vibration excitation of the absorber and thus its effectiveness generally require an imbalance of the mass distribution and thus a bias of the spring 36 or 40 in the static rest position. In the illustrated embodiment, the mass of the wing elements should be as small as possible in the interest of great effectiveness of the mechanical absorber. The zwangläufige kinematic coupling between the mechanical absorber and aerodynamic control surface consists in this embodiment simply from the two elements connecting arm 28 and 30th

Die Tilgerwirkung des mechanischen Tilgers entsteht durch die Trägheitskräfte der beteiligten Massen und die Dämpfungskräfte in dem Dämpferelement.The absorber effect of the mechanical absorber is due to the inertial forces of the masses involved and the damping forces in the damper element.

Bei dem aeroelastischen Tilger des Ausführungsbeispiels überträgt sich die - Verdrehung des mechanischen Tilgers (relativ zur Brücke) auf die im Windstrom liegende, drehbar gelagerte aerodynamische Kontrollfläche 20 bzw. 22, die dem jeweiligen mechanischen Tilger zugeordnet ist. Hierdurch wird das Strömungsfeld dynamisch verändert und zusätzlich zeitveränderliche Luftkräfte induziert. Durch die Abstimmung des Tilgers wirken diese den schwingungsanfachenden Kräften entgegen, wodurch fremdinduzierte Brückenschwingungen beruhigt und die kritische Windgeschwindigkeit für das Flattern erhöht wird.In the case of the aeroelastic absorber of the exemplary embodiment, the rotation of the mechanical absorber (relative to the bridge) is transferred to the aerodynamic control surface 20 or 22, which lies in the wind current and is rotatably mounted, which is assigned to the respective mechanical absorber. As a result, the flow field is changed dynamically and additionally induced time-varying air forces. By tuning the absorber, these counteract the vibration-imparting forces, thereby quieting externally-induced bridge vibrations and increasing the critical wind speed for fluttering.

Der erfindungsgemäße mechanische Tilger kann auch in eine vorgegebene gerade Richtung schwingen und kann anstelle des starr mit der aerodynamischen Kontrollfläche verbundenen Hebels auch andere zwangläufige Verbindungen, wie beispielsweise Übersetzungshebel und -getriebe aufweisen. Die Abstimmung des aeroelastischen Tilgers erfolgt durch die Wahl von Masse m, Federkonstante k und Dämpfungskonstante c als den zentralen mechanischen Kenngrößen, der Wahl des Abstands des mechanischem Tilgers von der Brückenachse, der Wahl seines Bewegungsfreiheitsgrads, der Kinematik der zwangläufigen kinematischen Verbindungen sowie der Kontur und der Masse der aerodynamischen Kontrollflächen.The mechanical absorber according to the invention can also oscillate in a predetermined straight direction and, instead of the lever rigidly connected to the aerodynamic control surface, can also have other positive connections, such as transmission levers and gearboxes. The tuning of the aeroelastic damper is done by the choice of mass m, spring constant k and damping constant c as the central mechanical characteristics, the choice of the distance of the mechanical absorber of the bridge axis, the choice of its degree of freedom of movement, the kinematics of the positive kinematic connections and the contour and the mass of the aerodynamic control surfaces.

Wie vorstehend bereits erläutert, besteht die Hauptwirkung des aeroelastischen Tilgers darin, durch eine Schwingungsbewegung der aerodynamischen Kontrollfläche die Luftströmung an dem Bauwerk derart zu lenken, dass ein Aufschaukeln unterbleibt und das Bauwerk stabilisiert wird. Gleichzeitig mit der Steuerung der Strömungskräfte durch die Bewegung des Tilgers können die auf die aerodynamische Kontrollfläche wirkenden Strömungskräfte über die bestehende zwangläufige Verbindung auch auf die Schwingung des mechanischen Tilgers zurückwirken. Dieser Einfluss kann je nach Bauwerk und Auslegung des aeroelastischen Tilgers eine unterstützende oder eine störende Wirkung aufweisen. Durch eine geeignete Lagerung der aerodynamischen Kontrollflächen oder andere Maßnahmen kann diese Rückwirkung auf den mechanischen Tilger unterdrückt werden.As already explained above, the main effect of the aeroelastic damper is to direct the flow of air on the building by a swinging movement of the aerodynamic control surface in such a way that a rocking-up is prevented and the building is stabilized. Simultaneously with the control of the flow forces by the movement of the absorber can on the aerodynamic control surface acting flow forces on the existing zwangläufige connection also act back on the vibration of the mechanical absorber. Depending on the structure and design of the aeroelastic absorber, this influence can have a supporting or disturbing effect. By a suitable storage of the aerodynamic control surfaces or other measures, this reaction can be suppressed to the mechanical absorber.

Ein Ausführungsbeispiel, in dem diese Rückwirkung durch die Lagerung der Kontrollfläche unterdrückt wird, ist in Fig. 3 gezeigt. In diesem Fall besteht die aerodynamische Kontrollfläche aus einem vom Bauwerk abgesetzten, mit dem Bauwerk durch eine Haltevorrichtung 46 verbundenen Schild 44. Der Schild ist dabei um einen Lagerpunkt 48 im mittleren Bereich des Schilds drehbar gelagert. Die zwangläufige kinematische Kopplung mit dem in Inneren des Brückenträgers befindlichen mechanischen Tilger 60 erfolgt über ein bewegliches Gestängeglied 50, das wahlweise über ein Gestängeglied 52 oder 56 mit dem Schild 44 gekoppelt ist.An embodiment in which this reaction is suppressed by the storage of the control surface is shown in FIG Fig. 3 shown. In this case, the aerodynamic control surface of a remote from the building, connected to the building by a holding device 46 plate 44. The shield is rotatably mounted about a bearing point 48 in the central region of the shield. The zwangläufige kinematic coupling with the interior of the bridge carrier located mechanical absorber 60 via a movable link member 50 which is selectively coupled via a link member 52 or 56 with the shield 44.

Der aeroelastische Tilger kann ein- oder beidseitig (relativ zur Brückenlängsachse) vorgesehen sein. Bei beidseitiger Anordnung können beide Tilger auch gekoppelt oder unabhängig voneinander betrieben werden. Letzterer Fall ist in Fig. 2 dargestellt. Sind beide Tilger gekoppelt (nicht- dargestellt), so ist eine entsprechende zwangläufige kinematische Verbindung zwischen beiden Tilgern vorzusehen. Sind dagegen beide Tilger unabhängig voneinander, besteht die Möglichkeit, diese auf einer Seite, z.B. leeseitig zu arretieren.The aeroelastic absorber can be provided on one or both sides (relative to the bridge longitudinal axis). With bilateral arrangement, both absorbers can also be coupled or operated independently of each other. The latter case is in Fig. 2 shown. If both absorbers are coupled (not shown), then a corresponding positive kinematic connection must be provided between the two absorbers. If, on the other hand, both absorbers are independent of each other, it is possible to lock them on one side, eg leeward.

In den Figuren nicht dargestellt ist eine zwangläufige kinematische Kopplung zwischen mechanischem Tilger und aerodynamischer Kontrollfläche, die es erlaubt Frequenzverhältnisse zwischen der Schwingung des mechanischen Tilgers und der Schwingung der aerodynamischen Kontrollfläche einzustellen. Das Amplitudenverhältnis lässt sich im Falle eines Übersetzungsgestänges z. B. durch Verschieben der Verbindungspunkte der Gestängeglieder, wie in Fig. 3 gezeigt oder ähnlich, einstellen. Ein Drehgelenk 58 ist dabei fest mit dem erstem Gestängeglied 52 verbunden und innerhalb eines Langlochs 54 in dem zweiten Gestängeglied 50 arretiert. Die Einstellung kann somit stufenlos durch Verschieben des Drehgelenks 58 im Langloch 54 erfolgen.Not shown in the figures is a zwangläufige kinematic coupling between mechanical absorber and aerodynamic control surface, which allows frequency ratios between the vibration of the mechanical absorber and the Adjust the oscillation of the aerodynamic control surface. The amplitude ratio can be in the case of a translation linkage z. B. by moving the connection points of the linkage members, as in Fig. 3 shown or similar. A hinge 58 is fixedly connected to the first link member 52 and locked within a slot 54 in the second link member 50. The adjustment can thus be made steplessly by moving the swivel joint 58 in the slot 54.

Durch Anschluss des ersten Gestängeglieds in der hinteren Position 52 oder in der vorderen Position 56 kann ein Phasenverhältnis von 0° oder 180° eingestellt werden, wobei die Kopplung des vorderen Gestängeglieds 56 ebenso wie die oben beschriebene Kopplung des hinteren Gestängeglieds 52 erfolgen kann.By connecting the first linkage member in the rearward position 52 or in the forwardmost position 56, a phase relationship of 0 ° or 180 ° can be set, with the coupling of the front linkage member 56 as well as the coupling of the rear linkage member 52 described above.

Im Falle eines Übersetzungsgetriebes kann das Amplitudenverhältnis abgestuft oder stufenlos mit einem entsprechenden Schaltgetriebe oder stufenlosen Getriebe eingestellt werden.In the case of a transmission, the amplitude ratio can be stepped or continuously adjusted with a corresponding manual or continuously variable transmission.

Das bevorzugte Ausführungsbeispiel der Erfindung wurde im Zusammenhang mit einer Brücke beschrieben, ist jedoch in seinem Einsatz keineswegs auf Brücken beschränkt. Vielmehr kann die erfindungsgemäße Vorrichtung auch bei horizontalen Schwingungen, wie sie beispielsweise bei Türmen auftreten, eingesetzt werden. Hier verläuft die Achse 18 dann in vertikaler Richtung.The preferred embodiment of the invention has been described in the context of a bridge but is by no means limited to bridges in its use. Rather, the device according to the invention can also be used for horizontal vibrations, as they occur, for example, in towers. Here, the axis 18 then runs in the vertical direction.

Der aeroelastische Tilger besitzt als besonderen Vorzug, bedingt durch die Entbehrlichkeit externer Energieversorgung, einen hohen Grad an Wirtschaftlichkeit und ein hohes Maß an Betriebssicherheit.The aeroelastic absorber has a special advantage, due to the dispensability of external energy supply, a high degree of efficiency and a high degree of operational safety.

Claims (24)

  1. A device for damping or suppressing vibrations in a building, comprising the following:
    at least one aerodynamic control surface (20, 22; 44) which is supported rotatably and/or movably,
    at least one mechanical absorber (60) comprising a spring element (36, 40) and being capable of performing torsional vibrations or vibrations in a predetermined direction relative to the building,
    and at least one positive kinematic coupling between the mechanical absorber and the aerodynamic control surface, wherein the mechanical absorber comprises a least one mass body (32, 34), wherein
    the mechanical absorber comprises, in addition to the spring element, a damper element (38, 42), wherein both torsional vibrations and vibrations in predetermined directions are damped or suppressed.
  2. The device according to claim 1, characterized in that the positive kinematic coupling between mechanical damper and control surface is realized by movable mechanical elements such as, for example, transmission lever, transmission rod assembly (50, 52, 56) or transmission gearing.
  3. The device according to any one of claims 1 to 2, characterized in that the coupling between mechanical absorber and control surface allows adjustment of an amplitude and/or phase and/or frequency ratio between the vibration of the mechanical absorber and the vibration of the aerodynamic control surface.
  4. The device according to claim 3, characterized in that the coupling comprises a rod assembly with a first rod element (52 or 56) and a second rod element (50), wherein the amplitude ratio is adjustable by the position of a connection point (58) between the rod elements (50, 52, 56) and the phase ratio is adjustable by the position of a connection point of the rod assembly (52 or 56) and the control surface (44).
  5. The device according to any one of claim 3 or 4, characterized in that a control means is provided for controlling the amplitude, phase and/or frequency ratios.
  6. The device according to any one of claims 1 to 5, characterized in that a movable edge or a wing element (20, 22), a portion of which projects freely from the building, is provided as aerodynamic control surface.
  7. The device according to claim 6, characterized in that the wing element (20, 22) is rotatably supported in a supporting point (24, 26).
  8. The device according to claim 7, characterized in that the mechanical absorber is formed by the wing element with its mass arranged at both sides of the supporting point (24, 26).
  9. The device according to any one of claims 6 to 8, characterized in that the wing element (20, 22) comprises an arm (28, 30).
  10. The device according to claim 9, characterized in that the wing element (20, 22), the arm and the spring element form the mechanical absorber.
  11. The device according to claim 10, characterized in that the arm (28, 30) comprises a mass body (32, 34) at its free end.
  12. The device according to any one of claims 1 to 5, characterized in that a shield (44) which is offset from the building and which is connected to the building (12) by means of holding devices (46) is provided as aerodynamic control surface.
  13. The device according to claim 12, characterized in that the shield (44) offset from the building is supported rotatably and/or movably, wherein the movement of the shield is controlled such that there is a rotation about a stationary or non-stationary pole relative to the building.
  14. The device according to any one of claims 1 to 13, characterized in that the flow forces acting on the aerodynamic control surface have a retroactive effect on the vibrations of the mechanical absorber.
  15. The device according to any one of claims 1 to 13, characterized in that the flow forces acting on the aerodynamic control surface do not have a retroactive effect on the vibrations of the mechanical absorber by selecting a suitable support of the control surface.
  16. The device according to claim 15 back-referenced to claims 12 and 13, characterized in that a shield which is offset from the building and which is supported such that the movement of the shield is realized as rotation about a pole in the central region of the shield is provided as aerodynamic control surface.
  17. The device according to any one of claims 1 to 16, characterized in that by means of two positive kinematic couplings, the mechanical absorber is coupled to two aerodynamic control surfaces which are arranged in pairs on opposite sides of a building axis (18), wherein both torsional vibrations about the axis (18) and vibrations in a predetermined direction, in particular in the direction perpendicular to the connection line of the two control surfaces, are damped or absorbed.
  18. The device according to any one of claims 1 to 16, characterized in that at least two aerodynamic control surfaces with two associated mechanical absorbers each and their kinematic positive coupling are arranged in pairs on two opposite sides of a building axis (18), wherein both torsional vibrations about the axis (18) and vibrations in a predetermined direction, in particular in the direction perpendicular to the connection line of two opposite control surfaces, are damped or absorbed.
  19. The device according to claim 18, characterized in that at least one of the control surfaces is locked in place.
  20. The device according to claim 18, characterized in that at least two mechanical absorbers are coupled with each other by a positive kinematic coupling.
  21. The device according to claim 20, characterized in that the positive kinematic coupling of the mechanical absorbers comprises a transmission means which allows adjustment and control of amplitude, phase and/or frequency ratios.
  22. The device according to any one of claims 1 to 21, characterized in that a plurality of spring elements are provided for each mechanical absorber.
  23. The device according to any one of claims 1 to 22, characterized in that a plurality of damper elements are provided for each mechanical absorber.
  24. The device according to claim 22 or 23, characterized in that the spring elements and/or the damper elements are attached to different points.
EP05795034.7A 2004-11-09 2005-10-21 Device for damping vibrations in a building Active EP1815068B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004053898A DE102004053898A1 (en) 2004-11-09 2004-11-09 Device for damping oscillatory motion in a building
PCT/EP2005/011327 WO2006050802A1 (en) 2004-11-09 2005-10-21 Device for damping vibrations in a building

Publications (2)

Publication Number Publication Date
EP1815068A1 EP1815068A1 (en) 2007-08-08
EP1815068B1 true EP1815068B1 (en) 2018-05-16

Family

ID=35677625

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05795034.7A Active EP1815068B1 (en) 2004-11-09 2005-10-21 Device for damping vibrations in a building

Country Status (5)

Country Link
EP (1) EP1815068B1 (en)
KR (1) KR101353281B1 (en)
DE (1) DE102004053898A1 (en)
DK (1) DK1815068T3 (en)
WO (1) WO2006050802A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016162059A1 (en) 2015-04-08 2016-10-13 Technische Universität Hamburg-Harburg Device for damping vibrations of a bridge
CN106436948B (en) * 2016-09-13 2018-11-06 哈尔滨工业大学深圳研究生院 A kind of drum type brake traveling wave flow spoiler drag reduction vibration absorber
CN106958192B (en) * 2017-04-13 2018-12-18 华北水利水电大学 A kind of control structure and method inhibiting Bridge Flutter
CN108035237A (en) * 2017-12-31 2018-05-15 西南交通大学 The wing plate system and its control method that a kind of suppression Bridge Flutter and whirlpool shake
CN108517760B (en) * 2018-04-17 2019-05-17 同济大学 A kind of central stabilizing mechanism improving split type box beam flutter stability
CN108842599B (en) * 2018-07-16 2019-10-01 同济大学 One kind being based on bionic pneumatic drag reduction device and bridge
CN111305042B (en) * 2020-02-29 2021-08-03 东北林业大学 Large-span bridge wind vibration control method of self-adaptive swing flap
CN112458882A (en) * 2020-11-30 2021-03-09 大连理工大学 Flexible device for controlling bridge vortex vibration
CN112814457B (en) * 2021-01-04 2021-12-24 中国矿业大学 Threaded sleeve type tension-compression friction energy dissipater and using method thereof
CN113235398A (en) * 2021-06-02 2021-08-10 哈尔滨工业大学 Active air suction and blowing intelligent control device for wind-induced vibration of single box girder of long-span bridge girder
CN114922049A (en) * 2022-03-22 2022-08-19 中国计量大学 Control device for restraining wind vibration of bridge

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2270537A (en) * 1939-02-08 1942-01-20 Ludington Charles Townsend Building
JPH05171837A (en) * 1991-12-25 1993-07-09 Nkk Corp Flutter vibration absorber of bridge girder
DK169444B1 (en) * 1992-02-18 1994-10-31 Cowi Radgivende Ingeniorer As System and method for countering wind-induced oscillations in a bridge carrier
GB9218794D0 (en) * 1992-09-04 1992-10-21 Piesold David D A Bridge deck system
GB2313612B (en) * 1996-05-29 2000-06-07 Marconi Gec Ltd Bridge stabilisation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2006050802A1 (en) 2006-05-18
KR20070085873A (en) 2007-08-27
DE102004053898A1 (en) 2006-05-11
EP1815068A1 (en) 2007-08-08
KR101353281B1 (en) 2014-01-22
DK1815068T3 (en) 2018-08-13

Similar Documents

Publication Publication Date Title
EP1815068B1 (en) Device for damping vibrations in a building
DE69925601T2 (en) WIND TURBINE WING WITH U-SHAPED VIBRATION DAMPER
DE19856500B4 (en) vibration absorber
EP2746483B1 (en) Oscillation damping assembly
EP2929098B1 (en) Vibration-limiting module and device, structural segment for a structural installation, and wind turbine having a vibration-limiting module
EP3048295B2 (en) Method for errecting a wind energy system and wind energy system
WO2018189245A1 (en) Vibration damping of a wind turbine tower
EP3899266B1 (en) Impulse tuned mass damper for tall, slim structures
DE102010054795A1 (en) Wave energy plant
EP3433509B1 (en) Compact three-dimensional ellipsoidal tuned pendulum
EP1800020A1 (en) Device for damping vibrations in a building
EP1756369B1 (en) Supporting structure with a device for damping oscillations
DE4241631C2 (en) Wind turbine
EP1327726B1 (en) Adjustable vibration damper
DE2715584A1 (en) Impeller of wind driven turbine - has blade linkage to vary pitch in response to forces due to changing wind speeds
DE60218141T2 (en) SYSTEM FOR A TURBINE WITH A GASEOUS OR LIQUID WORKING MEDIUM
EP4244502A1 (en) Building damper for protecting buildings against vibrations, and building comprising such a building damper
DE3624219A1 (en) DEVICE FOR DAMPING BLADE SWIVELING IN A HELICOPTER ROTOR SYSTEM
DE3935925C2 (en)
DE2523599C2 (en) Device for coupling the drive or buoyancy device of a helicopter to the helicopter fuselage
DE2913407A1 (en) Wind turbine with rotor blades of reduced length - has resilient couplings between all elements subjected to wind force
DE3011555C2 (en) Device for lowering torsional vibration frequencies in ropes stretched over long distances, especially overhead lines
EP3922879A1 (en) Pendulum damper assembly
DE2008977C3 (en) Rotor mast mounting for rotary wing aircraft
DE102004030701B4 (en) Device for limiting the absorption of vibration energy by a vibratory system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FREYSSINET S.A.S.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOLETANCHE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOLETANCHE FREYSSINET

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOLETANCHE FREYSSINET

17Q First examination report despatched

Effective date: 20151008

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171208

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005015831

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 999680

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20180807

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180516

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180819

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005015831

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181021

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181021

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 999680

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181021

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005015831

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20051021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180916

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220921

Year of fee payment: 18

Ref country code: SE

Payment date: 20220920

Year of fee payment: 18

Ref country code: GB

Payment date: 20220922

Year of fee payment: 18

Ref country code: FI

Payment date: 20220915

Year of fee payment: 18

Ref country code: DK

Payment date: 20220920

Year of fee payment: 18

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG