DK169444B1 - System and method for countering wind-induced oscillations in a bridge carrier - Google Patents

System and method for countering wind-induced oscillations in a bridge carrier Download PDF

Info

Publication number
DK169444B1
DK169444B1 DK20992A DK20992A DK169444B1 DK 169444 B1 DK169444 B1 DK 169444B1 DK 20992 A DK20992 A DK 20992A DK 20992 A DK20992 A DK 20992A DK 169444 B1 DK169444 B1 DK 169444B1
Authority
DK
Denmark
Prior art keywords
bridge
control
detectors
carrier
bridge carrier
Prior art date
Application number
DK20992A
Other languages
Danish (da)
Other versions
DK20992D0 (en
DK20992A (en
Inventor
Klaus H Ostenfeld
Original Assignee
Cowi Radgivende Ingeniorer As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cowi Radgivende Ingeniorer As filed Critical Cowi Radgivende Ingeniorer As
Priority to DK20992A priority Critical patent/DK169444B1/en
Publication of DK20992D0 publication Critical patent/DK20992D0/en
Priority to PCT/DK1993/000058 priority patent/WO1993016232A1/en
Priority to EP93905216A priority patent/EP0627031B1/en
Priority to ES93905216T priority patent/ES2090976T3/en
Priority to AU36266/93A priority patent/AU3626693A/en
Priority to MA23097A priority patent/MA22804A1/en
Priority to DE69303160T priority patent/DE69303160D1/en
Publication of DK20992A publication Critical patent/DK20992A/en
Application granted granted Critical
Publication of DK169444B1 publication Critical patent/DK169444B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D11/00Suspension or cable-stayed bridges
    • E01D11/02Suspension bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D11/00Suspension or cable-stayed bridges
    • E01D11/04Cable-stayed bridges

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Description

DK 169444 B1 iDK 169444 B1 i

Opfindelsen angår et system og en fremgangsmåde til modvirkning af vindinducerede svingninger i brodragere på lange kabelbårne broer, hvor et antal i hovedsagen symmetrisk omkring broens længdeakse anbragte kontrolflader 5 er indrettet til at udnytte vindens energi til automatisk at reducere nævnte svingninger i afhængighed af brodragerens bevægelse.BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a system and method for counteracting wind-induced oscillations in bridge carriers on long cable-borne bridges, wherein a plurality of symmetrically arranged control surfaces 5 arranged along the longitudinal axis of the bridge are adapted to utilize the wind energy to automatically reduce said oscillations in response to the movement of the bridge carrier.

I forbindelse med langtspændende broer med utilstrækkelig 10 stivhed og dæmpning kan der optræde svingninger på grund af aerodynamisk instabilitet. Disse svingninger kan i værste fald blive fatale og medføre, at broerne falder sammen. Svingningerne betegnes også ofte med det engelske udtryk flutter. Der kan være tale om torsionssvingninger 15 eller vertikalsvingninger eller en kombination af disse. F.eks. var det tors ions svingninger, som i 1940 ødelagde Tacomabroen i USA, som på daværende tidspunkt var verdens længste hængebro.In the case of long-span bridges with insufficient rigidity and damping, oscillations may occur due to aerodynamic instability. In the worst case, these swings can become fatal and cause the bridges to collapse. The fluctuations are also often denoted by the English term flutter. These may be torsional oscillations or vertical oscillations or a combination thereof. Eg. it was the torsion oscillations that in 1940 destroyed the Tacoma Bridge in the United States, which at that time was the world's longest suspension bridge.

20 Aerodynamisk instabilitet optræder, når de aerodynamiske kræfter reducerer brodragerens torsionsstivhed, eller den totale dæmpning (strukturel samt aerodynamisk) bliver negativ, hvilket vil sige, at broen tilføres mere energi, end der optages i svingningsbevægelsen. Den vindhastig-25 hed, hvor aerodynamisk instabilitet indtræder, benævnes fluttervindhastigheden eller den kritiske vindhastighed, og den aftager med faldende strukturel stivhed og dæmpning.Aerodynamic instability occurs when the aerodynamic forces reduce the torsional rigidity of the bridge carrier or the total damping (structural as well as aerodynamic) becomes negative, which means that the bridge is supplied with more energy than is absorbed in the oscillation movement. The wind speed at which aerodynamic instability occurs is referred to as the flutter wind speed or critical wind speed, and it decreases with decreasing structural stiffness and damping.

30 Problemet imødegås traditionelt ved f.eks. at forøge brodragerens stivhed eller ved at montere mekaniske dæmperanordninger. For et givet tværsnit af brodrageren vil dennes torsionsstivhed aftage med stigende spændvidde.The problem is traditionally addressed by e.g. to increase the stiffness of the bridge carrier or by mounting mechanical damper devices. For a given cross section of the bridge carrier, its torsional rigidity will decrease with increasing span.

Når spændvidden Øges, er det derfor nødvendigt også at 35 øge brotværsnittet for at etablere den tilstrækkelige torsionsstivhed. Det forøgede brotværsnit giver imidlertid anledning til større vindbelastninger, som igen med- 2 DK 169444 B1 fører øgede krav til brodragerens strukturelle styrke og dermed betyder forøgede konstruktionsomkostninger. Desuden er der naturligvis af hensyn til broens udseende grænser for, hvor meget man ønsker at forøge brodragerens 5 tværsnit. Disse forhold har således sat en øvre grænse for, hvor store spændvidder, der kan opnås.Therefore, as the span increases, it is also necessary to increase the fracture cross-section to establish the sufficient torsional stiffness. However, the increased cross-sectional area gives rise to larger wind loads, which in turn leads to increased demands on the structural strength of the bridge carrier and thus means increased construction costs. Also, of course, for the appearance of the bridge, there are limits to how much one wishes to increase the cross-section of the bridge carrier 5. These conditions have thus set an upper limit on the range of spreads that can be achieved.

Fra US patentskrift 4 741 063 kendes et system, som benytter kontrolflader til modvirkning af vindinducerede 10 svingninger i en brodrager ved udnyttelse af vindens energi. Der er anbragt en flade på hver side af broens længdeakse. Fladerne er fortrinsvis fast monterede; men de kan også være justerbare, eventuelt ved hjælp af et automatisk styresystem.US patent 4,741,063 discloses a system which uses control surfaces to counteract wind-induced oscillations in a bridge carrier by utilizing wind energy. A surface is placed on each side of the longitudinal axis of the bridge. The surfaces are preferably fixedly mounted; but they can also be adjustable, possibly using an automatic control system.

1515

Fra en artikel af H. Kobayashi, et.al. "Active control of Flutter of a suspension Bridge" (Preprint from the eighth Internationel Conference on Wind Engineering, London, Canada, July 1991) kendes et tilsvarende system, 20 hvor der anbringes to kontrolvinger over brodrageren i hver sin side af broen. Vingerne er ophængt drejeligt og kan bevæges harmonisk i takt med brodragerens bevægelser. Vindens påvirkning af vingerne frembringer herved kræfter, som kan overføres til brodrageren og modvirke 25 dennes bevægelse. Dette system betyder, at man kan gøre brodragerens mekaniske dimensioner mindre og i stedet dæmpe eventuelle svingninger ved hjælp af kontrolvingerne. Imidlertid er dette system behæftet med ulemper.From an article by H. Kobayashi, et.al. "Active control of the Flutter of a suspension bridge" (Preprint from the Eighth International Conference on Wind Engineering, London, Canada, July 1991) is known a similar system, 20 where two control wings are placed over the bridge carrier in each side of the bridge. The wings are pivotally suspended and can be moved harmoniously in line with the movements of the bridge carrier. The influence of the wind on the wings thereby produces forces which can be transferred to the bridge carrier and counteract its movement. This system means that one can reduce the mechanical dimensions of the bridge carrier and attenuate any oscillations by means of the control wings. However, this system suffers from disadvantages.

30 Det beskrevne system er en harmonisk styring, som knytter sig til en bestemt svingningsfrekvens. Dette er uhensigtsmæssigt, da de svingninger i en kabelbåret bro, som går forud for en instabilitetssituation, er en overlejring af adskillige svingningsformer med hver sin sving-35 ningsfrekvens. Kombinationen af disse svingninger er ikke af harmonisk karakter, og den beskrevne styring har således ikke generel anvendelighed.The system described is a harmonic control which is associated with a particular oscillation frequency. This is inconvenient as the oscillations in a cable-carried bridge that precede an instability situation are an overlay of several oscillation modes with each oscillation frequency. The combination of these oscillations is not harmonious and thus the described control has no general applicability.

3 DK 169444 B13 DK 169444 B1

Kontrolvingerne er anbragt over broen, og dette betyder, at de kommer til at sidde i et område, hvor luftstrømningen som oftest er temmelig turbulent. Dette skyldes blandt andet, at der her er anbragt de elementer, som 5 dels bærer broen, f.eks. kabler, hængere, m.v, dels beskytter og vejleder trafikken, f.eks. rækværker, autoværn, læskærme og lysmaster. Trafikken på broen medvirker ligeledes til at gøre luftstrømningen på broens overside turbulent. Det er således vanskeligt at foretage en præ-10 cis justering af broens bevægelser, når kontrolvingerne er anbragt i dette område. Desuden vil kontrolvinger anbragt på denne måde over broen i betragtelig grad påvirke broens æstetiske udseende.The control wings are placed over the bridge and this means that they will sit in an area where the air flow is usually quite turbulent. This is partly due to the fact that the elements which carry the bridge 5, e.g. cables, hangers, etc., partly protects and guides traffic, e.g. railings, auto guard, light screens and light masts. The traffic on the bridge also helps to make the air flow on the top of the bridge turbulent. Thus, it is difficult to make precise adjustments to the movements of the bridge when the control wings are placed in this area. Furthermore, control wings placed in this way over the bridge will significantly affect the aesthetic appearance of the bridge.

15 Endvidere er der ved det i artiklen beskrevne system ikke taget hensyn til, at styringen af kontrolfladerne afhænger af vindens retning i forhold til brodrageren. Reversering af vindretningen kræver den modsatte bevægelse af kontrolfladerne for at opnå den tilsigtede virkning.15 Furthermore, the system described in the article does not take into account that the control of the control surfaces depends on the direction of the wind relative to the bridge carrier. Reversing the wind direction requires the opposite movement of the control surfaces to achieve the intended effect.

2020

Ved opfindelsen tilvejebringes et system, som langt bedre end det i ovennævnte artikel beskrevne gør det muligt at udnytte vindens energi til at skabe stabiliserende aerodynamiske kræfter på meget lange broer og dermed modvirke 25 de kræfter, som sætter broen i svingninger. Systemet er upåvirket af de turbulente luftstrømninger, som findes på oversiden af en sådan bro, lige som det er i stand til at tage hensyn til skiftende vindretninger og -hastigheder samt kombinationer af adskillige svingningsformer. Flut-30 tervindhastigheden kan således øges betydeligt uden anvendelse af en stor, uhensigtsmæssig og dyr torsionsstiv brodrager.The invention provides a system which, far better than the one described in the above-mentioned article, allows the wind energy to be utilized to create stabilizing aerodynamic forces on very long bridges, thus counteracting the forces that set the bridge in oscillations. The system is unaffected by the turbulent air flows that exist on the upper side of such a bridge, as well as being able to take into account changing wind directions and speeds as well as combinations of several types of oscillation. Thus, the float velocity can be significantly increased without the use of a large, inconvenient and expensive torsional rigid bridge carrier.

Dette opnås ifølge opfindelsen ved at anvende kontrolfla-35 der, som er opdelt i afsnit i broens længderetning. Desuden findes der et antal detektorer til måling af brodragerens bevægelser, og til hvert kontrolfladeafsnit hører DK 169444 B1 4 en lokal styreenhed, som er indrettet til at styre det pågældende kontrolfladeafsnit i afhængighed af informationer fra en eller flere detektorer.This is achieved according to the invention by using control surfaces which are divided into sections in the longitudinal direction of the bridge. In addition, there are a number of detectors for measuring the movements of the bridge carrier, and for each control section, DK 169444 B1 4 includes a local control unit which is arranged to control the control section in question depending on information from one or more detectors.

5 Ved på denne måde at opdele kontrolfladerne i afsnit er det muligt at give systemet en ganske lang udstrækning i broens længderetning, lige som opdelingen i afsnit gør det muligt at regulere de enkelte afsnit individuelt og således tage hensyn til de svingningstendenser, som kan 10 konstateres det pågældende sted på broen, også selv om svingningerne ikke er af harmonisk karakter.5 By thus dividing the control surfaces into sections, it is possible to give the system a very long extension in the longitudinal direction, just as the division into sections makes it possible to individually regulate the individual sections and thus take into account the oscillating trends that can be observed. the place in question on the bridge, even if the oscillations are not harmonious.

Ved som angivet i krav 2 at lade detektorerne være fordelt i broens længderetning samtidigt med, at hver lokal 15 styreenhed styrer det tilhørende kontrolfladeafsnit i afhængighed af informationer fra den eller de nærmest beliggende detektorer, opnås en yderligere forbedring af systemets evne til at tage hensyn til de lokale svingningsforhold .As stated in claim 2, leaving the detectors in the longitudinal direction of the bridge at the same time as each local control unit controls the associated control surface section in dependence on information from the detector (s) nearest to it, a further improvement of the system's ability to take into account is achieved. the local oscillation conditions.

20 I en særlig udførelsesform, som er beskrevet i krav 3, er detektorerne lige som kontrolfladerne anbragt i hovedsagen symmetrisk omkring broens længdeakse således, at der findes en detektor for hver lokal styreenhed, og denne 25 styrer det tilhørende kontrolfladeafsnit i afhængighed af informationer fra den tilhørende detektor.In a particular embodiment described in claim 3, the detectors, like the control surfaces, are arranged substantially symmetrically about the longitudinal axis of the bridge such that there is a detector for each local control unit and this 25 controls the associated control surface section depending on information from the control unit. associated detector.

Ved som angivet i krav 4 at forsyne systemet med en hovedstyreenhed, som kan modtage informationer fra flere 30 detektorer fordelt i broens længderetning og sende styresignaler tilbage til de lokale styreenheder opnås, at systemet endvidere kan tage hensyn til det totale svingningsbillede for hele broen.As stated in claim 4, providing the system with a main control unit capable of receiving information from several 30 detectors in the longitudinal direction of the bridge and sending control signals back to the local control units, it is achieved that the system can also take into account the total oscillation image for the entire bridge.

35 I en særlig udførelsesform, som er omtalt i krav 5, styrer de lokale styreenheder det tilhørende kontrolfladeafsnit i afhængighed af det fra hovedstyreenheden modtagne 5 DK 169444 B1 styresignal.In a particular embodiment as recited in claim 5, the local control units control the associated control surface portion in dependence on the control signal received from the main control unit 5 DK 169444 B1.

Ved en udførelsesf orm, som er beskrevet i krav 6, findes mindst to hovedstyreenheder. Ved at lade hver hovedstyre-5 enhed modtage informationer fra en del af detektorerne og tilsvarende sende styresignaler til en del af de lokale styreenheder fordelt i broens længderetning opnås en ekstra sikkerhed, hvis der opstår fejl på en af styreenhederne. I så fald vil de detektorer og de lokale styreen-10 heder, som hører til de øvrige styreenheder, fortsat kunne fungere. Kontrolfladeafsnittene er således inddelt i grupper, som hver især er fordelt over broens længde, og fejl i en styreenhed vil kun kunne sætte den tilhørende gruppe ud af funktion, hvorved opnås en væsentlig forbed-15 ring af sikkerheden for hele broen.In one embodiment described in claim 6, there are at least two main control units. By allowing each master control unit to receive information from a portion of the detectors and correspondingly transmit control signals to a portion of the local controllers distributed in the longitudinal direction of the bridge, additional security is achieved if any failure of one of the controllers occurs. In this case, the detectors and the local controllers belonging to the other controllers will continue to function. The control section sections are thus divided into groups, each distributed over the length of the bridge, and faults in a control unit will only be able to disable the associated group, thereby significantly improving the safety of the entire bridge.

Ved som angivet i krav 7 endvidere at forsyne systemet med et antal sensorer, som kan måle vindens retning, og lade henholdsvis de lokale styreenheder eller hovedstyre-20 enhederne benytte de herved fremkomne informationer om vindretningen opnås et system, som kan justere kontrol-fladerne under hensyntagen til vindretningen.Further, as stated in claim 7, to provide the system with a number of sensors which can measure the direction of the wind and to use the local control units or the main control units, respectively, to obtain the resulting information on the wind direction, a system is obtained which can adjust the control surfaces below taking into account the wind direction.

Ved som angivet i krav 8 endvidere at anvende sensorer, 25 som kan måle vindens hastighed, opnås, at der også kan tages hensyn til denne i systemet.Furthermore, as indicated in claim 8, using sensors which can measure the speed of the wind, it is also possible to take this into account in the system.

Ved en udførelsesform, som er beskrevet i krav 9, anbringes kontrolfladerne under brodrageren og i en afstand fra 30 denne, hvor luftstrømningen er næsten uforstyrret af brodrageren. Herved opnås et system, som ikke påvirkes af de turbulente luftstrømninger, som især findes på broens overside. Krav 10 beskriver en særlig udførelsesform, hvor kontrolfladerne er fastgjort til brodrageren ved 35 hjælp af pyloner på brodragerens underside.In one embodiment described in claim 9, the control surfaces are placed below the bridge carrier and at a distance from the latter, where the air flow is almost undisturbed by the bridge carrier. Hereby a system is obtained which is not affected by the turbulent air flows, which are found especially on the upper side of the bridge. Claim 10 describes a particular embodiment in which the control surfaces are attached to the bridge carrier by means of pylons on the underside of the bridge carrier.

DK 169444 B1 6DK 169444 B1 6

Ved en alternativ udførelsesform, som omtales i krav 11, udgøres kontrolfladerne af udsnit af selve brodragerens overflade, idet de yderste dele af brodrageren i broens tværretning kan bevæges på en sådan måde, at brodragerens 5 tværsnit og dermed dens aerodynamiske egenskaber ændres. Herved opnås et i æstetisk henseende pænere udseende af brodrageren, idet kontrolfladerne ikke umiddelbart er synlige.In an alternate embodiment as claimed in claim 11, the control surfaces are formed by sections of the surface of the bridge carrier itself, the outermost parts of the bridge carrier in the transverse direction of the bridge being movable in such a way that the cross-section of the bridge carrier 5 and thus its aerodynamic properties are changed. This results in an aesthetically pleasing appearance of the bridge carrier, since the control surfaces are not immediately visible.

10 Ved fremgangsmåden ifølge opfindelsen opdeles kontrolfla derne i afsnit i broens længderetning. Et antal detektorer måler brodragerens bevægelser, hvorefter en lokal styreenhed ved hvert kontrolfladeafsnit styrer dette i afhængighed af informationer fra en eller flere detekto-15 rer.10 In the method according to the invention, the control surfaces are divided into sections in the longitudinal direction of the bridge. A number of detectors measure the movements of the bridge carrier, whereupon a local controller at each control surface section controls this in reliance on information from one or more detectors.

En forbedret fremgangsmåde opnås, som det beskrives i krav 13, når en eller flere hovedstyreenheder modtager informationer fra et antal detektorer og sender styresig-20 naler til et antal lokale styreenheder, idet det således bliver muligt at tage hensyn til broens totale svingningsbillede .An improved method is obtained, as described in claim 13, when one or more master controllers receive information from a plurality of detectors and send control signals to a number of local controllers, thus enabling the overall oscillation image of the bridge to be taken into account.

En yderligere forbedring af fremgangsmåden opnås ved som 25 omtalt i krav 14 at måle vindens retning ved et antal sensorer og sende signaler herom til de lokale styreenheder eller hovedstyreenhedeme og benytte disse signaler ved styringen af kontrolfladerne.A further improvement of the method is achieved by measuring, as mentioned in claim 14, the direction of the wind at a number of sensors and sending signals thereto to the local controllers or main controllers and using these signals in the control of the control surfaces.

30 Opfindelsen vil blive beskrevet nærmere i det følgende under henvisning til tegningen, hvor fig. 1 viser et udsnit af en hængebro hvor opfindelsen kan anvendes, fig. 2 viser et udsnit af en skråstagsbro med centrale skråstag, hvor opfindelsen kan anvendes, 35 7 DK 169444 B1 fig. 3 viser et udsnit af en bro med en første udførelsesform af styrede kontrolflader placeret i den frie strømning under brodrageren, 5 fig. 4 er en detailafbildning af et tværsnit af broen fra fig. 3, fig. 5 er et tværsnit af broen fra fig. 3, 10 fig. 6 viser, hvordan detektorer og lokale styreenheder kan forbindes til en hovedstyreenhed, fig. 7 viser en alternativ forbindelsesmåde, hvori indgår to hovedstyreenheder, 15 fig. 8 viser et udsnit af en bro med en anden udførelsesform af styrede kontrolflader integretet i brodragerens kant, og 20 fig· 9 er en detailafbildning af et tværsnit af broen fra fig. 8.The invention will be described in more detail below with reference to the drawing, in which: FIG. 1 shows a section of a suspension bridge where the invention can be used; FIG. 2 shows a section of a sloping roof bridge with central slopes in which the invention can be used; FIG. 3 shows a section of a bridge with a first embodiment of controlled control surfaces placed in the free flow under the bridge carrier; FIG. 4 is a detail view of a cross-section of the bridge of FIG. 3, FIG. 5 is a cross-section of the bridge of FIG. 3, 10 FIG. 6 shows how detectors and local controllers can be connected to a main controller; FIG. 7 shows an alternative mode of connection which includes two main control units; FIG. 8 shows a section of a bridge with another embodiment of controlled control surfaces integrated into the edge of the bridge carrier, and FIG. 9 is a detail view of a cross-section of the bridge of FIG. 8th

Fig. 1 og 2 viser eksempler på broer, hvor opfindelsen kan finde anvendelse.FIG. 1 and 2 show examples of bridges in which the invention can be applied.

2525

Fig. 1 viser en hængebro. En brodrager 1 bæres af bærekabler 2 og hertil fastgjorte lodrette eller skrå hængere 3. Bærekablerne 2 bæres igen af et brotårn 4. Broer af denne type vil typisk have to tårne, og afstanden mellem 30 disse tårne betegnes som broens spændvidde. På hele strækningen mellem de to tårne 4 bæres brodrageren 1 således af bærekablerne 2 og hængerne 3.FIG. 1 shows a suspension bridge. A bridge carrier 1 is carried by carrier cables 2 and vertical or inclined hangers attached thereto 3. The carrier cables 2 are again carried by a bridge tower 4. Bridges of this type will typically have two towers and the distance between these towers is referred to as the span of the bridge. Thus, on the entire stretch between the two towers 4, the bridge carrier 1 is carried by the carrier cables 2 and the hangers 3.

Det vil kunne ses, at en sådan brodrager ved kraftige 35 vindpåvirkninger vil kunne blive udsat for betydelige kræfter, hvilket kan betyde, at der kan opstå svingninger i brodrageren. Der kan være tale om svingninger af for- 8 DK 169444 B1 skellig type. Ved vertikale svingninger vil brodragerens udsving ske i lodret retning, medens der tilsvarende ved horisontale svingninger vil ske udsving i vandret retning. Der kan også være tale om torsionssvingninger, hvor 5 hele brodrageren "vrider sig" omkring broens længdeakse. Desuden kan der forekomme kombinationer af disse svingningstyper. Eksempelvis kan det nævnes, at verdens på daværende tidspunkt længste hængebro, Tacomabroen i USA, i 1940 blev ødelagt som følge af torsionssvingninger.It can be seen that such a bridge carrier could be subjected to considerable forces at high 35 wind impacts, which may cause fluctuations in the bridge carrier. These may be fluctuations of different types. In the case of vertical oscillations, the oscillation of the bridge carrier will take place in the vertical direction, while in the case of horizontal oscillations, oscillations in the horizontal direction will occur. There may also be torsional oscillations in which the entire bridge carrier "twists" around the longitudinal axis of the bridge. In addition, combinations of these oscillation types may occur. For example, the world's longest suspension bridge, the Tacoma Bridge in the United States, was destroyed in 1940 as a result of torsional fluctuations.

1010

For at imødegå disse svingninger har man tidligere været nødt til at forøge brodragerens stivhed eller montere mekaniske dæmpeanordninger. Det vil kunne ses, at jo større broens spændvidde er, jo stivere må brodrageren være op-15 bygget, hvis svingninger skal undgås. Da der imidlertid er en grænse for dimensionerne af brodragerens tværsnit og dermed for dens stivhed, sættes der altså således også hermed en øvre grænse for, hvor store spændvidder der kan bygges sikkert. Ved opfindelsen har det vist sig muligt 20 at forøge denne grænse væsentligt.In order to counter these oscillations, it has previously been necessary to increase the stiffness of the bridge carrier or to install mechanical damping devices. It can be seen that the larger the span of the bridge, the stiffer the bridge carrier must be built-up in order to avoid oscillations. However, since there is a limit to the dimensions of the cross-section of the bridge carrier and thus to its stiffness, an upper limit is thus also set for how large spans can be built safely. In the invention, it has been found possible to substantially increase this limit.

Fig. 2 viser en anden brotype, nemlig en såkaldt skråstagsbro, hvor svingningsfænomenet kan opstå og opfindelsen således finde anvendelse. Her bæres en brodrager 5 af 25 et antal såkaldte skråstag 6, som igen bæres af et brotårn 7. Også ved denne brotype benyttes et eller to brotårne, og broens spændvidde er afstanden mellem to understøtninger for brodrageren. De for hængebroen fra fig.FIG. 2 shows another bridge type, a so-called oblique bridge, where the oscillation phenomenon can occur and the invention thus applies. Here, a bridge carrier 5 of 25 carries a number of so-called slopes 6, which in turn is carried by a bridge tower 7. Also in this bridge type one or two bridge towers are used, and the span of the bridge is the distance between two supports for the bridge carrier. Those for the suspension bridge of FIG.

1 beskrevne svingningsforhold gør sig også gældende for 30 denne brotype. Der findes også kombinationer af de to brotyper, ligesom andre varianter kan tænkes. Som en fælles betegnelse benævnes disse broer ofte som kabelbårne broer.The oscillation conditions described in 1 also apply to this bridge type. There are also combinations of the two bridges, as well as other variants. As a common term, these bridges are often referred to as cable-borne bridges.

35 Fig. 3 viser i perspektiv et udsnit af en hængebro af samme type som den på fig. 1 viste. Igen ses bærekabler 8, 9, hvortil er fastgjort et antal hængere 10, der bærer 9 DK 169444 B1 brodrageren 11. På brodragerens overside findes kørebaner 12, og der er anbragt diverse gelændere og autoværn 13.FIG. 3 is a perspective view of a section of a suspension bridge of the same type as that of FIG. 1. Again, carrier cables 8, 9 are attached to which are attached a number of hangers 10 carrying the bridge carrier 11. On the upper side of the bridge carrier there are lanes 12, and various handrails and guardrail 13 are arranged.

Som det ses, er broen her forsynet med et antal kontrol-fladesektioner 14, 15, 16, 17. Hver sektion er anbragt på 5 to aerodynamisk udformede pyloner 18 og kan, som det vil blive beskrevet nærmere nedenfor, styres individuelt. Der findes kontrolfladesektioner på begge sider af brodrageren.As can be seen, the bridge here is provided with a plurality of control surface sections 14, 15, 16, 17. Each section is arranged on two two aerodynamically shaped pylons 18 and, as will be further described below, can be individually controlled. There are control surface sections on both sides of the bridge carrier.

10 Når disse kontrolfladesektioner udsættes for vindens påvirkning, vil de, afhængigt af deres stilling, påvirke brodrageren med en kraft i op- eller nedadgående retning.10 When these control surface sections are exposed to the wind, they will, depending on their position, affect the bridge carrier with an upward or downward force.

Både kraftens retning og dens størrelse kan ændres ved at ændre kontrolfladesektionens stilling. Ved vindretning 15 ind mod sektionerne 14, 15, 16 vil kontrol fladesekt ionen 14 således give en opadrettet kraft på brodrageren, medens sektionen 16 tilsvarende vil give en nedadrettet kraft. På denne måde bliver det således muligt at modvirke svingninger, som måtte være ved at opstå i broen. Er 20 brodrageren på et givet sted således ved at svinge opad, kan man ved at indstille den tilsvarende kontrolfladesek-tion påvirke brodrageren på dette sted med en nedadrettet kraft og således dæmpe svingningen.Both the direction and magnitude of the force can be changed by changing the position of the control surface section. Thus, at wind direction 15 towards sections 14, 15, 16, the control surface section ion 14 will provide an upward force on the bridge carrier, while section 16 will correspondingly provide a downward force. In this way, it becomes possible to counteract oscillations that may occur in the bridge. Thus, if the bridge carrier at a given location is pivoting upwards, by adjusting the corresponding control surface section, the bridge carrier at that location can be influenced by a downward force and thus attenuate the pivot.

25 Kontrolfladerne er anbragt på undersiden af broen, fordi luftstrømningen her er relativt uforstyrret af broens tilstedeværelse. På oversiden er strømningen mere turbulent, blandt andet på grund af kabler, hængere, gelænder, autoværn og vindskærme samt trafikken på broen.The control surfaces are located on the underside of the bridge because the air flow here is relatively undisturbed by the presence of the bridge. On the upside, the flow is more turbulent, due, among other things, to cables, hangers, handrails, guardrails and windscreens as well as the traffic on the bridge.

3030

For at kunne måle de bevægelser, som opstår i broen, anbringes der et antal detektorer i brodrageren. Disse detektorer er f.eks. af accelerometre. På grundlag af målingerne fra disse detektorer styres kontrolfladesek-35 tionerne på en sådan måde, at svingninger modvirkes.In order to measure the movements that occur in the bridge, a number of detectors are placed in the bridge carrier. These detectors are e.g. of accelerometers. On the basis of the measurements from these detectors, the control surface sections are controlled in such a way as to counteract oscillations.

DK 169444 Bl 10 På fig. 4 ses et detailudsnit af et tværsnit af en kabel-båret bro. Igen ses brodrageren 11, hvorpå der findes en kørebane 12 og et gelænder/autoværn 13. Brodrageren er som tidligere beskrevet ophængt i hængere eller skråstag 5 10, og en kontrol fladesektion 17 er anbragt på en pylon 18. En detektor 19 måler broens bevægelser eller accelerationer det pågældende sted og sender et signal til en styreenhed 20. Denne styreenhed kan f.eks. udgøres af en computer. På basis af en styrealgoritme sender styreenhe-10 den 20 derefter et signal til en servopumpe 21, som styrer en hydraulisk cylinder 22. Den hydrauliske cylinder 22 kan så dreje kontrolfladesektionen 17 ved hjælp af en udvekslingsplade 23 og en styrestang 24. På denne måde kan kontrolfladesektionen 17 hele tiden justeres afhæng-15 igt af brodragerens bevægelser det pågældende sted, som de måles af detektoren 19.DK 169444 Bl 10 In fig. Figure 4 shows a detail section of a cross-section of a cable-carried bridge. Again, the bridge carrier 11 is shown, on which is a lane 12 and a railing / guardrail 13. The bridge carrier is, as previously described, suspended in hangers or slopes 5 10, and a control surface section 17 is placed on a pylon 18. A detector 19 measures the movement of the bridge or accelerates that location and sends a signal to a controller 20. This controller may e.g. is made up of a computer. Based on a control algorithm, control unit 20 then sends a signal to a servo pump 21 which controls a hydraulic cylinder 22. The hydraulic cylinder 22 can then rotate the control surface section 17 by means of an exchange plate 23 and a control rod 24. In this way, the control surface section 17 is constantly adjusted depending on the movements of the bridge carrier at that point as measured by the detector 19.

Som det ses på fig. 5, der viser et tværsnit af hele brodrageren kan styreenheden 20 være forbundet med den til-20 svarende styreenhed 25 i brodragerens modsatte side. Systemet i denne side svarer iøvrigt helt til det netop beskrevne. Ved at lade de to styreenheder 20, 25 udveksle informationer bliver det muligt bedre at tage hensyn til den svingningstype, som eventuelt er ved at opstå det på-25 gældende sted. Hvis begge detektorerne 19, 26 f.eks. de-tekterer en opadgående bevægelse, vil der være tale om en begyndende vertikalsvingning, og begge kontrolfladesek-tionerne 14, 17 vil derfor blive justeret således, at de giver anledning til en nedadrettet kraft. Måler detekto-30 ren 19 derimod en opadgående bevægelse, medens detektoren 26 måler en nedadgående bevægelse, er der tale om en torsionssvingning, og kontrolfladesektionen 17 vil derfor blive indstillet til at give en nedadrettet kraft, medens sektionen 14 indstilles til at give en opadgående kraft, 35 således at torsionssvingningen modvirkes.As seen in FIG. 5, which shows a cross section of the entire bridge carrier, the controller 20 can be connected to the corresponding controller 25 on the opposite side of the bridge carrier. The system in this page is also quite similar to the one just described. By allowing the two controllers 20, 25 to exchange information, it is possible to better take into account the type of oscillation that may arise from the applicable location. For example, if both detectors 19, 26 detecting an upward movement, there will be an initial vertical oscillation, and both of the control surface sections 14, 17 will therefore be adjusted to give a downward force. On the other hand, if the detector 30 measures an upward movement, while the detector 26 measures a downward movement, it is a torsional oscillation, and the control surface section 17 will therefore be set to provide a downward force, while the section 14 is set to provide an upward force. , 35 to counteract the torsional oscillation.

XIXI

DK 169444 B1DK 169444 B1

For at kunne foretage disse indstillinger af kontrolfla-desektionerne må styreenhederne 20, 25 imidlertid kende vindretningen, idet denne jo er afgørende for, hvordan kontrolfladesektionerne skal indstilles for at give de 5 ønskede kraftpåvirkninger. På fig. 5 er således også vist en vindsensor 27, som kan forsyne styreenhederne med information om vindens retning. Sensoren 27 kan også være indrettet således, at den kan give information om den aktuelle vindhastighed. På figuren er vindsensoren 27 for-10 bundet til styreenheden 20. En anden mulighed vil være, at hver af styreenhederne 20, 25 har sin egen vindsensor. Sensoren 27 kan som vist anbringes på broens underside, da luftstrømningen her er mest uforstyrret af broen, men andre placeringer er mulige.However, in order to make these settings of the control surface sections, the control units 20, 25 must know the wind direction, since this is crucial to how the control surface sections must be adjusted to give the desired force effects. In FIG. 5, there is also shown a wind sensor 27 which can provide the control units with information on the direction of the wind. The sensor 27 may also be arranged to provide information on the current wind speed. In the figure, the wind sensor 27 is connected to the control unit 20. Another possibility would be that each of the control units 20, 25 has its own wind sensor. As shown, the sensor 27 can be placed on the underside of the bridge, as the air flow here is most undisturbed by the bridge, but other locations are possible.

15 På tilsvarende vis kan detektorerne 19, 26 iøvrigt erstattes af en fælles detektor, som kan udnyttes af begge styreenhederne 20, 25, idet denne fælles detektor så blot også skal kunne måle vinkeldrejninger af broen om brodra-20 gerens længdeakse.Similarly, detectors 19, 26 can also be replaced by a common detector which can be utilized by both controllers 20, 25, since this common detector must then also only be able to measure angular turns of the bridge about the longitudinal axis of the bridge carrier 20.

Som det fremgår af fig. 3, er kontrolfladerne opdelt i sektioner i broens længderetning, og fig. 4 og 5 viser opbygningen af en sådan sektion. Hver af disse sektioner 25 kan fungere selvstændigt, som det netop er beskrevet; men der kan opnås en forbedret styring, hvis alle sektionerne desuden forbindes til en fælles hovedstyreenhed. Fig. 6 viser et eksempel på, hvorledes de lokale styreenheder og detektorerne kan være forbundet til en hovedstyreenhed 30 28. Den samlede information, der ligger i at betragte al le sektioner simultant, giver vigtige oplysninger om, hvilken svingningsform (eller kombination af flere) broen bevæger sig efter. Denne information kan anvendes til at optimere den totale styring af det samlede system af kon-35 trolflader. Hovedstyreenheden 28 kan forsyne de lokale styreenheder med denne information, hvorefter disse kan tage hensyn dertil ved deres styring af de pågældende 12 DK 169444 B1 kontrolfladesektioner. Det er imidlertid også muligt at lade hovedstyreenheden 28 overtage hele styringen, idet denne således selv indhenter informationer fra samtlige detektorer og derefter direkte styrer kontrolfladesektio-5 nerne. På fig. 6 er ikke vist vindsensorerne, men disse kan forbindes på samme måde som bevægelsesdetektorerne.As shown in FIG. 3, the control surfaces are divided into longitudinal sections of the bridge, and FIG. 4 and 5 show the structure of such a section. Each of these sections 25 can operate independently, as just described; but improved control can be achieved if all sections are additionally connected to a common master controller. FIG. 6 shows an example of how the local controllers and detectors can be connected to a main controller 30 28. The overall information contained in considering all sections simultaneously provides important information on the type of swing (or combination of several) the bridge moves look for. This information can be used to optimize the overall control of the overall system of control surfaces. The main controller 28 can provide the local controllers with this information, after which they can take this into account when controlling the respective control surface sections. However, it is also possible to let the main control unit 28 take over the entire control, thus it itself obtains information from all the detectors and then directly controls the control section sections. In FIG. 6, the wind sensors are not shown, but these can be connected in the same way as the motion detectors.

I det tilfælde, hvor det er hovedstyreenheden 28, som står for styringen af kontrolfladesektionerne, vil det 10 kunne ses, at antallet af detektorer ikke behøver være det samme som antallet af styref ladesektioner. Det kan således tænkes, at et mindre antal detektorer fordelt jævnt i broens længderetning vil kunne give hovedstyreen-heden 28 tilstrækkelige informationer om broens øjeblik-15 kelige svingningstilstand, medens styrefladesektionerne må anbringes med mindre afstand for at give en optimal styring. Også af mekaniske årsager kan der være en grænse for, hvor lange styref ladesektioner, man ønsker at anvende.In the case where the main control unit 28 is responsible for controlling the control surface sections, it will be seen that the number of detectors need not be the same as the number of control plate sections. Thus, it is conceivable that a smaller number of detectors evenly distributed in the longitudinal direction of the bridge will be able to provide the main controller 28 with sufficient information about the current oscillation state of the bridge, while the control surface sections must be placed at less distance to provide optimal control. Also, for mechanical reasons, there may be a limit to how long guide recharge sections you want to use.

2020

Et system som det på fig. 6 viste vil naturligvis være sårbart over for fejl i hovedstyreenheden 28. Et mere sikkert system kan derfor opnås ved at anvende flere hovedstyreenheder. På fig. 7 er vist et eksempel, hvor der 25 findes to hovedstyreenheder 28 og 29. For at give størst mulig sikkerhed, hvis en af enhederne 28, 29 bliver fejlbehæftet, forbindes hveranden sektion til hovedstyreenheden 28, medens de resterende forbindes til hovedstyreenheden 29. Hver hovedstyreenhed er således forbundet til 30 en gruppe af sektioner. På fig. 7 ses det således, at sektionerne 30, 32 er forbundet til hoveds tyreenheden 28, medens sektionerne 31, 33 er forbundet til hovedstyreenheden 29. Fordelingen af sektioner mellem de to styreenheder kan naturligvis også ske efter andre kriterier. An-35 vendes der flere end to hovedstyreenheder, fordeles sektionerne tilsvarende mellem styreenhederne. Den samlede sikkerhed for det totale system øges med antallet af ho- DK 169444 B1 13 vedstyreenheder og dermed antallet af uafhængige sektioner.A system such as that of FIG. 6 will, of course, be vulnerable to errors in the main controller 28. A more secure system can therefore be obtained by using multiple main controllers. In FIG. 7, there is shown an example where there are two main control units 28 and 29. In order to provide the greatest possible security if one of the units 28, 29 becomes faulty, each other section is connected to the main control unit 28, while the remaining ones are connected to the main control unit 29. Each main control unit 29 is thus connected to 30 a group of sections. In FIG. 7, it is seen that the sections 30, 32 are connected to the main control unit 28, while the sections 31, 33 are connected to the main control unit 29. The distribution of sections between the two control units can of course also be done according to other criteria. If more than two main controllers are used, the sections are distributed equally among the controllers. The overall security of the total system is increased by the number of main units and thus the number of independent sections.

I det her beskrevne system er der, som det også fremgår 5 af fig. 3, tale om adskilte kontrolf ladesekt ioner, som hver styres af en lokal styreenhed 20, 25. Imidlertid kan der også tænkes udførelsesformer, hvor der anvendes en lang, sammenhængende kontrolflade på hver side af broen. Denne kontrolflade kan så være opbygget af et fleksibelt 10 materiale, således at de lokale styreenheder kan bevæge et afsnit af kontrolfladen.In the system described here, as also shown in FIG. 3, separate control charge sections are each controlled by a local control unit 20, 25. However, embodiments may also be envisaged using a long, continuous control surface on each side of the bridge. This control surface may then be constructed of a flexible material so that the local control units can move a portion of the control surface.

Der behøver ikke være kontrolflader i hele broens længde. Anbringelsen af disse kan indskrænkes til de områder af 15 broen, hvor deres effekt vil blive optimal, og disse positioner vil typisk være de områder, som kan komme i kraftige svingninger. Dette vil normalt være den midterste del af broen for symmetriske svingningsformer og nær fjerdedelspunkterne af brospænd for asymmetriske sving-2 0 nings f ormer.There need not be control surfaces throughout the length of the bridge. The placement of these can be restricted to those areas of the bridge where their power will be optimal, and these positions will typically be the areas that can be subject to severe oscillations. This will normally be the middle portion of the bridge for symmetrical swing shapes and near the quarter points of bridge buckles for asymmetrical swing-shape shapes.

På fig. 8 er vist en alternativ udførelsesform for opfindelsen. I stedet for at anbringe kontrolfladerne på pyloner under brodrageren er fladerne her integreret i selve 25 brodrageren. Her er selve brodragerens yderste kant op delt i sektioner, som kan bevæges i lodret retning og dermed ændre broens geometri. På tilsvarende vis som tidligere beskrevet udnytter disse flader vindens energi til at give brodrageren en kraftpåvirkning i opad- eller ned-30 adgående retning. På figuren ses sektionerne 34, 35, 36, hvor sektionen 34 er indstillet til at ændre kræfterne på brodrageren i nedadgående retning, medens sektionen 36 er indstillet til at ændre kræfterne på brodrageren i opadgående retning med vindretning ind mod de viste sektio-35 ner.In FIG. 8 shows an alternative embodiment of the invention. Instead of placing the control surfaces on pylons under the bridge carrier, the surfaces here are integrated into the bridge carrier itself. Here, the outer edge of the bridge carrier itself is divided into sections, which can be moved vertically and thus change the geometry of the bridge. Similarly, as previously described, these surfaces utilize the energy of the wind to give the bridge carrier a force effect in the up or down direction. The figure shows sections 34, 35, 36 where section 34 is set to change the forces on the bridge carrier downwards, while section 36 is adjusted to change the forces on the bridge carrier in an upward direction with the sections 35 shown.

14 DK 169444 B114 DK 169444 B1

Sektionerne er indrettet til at kunne dreje om en rotationsakse 37, og virkemåden fremgår tydeligere af fig. 9.The sections are arranged to be able to rotate about an axis of rotation 37, and the operation is more clearly seen in FIG. 9th

Det ses heraf, at den yderste del 34 kan drejes omkring rotationsaksen 37. Ved den stiplede linie 38 er vist sek-5 tionens øverste stilling, medens 39 tilsvarende viser sektionens nederste stilling. Bevægelsen af sektionen styres som tidligere ved hjælp af en hydraulisk cylinder 40 og en styrestang 41. Den hydrauliske cylinder 40 styres, som det tidligere er beskrevet, af en servopumpe, 10 der igen er styret af en lokal styreenhed. løvrigt svarer styringen til den tidligere beskrevne.It can be seen from this that the outermost part 34 can be rotated about the axis of rotation 37. The dashed line 38 shows the upper position of the section, while 39 correspondingly shows the lower position of the section. As before, the movement of the section is controlled by a hydraulic cylinder 40 and a control rod 41. As previously described, the hydraulic cylinder 40 is controlled by a servo pump 10 which is again controlled by a local control unit. the steering is similar to the one previously described.

Ved denne udførelsesform undgås de ekstra styreflader, som ophænges under broen. Dette har dels en omkostnings-15 mæssig betydning, og dels vil det give broen et i æstetisk henseende pænere udseende.In this embodiment, the additional guide surfaces which are suspended under the bridge are avoided. This has a cost-15 significance, and it will give the bridge an aesthetically pleasing appearance.

Den styrealgoritme, som anvendes i henholdsvis de lokale styreenheder og hovedstyreenhederne vil afhænge af det 20 aktuelle brokoncept, idet der skal tages hensyn til mange forhold, såsom f.eks. broens spændvidde og dimensionerne på brodrageren. Styrealgoritmerne baseres på, at kontrolfladerne hele tiden skal levere kræfter, som er modsat rettede af brokantens bevægelser. Ved torsionsbevægelser 25 af brodrageren kan dette f.eks. gøres ved i princippet at lade kontrolfladerne bevæge sig med samme frekvens som brodragerens torsionsbevægelse, men blot faseforskudt i forhold hertil. Der vil typisk være tale om faseforskydning på 60 til 90°. Også den aktuelle udformning af kon-30 trolfladerne vil afhænge af det pågældende brokoncept.The control algorithm used in the local controllers and the main controllers, respectively, will depend on the current bridge concept, taking into account many factors such as e.g. the span of the bridge and the dimensions of the bridge carrier. The control algorithms are based on the fact that the control surfaces must constantly supply forces which are opposite to the direction of the bridge edge movements. In the case of torsional movements 25 of the bridge carrier, this can e.g. This is done by, in principle, allowing the control surfaces to move at the same frequency as the torsion movement of the bridge carrier, but merely phase-shifted in relation thereto. Typically these will be phase shifts of 60 to 90 °. The actual design of the control surfaces will also depend on the bridge concept in question.

Det ovenstående er eksempler på, hvorledes et system ifølge opfindelsen kan udføres, og det vil kunne forstås, at enkeltheder kan ændres på mange måder inden for opfin-35 delsens rammer. Således kan der f.eks. benyttes andre udformninger af kontrolfladerne end de her beskrevne, og styresystemet vil kunne udvides, så det tager hensyn til yderligere målte parametre.The above are examples of how a system according to the invention can be implemented, and it will be appreciated that details can be changed in many ways within the scope of the invention. Thus, e.g. other designs of the control surfaces than those described herein are used and the control system can be expanded to take into account additional measured parameters.

Claims (14)

1. System til modvirkning af vindinducerede svingninger i 5 en brodrager (11) på lange kabelbårne broer, hvor et antal i hovedsagen symmetrisk omkring broens længdeakse anbragte kontrolflader (14, 15, 16, 17, 34, 35, 36) er indrettet til at udnytte vindens energi til automatisk at reducere nævnte svingninger i afhængighed af brodragerens 10 bevægelse, kendetegnet ved, at kontrolfladerne (14, 15, 16, 17, 34, 35, 36) er opdelt i afsnit i broens længderetning, og at der desuden findes et antal detektorer (19, 26) til måling af brodragerens bevægelser, samt at en til hvert kontrolfladeafsnit (14, 15, 16, 17, 34, 15 35, 36) hørende lokal styreenhed (20, 25) er indrettet til at styre det pågældende kontrolfladeafsnit (14, 15, 16, 17, 34, 35, 36) i afhængighed af informationer fra en eller flere af nævnte detektorer (19, 26).A system for countering wind-induced oscillations in a bridge carrier (11) on long cable-borne bridges, wherein a number of substantially symmetrically arranged control surfaces (14, 15, 16, 17, 34, 35, 36) arranged symmetrically about the bridge axis utilizing the wind energy to automatically reduce said oscillations in response to the movement of the bridge carrier 10, characterized in that the control surfaces (14, 15, 16, 17, 34, 35, 36) are divided into sections in the longitudinal direction of the bridge and that there is also a the number of detectors (19, 26) for measuring the movements of the bridge carrier, and that one local control unit (20, 25) belonging to each control surface section (14, 15, 16, 17, 34, 15 35, 36) is arranged to control the respective control section (14, 15, 16, 17, 34, 35, 36) depending on information from one or more of said detectors (19, 26). 2. System ifølge krav 1, kendetegnet ved, at de nævnte detektorer (19, 26) er fordelt i broens længderetning, og at hver lokal styreenhed (20, 25) styrer det tilhørende kontrolfladeafsnit (14, 15, 16, 17, 34, 35, 36. i afhængighed af informationer fra den eller de nær-25 mest beliggende detektorer (19, 26).System according to claim 1, characterized in that said detectors (19, 26) are distributed in the longitudinal direction of the bridge and that each local control unit (20, 25) controls the associated control surface section (14, 15, 16, 17, 34). 35, 36. depending on information from the detector (s) nearest 25 (19, 26). 3. System ifølge krav 1 eller 2, kendetegnet ved, at detektorerne (19, 26) er anbragt i hovedsagen symmetrisk omkring broens længdeakse således, at der fin- 30 des en detektor (19, 26) for hver lokal styreenhed, (20, 25. og at hver styreenhed (20, 25) styrer det tilhørende kontrolfladeafsnit (14, 15, 16, 17, 34, 35, 36) i afhængighed af informationer fra den tilhørende detektor (19, 26) . 35System according to claim 1 or 2, characterized in that the detectors (19, 26) are arranged substantially symmetrically about the longitudinal axis of the bridge such that a detector (19, 26) is provided for each local control unit, (20, 25. and that each control unit (20, 25) controls the associated control surface section (14, 15, 16, 17, 34, 35, 36) depending on information from the associated detector (19, 26). 4. System ifølge krav 1-3, kendetegnet ved, at der desuden findes en hovedstyreenhed (28), som er ind DK 169444 B1 rettet til at modtage informationer fra et antal af nævnte detektorer (19, 26) og i afhængighed heraf sende styresignaler til et antal af nævnte lokale styreenheder (20, 25). 5System according to claims 1-3, characterized in that there is furthermore a main control unit (28) which is arranged in DK 169444 B1 to receive information from a number of said detectors (19, 26) and, as a result, send control signals to a number of said local controllers (20, 25). 5 5. System ifølge krav 4, kendetegnet ved, at hver lokal styreenhed (20, 25) styrer det tilhørende kon-trolfladeafsnit (14, 15, 16, 17, 34, 35, 36) i afhængighed af et fra hovedstyreenheden (28) modtaget styresig- 10 nal.System according to claim 4, characterized in that each local control unit (20, 25) controls the associated control section (14, 15, 16, 17, 34, 35, 36) depending on one received from the main control unit (28). control signal. 6. System ifølge krav 4 eller 5, kendetegnet ved, at der findes mindst to hovedstyreenheder (28, 29), og at hver hovedstyreenhed (28, 29) er indrettet til at 15 modtage informationer fra et antal af nævnte detektorer (19, 26) og sende styresignaler til et antal af nævnte lokale styreenheder (20, 25).System according to claim 4 or 5, characterized in that there are at least two main control units (28, 29) and that each main control unit (28, 29) is arranged to receive information from a number of said detectors (19, 26). ) and transmit control signals to a number of said local controllers (20, 25). 7. System ifølge krav 1-6, kendetegnet ved, at 20 der findes et antal sensorer (27) til måling af vindretning, og at de lokale styreenheder (20, 25) eller hovedstyreenhederne (28, 29) desuden styrer de nævnte kontrol-fladeafsnit (14, 15, 16, 17, 34, 35, 36) i afhængighed af signaler fra disse sensorer (27). 25System according to claims 1-6, characterized in that there are a plurality of sensors (27) for measuring wind direction and that the local control units (20, 25) or the main control units (28, 29) also control said control. surface sections (14, 15, 16, 17, 34, 35, 36) depending on signals from these sensors (27). 25 8. System ifølge krav 7, kendetegnet ved, at de nævnte sensorer (27) desuden kan måle vindhastighed.System according to claim 7, characterized in that said sensors (27) can further measure wind speed. 9. System ifølge krav 1-8, kendetegnet ved, at 30 kontrolfladerne (14, 15, 16, 17) er anbragt under brodrageren (11) og i en afstand fra denne, hvor luftstrømningen er næsten uforstyrret af brodrageren.System according to claims 1-8, characterized in that the control surfaces (14, 15, 16, 17) are arranged below the bridge carrier (11) and at a distance therefrom, where the air flow is almost undisturbed by the bridge carrier. 10. System ifølge krav 9, kendetegnet ved, at 35 kontrolfladerne (14, 15, 16, 17) er fastgjort til brodrageren (11) ved pyloner (18) på undersiden af brodrageren (11). DK 169444 B1System according to claim 9, characterized in that the control surfaces (14, 15, 16, 17) are attached to the bridge carrier (11) by pylons (18) on the underside of the bridge carrier (11). DK 169444 B1 11. System ifølge krav 1-8, kendetegnet ved, at kontrolfladerne (34, 35, 36) udgøres af udsnit af selve brodragerens (11) overflade, idet de yderste dele af brodrageren (11) i broens tværretning er indrettet til at 5 kunne bevæges således, at brodragerens (11) tværsnit og dermed dens aerodynamiske egenskaber ændres.System according to claims 1-8, characterized in that the control surfaces (34, 35, 36) are formed by sections of the surface of the bridge carrier (11) itself, the outer parts of the bridge carrier (11) being arranged in the transverse direction of the bridge to is moved so that the cross-section of the bridge carrier (11) and thus its aerodynamic properties are changed. 12. Fremgangsmåde til modvirkning af vindinducerede svingninger i en brodrager (11) på lange kabelbårne bro- 10 er, hvor et antal i hovedsagen symmetrisk omkring broens længdeakse anbragte kontrolflader (14, 15, 16, 17, 34, 35, 36) udnytter vindens energi til automatisk at reducere nævnte svingninger i afhængighed af brodragerens bevægelse, kendetegnet ved, at kontrolfladerne 15 (14, 15, 16, 17, 34, 35, 36) opdeles i afsnit i broens længderetning, og at et antal detektorer (19, 26) måler brodragerens bevægelser, hvorefter en til hvert kontrol-fladeafsnit (14, 15, 16, 17, 34, 35, 36) hørende lokal styreenhed (20, 25) styrer det pågældende kontrolflade-20 afsnit (14, 15, 16, 17, 34, 35, 36) i afhængighed af informationer fra en eller flere af nævnte detektorer (19, 26).A method for counteracting wind-induced oscillations in a bridge carrier (11) on long cable-supported bridges, wherein a number of substantially symmetrically arranged control surfaces (14, 15, 16, 17, 34, 35, 36) symmetrically about the bridge axis energy for automatically reducing said oscillations depending on the motion of the bridge carrier, characterized in that the control surfaces 15 (14, 15, 16, 17, 34, 35, 36) are divided into sections in the longitudinal direction of the bridge and that a number of detectors (19, 26 ) measures the movement of the bridge carrier, whereupon one local control unit (20, 25) of each control surface section (14, 15, 16, 17, 34, 35, 36) controls the respective control surface-20 section (14, 15, 16, 17 , 34, 35, 36) depending on information from one or more of said detectors (19, 26). 13. Fremgangsmåde ifølge krav 12, kendetegnet 25 ved, at en eller flere hovedstyreenheder (28, 29) modtager informationer fra et antal af nævnte detektorer (19, 26. og i afhængighed heraf sender styresignaler til et antal af nævnte lokale styreenheder (20, 25).Method according to claim 12, characterized in that one or more main control units (28, 29) receive information from a plurality of said detectors (19, 26) and, as a result, send control signals to a number of said local control units (20, 25). 14. Fremgangsmåde ifølge krav 12 eller 13, kende tegnet ved, at et antal sensorer (27) måler vindretning og sender signaler herom til de lokale styreenheder (20, 25) eller hovedstyreenhederne (28, 29), hvorefter disse desuden styrer de nævnte kontrolfladeafsnit 35 (14, 15, 16, 17, 34, 35, 36) i afhængighed af signalerne fra vindsensorerne (27).Method according to claim 12 or 13, characterized in that a plurality of sensors (27) measure wind direction and transmit signals thereto to the local control units (20, 25) or the main control units (28, 29), after which they further control said control surface sections. 35 (14, 15, 16, 17, 34, 35, 36) depending on the signals from the wind sensors (27).
DK20992A 1992-02-18 1992-02-18 System and method for countering wind-induced oscillations in a bridge carrier DK169444B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DK20992A DK169444B1 (en) 1992-02-18 1992-02-18 System and method for countering wind-induced oscillations in a bridge carrier
PCT/DK1993/000058 WO1993016232A1 (en) 1992-02-18 1993-02-17 A system and a method of counteracting wind induced oscillations in a bridge girder
EP93905216A EP0627031B1 (en) 1992-02-18 1993-02-17 A system and a method of counteracting wind induced oscillations in a bridge girder
ES93905216T ES2090976T3 (en) 1992-02-18 1993-02-17 SYSTEM AND METHOD TO COUNTER SWINGS PRODUCED BY THE WIND IN A BOARD OF A BRIDGE.
AU36266/93A AU3626693A (en) 1992-02-18 1993-02-17 A system and a method of counteracting wind induced oscillations in a bridge girder
MA23097A MA22804A1 (en) 1992-02-18 1993-02-17 SYSTEM AND METHOD FOR RESPONDING TO WIND-DRIVEN OSCILLATIONS IN A BRIDGE OF A BRIDGE.
DE69303160T DE69303160D1 (en) 1992-02-18 1993-02-17 SYSTEM AND METHOD FOR COMPENSATING WIND INDUCTED VIBRATIONS IN A BRIDGE BEAM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK20992A DK169444B1 (en) 1992-02-18 1992-02-18 System and method for countering wind-induced oscillations in a bridge carrier
DK20992 1992-02-18

Publications (3)

Publication Number Publication Date
DK20992D0 DK20992D0 (en) 1992-02-18
DK20992A DK20992A (en) 1993-08-19
DK169444B1 true DK169444B1 (en) 1994-10-31

Family

ID=8090969

Family Applications (1)

Application Number Title Priority Date Filing Date
DK20992A DK169444B1 (en) 1992-02-18 1992-02-18 System and method for countering wind-induced oscillations in a bridge carrier

Country Status (7)

Country Link
EP (1) EP0627031B1 (en)
AU (1) AU3626693A (en)
DE (1) DE69303160D1 (en)
DK (1) DK169444B1 (en)
ES (1) ES2090976T3 (en)
MA (1) MA22804A1 (en)
WO (1) WO1993016232A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2313612B (en) * 1996-05-29 2000-06-07 Marconi Gec Ltd Bridge stabilisation
EP1270490B1 (en) * 2001-06-29 2009-11-11 Inventio Ag Construction for long span escalator or moving walkway
US6685001B2 (en) 2001-06-29 2004-02-03 Inventio Ag Escalator or moving walkway with overhead support
US7025671B2 (en) 2003-09-08 2006-04-11 Jason Jianxiong Lin Aerodynamic suction ventilator
WO2005121456A1 (en) * 2004-06-09 2005-12-22 Incorporated Administrative Agency Public Works Research Institute Cable stayed suspension bridge making combined use of one-box and two-box girders
DE102004053898A1 (en) * 2004-11-09 2006-05-11 Tutech Innovation Gmbh Device for damping oscillatory motion in a building
HRPK20050311B3 (en) * 2005-04-06 2008-07-31 Horvat Darko Protection of bridges from the bora wind and other external influences
CN104715149B (en) * 2015-03-16 2017-08-25 东南大学 Stiff girder measures coordinates compensation method in Suspension Bridges During Erection
WO2016162059A1 (en) * 2015-04-08 2016-10-13 Technische Universität Hamburg-Harburg Device for damping vibrations of a bridge
CN106958192B (en) * 2017-04-13 2018-12-18 华北水利水电大学 A kind of control structure and method inhibiting Bridge Flutter
CN108035237A (en) * 2017-12-31 2018-05-15 西南交通大学 The wing plate system and its control method that a kind of suppression Bridge Flutter and whirlpool shake
CN111305042B (en) * 2020-02-29 2021-08-03 东北林业大学 Large-span bridge wind vibration control method of self-adaptive swing flap

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2380183A (en) * 1941-03-06 1945-07-10 George A Maney Bridge and hanger system
US4098034A (en) * 1976-05-06 1978-07-04 Howell Wallace E Building sway control
CA1169208A (en) * 1981-01-08 1984-06-19 Nmi Limited Long-span bridges
US4454620A (en) * 1982-01-06 1984-06-19 Barkdull Jr Howard L Span construction
IT1188328B (en) * 1986-02-05 1988-01-07 Stretto Di Messina Spa SUSPENDED BRIDGE STRUCTURE WITH MEANS OF DAMPING THE FLUTTER PHENOMENA

Also Published As

Publication number Publication date
DE69303160D1 (en) 1996-07-18
WO1993016232A1 (en) 1993-08-19
MA22804A1 (en) 1993-10-01
EP0627031A1 (en) 1994-12-07
DK20992D0 (en) 1992-02-18
EP0627031B1 (en) 1996-06-12
AU3626693A (en) 1993-09-03
ES2090976T3 (en) 1996-10-16
DK20992A (en) 1993-08-19

Similar Documents

Publication Publication Date Title
DK169444B1 (en) System and method for countering wind-induced oscillations in a bridge carrier
CA3045003C (en) Control system for a floating wind turbine structure
ES2804533T3 (en) Control system to damp the structural vibrations of a wind turbine system that has multiple rotors
US11560876B2 (en) Stabilized horizontal-axis wind turbine
US10982654B1 (en) Yawing buoy mast for floating offshore wind turbines
EP2167748B2 (en) A system for damping oscillations in a structure
EP3368407B1 (en) Multifunctional damping system for vessel movement
CA2895278A1 (en) Controlling motions of floating wind turbines
KR101428412B1 (en) Wind power system
US20230271679A1 (en) Towing of a floating wind turbine
US4439105A (en) Offset-axis windmill having inclined power shaft
HRP20150376T1 (en) A floatable wind power plant
KR20210020147A (en) Single point mooring wind turbine
US4058076A (en) Hull foils with hydrodynamic righting forces
US11549488B2 (en) Method and controller for operating a wind turbine
GB2546791B (en) Suspension bridges
KR20140105106A (en) Solar power plant having a rotation solar tracker on water
KR20140105107A (en) Solar power plant having a rotation solar tracker on water
KR102084978B1 (en) Wave generation apparatus and control method thereof
KR101531495B1 (en) Balance adjusting apparatus and ship having the same
GB2468839A (en) Keel with deployable hydrofoil surfaces
CN213836267U (en) Highway bridge and culvert supporting structure for bridge engineering
WO1994005862A1 (en) Bridge deck system
JPS62209244A (en) Horizontal pendulum type dynamic vibration reducer
WO1991008944A1 (en) Foil suspended watercraft

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PBP Patent lapsed