WO1994005862A1 - Bridge deck system - Google Patents

Bridge deck system Download PDF

Info

Publication number
WO1994005862A1
WO1994005862A1 PCT/GB1993/001862 GB9301862W WO9405862A1 WO 1994005862 A1 WO1994005862 A1 WO 1994005862A1 GB 9301862 W GB9301862 W GB 9301862W WO 9405862 A1 WO9405862 A1 WO 9405862A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge deck
flaps
deck
bridge
cables
Prior art date
Application number
PCT/GB1993/001862
Other languages
French (fr)
Inventor
David Daniel August Piesold
Original Assignee
Piesold David D A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Piesold David D A filed Critical Piesold David D A
Priority to AU49735/93A priority Critical patent/AU4973593A/en
Publication of WO1994005862A1 publication Critical patent/WO1994005862A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D11/00Suspension or cable-stayed bridges
    • E01D11/02Suspension bridges

Definitions

  • the invention relates to a bridge deck system. It is known to provide bridge deck systems in which a bridge deck is supported by cables, such systems being used in cable stayed and suspension bridges. As well as being subject to traffic loading, such bridges are also subject to wind loading. The danger of wind loading on the bridge leading to fluttering instability and structural failure was dramatically illustrated by the collapse of the Tacoma Narrows suspension bridge in the State of Washington, USA on 7 November 1940. Thus in order to keep the movements of the bridge deck due to wind to acceptable levels, it is the normal practice to design the deck with a certain degree of stiffness, for example by the use of stiffening girders.
  • the invention provides a bridge deck system comprising a bridge deck supported by cables, the bridge deck having a cross-section substantially in the form of an inverted aerofoil section.
  • Such a bridge deck will tend to produce a downward force on the deck in response to wind loading, keeping the cables taut and preventing excessive movement of the deck.
  • the deck can be less stiff than the decks of existing bridges, producing savings in the quantities of material in the deck (in particular, the stiffening girders thereof) and in the cables.
  • the system is suitable for use in cable stayed and suspension bridges, for example.
  • flaps are provided at the lateral edges of the bridge deck. These can be used to control the forces on the deck in response to wind loading.
  • the positioning of the flaps may be computer controlled, by techniques which are well established in the aircraft industry.
  • means for detecting movements of the bridge deck means for inputting signals corresponding to the detected movements to a computer, and means for controlling the positioning of the flaps in response to signals received from the computer.
  • the computer will be programmed to control the flaps to keep bridge deck movements to a minimum.
  • one flap may be provided on each lateral edge of the bridge deck, preferably a plurality of flaps are provided along each edge.
  • the flaps are retractable so that when wind flows across the bridge deck a flap at the leading edge thereof can be retracted whilst a flap at the trailing edge thereof can be in use. This will enable the bridge deck to perform aerodynamically whatever the wind direction.
  • the flaps will normally be pivotally mounted in order to adjust their positioning, and preferably they are retractable by pivoting. For example, a flap may pivot through approximately 180° between the position of use and the retracted position. It may advantageously be positioned between adjacent transverse girders of the bridge deck when retracted. Much smaller pivoting movements will normally be required when the flap is in use.
  • Ailerons may be provided at the lateral edges of the bridge deck. These are movable control surfaces and can be used to improve the precision with which the force on the deck in response to wind loading is controlled.
  • the ailerons may be pivotally mounted. They are preferably capable of pivoting upwardly or downwardly from a neutral position.
  • a plurality of ailerons are provided along each edge of the bridge deck. Under wind loading,- the ailerons at the trailing edge may be moved up or down to counter undesired movements of the bridge deck.
  • the operation of the ailerons is preferably computer controlled.
  • a preferred embodiment comprises means for detecting movements of the bridge deck, means for inputting signals corresponding to the detected movements to a computer, and means for controlling the positioning of the ailerons in response to signals received from the computer.
  • ailerons are provided, but not flaps.
  • the downward pull produced by the cross-sectional shape of the bridge deck under wind loading can then be modified as necessary by movements of the ailerons.
  • the ailerons may be mounted on the flaps, for example pivotally.
  • the ailerons will be smaller than the flaps and capable of faster movements; they will therefore be particularly suitable for responding quickly to gusts of wind.
  • the bridge deck system comprises means for adjusting the strain of the cables.
  • the strain adjuster for that cable may act to reduce the strain and thereby reduce the stress.
  • the strain in other cables may be increased to relieve the stress in the given cable.
  • strain detecting means is provided for the cables.
  • the strain adjusting means is advantageously computer controlled, so that optimum load distribution can be achieved. It will be appreciated from the above that the provision of cable strain adjusters is advantageous independently of the bridge deck design.
  • the invention provides a bridge deck system comprising a bridge deck supported by cables, and means for adjusting the strain of the cables.
  • the strain adjusting means may for example be a device provided at one end of a cable or at an intermediate point along its length. Strain adjustment is preferably effected by adjusting the length of the device.
  • Figure 1 is a perspective view of a bridge having a bridge deck system according to the invention.
  • Figure 2 is a transverse cross-section through the bridge deck system.
  • Figure 1 shows a cable stayed bridge having a bridge deck system 1 consisting of a bridge deck 2 supported by cables 3.
  • the cables 3 are secured to a bridge pier 4 and are each provided at an intermediate point along their length with a cable strain adjuster 5.
  • the bridge deck 2 has a cross-section substantially in the form of an inverted aerofoil section and has along both lateral edges a row of flaps 6.
  • the flaps are arranged to pivot about an axis 7 so as to be retractable as shown on the right hand side of Figure 2.
  • Each flap is provided on its upper surface (when in the non-retracted position) with an aileron 8 (i.e. a movable control surface) .
  • the bridge deck 2 includes internal structural members 9 surrounded by an external skin 10 which provides the deck with an aerodynamic shape.
  • the structural framework design may be discrete or integral with the skin plates or it may be in plate girder form or combinations of these configurations.
  • a central traffic barrier 12 and two peripheral traffic barriers 12 are provided to define six traffic lanes, three in each direction.
  • the width between the peripheral traffic barriers is about 24m, whilst the width of the deck 2 with the flaps on both sides retracted is about 36m.
  • FIG. 2 shows the arrangement which might be adopted with the wind flowing in direction A.
  • the flaps 6 at the leading edge of the bridge deck are retracted between transverse girders, whilst the flaps 6 at the trailing edge are in their advanced positions.
  • the overall cross-section is similar to that of an upside down aircraft wing to produce a downward force on the bridge deck which advantageously keeps the cables 3 in a taut condition.
  • the ailerons 8 can be relatively quickly adjusted in order to deal with gusts of wind or sudden changes in wind direction. Thus any distortions in the bridge shape can be kept to a minimum with a reduced overall level of stiffness and reduced quantities of the materials required to provide such stiffness.
  • the cable strain adjusters 5 respond to the loading on the bridge deck so as to tend to even out the load distribution.
  • the strain adjusters 5 operate by varying the effective length of each cable between its upper end where it is secured to the bridge pier 4 and its lower end where it is secured to the bridge deck 2.

Abstract

A bridge deck system (1) comprises a bridge deck (2) supported by cables (3). The bridge deck has a cross-section substantially in the form of an inverted aerofoil section.

Description

Bridge Deck System
The invention relates to a bridge deck system. It is known to provide bridge deck systems in which a bridge deck is supported by cables, such systems being used in cable stayed and suspension bridges. As well as being subject to traffic loading, such bridges are also subject to wind loading. The danger of wind loading on the bridge leading to fluttering instability and structural failure was dramatically illustrated by the collapse of the Tacoma Narrows suspension bridge in the State of Washington, USA on 7 November 1940. Thus in order to keep the movements of the bridge deck due to wind to acceptable levels, it is the normal practice to design the deck with a certain degree of stiffness, for example by the use of stiffening girders.
Viewed from one aspect the invention provides a bridge deck system comprising a bridge deck supported by cables, the bridge deck having a cross-section substantially in the form of an inverted aerofoil section.
Such a bridge deck will tend to produce a downward force on the deck in response to wind loading, keeping the cables taut and preventing excessive movement of the deck. Thus the deck can be less stiff than the decks of existing bridges, producing savings in the quantities of material in the deck (in particular, the stiffening girders thereof) and in the cables. The system is suitable for use in cable stayed and suspension bridges, for example.
Preferably flaps are provided at the lateral edges of the bridge deck. These can be used to control the forces on the deck in response to wind loading. The positioning of the flaps may be computer controlled, by techniques which are well established in the aircraft industry. In a preferred arrangement, there is provided means for detecting movements of the bridge deck, means for inputting signals corresponding to the detected movements to a computer, and means for controlling the positioning of the flaps in response to signals received from the computer. The computer will be programmed to control the flaps to keep bridge deck movements to a minimum.
Although one flap may be provided on each lateral edge of the bridge deck, preferably a plurality of flaps are provided along each edge. This will enable more precise control of the wind induced forces on the deck. Preferably the flaps are retractable so that when wind flows across the bridge deck a flap at the leading edge thereof can be retracted whilst a flap at the trailing edge thereof can be in use. This will enable the bridge deck to perform aerodynamically whatever the wind direction. The flaps will normally be pivotally mounted in order to adjust their positioning, and preferably they are retractable by pivoting. For example, a flap may pivot through approximately 180° between the position of use and the retracted position. It may advantageously be positioned between adjacent transverse girders of the bridge deck when retracted. Much smaller pivoting movements will normally be required when the flap is in use.
Ailerons may be provided at the lateral edges of the bridge deck. These are movable control surfaces and can be used to improve the precision with which the force on the deck in response to wind loading is controlled. The ailerons may be pivotally mounted. They are preferably capable of pivoting upwardly or downwardly from a neutral position. In a preferred embodiment, a plurality of ailerons are provided along each edge of the bridge deck. Under wind loading,- the ailerons at the trailing edge may be moved up or down to counter undesired movements of the bridge deck. The operation of the ailerons is preferably computer controlled. Thus a preferred embodiment comprises means for detecting movements of the bridge deck, means for inputting signals corresponding to the detected movements to a computer, and means for controlling the positioning of the ailerons in response to signals received from the computer.
In a simple form of the invention, ailerons are provided, but not flaps. The downward pull produced by the cross-sectional shape of the bridge deck under wind loading can then be modified as necessary by movements of the ailerons. Alternatively, the ailerons may be mounted on the flaps, for example pivotally. In general, the ailerons will be smaller than the flaps and capable of faster movements; they will therefore be particularly suitable for responding quickly to gusts of wind.
A further problem in bridge design arises from the fact that the loads applied by traffic or wind are often not evenly distributed, so that the bridge deck and the cables must be designed accordingly. According to a preferred feature of the present invention, therefore, the bridge deck system comprises means for adjusting the strain of the cables. With such an arrangement, a better distribution of load can be maintained under operating conditions and further savings can be made in the quantities of material in the stiffening girders and the cables. For example, if the stress in a given cable exceeds a certain value, the strain adjuster for that cable may act to reduce the strain and thereby reduce the stress. Alternatively or additionally, the strain in other cables may be increased to relieve the stress in the given cable. Preferably, therefore, strain detecting means is provided for the cables. Again, the strain adjusting means is advantageously computer controlled, so that optimum load distribution can be achieved. It will be appreciated from the above that the provision of cable strain adjusters is advantageous independently of the bridge deck design. Thus viewed from another aspect the invention provides a bridge deck system comprising a bridge deck supported by cables, and means for adjusting the strain of the cables.
The strain adjusting means may for example be a device provided at one end of a cable or at an intermediate point along its length. Strain adjustment is preferably effected by adjusting the length of the device.
A preferred embodiment of the invention will now be described by way of example and with reference to the accompanying drawings, in which: Figure 1 is a perspective view of a bridge having a bridge deck system according to the invention; and
Figure 2 is a transverse cross-section through the bridge deck system.
Figure 1 shows a cable stayed bridge having a bridge deck system 1 consisting of a bridge deck 2 supported by cables 3. The cables 3 are secured to a bridge pier 4 and are each provided at an intermediate point along their length with a cable strain adjuster 5.
The bridge deck 2 has a cross-section substantially in the form of an inverted aerofoil section and has along both lateral edges a row of flaps 6. The flaps are arranged to pivot about an axis 7 so as to be retractable as shown on the right hand side of Figure 2. Each flap is provided on its upper surface (when in the non-retracted position) with an aileron 8 (i.e. a movable control surface) . The bridge deck 2 includes internal structural members 9 surrounded by an external skin 10 which provides the deck with an aerodynamic shape. The structural framework design may be discrete or integral with the skin plates or it may be in plate girder form or combinations of these configurations. Adjacent to each lateral edge of the deck 2 there are provided a pair of longitudinally extending girders 11 which extend upwardly beyond the external skin 10. A central traffic barrier 12 and two peripheral traffic barriers 12 are provided to define six traffic lanes, three in each direction. The width between the peripheral traffic barriers is about 24m, whilst the width of the deck 2 with the flaps on both sides retracted is about 36m.
Figure 2 shows the arrangement which might be adopted with the wind flowing in direction A. The flaps 6 at the leading edge of the bridge deck are retracted between transverse girders, whilst the flaps 6 at the trailing edge are in their advanced positions. Thus the overall cross-section is similar to that of an upside down aircraft wing to produce a downward force on the bridge deck which advantageously keeps the cables 3 in a taut condition. The ailerons 8 can be relatively quickly adjusted in order to deal with gusts of wind or sudden changes in wind direction. Thus any distortions in the bridge shape can be kept to a minimum with a reduced overall level of stiffness and reduced quantities of the materials required to provide such stiffness. The cable strain adjusters 5 respond to the loading on the bridge deck so as to tend to even out the load distribution. The strain adjusters 5 operate by varying the effective length of each cable between its upper end where it is secured to the bridge pier 4 and its lower end where it is secured to the bridge deck 2.

Claims

Claims
1. A bridge deck system comprising a bridge deck supported by cables, the bridge deck having a cross- section substantially in the form of an inverted aerofoil section.
2. A system as claimed in claim 1, wherein flaps are provided at the lateral edges of the bridge deck.
3. A system as claimed in claim 2, wherein the flaps are retractable so that when wind flows across the bridge deck a flap at the leading edge thereof can be retracted whilst a flap at the trailing edge thereof can be in use.
4. A system as claimed in claim 3, wherein the flaps are retractable by pivoting.
5. A system as claimed in any preceding claim, wherein ailerons are provided at the lateral edges of the bridge deck.
6. A system as claimed in any preceding claim, comprising means for adjusting the strain of the cables.
PCT/GB1993/001862 1992-09-04 1993-09-03 Bridge deck system WO1994005862A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU49735/93A AU4973593A (en) 1992-09-04 1993-09-03 Bridge deck system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9218794.7 1992-09-04
GB929218794A GB9218794D0 (en) 1992-09-04 1992-09-04 Bridge deck system

Publications (1)

Publication Number Publication Date
WO1994005862A1 true WO1994005862A1 (en) 1994-03-17

Family

ID=10721433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1993/001862 WO1994005862A1 (en) 1992-09-04 1993-09-03 Bridge deck system

Country Status (4)

Country Link
CN (1) CN1103912A (en)
AU (1) AU4973593A (en)
GB (1) GB9218794D0 (en)
WO (1) WO1994005862A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2313612A (en) * 1996-05-29 1997-12-03 Marconi Gec Ltd Bridge stabilisation
WO2006050802A1 (en) * 2004-11-09 2006-05-18 Tutech Innovation Gmbh Device for damping vibrations in a building
KR102232982B1 (en) * 2019-12-19 2021-03-29 주식회사 케이블브릿지 Suspension pedestrian bridge using segment girder with truss structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108035237A (en) * 2017-12-31 2018-05-15 西南交通大学 The wing plate system and its control method that a kind of suppression Bridge Flutter and whirlpool shake
CN111305042B (en) * 2020-02-29 2021-08-03 东北林业大学 Large-span bridge wind vibration control method of self-adaptive swing flap
CN111441234B (en) * 2020-03-27 2021-04-20 中南大学 Deformable air nozzle for inhibiting wind-induced vibration of bridge

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE509329A (en) *
US2368907A (en) * 1943-12-27 1945-02-06 Whitnall William Cox Suspension bridge
US2380183A (en) * 1941-03-06 1945-07-10 George A Maney Bridge and hanger system
DE917429C (en) * 1941-05-10 1954-09-02 Kurt Prange Dr Bridge
US4098034A (en) * 1976-05-06 1978-07-04 Howell Wallace E Building sway control
EP0233528A2 (en) * 1986-02-05 1987-08-26 Stretto Di Messina S.P.A. Suspension bridge structure with flutter damping means

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE509329A (en) *
US2380183A (en) * 1941-03-06 1945-07-10 George A Maney Bridge and hanger system
DE917429C (en) * 1941-05-10 1954-09-02 Kurt Prange Dr Bridge
US2368907A (en) * 1943-12-27 1945-02-06 Whitnall William Cox Suspension bridge
US4098034A (en) * 1976-05-06 1978-07-04 Howell Wallace E Building sway control
EP0233528A2 (en) * 1986-02-05 1987-08-26 Stretto Di Messina S.P.A. Suspension bridge structure with flutter damping means

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2313612A (en) * 1996-05-29 1997-12-03 Marconi Gec Ltd Bridge stabilisation
WO1997045593A1 (en) * 1996-05-29 1997-12-04 Gec-Marconi Limited Bridge stabilization
AU717668B2 (en) * 1996-05-29 2000-03-30 Ericsson Ab Bridge stabilisation
GB2313612B (en) * 1996-05-29 2000-06-07 Marconi Gec Ltd Bridge stabilisation
US6154910A (en) * 1996-05-29 2000-12-05 Gec-Marconi Limited Bridge stabilization
WO2006050802A1 (en) * 2004-11-09 2006-05-18 Tutech Innovation Gmbh Device for damping vibrations in a building
KR102232982B1 (en) * 2019-12-19 2021-03-29 주식회사 케이블브릿지 Suspension pedestrian bridge using segment girder with truss structure

Also Published As

Publication number Publication date
AU4973593A (en) 1994-03-29
CN1103912A (en) 1995-06-21
GB9218794D0 (en) 1992-10-21

Similar Documents

Publication Publication Date Title
US7918421B2 (en) Wing, in particular airfoil of an aircraft, with a variable profile shape
US10501167B2 (en) Folding wing
US6010098A (en) Aerodynamic structure, for a landing flap, an airfoil, an elevator unit or a rudder unit, with a changeable cambering
US4455004A (en) Flight control device for airplanes
US5485799A (en) Device with at least one variable-geometry aerodynamic member including a boundary layer control system
US9079655B2 (en) System for increasing controllability for an aircraft
US6270039B1 (en) Hinge for movable control surfaces in an aircraft and a connecting piece to be used with such a hinge
KR940000046B1 (en) Aerofoil configuration
US6154910A (en) Bridge stabilization
WO1994005862A1 (en) Bridge deck system
EP4039583A1 (en) An aircraft wing section assembly
US6076775A (en) Airfoil with a landing flap having a flexible trailing edge
US6064923A (en) Aircraft with reduced wing structure loading
EP0627031B1 (en) A system and a method of counteracting wind induced oscillations in a bridge girder
EP3135579B1 (en) Mitigation of surface discontinuities between flight control surfaces and an airframe of an aircraft
US6000660A (en) Rotary beam variable stiffness wing spar
CN113039122A (en) Method for controlling an aircraft and aircraft (variants)
GB2164905A (en) Device for the automatic control of an aerodynamic trimmer associated with an aerodynamic control surface of an aircraft
EP0887256B1 (en) Vertical stabilizer fin assembly for an aircraft
US20200108911A1 (en) Assembly for warping of an aerodynamic structure
US20240101244A1 (en) Flight control surface
RU2081788C1 (en) Attachment unit of aerodynamic control surfaces
Wolowicz Free wing assembly for an aircraft

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR BY CA CH CZ DE DK ES FI GB HU JP KP KR KZ LK LU MG MN MW NL NO NZ PL PT RO RU SD SE SK UA US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase