EP1754801B1 - Bauteil mit einer Beschichtung - Google Patents

Bauteil mit einer Beschichtung Download PDF

Info

Publication number
EP1754801B1
EP1754801B1 EP06015645.2A EP06015645A EP1754801B1 EP 1754801 B1 EP1754801 B1 EP 1754801B1 EP 06015645 A EP06015645 A EP 06015645A EP 1754801 B1 EP1754801 B1 EP 1754801B1
Authority
EP
European Patent Office
Prior art keywords
platinum
proportion
component
weight
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06015645.2A
Other languages
English (en)
French (fr)
Other versions
EP1754801A3 (de
EP1754801A2 (de
Inventor
Horst Pillhöfer
Thomas Dautl
Anton Albrecht
Thomas Cosack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Publication of EP1754801A2 publication Critical patent/EP1754801A2/de
Publication of EP1754801A3 publication Critical patent/EP1754801A3/de
Application granted granted Critical
Publication of EP1754801B1 publication Critical patent/EP1754801B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • C23C10/16Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases more than one element being diffused in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/58Embedding in a powder mixture, i.e. pack cementation more than one element being diffused in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0466Nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/12Light metals
    • F05D2300/121Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/14Noble metals, i.e. Ag, Au, platinum group metals
    • F05D2300/143Platinum group metals, i.e. Os, Ir, Pt, Ru, Rh, Pd
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • Y10T428/12618Plural oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12875Platinum group metal-base component

Definitions

  • the invention relates to a component having a corrosion-resistant and / or oxidation-resistant coating comprising at least one platinum-aluminum substrate region.
  • the invention further relates to a corrosion-resistant and / or oxidation-resistant coating according to the preamble of claim 11.
  • Such components When operating components, in particular gas turbine components, at high temperatures, their free surfaces are exposed to highly corrosive and / or oxidizing conditions.
  • such components may consist of a nickel base superalloy.
  • coatings To protect against corrosion and / or oxidation such components are provided with coatings.
  • To provide a corrosion-resistant and / or oxidation-resistant coating on a component it is already state of the art to cut aluminum and optionally platinum onto a substrate surface of the component so as to provide a coating in the form of an aluminum substrate region or a platinum aluminum substrate region.
  • Platinum-aluminum coatings have the advantage over pure aluminum coatings of increased oxidation resistance and hot gas corrosion resistance, however, such platinum-aluminum coatings are brittle and therefore have a limited thermal-mechanical strength.
  • the EP 0 784 104 81 discloses a nickel-based alloy device having a platinum-aluminum substrate region, wherein to provide the platinum-aluminum substrate region, platinum is first deposited on a substrate surface of the device and then diffused into the substrate surface. Subsequently, the platinum coated member is aliquized to provide a platinum-aluminum substrate region having an integrated aluminum content of 18% to 24% by weight, an integrated content of 18% to 45% by weight. % and in the rest components of the substrate composition.
  • the Indian EP 0 784 104 B1 The disclosed platinum-aluminum substrate region or the device disclosed therein with such a coating has a relatively low ductility, resulting in a limited thermal mechanical strength (TMF), in particular a limited HCF strength and LCF Festigkelt. Due to the limited thermal-mechanical strength of the platinum-aluminum substrate region disclosed therein can form in the same cracks, which limit the durability of the coating.
  • TMF thermal mechanical strength
  • platinum-aluminum substrate region Another component with a platinum-aluminum substrate region is from the US 6,589,668 31 in which the platinum-aluminum substrate region disclosed therein comprises an inner aluminum diffusion zone and an outer platinum-aluminum zone having a single-phase structure. Also known from this prior art coating has a limited thermal-mechanical strength and thus durability.
  • the object of the present invention is to provide a novel component with a corrosion-resistant and / or oxidation-resistant coating and a novel corrosion-resistant and / or oxidation-resistant coating in the sense of better durability of the coating and thus of the component.
  • the platinum-aluminum substrate region in a peripheral zone has a diphasic structure with finely dispersed platinum-aluminum separations in a nickel-base mixed crystal and a single-phase structure in an inner zone disposed between the substrate surface of the device and the outer zone from a nickel-based mixed crystal.
  • the platinum-aluminum substrate region of the corrosion-resistant and / or oxidation-resistant coating of the component comprises at least two zones, namely an outer zone having a two-phase structure or duplex structure with finely dispersed pla tin-aluminum precipitates into a nickel base mixed crystal and an inner zone facing the substrate surface having a single phase structure of a nickel base mixed crystal.
  • the platinum aluminum substrate region according to the invention has good thermal-mechanical strength and thus provides effective and durable oxidation protection and corrosion protection even at high temperatures and mechanical stresses.
  • the platinum-aluminum substrate region of the corrosion-resistant and / or oxidation-resistant coating is suitable for the effective bonding of a ceramic heat protection layer on the platinum-aluminum substrate region.
  • the outer zone of the platinum-aluminum substrate region having the two-phase structure or duplex structure has finely dispersed, globulitic PtAl 2 precipitates sized between 0.1 ⁇ m and 3 ⁇ m in a mixed crystal of ⁇ -NiAl, the proportion of the two-phase structure or duplex structure is between 2.0 vol .-% and 40.0 vol .-% amounts, and wherein the A1 proportion in the mixed crystal is greater than 20.0 wt .-%.
  • the Al content in the nickel-base mixed crystal is at most 15.0 wt% and the Pt content in the nickel-base mixed crystal is at most 8.0 wt%.
  • a ceramic layer is applied to the platinum-aluminum substrate region, wherein an aluminum oxide intermediate layer is formed between the platinum-aluminum substrate region and the ceramic layer.
  • the ceramic layer is preferably in the form of a zirconium oxide layer the Al 2 O 3 intermediate layer has a proportion of at least 90.0% by volume of alpha-Al 2 O 3 having a rhombohedral crystal lattice structure and a maximum proportion of 10.0% by volume of gamma-Al 2 O 3 with a has cubic crystal lattice structure, and wherein the zirconium oxide layer comprises a proportion of not more than 8.0 wt .-% yttria.
  • the corrosion-resistant and / or oxidation-resistant coating according to the invention is defined in claim 11.
  • Fig. 1 shows a schematic cross section through an inventive component 10, on the substrate surface 11, a corrosion-resistant and oxidation-resistant coating in the form of a platinum-aluminum substrate portion 12 is applied.
  • the component 10 has a substrate composition based on nickel, preferably a directionally solidified or monocrystalline substrate composition having a nickel content between 18.0 wt .-% and 48.0 wt .-% with an aluminum content between 1.0 wt. -% and 8.0 wt .-%.
  • the platinum-aluminum substrate region 12 is applied to the substrate surface 11 of the component 10 in such a way that it forms two zones, namely an outer zone 13 and an inner zone 14 arranged between the outer zone 13 and the substrate surface 11 of the component 10
  • the outer zone 13 has a two-phase structure or duplex structure with finely dispersed platinum-aluminum precipitates in a nickel-based mixed crystal.
  • the inner zone 14, on the other hand, is a diffusion zone and has a single-phase structure of a nickel-based mixed crystal.
  • the outer zone 13 with the two-phase structure or duplex structure has feindispere, globulitic PtAl 2 precipitates having a size between 0.1 .mu.m and 3.0 .mu.m in a mixed crystal of ⁇ -NiAl, wherein the proportion of the two-phase structure or duplex structure is between 2.0% by volume and 40.0% by volume, and wherein the aluminum content in the mixed crystal is greater than 20.0% by weight.
  • the aluminum content in the nickel-based mixed crystal is max. 15.0 wt .-% and the platinum content in the nickel-based mixed crystal max. 8.0% by weight.
  • both in the outer zone 13 and in the inner diffusion zone 14 of the platinum-aluminum substrate region yttrium and / or hafnium may be present, wherein in both zones 13 and 14, the yttrium content max. 1.5 wt .-% and / or the hafnium content also max. 1.5 wt .-% is.
  • the size of the PtAl 2 precipitates is between 0.1 ⁇ m and 1.0 ⁇ m
  • the proportion of the two-phase structure or duplex structure is between 2.0% by volume and 20 , 0 vol .-%
  • the proportion of aluminum in the solid solution is greater than 25 wt .-%.
  • the aluminum content is preferably max. 10.0 wt .-% and the platinum content max. 1.0 wt .-%, wherein in a particularly preferred embodiment, the platinum content in the inner diffusion zone 14 of the platinum-aluminum substrate region 12 max. 0.1 wt .-% is.
  • a component 10 is provided with a substrate composition, which is formed as a nickel-based alloy.
  • the component 10 may be, for. Example, to a blade of a gas turbine made of a single crystal nickel-based alloy of the type SC 2000, the over 5.0 wt .-% cobalt, 10.0 wt .-% chromium, 5.0 wt .-% aluminum, 1.5 wt % Titanium, 12.0 wt% tantalum, 4.0 wt% tungsten and the balance nickel.
  • the prepared component 10 is cleaned in the region of the subastrate surface 11, preferably by abrasive blasting with an aluminum oxide blasting agent having a particle size between 5 .mu.m and 150 .mu.m, preferably between 45 .mu.m and 75 .mu.m.
  • the abrasive blasting is preferably carried out in a multi-jet blasting machine at a pressure between 2 bar and 5 bar, preferably at a pressure of 3 bar, wherein a so-called degree of coverage during abrasive blasting is between 400% and 1000%, preferably 800%.
  • a layer thickness of between 5 ⁇ m and 10 ⁇ m is abraded off abradingly on the substrate surface 11.
  • a deposition of platinum on the cleaned substrate surface 11 of the component 10 in which case a platinum layer thickness between 1 .mu.m and 10 .mu.m, preferably between 2 .mu.m and 4 ⁇ m, forms.
  • the platinum then diffuses into the substrate surface, the diffusion preferably being in the form of diffusion annealing at a temperature between 960 ° C. and 1160 ° C., preferably at a temperature between 1000 ° C. and 1,100 ° C, is performed.
  • the holding period of the diffusion annealing for the diffusion of the platinum into the substrate surface 11 is relatively short and is between 5 minutes and 60 minutes, preferably between 5 minutes and 15 minutes.
  • Aluminum is subsequently deposited on the substrate surface 11 coated with platinum in a further step of the method according to the invention.
  • the deposition of the aluminum takes place thermochemically in a high activity gas phase process in an atmosphere of aluminum monohalides, wherein the proportion of aluminum monohalides in the atmosphere is at least 15 vol .-%, wherein the pressure during deposition 10 mbar to 800 mbar Normal pressure or ambient pressure is, and wherein the temperature between 950 ° C and 1140 ° C is.
  • the aluminum is diffused at an activity thereof of at least 50 atomic% with respect to pure nickel, the diffusion being at a temperature at least 10 ° C. below the annealing temperature of the platinum, and the Holding period for the in-diffusion of aluminum between 180 min and 360 min, preferably between 210 min and 330 min, is.
  • the platinum-aluminum substrate region 12 forms with a thickness of approximately 60 ⁇ m.
  • the coating produced according to the invention from the in Fig. 1 illustrated platinum-aluminum substrate area 12 therefore has a good durability on the component 10.
  • Fig. 2 shows a second embodiment of a component according to the invention with a corrosion-resistant and / or oxidation-resistant coating, wherein in the embodiment of the Fig. 2 the component 10 next to the platinum-aluminum substrate region 12, which in turn is applied to the substrate surface 11 of the component 10 and has the two zones 13 and 14, comprises a ceramic layer 15, wherein between the ceramic layer 15 and the outer layer 13th of the platinum-aluminum substrate region 12, an aluminum oxide intermediate layer 16 is formed.
  • the component 10 next to the platinum-aluminum substrate region 12 which in turn is applied to the substrate surface 11 of the component 10 and has the two zones 13 and 14, comprises a ceramic layer 15, wherein between the ceramic layer 15 and the outer layer 13th of the platinum-aluminum substrate region 12, an aluminum oxide intermediate layer 16 is formed.
  • the alumina interlayer 16 which adjoins the outer zone 13 of the platinum-aluminum substrate region 12, is implemented as an Al 2 O 3 interlayer and has a minimum of 90.0% by volume alpha-Al content 2 O 3 with a rhombohedral crystal lattice structure and a proportion of max. 10.0% by volume of gamma-Al 2 O 3 having a cubic crystal lattice structure, the lattice structures having similar lattice sizes. The deviation of the lattice sizes of the crystal lattice structures is at most about 2%.
  • the ceramic layer 15 is applied, which is used as a zirconium oxide layer with a proportion of max. 8.0 wt .-% yttrium oxide is formed.
  • the ceramic layer 15 has a columnar structure and has a cubic-tetragonal crystal lattice, the ceramic layer 15 adhering very well to the aluminum oxide interlayer 16.
  • the aluminum oxide intermediate layer 16 has a thickness of between 0.02 ⁇ m and 0.8 ⁇ m, the ceramic layer 15 has a thickness of between 100 ⁇ m and 200 ⁇ m.
  • the height-to-width ratio of the stems is a minimum of 10, with the length of the stems being between 0.05 ⁇ m and 0.5 ⁇ m.
  • inventive component with the inventive, corrosion-resistant and oxidation-resistant coating is prepared according to a concrete embodiment in that in a first step as a component z. B. a blade of a gas turbine is provided from a directionally solidified nickel-based alloy material, for. B. from the nickel-based alloy Rene 142 with 12.0 wt .-% cobalt, 6.8 wt .-% chromium, 6.1 wt .-% aluminum, 6.3 wt .-% tantalum, 1.5 wt. % Molybdenum, 5.0% by weight tungsten, 1.5% by weight hafnium, 2.8% by weight rhenium and the remainder nickel.
  • the substrate surface 11 thereof is cleaned, preferably by abrasive blasting with corundum in a particle size between 20 microns and 100 microns at a pressure of 2.5 bar and a degree of coverage in a multi-jet blasting plant of preferably 800% ⁇ 200th %.
  • a layer thickness between 3 .mu.m and 10 .mu.m is abraded abradingly on the substrate surface 11.
  • platinum is then deposited with a layer thickness of preferably 2 .mu.m to 4 .mu.m on the substrate surface 11, wherein subsequent to the deposition of platinum, an indiffusing platinum at a temperature of about 1080.degree. C. and a Holding time of about 15 minutes. he follows.
  • a platinum-aluminum substrate region 12 is then formed with a thickness of about 60 .mu.m, wherein in the outer zone 13 of the platinum-aluminum substrate region 12, the proportion of the two-phase structure or duplex structure in about 15 vol .-% and the finely dispersed, globulitic PtAl 2 precipitates have a size of about 0.3 ⁇ m.
  • the platinum-aluminum substrate portion 12 is cleaned by abrasive blasting, whereby the mechanical abrasion blasting from the outer zone 13 of the platinum-aluminum substrate portion 12 has a film thickness of is removed in about 2 microns.
  • the ablated layer thickness can be between 0.5 ⁇ m and 8 ⁇ m, preferably between 1 ⁇ m and 3 ⁇ m.
  • the mechanical abrasive blasting is done preferably with aluminum oxide particles having a particle size between 10 .mu.m and 150 .mu.m, preferably between 10 .mu.m and 50 .mu.m.
  • the jet pressure is less than 3 bar, preferably 2.5 bar, with the abrasive blasting with a coverage between 300% and 1,500%, preferably with a coverage between 300% and 500%, worked.
  • thermo-oxidative treatment of the coated with the platinum-aluminum substrate region 12 and cleaned component then takes place to form the aluminum oxide intermediate layer 16, namely, that under high vacuum at a pressure of about 10 -4 mbar heating up a temperature of about 900 ° C, wherein then under low vacuum or partial vacuum at a pressure of max. 5 x 10 -2 mbar a temperature between 900 ° C and 1100 ° C for a time of about 10 minutes is maintained.
  • low vacuum or partial vacuum of preferably 10 -3 mbar there is an atmosphere of oxygen and argon or helium, wherein the oxygen content between 25 vol .-% and 60 vol .-% and therefore the argon content or helium content between 75 vol. % and 40 vol.%.
  • the alumina intermediate layer 16 can be provided, which is preferably made of pure alpha-Al 2 O 3 .
  • the ceramic layer 15 is applied to the aluminum oxide interlayer 16, namely by zirconium oxide Zr 2 O 3 having a proportion of max. 8.0 wt .-% yttria (Y 2 O 3 ) is deposited.
  • the deposition of the ceramic layer 15 is carried out under thermally oxidizing conditions, wherein a temperature between 900 ° C and 1100 ° C for a predetermined period of about 15 minutes at a low vacuum or partial vacuum is maintained. Again, there is an atmosphere of oxygen and argon and helium, with the oxygen content between 25 vol .-% and 60 vol .-%.
  • the vapor deposition of the ceramic layer takes place during oscillating and / or tumbling movement of the component 11 in a vapor cone of the ceramic material.
  • the deposition of the ceramic layer 15 can also be carried out as a sol-gel process or CVD process or PVD process.
  • FIG. 2 shows the good durability of the platinum-aluminum substrate region 12 and thus of the entire corrosion-resistant and / or oxidation-resistant coating on the component 10 using the example of a diagram, FIG. wherein on the horizontal axis 17, the trial time or process time and on the vertical axis 18, a weight change of a coated component according to the invention is applied.
  • Curve 19 represented by a solid line corresponds to a component coated in accordance with the invention
  • the curve 20 shown by dashed lines corresponds to a component coated according to the prior art. So can Fig.

Description

  • Die Erfindung betrifft ein Bauteil mit einer zumindest einen Platin-Aluminium-Substratbereich umfassenden, korrosionsbeständigen und/oder oxidationsbeständigen Beschichtung nach dem Oberbegriff des Anspruchs 1. Des weiteren betrifft die Erfindung eine korrosionsbestandige und/oder oxidationsbeständige Beschichtung nach dem Oberbegriff des Anspruchs 11.
  • Beim Betrieb von Bauteilen, insbesondere von Gasturbinenbauteilen, bei hohen Temperaturen sind deren freie oberflächen stark korrodierenden und/oder oxidierenden Bedingungen ausgesetzt. Beim Einsatz in Gasturbinen können derartige Bauteile zum Beispiel aus einer Superlegierung auf Nickelbasis bestehen. Zum Schutz vor Korrosion und/oder Oxidation werden solche Bauteile mit Beschichtungen versehen. Zur Bereitstellung einer korrosionsbeständigen und/oder oxidationsbeständigen Beschichtung auf einem Bauteil ist es bereits Stand der Technik, auf eine Substratoberfläche des Bauteils Aluminium und gegebenenfalls Platin abzuschneiden, um so eine Beschichtung in Form eines Aluminium-Substratbereichs oder eines PlatinAluminium-Substratbereichs bereitzustellen. Platin-AluminiumBeschichtungen verfügen gegenüber reinen Aluminium-Beschichtungen über den Vorteil einer erhöhten Oxidationsbeständigkeit sowie Heißgaskorrosionsbeständigkeit, allerdings sind derartige Platin-AluminiumBeschichtungen spröde und verfügen daher über eine beschränkte thermisch-mechanische Festigkeit.
  • Die EP 0 784 104 81 offenbart ein Bauteil aus einer Nickelbasislegierung mit einem Platin-Aluminium-Substratbereich, wobei zur Bereitstellung des Platin-Aluminium-Substratbereichs zuerst Platin auf eine Substratoberfläche des Bauteils abgeschieden und anschließend in die Substratoberfläche eindiffundiert wird. Darauffolgend wird das mit Platin beschichtete Bauteil alitiert, um so einen Platin-Aluminium-Substratbereich bereitzustellen, der einen integrierten Aluminiumgehalt von 18 Gew.-% bis 24 Gew.-%, einen integrierten Plaringehalt von 18 Gew.-% bis 45 Ges.-% sowie im Rest Komponenten der Substratzusammensetzung aufweist.
  • Der in der EP 0 784 104 B1 offenbarte Platin-Alummium-Substratbereich bzw. das dort offenbarte Bauteil mit einer derartigen Beschichtung verfugt über eine relativ niedrige Duktilität, wodurch sich eine begrenzte thermisch-mechanische Festigkeit (TMF), insbesondere eine begrenzte HCF-Festigkeit und LCF-Festigkelt, ergibt. Bedingt durch die begrenzte thermisch-mechanische Festigkeit des dort offenbarten Platin-Aluminium-Substratbereichs können sich in demselben Risse ausbilden, welche die Haltbarkeit der Beschichtung begrenzen.
  • Weiterhin ist es aus der EP 0 784 104 81 bekannt, auf den Platin-Aluminium-Substratbereich eine keramische Schicht aufzubringen. Jedoch ist die Haltbarkeit der keramischen Schicht auf den Platin-Aluminium-Substratbereich gemäß EP 0 784 104 B1 beschränkt.
  • Ein weiteres Bauteil mit einem Platin-Aluminium-Substratbereich ist aus der US 6,589,668 31 bekannt, wobei der dort offenbarte Platin-Aluminium-Substratbereich eine innere Aluminium-Diffusionszone und eine äußere Platin-Aluminium-Zone mit einer Einphasenstruktur aufweist. Auch die aus diesem Stand der Technik bekannte Beschichtung verfugt über eine beschränkte thermisch-mechanische Festigkeit und damit Haltbarkeit.
  • Weiterhin sei als Stand der Technik auf die US 5,514,482 verwiesen, in der ein Bauteil gezeigt ist, auf dessen Substratoberflache ein Aluminium-Substratbereich aus Aluminiumoxid aufgebracht ist, wobei auf diesem Aluminium-Substratbereich unter Zwischenanordnung eines dünnen Aluminiumfilms eine keramische Schicht aufgebracht ist. Auch diese Beschichtung eines Bauteils verfugt über eine begrenzte thermisch-mechanische Festigkeit und damit Haltbarkeit.
  • Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zu Grunde, ein neuartiges Bauteil mit einer korrosionsbeständigen und/oder oxidationsbeständigen Beschichtung und eine neuartige korrosionsbestandige und/oder oxidationsbeständige Beschichtung zu schaffen im Sinne einer besseren Haltbarkeit der Beschichtung und somit des Bauteils.
  • Dieses Problem wird durch ein Bauteil mit einer korrosionsbeständigen und/oder oxidationsbeständigen Beschichtung im Sinne von Anspruch 1 gelöst. Erfindungsgemaß weist der Platin-Aluminium-Substratbereich in einer äußeren Zone eine Zweiphasenstruktur bzw. Duplexstruktur mit feindispersen Platin-Aluminium-Ausseheidungen in ein Nickelbasis-Mischkristall und in einer inneren Zone, die zwischen der Substratoberfläche des Bauteils und der äußeren Zone angeordnet ist, eine Einphasenstruktur aus einem Nickelbasis-Mischkristall auf.
  • Im Sinne der hier vorliegenden Erfindung umfasst der Platin-Aluminium-Substratbereich der korrosionsbeständigen und/oder oxidationsbeständigen Beschichtung des Bauteils zumindest zwei Zonen, nämlich eine äußere Zone mit einer Zweiphasenstruktur bzw. Duplexstruktur mit feindispersen Pla-tin-Aluminium-Ausscheidgngen in ein Nickelbasis-Mischkristall und eine innere, der Substratoberfläche zugewandte Zone mit einer Einphasenstruktur aus einem Nickelbasis-Mischkristall. Der erfindungsgemäße Platin-Aluminiu-substratbereich verfügt über eine gute thermisch-mechanische Festigkeit und stellt damit einen effektiven sowie haltbaren Oxidationsschutz sowie Korrosionsschutz selbst bei hohen Temperaturen sowie mechanischen Belastungen bereit. Des Weiteren eignet sich der Platin-Aluminium-Substratbereich der korrosionsbeständigen und/oder oxidationbestäridigen Beschichtung zur effektiven Anbindung einer keramischen Wärmeschutzsehicht auf dem Platin-Aluminium-Substratbereich.
  • Vorzugsweise weist die äußere Zone des platin-Aluminlum-Substratbereichs mit der Zweiphasenstruktur bzw. Duplexstruktur feindisperse, globulitische PtAl2-Ausscheidungen mit einer Größe zwischen 0,1 µm und 3, µm in einem Mischkristall aus ß-NiAl auf, wobei der Anteil der zweiphasenstruktur bzw. Duplexstruktur zwischen 2,0 Vol.-% und 40,0 Vol.-% betragt, und wobei der A1-Anteil im Mischkristall größer als 20,0 Gew.-% ist. In der inneren Zone des Platin-Aluminium-Substratbereichs beträgt der Al-Anteil im Nickelbasis-Mischkristall maximal 15,0 Gew.-% und der Pt-Anteil im Nickelbasis-Mischkristall maximal 8,0 Gew.-%.
  • Nach einer vorteilhaften Weiterbildung der Erfindung ist auf den Platin-Aluminium-Substratbereich eine keramische Schicht aufgebracht, wobei zweischen dem Platin-Aluminium-Substratbereich und der keramischen Schicht eine Aluminiumoxid-Zwischenschicht ausgebildet ist, Vorzugsweise ist die keramische Schicht als Zirkonoxid-Schicht ausgebildet, wobei die Al2O3-Zwischenschicht einen Anteil von minimal 90,0 Vol.-% an Alpha-Al2O3 mit einer rhombohedralen Kristallgitterstruktur und einem Anteil von maximal 10,0 Vol.-% an Gamma-Al2O3 mit einer kubischen Kristallgitterstruktur aufweist, und wobei die Zirkonoxid-Schicht einen Anteil von maximal 8,0 Gew.-% Yttriumoxid umfasst.
  • Die erfindungsgemäße korrosionsbeständige und/oder oxidationsbeständige Beschichtung ist in Anspruch 11 definiert.
  • Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung. Ausführungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. Dabei zeigt:
  • Fig. 1
    eine stark schematisierte Darstellung durch ein erfindungsgemäßes Bauteil mit einer einen Platin-Aluminium-Substratbereich umfassenden, korrosionsbeständigen und/oder oxidationsbeständigen Beschichtung nach einem ersten Ausführungsbeispiel der Erfindung;
    Fig. 2
    eine stark schematisierte Darstellung durch ein erfindungsgemäßes Bauteil mit einer einen Platin-Aluminium-Substratbereich, eine keramische Schicht und eine Zwischenschicht umfassenden, korrosionsbeständigen und/oder oxidationsbeständigen Beschichtung nach einem zweiten Ausführungsbeispiel der Erfindung; und
    Fig. 3
    ein Diagramm zur Verdeutlichung der Eigenschaften der erfindungsgemäßen, korrosionsbeständigen und/oder oxidationsbeständigen Beschichtung.
  • Nachfolgend wird die Erfindung unter Bezugnahme auf Fig. 1 bis 3 in größerem Detail beschrieben.
  • Fig. 1 zeigt einen schematisierten Querschnitt durch ein erfindungsgemäßes Bauteil 10, auf dessen Substratoberfläche 11 eine korrosionsbeständige und oxidationsbeständige Beschichtung in Form eines Platin-Aluminium-Substratbereichs 12 aufgebracht ist. Das Bauteil 10 verfügt über eine Substratzusammensetzung auf Nickelbasis, vorzugsweise über eine gerichtet erstarrte oder einkristalline Substratzusammensetzung mit einem Nickel-Anteil zwischen 18,0 Gew.-% und 48,0 Gew.-% mit einem Aluminium-Anteil zwischen 1,0 Gew.-% und 8,0 Gew.-%. Der Platin-Aluminium-Substratbereich 12 ist derart auf die Substratoberfläche 11 des Bauteils 10 aufgebracht, dass derselbe zwei Zonen bildet, nämlich eine äußere Zone 13 und eine zwischen der äußeren Zone 13 und der Substratoberfläche 11 des Bauteils 10 angeordnete innere Zone 14. Im Sinne der Erfindung weist die äußere Zone 13 eine Zweiphasenstruktur bzw. Duplexstruktur mit feindispersen Platin-Aluminium-Ausscheidungen in ein Nickelbasis-Mischkristall auf. Die innere Zone 14 hingegen ist eine Diffusionszone und verfügt über eine Einphasenstruktur aus einem Nickelbasis-Mischkristall.
  • Die äußere Zone 13 mit der Zweiphasenstruktur bzw. Duplexstruktur weist feindispere, globulitische PtAl2-Ausscheidungen mit einer Größe zwischen 0,1 µm und 3,0 µm in ein Mischkristall aus β-NiAl auf, wobei der Anteil der Zweiphasenstruktur bzw. Duplexstruktur zwischen 2,0 Vol.-% und 40,0 Vol.-% beträgt, und wobei der Aluminium-Anteil im Mischkristall größer als 20,0 Gew.-% ist. In der inneren Zone 14 beträgt der Aluminium-Anteil im Nickelbasis-Mischkristall max. 15,0 Gew.-% und der Platin-Anteil im Nickelbasis-Mischkristall max. 8,0 Gew.-%. Sowohl in der äußeren Zone 13 als auch in der inneren Diffusionszone 14 des Platin-Aluminium-Substratbereichs kann Yttrium und/oder Hafnium vorliegen, wobei in beiden Zonen 13 und 14 der Yttrium-Anteil max. 1,5 Gew.-% und/oder der Hafnium-Anteil ebenfalls max. 1,5 Gew.-% beträgt.
  • Vorzugsweise beträgt in der äußeren Zone 13 des Platin-Aluminium-Substratbereichs 12 die Größe der PtAl2-Ausscheidungen zwischen 0,1 µm und 1,0 µm, der Anteil der Zweiphasenstruktur bzw. Duplexstruktur beträgt zwischen 2,0 Vol.-% und 20,0 Vol.-%, und der Anteil an Aluminium im Mischkristall ist größer als 25 Gew.-%. In der inneren Diffusionszone 14 beträgt der Aluminium-Anteil vorzugsweise max. 10,0 Gew.-% und der Platin-Anteil max. 1,0 Gew.-%, wobei in einer besonders bevorzugten Ausführungsform der Platin-Anteil in der inneren Diffusionszone 14 des Platin-Aluminium-Substratbereichs 12 max. 0,1 Gew.-% beträgt.
  • Zur Herstellung des in Fig. 1 dargestellten Bauteils 10 mit dem Platin-Aluminium-Substratbereich 12 wird in einem konkreten Ausführungsbeispiel so vorgegangen, dass in einem ersten Schritt ein Bauteil 10 mit einer Substratzusammensetzung bereitgestellt wird, die als Nickelbasislegierung ausgebildet ist.
  • Bei dem Bauteil 10 kann es sich z. B. um eine Laufschaufel einer Gasturbine aus einer einkristallinen Nickelbasislegierung des Typs SC 2000 handeln, die über 5,0 Gew.-% Kobalt, 10,0 Gew.-% Chrom, 5,0 Gew.-% Aluminium, 1,5 Gew.-% Titan, 12,0 Gew.-% Tantal, 4,0 Gew.-% Wolfram sowie im Rest Nickel umfasst.
  • Darauffolgend wird in einem zweiten Schritt das bereitgestellte Bauteil 10 im Bereich der Subastratoberfläche 11 gereinigt, vorzugsweise durch abrasives Strahlen mit einem Aluminiumoxid-Strahlmittel, welches eine Partikelgröße zwischen 5 µm und 150 µm, vorzugsweise zwischen 45 µm und 75 µm, aufweist. Das abrasive Strahlen erfolgt dabei vorzugsweise in einer Multidüsen-Strahlanlage bei einem Druck zwischen 2 bar und 5 bar, vorzugsweise bei einem Druck von 3 bar, wobei ein sogenannter Überdeckungsgrad beim abrasiven Strahlen zwischen 400 % und 1.000 % liegt, vorzugsweise 800 % beträgt. Hierbei wird an der Substratoberfläche 11 eine Schichtdicke zwischen 5 µm und 10 µm abrasiv abgetragen.
  • Im Anschluss an dass abrasive Strahlen bzw. Reinigen der Substratoberfläche 11 des Bauteils 10 erfolgt dann ein Abscheiden von Platin auf die gereinigte Substratoberfläche 11 des Bauteils 10, wobei sich hierbei eine Platin-Schichtdicke zwischen 1 µm und 10 µm, vorzugsweise zwischen 2 µm und 4 µm, ausbildet.
  • Im Anschluss an das Abscheiden des Platins auf die Substratoberfläche 11 des Bauteils 10 erfolgt dann ein Eindiffundieren des Platins in die Substratoberfläche, wobei das Eindiffundieren vorzugsweise als Diffusionsglühen bei einer Temperatur zwischen 960 °C und 1.160 °C, vorzugsweise bei einer Temperatur zwischen 1.000 °C und 1.100 °C, durchgeführt wird. Die Haltedauer des Diffusionsglühens zum Eindiffundieren des Platins in die Substratoberfläche 11 ist dabei relativ kurz und liegt zwischen 5 min und 60 min, vorzugsweise zwischen 5 min und 15 min.
  • Auf die so mit Platin beschichtete Substratoberfläche 11 wird anschließend in einem weiteren Schritt des erfindungsgemäßen Verfahrens Aluminium abgeschieden. Das Abscheiden des Aluminiums erfolgt auf thermochemischem Weg in einem Hochaktivitäts-Gasphasenverfahren in einer Atmosphäre aus Aluminium-Monohalogeniden, wobei der Anteil an Aluminium-Monohalogeniden in der Atmosphäre mindestens 15 Vol.-% betrifft, wobei der Druck beim Abscheiden 10 mbar bis 800 mbar über Normaldruck bzw. Umgebungsdruck liegt, und wobei die Temperatur zwischen 950 °C und 1.140 °C liegt.
  • Im Anschluss an das Abscheiden des Aluminiums erfolgt ein Eindiffundieren des Aluminiums bei einer Aktivität desselben von mindestens 50 Atom-% bezogen auf reines Nickel, wobei das Eindiffundieren bei einer Temperatur erfolgt, die mindestens 10° C unterhalb der Glühtemperatur des Platins liegt, und wobei die Haltedauer für das Eindiffundieren des Aluminiums zwischen 180 min und 360 min, vorzugsweise zwischen 210 min und 330 min, beträgt. Dabei bildet sich der Platin-Aluminium-Substratbereich 12 mit einer Dicke von in etwa 60 µm aus.
  • Mit dem obigen Verfahren kann der in Fig. 1 dargestellte Platin-Aluminium-Substratbereich 12 mit den Zonen 13 und 14 bereitgestellt werden, wobei der Platin-Aluminium-Substratbereich 12 über eine hohe Oxidationsbeständigkeit und Korrosionsbeständigkeit selbst bei hohen Temperaturen sowie über eine hervorragende thermisch-mechanische Festigkeit, insbesondere über eine hervorragende HCF-Festigkeit sowie LCF-Festigkeit, verfügt. Die mit dem erfindungsgemäßen Verfahren hergestellte, erfindungsgemäße Beschichtung aus dem in Fig. 1 dargestellten Platin-Aluminium-Substratbereich 12 verfügt demnach über eine gute Haltbarkeit auf dem Bauteil 10.
  • Fig. 2 zeigt ein zweites Ausführungsbeispiel eines erfindungsgemäßen Bauteils mit einer korrosionsbeständigen und/oder oxidationsbeständigen Beschichtung, wobei im Ausführungsbeispiel der Fig. 2 das Bauteil 10 neben dem Platin-Aluminium-Substratbereich 12, der wiederum auf die Substratoberfläche 11 des Bauteils 10 aufgebracht ist und über die beiden Zonen 13 und 14 verfügt, eine keramische Schicht 15 umfasst, wobei zwischen der keramischen Schicht 15 und der äußeren Lage 13 des Platin-Aluminium-Substratbereichs 12 eine Aluminiumoxid-Zwischenschicht 16 ausgebildet ist. Zur Vermeidung unnötiger Wiederholungen wird bei der Beschreibung des Bauteils gemäß Fig. 2 nachfolgend nur auf die zusätzlichen Schichten 15 und 16 eingegangen, hinsichtlich des Platin-Aluminium-Substratbereichs 12 mit den Zonen 13 und 14 wird auf die Ausführungen zum Ausführungsbeispiel der Fig. 1 verwiesen.
  • Die Aluminiumoxid-Zwischenschicht 16, die sich an die äußere Zone 13 des Platin-Aluminium-Substratbereichs 12 anschließt, ist als Al2O3-Zwischenschicht ausgeführt, und verfügt über einen Anteil von minimal 90,0 Vol.-% an Alpha-Al2O3 mit einer rhombohedralen Kristallgitterstruktur und einen Anteil von max. 10,0 Vol.-% an Gamma-Al2O3 mit einer kubischen Kristallgitterstruktur, wobei die Kristallgitterstrukturen ähnliche Gittergrößen aufweisen. Die Abweichung der Gittergrößen der Kristallgitterstrukturen liegt bei maximal in etwa 2 %.
  • Auf diese Aluminiumoxid-Zwischenschicht 16 ist die keramische Schicht 15 aufgebracht, die als Zirkonoxid-Schicht mit einem Anteil von max. 8,0 Gew.-% Yttriumoxid ausgebildet ist. Die keramische Schicht 15 verfügt über eine kolumnare Struktur und besitzt ein kubisch-tetragonales Kristallgitter, wobei die keramische Schicht 15 sehr gut auf der Aluminiumoxid-Zwischenschicht 16 haftet.
  • Die Aluminiumoxid-Zwischenschicht 16 verfügt dabei über eine Dicke zwischen 0,02 µm und 0,8 µm, die keramische Schicht 15 verfügt über eine Dicke zwischen 100 µm und 200 µm. Innerhalb der keramischen Schicht 15, die eine laminar stengelige Struktur verfügt, beträgt das Verhältnis von Höhe zu Breite der Stengel minimal 10, wobei die Länge der Stengel zwischen 0,05 µm und 0,5 µm beträgt.
  • Das in Fig. 2 dargestellte, erfindungsgemäße Bauteil mit der erfindungsgemäßen, korrosionsbeständigen sowie oxidationsbeständigen Beschichtung wird nach einem konkreten Ausführungsbeispiel dadurch hergestellt, dass in einem ersten Schritt als Bauteil z. B. eine Laufschaufel einer Gasturbine aus einem gerichtet erstarrten Nickelbasislegierungswerkstoff bereitgestellt wird, z. B. aus der Nickelbasislegierung Rene 142 mit 12,0 Gew.-% Kobalt, 6,8 Gew.-% Chrom, 6,1 Gew.-% Aluminium, 6,3 Gew.-% Tantal, 1,5 Gew.-% Molybdän, 5,0 Gew.-% Wolfram, 1,5 Gew.-% Hafnium, 2,8 Gew.-% Rhenium sowie im Rest Nickel.
  • Nach Bereitstellen eines solchen Bauteils 10 wird die Substratoberfläche 11 desselben gereinigt, vorzugsweise durch abrasives Strahlen mit Korund in einer Partikelgröße zwischen 20 µm und 100 µm bei einem Druck von 2,5 bar und einem Überdeckungsgrad in einer Multidüsen-Strahlanlage von vorzugsweise 800 % ± 200 %. Hierbei wird an der Substratoberfläche 11 eine Schichtdicke zwischen 3 µm und 10 µm abrasiv abgetragen.
  • Im Anschluss an das Reinigen der Substratoberfläche 11 erfolgt dann ein Abscheiden von Platin mit einer Schichtdicke von vorzugsweise 2 µm bis 4 µm auf die Substratoberfläche 11, wobei anschließend an das Abscheiden von Platin ein eindiffundierendes Platin bei einer Temperatur von in etwa 1.080 °C und eine Haltezeit von in etwa 15 min. erfolgt.
  • Nach der so erfolgten Platinbeschichtung der Substratoberfläche erfolgt dann ebenso wie im Ausführungsbeispiel der Fig. 1 ein Abscheiden von Aluminium mit einem Hochaktivitäts-Gasphasenverfahren bei einer Atmosphäre aus Aluminium-Monohalogenid, wobei der Anteil an Aluminium-Monohalogenid in der Atmosphäre mind. 15 Vol.-% beträgt. Darauffolgend erfolgt das Eindiffundieren von Aluminium bei einer Aktivität des Aluminiums von minimal 50 Atom-%, wiederum bezogen auf reines Nickel, vorzugsweise bei einer Temperatur von 1.040 °C und einer Haltezeit von 330 min. Hierbei bildet sich dann ein Platin-Aluminium-Substratbereich 12 mit einer Dicke von ca. 60 µm aus, wobei in der äußeren Zone 13 des Platin-Aluminium-Substratbereichs 12 der Anteil der Zweiphasenstruktur bzw. Duplexstruktur in etwa 15 Vol.-% beträgt und die feindispersen, globulitischen PtAl2-Ausscheidungen eine Größe von in etwa 0,3 µm aufweisen.
  • Zum Ausbilden der Aluminiumoxid-Zwischenschicht 16 wird nach dem Bereitstellen des Platin-Aluminium-Substratbereichs 12 der Platin-Aluminium-Substratbereich 12 durch abrasives Strahlen gereinigt, wobei beim mechanischen abrasiven Strahlen von der äußeren Zone 13 des Platin-Aluminium-Substratbereichs 12 eine Schichtdicke von in etwa 2 µm abgetragen wird. Die abgetragene Schichtdicke kann dabei zwischen 0,5 µm und 8 µm liegen, vorzugsweise zwischen 1 µm und 3µm. Das mechanische abrasive Strahlen erfolgt vorzugsweise mit Aluminiumoxid-Partikeln, die eine Partikelgröße zwischen 10 µm und 150 µm, vorzugsweise zwischen 10 µm und 50 µm, aufweisen. Der Strahldruck liegt dabei unter 3 bar, vorzugsweise bei 2,5 bar, wobei beim abrasiven Strahlen mit einem Überdeckungsgrad zwischen 300 % und 1.500 %, vorzugsweise mit einem Überdeckungsgrad zwischen 300 % und 500 %, gearbeitet wird.
  • Im Anschluss hieran erfolgt dann zur Ausbildung der Aluminiumoxid-Zwischenschicht 16 eine thermo-oxidative Behandlung des mit dem Platin-Aluminium-Substratbereich 12 beschichteten sowie gereinigten Bauteils, nämlich dadurch, dass unter Hochvakuum bei einem Druck von in etwa 10-4 mbar ein Aufheizen auf eine Temperatur von in etwa 900 °C erfolgt, wobei anschließend unter Niedervakuum bzw. Teilvakuum bei einem Druck von max. 5 x 10-2 mbar eine Temperatur zwischen 900 °C und 1.100 °C für eine Zeit von in etwa 10 min gehalten wird. Bei diesem Halten im Niedervakuum bzw. Teilvakuum von vorzugsweise 10-3 mbar herrscht eine Atmosphäre aus Sauerstoff sowie Argon oder Helium, wobei der Sauerstoffanteil zwischen 25 Vol.-% und 60 Vol.-% und demnach der Argonanteil oder Heliumanteil zwischen 75 Vol.-% und 40 Vol.-% beträgt. Auf diese Art und Weise kann die Aluminiumoxid-Zwischenschicht 16 bereitgestellt werden, die vorzugsweise aus reinem Alpha-Al2O3 besteht.
  • Im Anschluss an das Ausbilden der Aluminiumoxid-Zwischenschicht 16 erfolgt das Aufbringen der keramischen Schicht 15 auf die Aluminiumoxid-Zwischenschicht 16, nämlich dadurch, dass Zirkonoxid Zr2O3 mit einem Anteil von max. 8,0 Gew.-% Yttriumoxid (Y2O3) abgeschieden wird. Das Abscheiden der keramischen Schicht 15 erfolgt dabei unter thermisch oxidierenden Bedingungen, wobei eine Temperatur zwischen 900 °C und 1.100 °C für eine vorbestimmte Zeitdauer von in etwa 15 min bei einem Niedervakuum bzw. Teilvakuum gehalten wird. Dabei herrscht wiederum eine Atmosphäre aus Sauerstoff sowie Argon und Helium, wobei der Sauerstoffanteil zwischen 25 Vol.-% und 60 Vol.-% beträgt.
  • Das Aufdampfen der keramischen Schicht erfolgt bei oszillierenden und/oder taumelnden Bewegung des Bauteils 11 in einem Dampfkegel des keramischen Werkstoffs. Die Abscheidung der keramischen Schicht 15 kann auch als Sol-Gel-Verfahren oder CVD-Verfahren oder PVD-Verfahren durchgeführt werden.
  • Fig. 3 zeigt die gute Haltbarkeit des Platin-Aluminium-Substratbereichs 12 und damit der gesamten korrosionsbeständigen und/oder oxidationsbeständigen Beschichtung auf dem Bauteil 10 am Beispiel eines Diagramms, wobei auf der horizontal verlaufenden Achse 17 die Versuchszeit bzw. Prozesszeit und auf der vertikal verlaufenden Achse 18 eine Gewichtsänderung eines erfindungsgemäß beschichteten Bauteils aufgetragen ist. Die in Fig. 3 mit durchgezogener Linienführung dargestellte Kurve 19 entspricht dabei einem erfindungsgemäß beschichteten Bauteil, die in gestrichelter Linienführung gezeigte Kurve 20 entspricht einem nach dem Stand der Technik beschichteten Bauteil. So kann Fig. 3 entnommen werden, dass zu Beginn der Prüfzeit das Gewicht des erfindungsgemäß beschichteten Bauteils relativ langsam sowie relativ gering zunimmt, woraus geschlossen wird, dass beim erfindungsgemäß beschichteten Bauteil eine Oxidation relativ langsam beginnt. Des Weiteren setzt eine Gewichtsabnahme gegenüber dem Stand der Technik relativ spät ein, was Aufschluss darüber liefert, dass die Beschichtung gegenüber dem Stand der Technik lange auf dem Bauteil verbleibt, somit ein Abplatzen der Beschichtung erst relativ spät einsetzt. Daraus folgt, dass ein erfindungsgemäß beschichtetes Bauteil gegenüber dem Stand der Technik einerseits verbesserte Oxidations- sowie Korrosionseigenschaften aufweist und andererseits über eine verbesserte Haltbarkeit verfügt.

Claims (11)

  1. Bauteil mit einer zumindest einen Platin-Aluminium-Substratbereich umfassenden, korrosionsbeständigen und/oder oxidationsbeständigen Beschichtung, wobei das Bauteil eine Substratoberfläche und eine Substratzusammensetzung auf Nickelbasis aufweist, mit einem im Bereich der Substratoberfläche des Bauteils durch Abscheiden von Platin (Pt) und Aluminium (A1) auf der Substratoberfläche ausgebildeten Platin-Aluminium-Substratbereich,
    dadurch gekennzeichnet,,
    dass der Platin-Aluminium-Substratbereich (12) in einer äußeren Zone (13) eine.Zweiphasenstruktur bzw. Duplexstruktur mit feindispersen Platin-Aluminium-Ausscheidungen in einem Nickelbasis-Mischkristall aufweist, und dass der Platin-Aluminium-Substratbereich (12) in einer inneren Zone (14), die zwischen der Substratoberfläche (11) des Bauteils und der äußeren Zone (13) angeordnet ist, eine Einphasenstruktur aus einem Nickelbasis-Mischkristall aufweist.
  2. Bauteil nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die äußere Zone (13) mit der Zweiphasenstruktur bzw. mit der Duplexstruktur feindisperse, globulitische PtAl2-Ausscheidungen mit einer Größe zwischen 0,1 µm und 3,0 µm in einem Mischkristall aus ß-NiAl aufweist, wobei der Anteil der Zweiphasenstruktur bzw, der Duplexstruktur zwischen 2,0 Vol.-% und 40,0 Vol.-% betragt, und wobei der Al-Anteil im Mischkristall großer als 20,0 Gew.-% ist.
  3. Bauteil nach Anspruch 2,
    dadurch gekennzeichnet,'
    dass die äußere Zone (13) mit der Zweiphasenstruktur bzw. mit der Duplexstruktur feindisperse, globulitische PtAl2-Ausscheidungen mit einer Größe zwischen 0,1 µm und 1,0 µm in einem Mischkristall aus β-NiAl aufweist, wobei der Anteil der Zweiphasenstruktur bzw. der Duplexstruktur zwischen 2,0 Vol.-% und 20,0 Vol.-% beträgt, und wobei der Al-Anteil im Mischkristall größer als 25,0 Ges.-% ist
  4. Bauteil nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass in der inneren Zone (14), die eine Diffusionszone ist, der Al-Anteil im Nickelbasis-Mischkristall maximal 15,0 Gew.-% und der Pt-Anteill im Nickelbasis-Mischkristall maximal 8,0 Gew.-% beträgt.
  5. Bauteil nach Anspruch 4,
    dadurch gekennzeichnet,
    dass in der inneren Zone (14) ), die eine Diffusionszone ist, der Al-Anteil im Nickelbasis-Mischkristall maximal 10,0 Gew.-% beträgt.
  6. Bauteil nach einem oder mehreren der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass der Platin-Aluminium-Substratbereich in der äußeren Zone (13) und/oder in der inneren Zone (14) einen Yttrium-Anteil von maximal 1,5 Gew.-% und/oder einen Hafnium-Anteil von maximal 1,5 Gew.-% aufweist.
  7. Bauteil nach einem oder mehreren der Anspruche 1 bis 6,
    dadurch gekennzeichnet,
    dass auf den Platin-Aluminium-substratbereich (12) eine keramische Schicht (15) aufgebracht ist, wobei zwischen dem Platin-Aluminium-Substratbereich (12) und, der keramischen Schicht (15) eine dunne Aluminmumoxid-Zwischenschicht (16) ausgebildet ist.
  8. Bauteil nach Anspruch 7,
    dadurch gekennzeichnet,
    dass die Aluminiumoxid-Zwischenschicht (16) als Al2O3-Zwischenschicht mit einem Anteil von minimal 90,0 Vol.-% an Alpha-Al2O3 mit einer rhombohedralen Kristallgitterstruktur und einem Anteil von maximal 10,0 Vol.-% an Gamma-Al2O3 mit einer kubischen Kristallgitterstruktur ausgebildet ist.
  9. Bauteil nach Anspruch 7 oder 8,
    dadurch gekennzeichnet,
    dass die keramische Schicht (15) als Zirkonoxid-Schicht mit einem Anteil von maximal 8,0 Gew.-% Yttriumoxid ausgebildet ist.
  10. Bauteil nach einem oder mehreren der Anspruche 1 bis 9,
    dadurch gekennzeichnet,
    dass das Bauteil eine gerichtete erstarrte oder eine einkristalline Substratzusammensetzung auf Nickelbasis mit einem Nickel-Anteil zwischen 18,0 Gew.-% und 48,0 Gew.-% und einem Aluminium-Anteil zwischen 1,0 Gew.-% und 8,0 Gew.-% aufweist.
  11. Korrosionsbeständige und/oder oxidationsbeständige Beschichtung für ein Bauteil, insbesondere für ein Gasturbinenbauteil, wobei die Beschichtung zumindest einen Platin-Aluminium-Substratbereich umfasst,
    gekennzeichnet durch
    Merkmale nach einem oder mehreren der Ansprüche 1 bis 9.
EP06015645.2A 2005-08-02 2006-07-27 Bauteil mit einer Beschichtung Expired - Fee Related EP1754801B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005036162A DE102005036162A1 (de) 2005-08-02 2005-08-02 Bauteil mit einer Beschichtung

Publications (3)

Publication Number Publication Date
EP1754801A2 EP1754801A2 (de) 2007-02-21
EP1754801A3 EP1754801A3 (de) 2008-04-02
EP1754801B1 true EP1754801B1 (de) 2014-05-14

Family

ID=37106476

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06015645.2A Expired - Fee Related EP1754801B1 (de) 2005-08-02 2006-07-27 Bauteil mit einer Beschichtung

Country Status (3)

Country Link
US (1) US7655321B2 (de)
EP (1) EP1754801B1 (de)
DE (1) DE102005036162A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2604570A1 (en) * 2006-10-05 2008-04-05 General Electric Company Method for forming a thermal barrier coating
DE102007008278A1 (de) * 2007-02-20 2008-08-21 Mtu Aero Engines Gmbh Beschichtung für Gasturbinenbauteile sowie Verfahren und Vorrichtung zur Bereitstellung einer Beschichtung
DE102007025697A1 (de) * 2007-06-01 2008-12-04 Mtu Aero Engines Gmbh Verfahren zum Einstellen der Anzahl der Phasen einer PtAI-Schicht eines Gasturbinenbauteils sowie Verfahren zum Erzeugen einer einphasigen PtAI-Schicht an einem Gasturbinenbauteil
DE102009010109A1 (de) 2009-02-21 2010-09-23 Mtu Aero Engines Gmbh Herstellung einer Turbinenblisk mit einer Oxikations- bzw. Korrosionsschutzschicht
DE102009010110B4 (de) * 2009-02-21 2014-08-28 MTU Aero Engines AG Erosionsschutz-Beschichtungssystem für Gasturbinenbauteile
CN106591879A (zh) * 2010-12-03 2017-04-26 电解臭氧有限公司 用于臭氧生成的电解池
US8807955B2 (en) * 2011-06-30 2014-08-19 United Technologies Corporation Abrasive airfoil tip
US10539039B2 (en) * 2012-08-14 2020-01-21 Safran Aircraft Engines Method of measuring the temperature reached by a part, in particular a turbine engine part
MX2023002015A (es) 2020-08-18 2023-04-11 Enviro Metals Llc Refinamiento metálico.
US20220081763A1 (en) * 2020-09-17 2022-03-17 Applied Materials, Inc. Aluminum oxide protective coatings on turbocharger components and other rotary equipment components

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514482A (en) * 1984-04-25 1996-05-07 Alliedsignal Inc. Thermal barrier coating system for superalloy components
US5500252A (en) * 1992-09-05 1996-03-19 Rolls-Royce Plc High temperature corrosion resistant composite coatings
US5658614A (en) 1994-10-28 1997-08-19 Howmet Research Corporation Platinum aluminide CVD coating method
US6066405A (en) 1995-12-22 2000-05-23 General Electric Company Nickel-base superalloy having an optimized platinum-aluminide coating
US5897966A (en) * 1996-02-26 1999-04-27 General Electric Company High temperature alloy article with a discrete protective coating and method for making
EP1123987A1 (de) 2000-02-11 2001-08-16 General Electric Company Reparierbare Diffusionsaluminidbeschichtungen
US6340500B1 (en) * 2000-05-11 2002-01-22 General Electric Company Thermal barrier coating system with improved aluminide bond coat and method therefor
US6589668B1 (en) * 2000-06-21 2003-07-08 Howmet Research Corporation Graded platinum diffusion aluminide coating
US6881452B2 (en) 2001-07-06 2005-04-19 General Electric Company Method for improving the TBC life of a single phase platinum aluminide bond coat by preoxidation heat treatment
DE10336989B4 (de) 2003-08-12 2006-11-09 Mtu Aero Engines Gmbh Verfahren zur Herstellung von Heissgas-Korrosionsschutzschichten
DE10350727A1 (de) 2003-10-30 2005-06-02 Mtu Aero Engines Gmbh Bauteil mit einem Platin-Aluminium-Substratbereich, Platin-Aluminium-Beschichtung und Herstellverfahren
DE10355234A1 (de) * 2003-11-26 2005-06-30 Mtu Aero Engines Gmbh Verfahren zum Herstellen einer korrosionsbeständigen und oxidationsbeständigen Beschichtung sowie Bauteil mit einer solchen Beschichtung
US7229701B2 (en) * 2004-08-26 2007-06-12 Honeywell International, Inc. Chromium and active elements modified platinum aluminide coatings

Also Published As

Publication number Publication date
EP1754801A3 (de) 2008-04-02
US20080166589A1 (en) 2008-07-10
EP1754801A2 (de) 2007-02-21
DE102005036162A1 (de) 2007-02-08
US7655321B2 (en) 2010-02-02

Similar Documents

Publication Publication Date Title
EP1754801B1 (de) Bauteil mit einer Beschichtung
EP1082216B1 (de) Erzeugnis mit einer schutzschicht gegen korrosion sowie verfahren zur herstellung einer schutzschicht gegen korrosion
DE60302396T2 (de) Verfharen zur Herstellung von Wärmedämmschicht mit Nitridpartikeln
DE60112382T2 (de) Oxidationsbeständige Werkstoffe aus Superlegierungen niedriger Dichte, geeignet zum Aufbringen von Wärmedämmschichten ohne Haftvermittlerschicht
DE60305329T2 (de) Hochoxidationsbeständige komponente
EP1743958B1 (de) Verfahren zum Behandeln der Schaufelspitze einer Turbinenschaufel sowie mit einem solchen Verfahren behandelte Turbinenschaufel
EP1616979B1 (de) Schutzschicht zum Aufbringen auf ein Substrat und Verfahren zur Herstellung einer Schutzschicht
DE2520192C2 (de) Verwendung von Nicocraly-Legierungen als Werkstoffe zum Beschichten von Superlegierungsgegenständen
EP0786017B1 (de) Schutzschicht zum schutz eines bauteils gegen korrosion, oxidation und thermische überbeanspruchung sowie verfahren zu ihrer herstellung
DE69732046T2 (de) Schutzbeschichtung für hochtemperatur
DE2657288C2 (de) Überzogener Superlegierungsgegenstand und seine Verwendung
DE69925590T2 (de) Mehrschichtige haftbeschichtung für wärmedämmschicht und verfahren dazu
DE60038715T2 (de) Wärmedämmendes Beschichtungssystem für ein Turbinenmotorbauteil
DE19983957B4 (de) Beschichtungszusammensetzung für Hochtemperturschutz
EP1637622A1 (de) Verfahren zum Aufbringen einer Schutzschicht
DE2827667A1 (de) Verfahren zum aufbringen einer oberflaechendoppelschicht durch fusionsschweissen
DE3103129A1 (de) Thermisch belastbares maschinenteil und verfahren zu dessen herstellung
DE60022300T2 (de) Gegenstände mit korrosionsbeständigen Beschichtungen
EP1219389A1 (de) Verfahren zur Glättung der Oberfläche einer Gasturbinenschaufel
WO2007006681A1 (de) Keramische wärmedämmschicht
EP0868253A2 (de) Verfahren zur rissbeseitigung bei einem metallischen bauteil, insbesondere einer turbinenschaufel, sowie turbinenschaufel
DE3036206A1 (de) Verschleissfester, vor oxidation und korrosion schuetzender ueberzug, korrosions- und verschleissfeste ueberzugslegierung, mit einem solchen ueberzug versehener gegenstand und verfahren zum herstellen eines solchen ueberzugs
EP2695964A1 (de) Bauteilangepasste Schutzschicht
EP3438414A1 (de) Schaufel für strömungsmaschine mit verschiedenen diffusionsschutzschichten und verfahren zur herstellung
DE3907625C1 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080502

17Q First examination report despatched

Effective date: 20080612

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140122

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006013738

Country of ref document: DE

Effective date: 20140626

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MTU AERO ENGINES GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006013738

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006013738

Country of ref document: DE

Effective date: 20150217

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MTU AERO ENGINES AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210722

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210722

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220621

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220727

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006013738

Country of ref document: DE