EP1749228A1 - Systeme de transmission de donnees par l'intermediaire d'un guide d'ondes optiques en matiere plastique - Google Patents

Systeme de transmission de donnees par l'intermediaire d'un guide d'ondes optiques en matiere plastique

Info

Publication number
EP1749228A1
EP1749228A1 EP05739703A EP05739703A EP1749228A1 EP 1749228 A1 EP1749228 A1 EP 1749228A1 EP 05739703 A EP05739703 A EP 05739703A EP 05739703 A EP05739703 A EP 05739703A EP 1749228 A1 EP1749228 A1 EP 1749228A1
Authority
EP
European Patent Office
Prior art keywords
unit
data
binary
optical waveguide
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05739703A
Other languages
German (de)
English (en)
Inventor
Rainer Schenkyr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirschmann Automation and Control GmbH
Original Assignee
Hirschmann Automation and Control GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirschmann Automation and Control GmbH filed Critical Hirschmann Automation and Control GmbH
Publication of EP1749228A1 publication Critical patent/EP1749228A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5055Laser transmitters using external modulation using a pre-coder
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation

Definitions

  • the invention relates to a device for transmitting data via an optical waveguide according to the features of patent claim 1.
  • Data transmission via fiber optic cables has the advantage that no interference due to electromagnetic influences can occur during data transmission.
  • a transmission unit at one end of the optical waveguide is required for data transmission via optical waveguides, the data to be fed into the optical waveguide being converted from binary electrical data into optical signals via this transmitting unit.
  • the data fed in and transmitted at one end are then coupled out at the other end of the optical waveguide via a receiving unit and converted from optical to binary electrical signals there, so that they are available for further processing in the device connected there.
  • plastic optical waveguides with a light-guiding diameter of 1 mm are preferably used in the industrial environment, which can therefore be provided (assembled) quickly and reliably with a simple tool in an industrial environment.
  • an optical fiber made of plastic has the disadvantage of a smaller transmission bandwidth compared to an optical fiber made of glass, which is significantly less than 5 megahertz at a length of 1 km. With such a transmission bandwidth, a transmission rate of at most 10 megabits per second can at best be achieved, which, however, is far too low for data transmission in the industrial environment with today's requirements.
  • the invention is therefore based on the object of providing a device for data transmission via an optical waveguide in which, on the one hand, a plug connection can be attached to the ends of the optical waveguide quickly, easily, inexpensively and reliably, but at the same time also the required transmission rate of up to 100 Megabits per second (and possibly more) can be achieved.
  • the optical waveguide is a plastic optical waveguide.
  • the advantages of the easy and, above all, process-reliable mounting of connectors at the ends of the optical fibers are retained, with another advantage to be mentioned that the laying of such optical fibers made of plastic provides the required robustness in the industrial environment and also beyond are inexpensive. This is particularly noticeable when networking devices that are further away.
  • the transmission rate or bandwidth decreases with the distance of the devices to be networked, so that, on the other hand, the invention provides that a coding unit is connected upstream of the transmitting unit for converting the binary data in order to increase the data rate, and a decoding unit is connected downstream of the receiving unit.
  • the coding unit converts the signals pending for data transmission in such a way that the conversion results in an increase in the data rate.
  • the invention enables the binary data to be transmitted with a substantially higher transmission speed and a significantly increased bandwidth via an optical fiber made of plastic. This significantly increases the transmission rate while maintaining the advantages of the plastic optical fiber, so that it can be used in an industrial environment under today's requirements. If the data has been transmitted via the optical fiber made of plastic, it is necessary at the end of the optical fiber that the data be decoupled and converted back there, for which purpose a decoding unit is connected at the end of the optical fiber, which is designed for this conversion (decoding) of the transmitted data is.
  • the coding unit is designed to convert the binary digital data signal into a multi-stage coded signal, which has a power density spectrum shifted to a lower frequency range than the binary code, and the decoding unit for converting the multi-stage signal into a binary-coded output signal is trained.
  • This implementation represents one of are several ways to implement the binary data in order to increase the data rate with limited bandwidth of the transmission line.
  • the coding unit is designed for conversion according to an MLT-3 coding
  • the decoding unit is designed for converting back the MLT-3-coded data.
  • MLT-3 code is a special 3-level code with the output status of the coding unit 0, +1,
  • a logical 1 at the input of the coding unit means a change in the output state in the sequence described.
  • a logical 0 does not change the initial state.
  • the output states of the coding unit must be adapted accordingly in the optical transmitter unit, e.g. State -1 in “no light” (LED off), state 0 in “half light output” and state +1 in “full light output”.
  • light-emitting diodes are used for signal transmission, which emit light in the visible green area (preferably approximately 585 nm ⁇ 10%). This has the advantage that a very rapid conversion of the electrical signals into optical signals can be achieved by means of light-emitting diodes and the attenuation of the signals when using plastic optical fibers is very low in this length wave range.
  • the transmitter unit and / or the receiver unit have a direct, micro-reflector-assisted light coupling.
  • This increases the coupling efficiency between the means for converting the electrical signals into optical signals (or vice versa), which are, for example, light-emitting diodes, and the optical waveguide, it being possible to achieve increases of at least 5 dB, preferably 7 dB, and therefore transmission distances of a few hundred meters, preferably more than 500 meters.
  • FIG. 1 shows an inventive device for data transmission
  • FIG. 2 shows an automation system according to the prior art for using the device according to the invention
  • FIG. 3 shows a further embodiment of the device according to the invention according to FIG. 1,
  • FIG. 4 shows the design of a direct, microreflector-assisted light coupling
  • Figure 5 shows one end of the optical fiber with a connector.
  • FIG. 1 shows the configuration of a device 1 according to the invention for data transmission.
  • a coding unit 2 is provided on the input side has an input E, via which the coding unit 2 is supplied with binary electrical input signals.
  • the coding unit 2 is followed by a transmission unit 3 with which the binary electrical input signals are converted into optical signals after their conversion.
  • This transmission unit 3 is preferably light-emitting diodes.
  • the conversion of the electrical binary input signals in the coding unit 2 takes place according to methods as have already been described, for example, for patent claims 2 and 3.
  • the optical waveguide 4 is a plastic optical waveguide, for example a polymer or an HCS fiber. This list is only an example, so that other types of fibers can also be used.
  • a receiving unit 5 which converts the optical signals transmitted via the optical waveguide 4 into electrical signals. These converted signals are fed to a decoding unit 6, which is designed, for example, to convert the multistage signal back into the binary-coded output signal.
  • the binary input signals transmitted quickly and over a large distance are thus available for further processing as binary output signals at the output A of the decoding unit 6.
  • FIG. 2 shows an automation system 7 for using the device 1 for data transmission.
  • the automation system 7 shown by way of example consists of a control level 8, a process level 9 and a field level 10 in a manner known per se.
  • a control computer 11 which monitors a process (for example a production or a process-related sequence).
  • One or more process computers 12 are present within process level 9. These can be, for example, programmable logic controllers (PLCs).
  • PLCs programmable logic controllers
  • Input units are on the process computers 12 (For example sensors 13) and output units (for example actuators 14, actuators or the like) are connected.
  • the underlying process can be controlled or regulated with the signals of the input or output units.
  • the master computer 11 is connected to the process computers 12 via a data bus 15, wherein the master computers 12 can also be connected to their connected devices via corresponding bus systems.
  • the control computer 11 has an interface 16, just as the process computers 12 each have an interface 17, the connection to the data bus 15 being established at these interfaces 16, 17.
  • this data bus 15 is an optical waveguide made of plastic, which is particularly advantageous due to the harsh environmental conditions that prevail during the operation of the automation system 7.
  • FIG. 3 it is shown that the device according to the invention, as shown in FIG. 1, is connected on one side to the master computer 11 and on the other side to one of the process computers 12.
  • the coding unit 2 with its associated transmission unit 3 are connected to the control computer 11, while the reception unit 5 with its associated decoding unit 6 is connected to the control computer 12.
  • the units 2/3 or 5/6 form an independent module, which is connected on the one hand to the optical waveguide 4 and on the other hand to the interface 16, 17 of the control computer 11 or the process computer 12.
  • FIG. 4 shows that the transmitter unit 3 (the same applies analogously to the receiver unit 5) has a direct, micro-reflector-assisted light coupling.
  • the transmitter unit 3 (light-emitting diode) is followed by a reflector 18 (microreflector) and aligned in the direction of the end face of the end of the optical waveguide 4, so that the light emitted by the transmitter unit 3 is focused as completely as possible onto the end face of the optical waveguide 4 Avoid wastage. This increases the coupling efficiency between the transmitter unit 3 and the optical waveguide 4 in a particularly advantageous manner.
  • FIG. 5 shows the end of an optical waveguide 4 which, in a manner known per se, has a light-guiding conductor 19 (here made of plastic), around which a sheathing 20 is arranged.
  • This optical waveguide 4 made of plastic can be provided with a plug 21 in a simple manner, a part of the sheathing 20 being removed beforehand, and depending on the design of the plug connector 21, the sheathing 20 may not be removed.
  • this end of the optical waveguide 4 is connected to the transmitting unit 3 or the receiving unit 5.
  • the counterpart (socket) matching the plug connector 21 is part of the transmitter unit 3 (or the receiver unit 5) or a module (consisting of the units 2/3 or 5/6) or part of the interfaces of devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

L'invention concerne un système (1) de transmission de données par l'intermédiaire d'un guide d'ondes optiques (4) à une extrémité duquel des données binaires sont acheminées par une unité émettrice (3), les données acheminées et transmises étant extraites à l'autre extrémité par une unité réceptrice (5). Selon l'invention, pour convertir les données électriques binaires afin d'accroître la vitesse de transmission, une unité de codage (2) est montée en amont de l'unité émettrice (3) et une unité de décodage (6) est montée en aval de l'unité réceptrice (5), le guide d'ondes optiques (4) étant un guide d'ondes optiques en matière plastique.
EP05739703A 2004-05-19 2005-04-13 Systeme de transmission de donnees par l'intermediaire d'un guide d'ondes optiques en matiere plastique Withdrawn EP1749228A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410025280 DE102004025280A1 (de) 2004-05-19 2004-05-19 Vorrichtung zur Datenübertragung über einen Lichtwellenleiter
PCT/EP2005/003855 WO2005116710A1 (fr) 2004-05-19 2005-04-13 Systeme de transmission de donnees par l'intermediaire d'un guide d'ondes optiques en matiere plastique

Publications (1)

Publication Number Publication Date
EP1749228A1 true EP1749228A1 (fr) 2007-02-07

Family

ID=34966773

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05739703A Withdrawn EP1749228A1 (fr) 2004-05-19 2005-04-13 Systeme de transmission de donnees par l'intermediaire d'un guide d'ondes optiques en matiere plastique

Country Status (3)

Country Link
EP (1) EP1749228A1 (fr)
DE (1) DE102004025280A1 (fr)
WO (1) WO2005116710A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008022726A1 (de) 2008-05-06 2009-11-12 Winkler, Kurt, Dr. Verfahren für den Kontakt einer Gasphase mit einer Flüssigkeit in Anwesenheit eines Feststoffes
CN110958076B (zh) * 2018-09-26 2021-06-11 珠海格力电器股份有限公司 一种数据传输的方法和设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631428A (en) * 1984-10-26 1986-12-23 International Business Machines Corporation Communication interface connecting binary logic unit through a trinary logic transmission channel
US5577069A (en) * 1994-08-02 1996-11-19 National Semiconductor Corporation Signalling method and structure suitable for out-of-band information transfer in communication network
US5673130A (en) * 1996-01-02 1997-09-30 Motorola, Inc. Circuit and method of encoding and decoding digital data transmitted along optical fibers
US5896417A (en) * 1996-10-25 1999-04-20 National Semiconductor Corporation Apparatus utilizing current-to-voltage conversion for transmitting data at different data transfer rates especially in applications such as dual-rate ethernet local-area networks
US5995512A (en) * 1997-01-17 1999-11-30 Delco Electronics Corporation High speed multimedia data network
JPH11186993A (ja) * 1997-12-18 1999-07-09 Matsushita Electric Ind Co Ltd 光伝送システム
JP3085275B2 (ja) * 1998-02-18 2000-09-04 日本電気株式会社 2値光伝送方法及び2値光伝送システム
US6204948B1 (en) * 1998-07-02 2001-03-20 Ortronics, Inc. Media converter
US6744987B1 (en) * 2000-04-17 2004-06-01 Delphi Technologies, Inc Tertiary optical media interface
US6600597B2 (en) * 2001-03-19 2003-07-29 Jds Uniphase Corporation Photonic crystal amplifier for optical telecommunications system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005116710A1 *

Also Published As

Publication number Publication date
WO2005116710A1 (fr) 2005-12-08
DE102004025280A1 (de) 2005-12-15

Similar Documents

Publication Publication Date Title
EP0033445B1 (fr) Système passif à barre omnibus pour des systèmes décentralisés de multiprocesseur, en particulier pour des systèmes de multimicroordinateur
DE10239575B3 (de) Steckverbinder zwischen einer Leiterplatte und einer Backplane
WO2019122064A1 (fr) Module de batterie électrique utilisant une communication optique
DE10310148A1 (de) Lichtleiterkupplung
DE19636162B4 (de) Verbindungskabel mit mindestens einem Lichtwellenleiter mit endseitig angeordneten Anschlußelementen
EP1749228A1 (fr) Systeme de transmission de donnees par l'intermediaire d'un guide d'ondes optiques en matiere plastique
DE102007062658A1 (de) Hybrid-Steckverbindung
DE3303624C1 (de) Steckbare Verbindungen für Lichtwellenleiter mit elektrischen Schnittstellen
DE102006036561B4 (de) Vorrichtung zur Übertragung von Daten und Energie in einem Kraftfahrzeug
EP3510710B1 (fr) Optocoupleur pourvu d'un chemin optique de transmission et de connexions électriques et module électronique, dans lequel un tel optocoupleur est incorporé
DE102004017262A1 (de) Konfigurierbare Kommunikationsmodule und Verfahren zur Herstellung derselben
EP1869805B1 (fr) Dispositif de couplage electro-optique
WO2008110284A1 (fr) Module d'interface et procédé d'exploitation de celui-ci
DE102008025095A1 (de) Antennendose
EP1654575A1 (fr) Systeme modulaire pour un bus de face arriere optique
DE3833841C2 (de) Funkfernsteuervorrichtung
DE2611011A1 (de) Optische koppelanordnung fuer systeme der optischen nachrichtentechnik
DE102014212083A1 (de) Datennetz in Faserverbundkarosseriebauteil
DE102021126914B3 (de) Steckverbinder zur optischen und elektrischen signalübertragung sowie verfahren zur herstellung
DE10260940B3 (de) Vorrichtung und Verfahren zur breitbandigen Übertragung digitaler optischer Signale zwischen beweglichen Einheiten
EP0771049B1 (fr) Dispositif de raccordement électrique pour le réseau domestique
DE3823974A1 (de) Zur datenuebertragung ausgebildeter lichtwellenleiter sowie datenbus-system fuer ein kraftfahrzeug
WO2002033790A1 (fr) Connecteur a fiches
EP3203659B1 (fr) Unité de noeud électronique, système de transmission de données docsis et procédé de modulation de moyens de production de signaux lumineux
DE4112752A1 (de) Verbindungselement fuer aus kunststoff bestehende, lichtleitende fasern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060818

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080520

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081202