EP1748992A1 - Trimere makrocyclisch substituierte aminoisophthalsäure-halogen-benzolderivate - Google Patents

Trimere makrocyclisch substituierte aminoisophthalsäure-halogen-benzolderivate

Info

Publication number
EP1748992A1
EP1748992A1 EP05741025A EP05741025A EP1748992A1 EP 1748992 A1 EP1748992 A1 EP 1748992A1 EP 05741025 A EP05741025 A EP 05741025A EP 05741025 A EP05741025 A EP 05741025A EP 1748992 A1 EP1748992 A1 EP 1748992A1
Authority
EP
European Patent Office
Prior art keywords
metal
iii
general formula
mmol
agents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05741025A
Other languages
English (en)
French (fr)
Inventor
Juan R. Harto
José L. MARTIN
Johannes Platzek
Heiko Schirmer
Hanns-Joachim Weinmann
Jose Carretero
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Pharma AG
Original Assignee
Schering AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schering AG filed Critical Schering AG
Publication of EP1748992A1 publication Critical patent/EP1748992A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • A61K49/0433X-ray contrast preparations containing an organic halogenated X-ray contrast-enhancing agent
    • A61K49/0438Organic X-ray contrast-enhancing agent comprising an iodinated group or an iodine atom, e.g. iopamidol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/085Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier conjugated systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/101Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals
    • A61K49/106Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals the complex-forming compound being cyclic, e.g. DOTA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings

Definitions

  • Tribromobenzene derivatives their preparation and use as contrast agents in X-ray and MRI diagnostics.
  • Imaging techniques such as DAS, CT and MRI have become the standard and indispensable tools in diagnostics and interventional radiology and today offer a spatial resolution of less than 1 mm.
  • the applications of these techniques continue to be significantly enhanced by the use of contrast agents.
  • This widespread prevalence and acceptance of contrast media in X-ray diagnostics is due to the introduction of nonionic monomeric triiodoaromatics in the 1980s, as well as the isoosmolar dimeric iodoaromatics introduced in the 1990s.
  • x-ray examiners have recently been using non-iodinated Gd chelates more frequently than traditional triiodoaromatics in computed tomography, but also in interventional radiology and DSA (Gierada DS, Bae KT: Gadolinium as CT contrast agent: Assessment in a porcine model, Radiology 210, 829-834, 1999.
  • Gierada DS, Bae KT Gadolinium as CT contrast agent: Assessment in a porcine model, Radiology 210, 829-834, 1999.
  • Spinosa D. Matsumoto AH, Hagspiel KD, Angle JF, Hartwell GD: Gadolinium-based contrast agents in angiography and interventional radiology. AJR 173; 1403-1409, 1999.
  • the aforementioned Gd-containing chelate compounds originally used in MRI are likewise readily soluble in water and are distinguished by excellent compatibility. Compared with the iodine-containing / nonionic contrast agents, the rate of mild pseudoallergic reactions is greatly reduced, the rate of fatal reactions is extremely rare and is given as 1/1000000 (Runge VM: Safety of approved MR contrast media for intravenous injection, J. Magn Reson Imaging 12, 205-213, 2000). Pseudoallergic reactions are in contrast to other contrast agent-induced side effects, e.g. Renal tolerance, rather independent of the dose administered. Even the smallest dosages can trigger a pseudoallergic reaction.
  • the aim is to produce compounds which have sufficient hydrophilicity - comparable to those of Gd chelates - and additionally have a high concentration of contrasting elements. Values significantly higher than the metal chelates present at about 25% (w / w) would be desirable. At a higher concentration, very good water solubility must be maintained. The highly concentrated solutions must also demonstrate, in addition to their good pharmacological properties, a practical viscosity and a low osmotic pressure.
  • X meaning a hydrogen atom or a metal ion equivalent of atomic numbers 20-29, 39, 42, 44 or 57-83, with the provisos that at least two X are metal ion equivalents and optionally present free carboxy groups optionally as salts of organic and / or inorganic bases or amino acids or amino acid amides show a very good solubility and a distribution coefficient comparable to that of Gd chelates.
  • the new compounds have a high specific content of contrasting elements, a low viscosity and osmolality, and thus good tolerance / compatibility, so that they are excellent as contrast agents for X-ray and MR imaging are suitable.
  • the compounds of general formula I according to the invention can be prepared by processes known to those skilled in the art by reacting a triiodo or Tribromaromaten of the general formula II
  • W is a protective group
  • A, r in the meaning of - CO-NH- (CH 2 ) 2 -NH 2 and A ⁇ 2 ' ⁇ in the meaning of - N (CH 3 ) -CO-CH 2 -NH 2 are, reacted and then removed the protective group W and the radicals CH 2 COOX introduced in a conventional manner and then in a conventional manner with a metal oxide or metal salt of an element of atomic numbers 20-29, 39, 42, 44 or 57-83 implements.
  • Suitable amino protecting groups W are the benzyloxycarbonyl, tertiary-butoxycarbonyl, trifluoroacetyl, fluorenylmethoxycarbonyl, benzyl, formyl, 4-methoxybenzyl, 2,2,2-trichloroethoxycarbonyl, phthaloyl, 1,2-oxazoline known to those skilled in the art , Tosyl, dithiasuccinoyl, allyloxycabonyl, sulphate, pent-4-encarbonyl, 2-chloroacetoxymethyl (or ethyl) benzoyl, tetrachlorophthaloyl, alkyloxycarbonyl groups [Th. W.
  • the cleavage of the protective groups is carried out according to the methods known to the person skilled in the art (see, for example, E. Wünsch, Methoden der Org. Chemie, Houben-Weyl, Vol. XV / 1, 4th edition 1974, p. 315), for example by hydrolysis, hydrogenolysis, alkaline saponification the ester with alkali in aqueous-alcoholic solution at temperatures from 0 ° C to 50 ° C, acid hydrolysis with mineral acids or in the case of Boc groups with the aid of trifluoroacetic acid.
  • the introduction of the desired metal ions can be carried out in the manner disclosed in patents EP 71564, EP 130934 and DE-OS 34 01 052.
  • the metal oxide or a metal salt for example a chloride, nitrate, acetate, carbonate or sulfate
  • a lower alcohol such as methanol, ethanol or isopropanol
  • the neutralization of any remaining free carboxy groups is carried out with the aid of inorganic bases (for example, hydroxides, carbonates or bicarbonates) of, for example, sodium, potassium, lithium, magnesium or calcium and / or organic bases such as primary, secondary and tertiary amines, such as ethanolamine, Morpholine, glucamine, N-methyl and N, N- Dimethylglucamine, as well as basic amino acids such as lysine, arginine and ornithine or amides original neutral or acidic amino acids.
  • inorganic bases for example, hydroxides, carbonates or bicarbonates
  • inorganic bases for example, hydroxides, carbonates or bicarbonates
  • organic bases such as primary, secondary and tertiary amines, such as ethanolamine, Morpholine, glucamine, N-methyl and N, N- Dimethylglucamine, as well as basic amino acids such as lysine, arginine and ornithine or amides original neutral or acidic amino
  • the neutral complex compounds it is possible to add, for example, in acidic complex salts in aqueous solution or suspension, so much of the desired base that the neutral point is reached.
  • the resulting solution can then be concentrated to dryness in vacuo.
  • water-miscible solvents e.g. lower alcohols (methanol, ethanol, isopropanol and others), lower ketones (acetone and others), polar
  • Ethers tetrahydrofuran, dioxane, 1, 2-dimethoxyethane and others
  • the purification of the complexes thus obtained takes place optionally after adjustment of the pH by addition of an acid or base to pH 6 to 8, preferably about 7, preferably by ultrafiltration with membranes of suitable pore size (eg Amicon® YM1, Amicon® YM3), Gel filtration on eg suitable Sephadex® gels or by HPLC on silica gel or reverse-phase material.
  • suitable pore size eg Amicon® YM1, Amicon® YM3
  • suitable filtration eg suitable Sephadex® gels or by HPLC on silica gel or reverse-phase material.
  • Purification can also be carried out by crystallization from solvents such as methanol, ethanol, i-propanol, acetone or mixtures thereof with water.
  • oligomeric complexes via an anion exchanger, for example IRA 67 ( OH.sup.- form) and optionally additionally via a cation exchanger, for example IRC 50 (H.sup. + Form) for the separation of ionic components
  • anion exchanger for example IRA 67 ( OH.sup.- form)
  • a cation exchanger for example IRC 50 (H.sup. + Form)
  • the preparation of the compounds of general formula I according to the invention can be carried out as indicated above:
  • the reaction of triiodo or Tribromaromaten of the general formula II with compounds of the general formula IM is carried out according to the method of amide formation known in the art.
  • activated carboxyl group is meant above those carboxyl groups which are derivatized so as to facilitate the reaction with an amine. Which groups can be used for activation is known and reference can be made, for example, to M. and A. Bodanszky, "The Practice of Peptide Synthesis", Springerverlag 1984. Examples are adducts of the carboxylic acid with carbodiimides or activated esters such as e.g. Hydroxybenzotriazole. Acid chloride, N-hydroxysuccinimide ester,
  • 4-nitrophenyl esters and N-hydroxysuccinimide esters are preferred.
  • Suitable activating reagents are dicyclohexylcarbodiimide (DCC), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), benzotriazole-1-yloxytris (dimethylamino) phosphonium hexafluorophosphate (BOP) and O- (benzotriazole-1).
  • DCC dicyclohexylcarbodiimide
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
  • EDC benzotriazole-1-yloxytris (dimethylamino) phosphonium hexafluorophosphate (BOP) and O- (benzotriazole-1).
  • yl) -1, 1, 3,3-tetramethyluronium hexafluorophosphate (HBTU) preferably DCC.
  • O-nucleophilic catalysts
  • the nucleofug advantageously used are the radicals: F, Cl, Br, I, - OTs, - OMs, OH,
  • the compounds according to the invention can be used both in X-ray and MR diagnostics.
  • the high radiopacity combined with their good water solubility of the halogenated X-ray contrast media is combined with the pronounced hydrophilicity of the metal chelates and their inherent good compatibility in one molecule.
  • the very high hydrophilicity of the new compounds results in the side effect profile corresponding to that of the very well-tolerated Gd compounds used in MR imaging. This property therefore makes them particularly suitable for use in patients with a proven allergy to iodinated compounds or in the presence of atopy.
  • the incidence of serious side effects such as bronchospasm and shock or even death is lowered to the low level of MR contrast agents.
  • the low osmolality of the formulations is indicative of a general very good compatibility of the new compounds. They are therefore particularly suitable for intravascular (parenteral) applications.
  • the contrast agents can be used exclusively for X-ray diagnostics (trihalogen complexes with diamagnetic metals) but also simultaneously for X-ray and MRI diagnostics (trihalogen complexes with paramagnetic atoms, preferably Gd).
  • X-ray diagnostics trihalogen complexes with diamagnetic metals
  • MRI diagnostics trihalogen complexes with paramagnetic atoms, preferably Gd.
  • the compounds e.g. used in urography, computer tomography, angiography, gastrography, mammography, cardiology and neuroradiology.
  • the complexes used are beneficial.
  • the connections are suitable for all perfusion measurements. Differentiation of well-blooded and ischemic areas is possible after intravascular injection. In general, these compounds can be used in all indications where conventional contrast agents are used in X-ray or MR diagnostics.
  • novel contrast agents can also be used for the magnetization-transfer technique (see, for example, Journ Chem.Phys., 39 (11), 2892 (1963), and WO 03/013616) in that they contain mobile protons in their chemical structure.
  • diagnostic value is the contrasting of cerebral infarctions and tumors of the liver or space-occupying processes in the liver as well as of tumors of the abdomen (including the kidneys) and of the musculoskeletal system. Due to the low osmotic pressure, the blood vessels are particularly advantageous after intraarterial but also intravenous injection representable.
  • the metal ion of the signaling group must be paramagnetic.
  • these are in particular the divalent and trivalent ions of the elements of atomic numbers 21-29, 42, 44 and 58-70.
  • suitable ions are the chromium (III), iron (II), cobalt (II), nickel (II), copper (II), praseodymium (III), neodymium (III), samarium (III ) and ytterbium (III) ion.
  • the metal ion is preferably derived from an element of a higher atomic number in order to achieve sufficient absorption of the X-rays. It has been found that for this purpose diagnostic agents containing a physiologically compatible complex salt with metal ions of elements of atomic numbers 25, 26 and 39 and 57-83 are suitable.
  • compositions according to the invention are prepared in a manner known per se by suspending or dissolving the complex compounds according to the invention-optionally with the addition of the additives customary in galenicals-in an aqueous medium and then, if appropriate, sterilizing the suspension or solution.
  • Suitable additives are for example physiologically acceptable buffers (such as tromethamine), additions of complexing agents or weak complexes (such as diethylenetriaminepentaacetic acid or the corresponding to the metal complexes of the invention Ca complexes) or - if necessary - electrolytes such as sodium chloride or - if necessary - Antioxidants such as ascorbic acid.
  • physiologically acceptable buffers such as tromethamine
  • complexing agents or weak complexes such as diethylenetriaminepentaacetic acid or the corresponding to the metal complexes of the invention Ca complexes
  • - electrolytes such as sodium chloride or - if necessary - Antioxidants such as ascorbic acid.
  • suspensions or solutions of the agents according to the invention in water or physiological saline solution are desired for enteral or parenteral administration or other purposes, they are combined with one or more excipients customary in galenicals [for example methylcellulose, lactose, mannitol] and / or surfactant (s) [for example, lecithins, Tween ®, Myrj ®] and / or flavoring substance (s) for taste correction [for example, ethereal oils].
  • excipients customary in galenicals
  • s for example, lecithins, Tween ®, Myrj ®
  • flavoring substance (s) for taste correction for example, ethereal oils.
  • the invention therefore also relates to processes for the preparation of the complex compounds and their salts. As last certainty remains a cleaning of the isolated complex.
  • these can be administered together with a suitable carrier, for example serum or physiological saline, and together with another protein, such as, for example, human serum albumin (HSA).
  • a suitable carrier for example serum or physiological saline
  • another protein such as, for example, human serum albumin (HSA).
  • HSA human serum albumin
  • the agents according to the invention are usually administered parenterally, preferably i.v. They may also be administered intraarterially or interstitially / intracutaneously, depending on whether a vessel / organ is to be selectively contrasted (e.g., imaging of the coronary arteries following intraarterial injection) or tissue (e.g., diagnosis of brain tumors after intravenous injection).
  • parenterally preferably i.v. They may also be administered intraarterially or interstitially / intracutaneously, depending on whether a vessel / organ is to be selectively contrasted (e.g., imaging of the coronary arteries following intraarterial injection) or tissue (e.g., diagnosis of brain tumors after intravenous injection).
  • compositions according to the invention preferably contain 0.001-1 mol / l of said compound and are usually dosed in amounts of 0.001-5 mmol / kg.
  • compositions according to the invention fulfill the diverse requirements for suitability as contrast agents for magnetic resonance tomography.
  • they are excellently suitable for improving the expressiveness of the image obtained with the help of the MR tomograph after oral or parenteral administration by increasing the signal intensity.
  • they show the high Effectiveness necessary to burden the body with the least amount of foreign matter, and the good tolerability necessary to maintain the non-invasive nature of the studies.
  • the high efficiency (relaxivity) of the paramagnetic compounds of the invention is usually two to four times greater than conventional Gd complexes (eg Gadobutrol).
  • compositions according to the invention make it possible to produce highly concentrated solutions in order to keep the volume load of the circulation within acceptable limits and to compensate for the dilution by the body fluid. Furthermore, the compositions of the invention not only have a high stability in vitro, but also a surprisingly high stability in vivo, so that a release or exchange of bound in the complexes - in itself toxic - ions within the time in which the new contrast agent completely excreted, only extremely slowly.
  • the agents according to the invention are dosed for use as MRI diagnostic agents in amounts of 0.001-5 mmol Gd / kg, preferably 0.005-0.5 mmol Gd / kg.
  • compositions according to the invention are outstandingly suitable as X-ray contrast agents, it being particularly noteworthy that they do not show any signs of the anaphylactic reactions known from the iodine-containing contrast agents in biochemical-pharmacological investigations. In the case of strong X-ray absorption, they are particularly effective in areas of higher tube voltages (eg, CT and DSA).
  • the agents according to the invention for use as X-ray contrast agents in analogy to, for example, meglumine-diatrizoate in amounts of 0.01 to 5 mmol / kg, preferably 0.02 to 1 mmol substance / kg, which in the case of eg iodine-Dy compounds 0.06-6 mmol (l + Dy) / kg, dosed.
  • formulations can be used in which the percentage of paramagnetic substances (eg Gd) is reduced to 0.05 to 50, preferably to 2-20%.
  • Gd paramagnetic substances
  • an application in cardiac diagnostics is mentioned.
  • a formulation consisting of the substances according to the invention in a total concentration of, for example, 0.25 mol / L is used.
  • the proportion of Gd-containing complexes is 20%, the remaining 80% of the metals are eg Dy atoms.
  • 50 mL are used, ie 0.18 mmol substance per kg body weight in a 70 kg patient.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cardiology (AREA)
  • Oncology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Communicable Diseases (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

Die Metallkomplexe der allgemeinen Formel I worin Hal für Brom oder Iod steht und A1 und A2 unterschiedliche Bedeutung haben sind als Kontrastmittel geeignet.

Description

Trimere makrocyclisch substituierte Aminoisophthalsäure-Halogen- Benzolderivate
Die Erfindung betrifft die in den Patentansprüchen gekennzeichneten Gegenstände: neue trimere makrocyclisch substituierte Trijod- und
Tribrombenzolderivate, deren Herstellung und Verwendung als Kontrastmittel in der Röntgen- und MRT-Diagnostik.
Während des letzten Jahrzehntes wurden in der bildgebenden Diagnostik beeindruckende Fortschritte erzielt. Die Bildgebungstechniken wie DAS, CT und MRT haben sich zu den normalen und unverzichtbaren Werkzeugen in der Diagnostik und interventionellen Radiologie entwickelt und bieten heute eine räumliche Auflösung von weniger als 1 mm. Die Anwendungsmöglichkeiten dieser Techniken werden weiterhin entscheidend durch den Einsatz von Kontrastmitteln erhöht. Diese heutige weite Verbreitung und Akzeptanz der Kontrastmittel in der Röntgendiagnostik ist auf die Einführung von nichtionischen monomeren Triiodaromaten in den 80er Jahren, sowie die in den 90er Jahren eingeführten isoosmolaren dimeren lodaromaten zurückzuführen. Durch diese beiden Verbindungsklassen wurde die Frequenz von kontrastmittelinduzierten Nebenwirkungen auf 2 - 4% reduziert (Bush W.H., Swanson D.P. : Acute reactions to intravascular contrast media: Types, risk factors, recognition and specific treatment. AJR 157, 1153-1161 , 1991. Rydberg J., Charles J., Aspelin P.: Frequency of late allergy-like adverse reactions following injection of intravascular non-ionic contrast media. Acta Radiolόgica 39, 219-222, 1998). Die Anwendung der Kontrastmittel in Verbindung mit den modernen Bildgebungstechniken reicht heute von der Detektion von Tumoren, zur hochauflösenden Gefäßdarstellung, bis hin zur quantitativen Bestimmung von physiologischen Faktoren wie Permeabilität oder Perfusion von Organen. Maßgeblich für den Kontrast und die Nachweisempfindlichkeit ist die Konzentration des Röntgenkontrastmittels (hier des lod Atoms). Trotz Weiterentwicklung der Technik konnte die für eine medizinische Diagnose notwendige Konzentration bzw. die zu applizierende Dosis nicht reduziert werden. So werden in einer klassischen CT Untersuchung 100 g Substanz oder mehr pro Patient injiziert.
Obgleich die Verträglichkeit der Röntgenkontrastmittel durch die Einführung der nichtionischen Triiodbenzole verbessert worden ist, sind die Nebenwirkungen noch immer hoch. Aufgrund der sehr hohen Untersuchungszahlen von mehreren Millionen pro Jahr in der Röntgendiagnostik sind somit zehntausende Patienten betroffen. Diese kontrastmittelinduzierten Nebenwirkungen reichen von leichten Reaktionen wie Nausea, Schwindelgefühl, Erbrechen, Urticaria bis hin zu schweren Reaktionen wie Bronchospasmus, Nierenversagen bis zu Reaktionen wie Schock oder sogar Tod. Glücklicherweise sind diese schweren Fälle sehr selten und werden mit einer Häufigkeit von nur 1/200000 beobachtet (Morcos S.K., Thomsen H.S.: Adverse reactions to iodinated contrast media. Eur Radiol H, 1267-1275, 2001).
Die Häufigkeit dieser auch als pseudoallergischen kontrastmittelinduzierten beobachteten Nebenwirkungen wird aber ca. um den Faktor 3 bei atopischen Patienten, und um den Faktor 5 bei Patienten mit einer Vorgeschichte kontrastmittelinduzierter Nebenwirkungen erhöht. Asthma erhöht das Risiko schwerer kontrastmittel-induzierter Nebenwirkungen um den Faktor 6 bei nichtionischen Kontrastmitteln (Thomsen H.S., Morcos S.K.: Radiographic contrast media. BJU 86 (Suppl1),1-10, 2000. Thomsen H.S., Dorph S.: High-osmolar and low-osmolar contrast media. An update on frequency of adverse drug reactions. Acta Radiol 34, 205-209, 1993. Katayama H, Yamaguchi K., Kozuka T., Takashima T., Seez P., Matsuura K.: Adverse reactions to ionic and nonionic contrast media. Radiology 175, 621-628, 1990. Thomsen H.S., Bush Jr W.H.: Adverse effects on contrast media. Incidence, prevention and management. Drug Safety 19: 313-324, 1998). In diesen Situationen verwenden die Untersucher für die Röntgendiagnostik in letzter Zeit immer häufiger nicht- iodhaltige Gd-Chelate anstelle der klassischen Triiodaromaten in der Computertomographie aber auch in der interventionellen Radiology sowie der DSA (Gierada D.S., Bae K.T.: Gadolinium as CT contrast agent: Assessment in a porcine model. Radiology 210, 829-834, 1999. Spinosa D ., Matsumoto A.H., Hagspiel K.D., Angle J.F., Hartwell G.D.:Gadolinium-based contrast agents in angiography and interventional radiology. AJR 173; 1403-1409, 1999. Spinosa D ., Kaufmann J.A., Hartwell G.D. : Gadolinium chelates in angiography and interventional radiology: A useful alternative to iodinated contrast media for angiography. Radiology 223, 319-325, 2002). Dies ist zum einen durch die sehr gute Verträglichkeit der in der MRT verwendeten Metallchelate begründet, aber auch durch die bekannte Tatsache, dass Lanthanide ebenfalls röntgendicht sind. Gadolinium und andere Lanthaniden zeigen gegenüber lod insbesondere bei höheren Spannungen/Energien der Röntgenstrahlung eine größere Absorption als lod, so dass sie prinzipiell als kontrastgebende Elemente für die Röntgendiagnostik geeignet sind (Schmitz S., Wagner S., Schuhmann-
Giampieri G., Wolf K.J.: Evaluation of gadobutrol in an rabbit model as a new lanthanide contrast agent for Computer tomography. Invest. Radiol. 30(11): 644- 649, 1995).
Die genannten ursprünglich in der MRT eingesetzten Gd-haltigen Chelatverbindungen sind ebenfalls gut wasserlöslich und zeichnen sich durch eine exzellente Verträglichkeit aus. Gegenüber den iodhaltigen/nichtionischen Kontrastmitteln ist die Rate leichter pseudoallergischer Reaktionen stark verringert, die Rate fataler Reaktionen ist extrem selten und wird mit 1/1000000 angegeben (Runge V.M.: Safety of approved MR contrast media for intravenous injection. J. Magn Reson Imaging 12, 205-213, 2000). Pseudoallergische Reaktionen sind im Gegensatz zu anderen kontrastmittelinduzierten Nebenwirkungen, wie z.B. die Nierenverträglichkeit, eher unabhängig von der verabreichten Dosis. Auch kleinste Dosierungen können demnach schon eine pseudoallergische Reaktion auslösen.
Gewünscht sind Substanzen, die die Vorteile beider chemisch total unterschiedlicher Verbindungsklassen vereinen.
Für eine geringe Unverträglichkeitsrate spricht die außerordentlich hohe Hydrophilie der Metallchelate. lodaromate weisen ein um den Faktor 100-200 höhere Lipophilie (größerer Verteilungskoeffizient zwischen Butanol/Wasser) als Metallchelate auf. Aufgrund der geringen Substanzkonzentration und des geringen spezifischen Anteils des bildgebenden Metalls am Gesamtmolekül sind die bisher bekannten Metallchelate für die Röntgendiagnostik nicht optimal (Albrecht T., Dawson P.: Gadolinium-DTPA as X-ray contrast medium in clinical studies. BJR 73, 878- 882, 2000). Neuere Ansätze zur Lösung dieses Problems beschreiben die Herstellung von Metallkomplexkonjugaten, in denen an einen offenkettigen oder makrocyclischen Metallkomplex Triiodaromaten kovalent gebunden sind (US 5,324,503, US 5,403,576, WO 93/16375, WO 00/75141 , WO 97/01359, WO 00/71526, US 5,660,814). Wegen ihrer geringen Hydrophilie und hohen Viskosität sind diese jedoch nicht in ausreichender Konzentration und vertretbaren Volumina zu applizieren.
Ziel ist es Verbindungen herzustellen, die eine ausreichende Hydrophilie - vergleichbar derjenigen von Gd-Chelaten - besitzen und zusätzlich eine hohe Konzentration von kontrastgebenden Elementen aufweisen. Werte, die deutlich höher sind als die bei etwa 25 % (g/g) liegenden Metallchelate, wären wünschenswert. Bei einer höheren Konzentration muss weiterhin eine sehr gute Wasserlöslichkeit gegeben sein. Die hochkonzentrierten Lösungen müssen neben ihren guten pharmakologischen Eigenschaften ebenfalls eine praktikable Viskosität und einen niedrigen osmotischen Druck aufzeigen.
Diese Aufgabe wird durch die vorliegende Erfindung gelöst.
1. Die erfindungsgemäßen Metallkomplexe der allgemeinen Formel I
worin Hai für Brom oder Jod, A1 für den Rest
-CONH-(CH2),-NH-CO-CH(CH3)-K
A für den Rest
— N(CH3)-CO-CH2-NH-CO-CH(CH3)-K stehen,
K für einen Makrocyclus der Formel
mit X in der Bedeutung eines Wasserstoffatoms oder eines Metallionenäquivalents der Ordnungszahlen 20-29,39, 42, 44 oder 57-83 stehen, mit den Maßgaben, dass mindestens zwei X für Metallionenäquivalente stehen und gegebenenfalls vorhandene freie Carboxygruppen gegebenenfalls als Salze organischer und/oder anorganischer Basen oder Aminosäuren oder Aminosäureamide vorliegen, zeigen eine sehr gute Löslichkeit und einen Verteilungskoeffizienten, der mit dem von Gd-Chelaten vergleichbar ist. Weiterhin weisen die neuen Verbindungen einen hohen spezifischen Gehalt an kontrastgebenden Elementen, eine niedrige Viskosität und Osmolalität, und damit gute Toleranz/Verträglichkeit auf, so dass sie hervorragend als Kontrastmittel für die Röntgen- und MR-Bildgebung geeignet sind. Die erfindungsgemäßen Verbindungen der allgemeinen Formel I lassen sich nach dem Fachmann bekannten Verfahren herstellen, indem man einen Trijod- oder Tribromaromaten der allgemeinen Formel II
in an sich bekannter Weise mit einem Makrocyclus der allgemeinen Formel IM
worin W für eine Schutzgruppe, A , r in der Bedeutung von — CO-NH-(CH2)2-NH2 und A ι 2' ■ in der Bedeutung von — N(CH3)-CO-CH2-NH2 stehen, umsetzt und anschließend die Schutzgruppe W entfernt und die Reste CH2COOX in an sich bekannter Weise einführt und anschließend in an sich bekannter Weise mit einem Metalloxid oder Metallsalz eines Elements der Ordnungszahlen 20-29, 39, 42, 44 oder 57-83 umsetzt. Als Aminoschutzgruppen W seien die dem Fachmann geläufigen Benzyloxycarbonyl-, tertiär-Butoxycarbonyl-, Trifluoracetyl-, Fluorenylmethoxycarbonyl-, Benzyl-, Formyl-, 4-Methoxybenzyl-, 2,2,2- Trichlorethoxycarbonyl-, Phthaloyl-, 1 ,2-Oxazolin-, Tosyl-, Dithiasuccinoyl-, Allyloxycabonyl-, Sulfat-, Pent-4-encarbonyl-, 2-Chloracetoxymethyl (bzw.-ethyl) benzoyl-, Tetrachlorphthaloyl-, Alkyloxycarbonylgruppen genannt [Th. W. Greene, P.G.M. Wuts, Protective Groups in Organic Syntheses, 2nd ed, John Wiley and Sons (1991), S. 309 - 385; E. Meinjohanns et al, J. Chem. Soc. Pekin Trans 1 , 1995, 405; U. Ellensik et al, Carbohydrate Research 280, 1996, 251 ; R. Madsen et al, J. Org. Chem. 60, 1995, 7920; R.R. Schmidt, Tetrahedron Letters 1995, 5343].
Die Abspaltung der Schutzgruppen erfolgt nach den dem Fachmann bekannten Verfahren (s. z.B. E. Wünsch, Methoden der Org. Chemie, Houben-Weyl, Bd XV/1 , 4. Auflage 1974, S. 315), beispielsweise durch Hydrolyse, Hydrogenolyse, alkalische Verseifung der Ester mit Alkali in wäßrig-alkoholischer Lösung bei Temperaturen von 0 °C bis 50 °C, saure Verseifung mit Mineralsäuren oder im Fall von Boc-Gruppen mit Hilfe von Trifluoressigsäure.
Die Einführung der gewünschten Metallionen kann in der Weise erfolgen, wie sie in den Patentschriften EP 71564, EP 130934 und DE-OS 34 01 052 offenbart worden ist. Dazu wird das Metalloxid oder ein Metallsalz (beispielsweise ein Chlorid, Nitrat, Acetat, Carbonat oder Sulfat) des gewünschten Elements in Wasser und/oder einem niederen Alkohol (wie Methanol, Ethanol oder Isopropanol) gelöst oder suspendiert und mit der Lösung oder Suspension der äquivalenten Menge des Komplexbildners umgesetzt.
Die Neutralisation eventuell noch vorhandener freier Carboxygruppen erfolgt mit Hilfe anorganischer Basen (z.B. Hydroxyden, Carbonaten oder Bicarbonaten) von z.B. Natrium, Kalium, Lithium, Magnesium oder Calcium und/oder organischer Basen wie unter anderem primärer, sekundärer und tertiärer Amine, wie z.B. Ethanolamin, Morpholin, Glucamin, N-Methyl- und N,N- Dimethylglucamin, sowie basischer Aminosäuren, wie z.B. Lysin, Arginin und Ornithin oder von Amiden ursprüngliche neutraler oder saurer Aminosäuren.
Zur Herstellung der neutralen Komplexverbindungen kann man beispielsweise in sauren Komplexsalzen in wässriger Lösung oder Suspension soviel der gewünschten Base zusetzen, dass der Neutralpunkt erreicht wird. Die erhaltene Lösung kann anschließend im Vakuum zur Trockne eingeengt werden. Häufig ist es von Vorteil, die gebildeten Neutralsalze durch Zugabe von mit Wasser mischbaren Lösungsmitteln, wie z.B. niederen Alkoholen (Methanol, Ethanol, Isopropanol und andere), niederen Ketonen (Aceton und andere), polaren
Ethern (Tetrahydrofuran, Dioxan, 1 ,2-Dimethoxyethan und andere) auszufällen und so leicht zu isolierende und gut zu reinigende Kristallisate zu erhalten. Als besonders vorteilhaft hat es sich erwiesen, die gewünschte Base bereits während der Komplexbildung der Reaktionsmischung zuzusetzen und dadurch einen Verfahrensschritt einzusparen.
Die Reinigung der so erhaltenen Komplexe erfolgt, gegebenenfalls nach Einstellung des pH-Wertes durch Zusatz einer Säure oder Base auf pH 6 bis 8, bevorzugt ca. 7, vorzugsweise durch Ultrafiltration mit Membranen geeigneter Porengröße (z.B. Amicon®YM1 , Amicon®YM3), Gelfiltration an z.B. geeigneten Sephadex®-Gelen oder durch HPLC an Kieselgel oder reverse- phase Material.
Eine Reinigung kann auch durch Kristallisation aus Lösungsmitteln wie Methanol, Ethanol, i-Propanol, Aceton oder deren Mischungen mit Wasser erfolgen.
Im Falle von neutralen Komplexverbindungen ist es häufig von Vorteil, die oligomeren Komplexe über einen Anionenaustauscher, beispielsweise IRA 67 (OH_-Form) und gegebenenfalls zusätzlich über einen Kationenaustauscher, beispielsweise IRC 50 (H+-Form) zur Abtrennung ionischer Komponenten zu geben
Die Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel I kann wie oben angegeben erfolgen: Die Umsetzung von Trijod- oder Tribromaromaten der allgemeinen Formel II mit Verbindungen der allgemeinen Formel IM erfolgt nach den dem Fachmann bekannten Verfahren der Amidbildung.
Hierbei kann entweder eine direkte Kupplung der freien Säure von III mit dem freien Amin von II mit wasserabspaltenden Reagenzien wie Dicyclohexylcarbodiimid, Diisopropylcarbodiimid, EDC, EEDQ, TBTU, HATU in aprotischen Lösungsmitteln wie DMF, DMA, THF, Dioxan, Toluol, Chloroform oder Methylenchlorid bei Temperaturen von 0° - 50° C durchgeführt werden, oder aber man aktiviert die Säuregruppe in der Verbindung der allgemeinen Formel III, indem man sie zuerst in einen Aktivester überführt und dann diesen Ester in einem Lösungsmittel, wie beispielsweise DMF, DMA, THF, Dioxan, Dichlormethan, i-ProOH, Toluol, gegebenenfalls unter Zusatz einer organischen oder anorganischen Base, wie NEt3, Pyridin, DMAP, Hünigbase, Na23, CaCO3 bei Temperaturen von -10° bis +70° C umsetzt mit dem Amin der allgemeinen Formel II.
Unter aktivierter Carboxylgruppe werden vorstehend solche Carboxylgruppen verstanden, die so derivatisiert sind, daß sie die Reaktion mit einem Amin erleichtern. Welche Gruppen zur Aktivierung verwendet werden können, ist bekannt und es kann beispielsweise auf M. und A. Bodanszky, "The Practice of Peptide Synthesis", Springerverlag 1984 verwiesen werden. Beispiele sind Adukte der Carbonsäure mit Carbodiimiden oder aktivierter Ester wie z.B. Hydroxybenzotriazolester. Säurechlorid, N-Hydroxysuccinimidester,
bevorzugt sind 4-Nitrophenylester und N-Hydroxysuccinimidester.
Die aktivierten Ester der vorstehend beschriebenen Verbindungen werden wie dem Fachmann bekannt hergestellt. Auch die Umsetzung mit entsprechend derivatisierten Estern von N-Hydroxysuccinimid wie beispielsweise:
ist möglich (Hai = Halogen).
Allgemein können für diesen Zweck alle üblichen Aktivierungsmethoden für Carbonsäuren verwendet werden, die im Stand der Technik bekannt sind. Die Aktivierung der Carbonsäure erfolgt nach den üblichen Methoden. Beispiele für geeignete Aktivierungsreagentien sind Dicyclohexylcarbodiimid (DCC), 1-Ethyl- 3-(3-dimethylaminopropyl)-carbodiimid-hydrochlorid (EDC), Benzotriazol-1- yloxytris(dimethylamino)-phosphoniumhexafluorophosphat (BOP) und O- (Benzotriazol-1-yl)-1 ,1 ,3,3-tetramethyluroniumhexafluorophosphat (HBTU), vorzugsweise DCC. Auch der Zusatz von O-nukleophilen Katalysatoren, wie z.B. N-Hydroxysuccinimid (NHS) oder N-Hydroxybenzotriazol ist möglich.
Als Nucleofug dienen vorteilhafterweise die Reste: F, Cl, Br, I, — OTs , — OMs , OH ,
Die Herstellung der Verbindung II ist in den Beispielen beschrieben.
Die Herstellung der entsprechenden Tri-Bromverbindungen erfolgt in analoger Weise wie in EP 0073715 beschrieben.
Verbindungen der allgemeinen Formel IM sind z.B. in WO 97/02051 , WO 99/16757 beschrieben oder können nach literaturbekannten Methoden einfach aus Tri-boc Cyclen, bzw. Tri-Z-Cyclen hergestellt werden.
Die erfindungsgemäßen Verbindungen sind sowohl in der Röntgen- als auch in der MR Diagnostik einsetzbar.
Die hohe Röntgendichte gepaart mit ihrer guten Wasserlöslichkeit der halogenierten Röntgenkontrastmittel ist mit der ausgeprägten Hydrophilie der Metall-Chelate und der ihnen innewohnenden guten Verträglichkeit in einem Molekül vereint. Die sehr hohe Hydrophilie der neuen Verbindungen führt dazu, dass das Nebenwirkungsprofil dem der sehr gut verträglichen Gd-Verbindungen entspricht, wie sie in der MR-Bildgebung verwendet werden. Diese Eigenschaft macht sie daher besonders geeignet für den Einsatz bei Patienten mit einer nachgewiesenen Allergie gegen iodierte Verbindungen oder bei vorhandener Atopie. Besonders wird die Inzidenz der schweren Nebenwirkungen wie Bronchospasmus und Schock oder gar Tod auf das niedrige Niveau der MR- Kontrastmittel gesenkt. Die geringe Osmolalität der Formulierungen ist Indiz für eine generelle sehr gute Verträglichkeit der neuen Verbindungen. Sie sind deshalb besonders für intravasale (parenterale) Anwendungen geeignet.
Je nach pharmazeutischer Formulierung können die Kontrastmittel exklusiv für die Röntgendiagnostik (Trihalogen Komplexe mit diamagnetischen Metallen) aber auch gleichzeitig für die Röntgen- und MRT Diagnostik (Trihalogen Komplexe mit paramagnetischen Atomen, vorzugsweise Gd) eingesetzt werden. Sehr vorteilhaft sind die Verbindungen z.B. in der Urographie, Computer Tomographie, Angiographie, Gastrographie, Mammographie, Kardiologie und Neuroradiologie einsetzbar. Auch bei der Strahlentherapie sind die verwendeten Komplexe von Vorteil. Die Verbindungen sind für alle Perfusionsmessungen geeignet. Eine Differenzierung von gut mit Blut versorgten und ischämischen Bereichen ist nach intravasaler Injektion möglich. Ganz allgemein können diese Verbindungen in allen Indikationen eingesetzt werden, wo konventionelle Kontrastmittel in der Röntgen- bzw. MR Diagnostik Verwendung finden.
Die neuen Kontrastmittel können ferner für die Magnetisierung-Transfer-Technik (siehe z.B. Journ. Chem.Phys. 39(11), 2892(1963), sowie WO 03/013616) Verwendung finden, soweit sie mobile Protonen in ihrer chemische Struktur enthalten.
Diagnostisch besonders wertvoll ist die Kontrastierung von Gehirninfarkten und Tumoren der Leber bzw. raumfordernden Prozessen in der Leber sowie von Tumoren des Abdomens (inklusive der Nieren) und des Muskel-Skelett- Systems. Aufgrund des niedrigen osmotischen Druckes sind besonders vorteilhaft die Blutgefäße nach intraarterieller aber auch intravenöser Injektion darstellbar.
Ist die erfindungsgemäße Verbindung zur Anwendung in der MR-Diagnostik bestimmt, so muss das Metallion der signalgebenden Gruppe paramagnetisch sein. Dies sind insbesondere die zwei- und dreiwertigen Ionen der Elemente der Ordnungszahlen 21-29, 42, 44 und 58-70. Geeignete Ionen sind beispielsweise das Chrom(lll)-, Eisen(ll)-, Kobalt(ll)-, Nickel(ll)-, Kupfer(ll)-, Praseodym(lll)-, Neodym(lll)-, Samarium(lll)- und Ytterbium(lll)-ion. Wegen ihres starken magnetischen Moments sind bevorzugt Gadolinium(lll)-, Terbium(lll)-, Dysprosium(lll)-, Holmium(lll)-, Erbium(lll)-, Eisen(lll)- und Mangan(ll)-ionen, besonders bevorzugt Gadolinium(lll)- und Mangan(ll)-ionen.
Ist die erfindungsgemäße Verbindung zur Anwendung in der Röntgen- Diagnostik bestimmt, so leitet sich das Metallion vorzugsweise von einem Element höherer Ordnungszahl ab, um eine ausreichende Absorption der Röntgenstrahlen zu erzielen. Es wurde gefunden, dass zu diesem Zweck diagnostische Mittel, die ein physiologisch verträgliches Komplexsalz mit Metallionen von Elementen der Ordnungszahlen 25, 26 und 39 sowie 57-83 enthalten, geeignet sind.
Bevorzugt sind Mangan(ll)-, Eisen(ll)-, Eisen(lll)-, Praseodym(lll)-, Neodym(lll)-, Samarium(lll)-, Gadolinium(lll)-, Ytterbium(lll)- oder Bismut(lll)- ionen, insbesondere Dysprosium(lll)-ionen und Yttrium(lll)-ionen.
Die Herstellung der erfindungsgemäßen pharmazeutischen Mittel erfolgt in an sich bekannter Weise, indem man die erfindungsgemäßen Komplexverbindungen - gegebenenfalls unter Zugabe der in der Galenik üblichen Zusätze - in wässrigem Medium suspendiert oder löst und anschließend die Suspension oder Lösung gegebenenfalls sterilisiert.
Geeignete Zusätze sind beispielsweise physiologisch unbedenkliche Puffer (wie zum Beispiel Tromethamin), Zusätze von Komplexbildnern oder schwachen Komplexen (wie zum Beispiel Diethylentriaminpentaessigsäure oder die zu den erfindungsgemäßen Metallkomplexen korrespondierenden Ca-Komplexe) oder - falls erforderlich - Elektrolyte wie zum Beispiel Natriumchlorid oder - falls erforderlich - Antioxidantien wie zum Beispiel Ascorbinsäure.
Sind für die enterale bzw. parenterale Verabreichung oder andere Zwecke Suspensionen oder Lösungen der erfindungsgemäßen Mittel in Wasser oder physiologischer Salzlösung erwünscht, werden sie mit einem oder mehreren in der Galenik üblichen Hilfsstoff(en) [zum Beispiel Methyl-cellulose, Lactose, Mannit] und/oder Tensid(en) [zum Beispiel Lecithine, Tween®, Myrj®] und/oder Aromastoff(en) zur Geschmackskorrektur [zum Beispiel ätherischen Ölen] gemischt. Prinzipiell ist es auch möglich, die erfindungsgemäßen pharmazeutischen Mittel ohne Isolierung der Komplexe herzustellen. In jedem Fall muss besondere Sorgfalt darauf verwendet werden, die Chelatbildung so vorzunehmen, dass die erfindungsgemäßen Komplexe praktisch frei sind von nicht komplexierten toxisch wirkenden Metallionen.
Dies kann beispielsweise mit Hilfe von Farbindikatoren wie Xylenolorange durch Kontrolltitrationen während des Herstellungsprozesses gewährleistet werden. Die Erfindung betrifft daher auch Verfahren zur Herstellung der Komplexverbindungen und ihrer Salze. Als letzte Sicherheit bleibt eine Reinigung des isolierten Komplexes.
Bei der in-vivo-Applikation der erfindungsgemäßen Mittel können diese zusam- men mit einem geeigneten Träger wie zum Beispiel Serum oder physiologischer Kochsalzlösung und zusammen mit einem anderen Protein wie zum Beispiel Humanserumalbumin (HSA) verabreicht werden.
Die erfindungsgemäßen Mittel werden üblicherweise parenteral, vorzugsweise i.V., appliziert. Sie können auch intraarteriell oder interstitiell/intrakutan appliziert werden, je nachdem, ob ein Gefäß/Organ selektiv kontrastiert (z.B. Darstellung der Koronararterien nach intraarterieller Injektion) oder Gewebe bzw. Pathologien ( z.B. Diagnose von Gehirntumoren nach intravenöser Injektion) dargestellt werden soll.
Die erfindungsgemäßen pharmazeutischen Mittel enthalten vorzugsweise 0,001 - 1 Mol/I der genannten Verbindung und werden in der Regel in Mengen von 0,001 - 5 mMol/kg dosiert.
Die erfindungsgemäßen Mittel erfüllen die vielfältigen Voraussetzungen für die Eignung als Kontrastmittel für die magnetische Resonanztomographie. So sind sie hervorragend dazu geeignet, nach oraler oder parenteraler Applikation durch Erhöhung der Signalintensität das mit Hilfe des MR-Tomographen erhaltene Bild in seiner Aussagekraft zu verbessern. Ferner zeigen sie die hohe Wirksamkeit, die notwendig ist, um den Körper mit möglichst geringen Mengen an Fremdstoffen zu belasten, und die gute Verträglichkeit, die notwendig ist, um den nichtinvasiven Charakter der Untersuchungen aufrechtzuerhalten. Von großem Vorteil für die Verwendung in der magnetischen Resonanztomographie ist die hohe Wirksamkeit (Relaxivity) der erfindungsgemäßen paramagnetischen Verbindungen. So ist die Relaxivity (L/mmor1*sec~1 von gadoliniumhaltigen Verbindungen in der Regel zwei- bis vierfach größer als bei herkömmlichen Gd- Komplexen (z.B. Gadobutrol).
Die gute Wasserlöslichkeit und geringe Osmolalität der erfindungsgemäßen Mittel erlaubt es, hochkonzentrierte Lösungen herzustellen, damit die Volumenbelastung des Kreislaufs in vertretbaren Grenzen zu halten und die Verdünnung durch die Körperflüssigkeit auszugleichen. Weiterhin weisen die erfindungsgemäßen Mittel nicht nur eine hohe Stabilität in-vitro auf, sondern auch eine überraschend hohe Stabilität in-vivo, so dass eine Freigabe oder ein Austausch der in den Komplexen gebundenen - an sich giftigen - Ionen innerhalb der Zeit, in der die neuen Kontrastmittel vollständig wieder ausgeschieden werden, nur äußerst langsam erfolgt.
Im allgemeinen werden die erfindungsgemäßen Mittel für die Anwendung als MRT-Diagnostika in Mengen von 0,001-5 mMol Gd/kg, vorzugsweise 0,005 - 0,5 mMol Gd/kg, dosiert.
Die erfindungsgemäßen Mittel sind hervorragend als Röntgenkontrastmittel geeignet, wobei besonders hervorzuheben ist, dass sich mit ihnen keine Anzeichen der von den jodhaltigen Kontrastmitteln bekannten anaphylaxieartigen Reaktionen in biochemisch-pharmakologischen Untersuchungen erkennen lassen. Im Falle der starken Röntgenabsorption sind sie besonders effektiv in Bereichen höherer Röhrenspannungen (z. B. CT und DSA). lm allgemeinen werden die erfindungsgemäßen Mittel für die Anwendung als Röntgenkontrastmittel in Analogie zum Beispiel Meglumin-Diatrizoat in Mengen von 0,01 - 5 mMol/kg, vorzugsweise 0,02 - 1 mMol Substanz/kg, welches im Falle von z.B. lod-Dy Verbindungen 0,06-6 mMol (l+Dy)/kg entspricht, dosiert. Je nach diagnostischer Fragestellung können Formulierungen gewählt werden, die sowohl in der Röntgen- als auch in der MR Diagnostik einsetzbar sind. Um optimale Ergebnisse für beide Imaging Modalitäten zu erzielen, kann es vorteilhaft sein, Formulierungen zu wählen, in denen der Anteil paramagnetischer Ionen reduziert ist, da für viele Anwendungen der MR Diagnostik ein zu hoher Anteil paramagnetischer Ionen keinen weiteren Zugewinn liefert.
Für einen dualen Nutzen können Formulierungen eingesetzt werden, bei denen der prozentuale Anteil von paramagnetischen Stoffen (z.B. Gd) auf 0,05 bis 50, bevorzugt auf 2-20 % verringert ist. Als Beispiel sei eine Anwendung in der Herzdiagnostik erwähnt. Für die Untersuchung wird eine Formulierung bestehend aus den erfindungsgemäßen Substanzen in einer Gesamtkonzentration von z.B. 0.25 mol/L verwendet. Der Anteil Gd haltiger Komplexe ist 20 % , die restlichen 80 % der Metalle sind z.B. Dy Atome. Bei einer Röntgen Koronarangiographie nach intra-arterieller oder intravenöser Gabe werden z.B. 50 mL eingesetzt, d.h. 0.18 mMol Substanz pro kg Körpergewicht bei einem 70 kg schweren Patienten. Kurz nach erfolgter Röntgendarstellung der Herzkranzgefäße wird eine MR Diagnose des Herzens angeschlossen, um vitale von nekrotischen Myokardbezirken differenzieren zu können. Die für die Untersuchung zuvor applizierte Menge von etwa 110 μmol Gd/kg ist hierfür optimal. Patentbeispiele Beispiel 1 a) 2,4,6-Triiod-5-{methyl[2-(2,2,2- trifluoracetylamino)acetyl]amino}isophthalsäuredichlorid
14.5 ml (200 mmol) Thionylchlorid werden bei 0 °C innerhalb von 1 Stunde zu einer Lösung von 34.2 g (200 mmol) Glycintrifluoracetat in 200 ml Dimethylacetamid getropft. Anschließend gibt man bei 0 °C 24.4 g (40 mmol) 5- Amino-2,4,6-triodisophthalsäuredichlorid (EP 0033426, Sovak, 1/80 US) hinzu und rührt 4 Tage bei Raumtemp.. Man gießt die Reaktionsmischung in 5 Liter Eiswasser und filtert den ausfallenden Feststoff ab. Zur weiteren Aufreinigung wird der Filterrückstand in 1000 ml Ethylacetat gelöst, zweimal mit gesättigter Natriumhydrogencarbonat-Lösung ausgeschüttelt, die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum eingedampft. Ausbeute: 28.7 g (94 % d. Th.) eines farblosen Feststoffes Elementaranalyse: ber.: C 20.47H 0.79 N 3.67 gef.: C 20.52H 0.77 N 3.71
b) 5-[(2-Aminoacetyl)methylamino]-Λ/,Λ/-bis-(2-aminoethyl)-2,4,6- triiodisophthalsäure-amid
Eine Lösung von 10 g (13.1 mmol) 2,4,6-Triiod-5-{methyl-[2-(2,2,2- trifluoracetylamino)-acetyl]amino}isophthalsäuredichlorid in 100 ml Tetra hydrofu ran wird zu 26.7 ml (399 mmol) Ethylendiamin über 1 h bei Raumtemp. getropft und 14 h nachgerührt. Der ausgefallene Feststoff wird abfiltriert, mit Ethanol nachgewaschen, in 100 ml Wasser aufgenommen und mit 1 M Lithiumhydroxid-Lösung auf einen pH-Wert von 8.0 eingestellt. Nach Eindampfen im Vakuum wird aus Ethanol umkristallisiert. Ausbeute: 7.3 g (78 % d. Th.) eines farblosen Feststoffes Elementaranalyse: ber.: C 25.23 H 2.96 N 11.77 I 53.31 gef: C 25.44 H 2.98 N 11.81 I 53.09
c) 1 ,4,7-Tris-(benzyloxycarbonyl)-10-(1-ethoxycarbonylethyl)-1 ,4,7,10- tetrazacyclo-dodecan
50.1 g (87.0 mmol) 1 ,4,7-Tris-(benzyloxycarbonyl)-1 ,4,7,10-tetrazacyclododecan (Delaney et al. , J. Chem. Soc. Perkin Trans. 1991, 3329) werden in 500 ml Acetonitril gelöst und mit 55.5 g (400 mmol) Natriumcarbonat versetzt. Anschließend werden unter starkem Rühren 54.3 g (300 mmol) 1- Brompropionsäureethylester zugegeben und 20 h auf 60 °C erhitzt. Es wird von unlöslichen Bestandteilen abfiltriert, zur Trockene eingeengt und an Kieselgel chromatographiert (Laufmittel Ethylacetat/Hexan 20 : 1). Die das Produkt enthaltenden Fraktionen werden vereinigt und eingedampft. Ausbeute 46 g (78 % d. Th.) eines farblosen Öls. Elementaranalyse: ber.: C 65.86H 6.87 N 8.30 gef.: C 65.99H 6.88 N 8.23
d) 1 ,4,7-Tris-(benzyloxycarbonyl)-10-(1 -carboxyethyl)-1 ,4,7, 10- tetrazacyclododecan
33.7 g (50 mmol) 1 ,4,7-Tris-(benzyloxycarbonyl)-10-(1-ethoxycarbonylethyl)- 1 ,4,7,10-tetrazacyclododecan werden 300 ml Dioxan gelöst und mit 140 ml
5proz. wässriger NaOH-Lösung versetzt und 24 h bei Raumtemp. gerührt. Nach Neutralisation mit konz. HCI wird zur Trockene eingeengt. Der Rückstand wird in 250 ml Ethylacetat aufgenommen und zweimal mit je 250 ml 1 N HCI-Lösung extrahiert. Die organische Phase wird über Natriumsulfat getrocknet, das Lösungsmittel zur Trockene eingeengt.
Ausbeute 28.2 g (87 % d. Th.) eines farblosen Feststoffes
Elementaranalyse: ber.: C 65.00H 6.55 N 8.66 gef.: C 65.22H 6.59 N 8.60
e) 2,4,6-Triiod-5-(3-aza-5-methyl-1 ,4-dioxopentan-1 ,5-diyl-{10-[1 ,4,7-tris- (benzyloxycarbonyl)-l ,4,7,10-tetraazacyclododecanyl]})methylaminoiso- phthalsäure-Λ/,Λ/-bis-(3-aza-5-methyl-4-oxopentan-1 ,5-diyl-{10-[1 ,4,7-tris- (benzyloxycarbonyl)-l ,4,7,10-tetraazacyclododecanyl]})amid
Zu einer Suspension von 40,0 g (56,0 mmol) 5-[(2-Aminoacetyl)methylamino]- Λ/,Λ/-bis-(2-aminoethyl)-2,4,6-triiodisophthalsäureamid in 1000 ml DMF werden 109 g (168,5 mmol) 1 ,4,7-Tris-(benzyloxycarbonyl)-10-(1-carboxyethyl)-1 ,4,7,10- tetrazacyclododecan, 50 ml (390 mmol) Triethylamin, 34,9 g ( 168,4 mmol) Dicyclohexylcarbodiimid und 19,4 g (168,4 mmol) Λ/-Hydroxysuccinimid gegeben und 20 h bei Raumtemp. geruht. Es wird von unlöslichen Bestandteilen abfiltriert und zur Trockene eingeengt. Der Rückstand wird in 1000 ml Ethylacetat aufgenommen und zweimal mit je 500 ml Wasser extrahiert. Die organische Phase wird über Natriumsulfat getrocknet, das Lösungsmittel zur Trockene eingeengt und der Rückstand an Kieselgel chromatographiert (Laufmittel Dichlormethan/Methanol 20 : 1). Die das Produkt enthaltenden Fraktionen werden vereinigt und eingedampft. Ausbeute 80,2 g (55 % d. Th.) eines farblosen Feststoffes Elementaranalyse: ber.: C 54.43H 5.47 N 9.70 I 14.64 gef.: C 54.67H 5.42 N 9.69 I 14.59
f) 2,4,6-Triiod-5-(3-aza-5-methyl-1 ,4-dioxopentan-1 ,5-diyl-{10-[1 ,4,7,10- tetraazacyclododecanyl]})methylaminoisophthalsäure-/V,Λ/-bis-(3-aza-5- methyl-4-oxopentan-1 ,5-diyl-{10-[1 ,4,7,10-tetraazacyclododecanyl]})amid
78 g (30 mmol) 2,4,6-Triiod-5-(3-aza-5-methyl-1 ,4-dioxopentan-1 ,5-diyl-{10- [1 ,4,7-tris-(benzyloxycarbonyl)-1 ,4,7,10- tetraazacyclododecanyl]})methylaminoisophthalsäure-Λ/,Λ/-bis-(3-aza-5-methyl- 4-oxopentan-1 ,5-diyl-{10-[1 ,4,7-tris-(benzyloxycarbonyl)-1 ,4,7,10-tetraaza- cyclododecanyl]})amid werden bei 0-5°C vorsichtig mit 500 ml HBr/AcOH (33%) versetzt und 3 h bei Raumtemp. gerührt. Anschließend wird die Reaktionsmischung in 2500 ml Diethylether gegossen, der dabei anfallende Feststoff abgesaugt und mit Diethylether mehrfach nachgewaschen. Der Rückstand wird in 300 ml Wasser und 300 ml Dichlormethan gelöst unter starkem Rühren gibt man so lange 32proz. NaOH-Lösung bis ein pH-Wert von 10 erreicht ist. Die organische Phase wird abgetrennt, die wässrige Phase dreimal mit je 150 ml Dichlormethan extrahiert, die vereinigten organischen Phasen über Magnesiumsulfat getrocknet und zur Trockene eingeengt. Ausbeute 40,5 g (97 % d. Th.) eines farblosen Feststoffes Elementaranalyse: ber.: C 41.39H 6.30 N 18.10 1 27.33 gef.: C 40.50H 6.31 N 18.07 I 27.22
g) 2,4,6-Triiod-5-(3-aza-5-methyl-1 ,4-dioxopentan-1 ,5-diyl-{10-[1 ,4,7-tris- (carboxymethyl)-l ,4,7, 10-tetraazacyclododecanyl]})methylaminoisophthal- säure-Λ/,Λ/-bis-(3-aza-5-methyl-4-oxopentan-1 ,5-diyl-{10-[1 ,4,7-tris- (carboxymethyl)-l ,4,7,10-tetraazacyclododecanyl]})amid
40 g (28,7 mmol) 2,4,6-Triiod-5-(3-aza-5-methyl-1 ,4-dioxopentan-1 ,5-diyl-{10- [1 , 4,7,10-tetraazacyclododecanyl]})methylaminoisophthalsäure-Λ/,Λ/-bis-(3-aza- 5-methyl-4-oxopentan-1 ,5-diyl-{10-[1 ,4,7,10-tetraazacyclododecanyl]})amid werden in 200 ml Wasser gelöst, 41 ,5 g (439,8 mmol) Chloressigsäure hinzugegeben und bei 60 °C mit 32 %iger NaOH ein pH-Wert von 9.5 eingestellt. Es wird 10 h auf 70 °C erhitzt, wobei man den pH-Wert der Reaktionsmischung kontinuierlich auf 9.5 nachstellt. Nach Abkühlen auf
Raumtemp. wird mit konz. HCI ein pH-Wert von 1 eingestellt und die Lösung im Vakuum eingedampft. Der Rückstand wird mit 500 ml Methanol ausgerührt, von unlöslichen Bestandteilen abfiltriert und das Filtrat eingedampft. Der Rückstand wird in 200 ml Wasser gelöst und auf eine Ionenaustauscher-Säule (1200 ml, IR 120, H+-form) gegeben. Anschließend wird mit 5 I Wasser gewaschen und das saure Eluat eingedampft. Der Rückstand wird in 150 ml Methanol gelöst und in 2500 ml Diethylether getropft, der dabei anfallende Feststoff abgesaugt, mit Diethylether mehrfach nachgewaschen und im Vakuum getrocknet. Ausbeute 38 g (69 % d. Th.) eines farblosen Feststoffes
Elementaranalyse: ber.: C 41.39H 5.53 N 13.16 1 19.88 gef.: C 41.62H 5.57 N 13.08 1 19.65
h) 2,4,6-Triiod-5-(3-aza-5-methyl-1 ,4-dioxopentan-1 ,5-diyl-{10-[1 ,4,7-tris- (carboxylatomethyl)-l ,4,7,10-tetraazacyclododecanyl, Gd- Komplex]})methylaminoisophthalsäure-Λ/,/V-bis-(3-aza-5-methyl-4- oxopentan-1 ,5-diyl-{10-[1 ,4,7-tris-(carboxylatomethyl)-1 ,4,7, 10-tetraaza- cyclododecanyl, Gd-Komplex]})amid
13,2 g (6,9 mmol) 2,4,6-Triiod-5-(3-aza-5-methyl-1 ,4-dioxopentan-1 ,5-diyl-{10- [1 ,4,7-tris-(carboxymethyl)-1 ,4,7,10-tetraazacyclododecanyl]})methylaminoiso- phthalsäure-Λ/,Λ/-bis-(3-aza-5-methyl-4-oxopentan-1 ,5-diyl-{10-[1 ,4,7-tris- (carboxymethyl)-1 ,4,7,10-tetraazacyclododecanyl]})amid werden in 100 ml Wasser gelöst und durch Zugabe von 3 ml Essigsäure angesäuert. Es werden 3,7 g (10,4 mmol) Gadoliniumoxid zugegeben und 6 h am Rückfluß erhitzt. Nach beendeter Komplexierung wird mit Ammoniak auf pH 7,4 eingestellt und an Kieselgel chromatographiert (Laufmittel: Dichlormethan /Methanol /Ammoniak: 10/10/1). Die das Produkt enthaltenden Fraktionen werden vereinigt und mit 10 g Ionenaustauscher (IR 267 H-Form) 2 h ausgerührt und abfiltriert, dann mit 10 g Ionenaustauscher (IRA 67 OH-Form) 2 h ausgerührt, abfiltriert, mit 2 g Aktivkohle versetzt, 2 h auf 60 °C erwärmt, abfiltriert und gefriergetrocknet.
Ausbeute 9,9 g (56 % d. Th.) eines farblosen Feststoffes Wassergehalt (Karl-Fischer): 7,1 %
Elementaranalyse (bezogen auf die wasserfreie Substanz): ber.: C 33.34H 4.07 N 10.60 1 16.01 Gd 19.84 gef.: C 33.51 H 4.11 N 10.65 1 15.99 Gd 19.73 Beispiel 2
2,4,6-Triiod-5-(3-aza-5-methyl-1 ,4-dioxopentan-1 ,5-diyl-{10-[1 ,4,7-tris- (carboxylatomethyl)-l ,4,7,10-tetraazacyclododecanyl, Dy- Komplex]})methylaminoisophthalsäure-Λ/,Λ/-bis-(3-aza-5-methyl-4- oxopentan-1 ,5-diyl-{10-[1 ,4,7-tris-(carboxylatomethyl)-1 ,4,7,10-tetraaza- cyclododecanyl, Dy-Komplex]})amid
13,2 g (6,9 mmol) 2,4,6-Triiod-5-(3-aza-5-methyl-1 ,4-dioxopentan-1 ,5-diyl-{10- [1 ,4,7-tris-(carboxymethyl)-1 ,4,7,10-tetraazacyclododecanyl]})methylaminoiso- phthalsäure-Λ/,Λ/-bis-(3-aza-5-methyl-4-oxopentan-1 ,5-diyl-{10-[1 ,4,7-tris- (carboxymethyl)-l ,4,7,10-tetraazacyclododecanyl]})amid (Titelverbindung 1g) werden in 100 ml Wasser gelöst und durch Zugabe von 3 ml Essigsäure angesäuert. Es werden 3,9 g (10,4 mmol) Dysprosiumoxid zugegeben und 6 h am Rückfluß erhitzt. Nach beendeter Komplexierung wird mit Ammoniak auf pH 7,4 eingestellt und an Kieselgel chromatographiert (Laufmittel: Dichlormethan /Methanol /Ammoniak: 10/10/1). Die das Produkt enthaltenden Fraktionen werden vereinigt und mit 10 g Ionenaustauscher (IR 267 H-Form) 2 h ausgerührt und abfiltriert, dann mit 10 g Ionenaustauscher (IRA 67 OH-Form) 2 h ausgerührt, abfiltriert, mit 2 g Aktivkohle versetzt, 2 h auf 60 °C erwärmt, abfiltriert und gefriergetrocknet.
Ausbeute 9,4 g (53 % d. Th.) eines farblosen Feststoffes Wassergehalt (Karl-Fischer): 6,7 % Elementaranalyse (bezogen auf die wasserfreie Substanz): ber.: C 33.12H 4.04 N 10.53 1 15.90 Dy 20.36 gef.: C 33.26H 4.08 N 10.55 1 15.87 Dy 20.27
Beispiel 3 2,4,6-Triiod-5-(3-aza-5-methyl-1 ,4-dioxopentan-1 ,5-diyl-{10-[1 ,4,7-tris- (carboxylatomethyl)-l ,4,7, 10-tetraazacyclododecanyl, Yb- Komplex]})methylaminoisophthalsäure-Λ/,Λ/-bis-(3-aza-5-methyl-4- oxopentan-1 ,5-diyl-{10-[1 ,4,7-tris-(carboxylatomethyl)-1 ,4,7, 10-tetraaza- cyclododecanyl, Yb-Komplex]})amid
13,2 g (6,9 mmol) 2,4,6-Triiod-5-(3-aza-5-methyl-1 ,4-dioxopentan-1 ,5-diyl-{10- [1 ,4,7-tris-(carboxymethyl)-1 ,4,7, 10-tetraazacyclododecanyl]})methylaminoiso- phthalsäure-Λ/,Λ/-bis-(3-aza-5-methyl-4-oxopentan-1 ,5-diyl-{10-[1 ,4,7-tris- (carboxymethyl)-l ,4,7,10-tetraazacyclododecanyl]})amid (Titelverbindung 1g) werden in 100 ml Wasser gelöst und durch Zugabe von 3 ml Essigsäure angesäuert. Es werden 4,1 g (10,4 mmol) Ytterbiumoxid zugegeben und 6 h am Rückfluß erhitzt. Nach beendeter Komplexierung wird mit Ammoniak auf pH 7,4 eingestellt und an Kieselgel chromatographiert (Laufmittel: Dichlormethan /Methanol /Ammoniak: 10/10/1). Die das Produkt enthaltenden Fraktionen werden vereinigt und mit 10 g Ionenaustauscher (IR 267 H-Form) 2 h ausgerührt und abfiltriert, dann mit 10 g Ionenaustauscher (IRA 67 OH-Form) 2 h ausgerührt, abfiltriert, mit 2 g Aktivkohle versetzt, 2 h auf 60 °C erwärmt, abfiltriert und gefriergetrocknet.
Ausbeute 11 ,1 g (62 % d. Th.) eines farblosen Feststoffes Wassergehalt (Karl-Fischer): 6,5 % Elementaranalyse (bezogen auf die wasserfreie Substanz): ber.: C 32.68H 3.99 N 10.39 1 15.70 Yb 21.40 gef.: C 32.81 H 4.00 N 10.36 1 15.64 Yb 21.27
Beispiel 4 2,4,6-Triiod-5-(3-aza-5-methyl-1 ,4-dioxopentan-1 ,5-diyl-{10-[1 ,4,7-tris- (carboxylatomethyl)-1 ,4,7,10-tetraazacyclododecanyl, Y- Komplex]})methylaminoisophthalsäure- V,Λ/-bis-(3-aza-5-methyl-4- oxopentan-1 ,5-diyl-{10-[1 ,4,7-tris-(carboxylatomethyl)-1 ,4,7,10-tetraaza- cyclododecanyl, Y-Komplex]})amid
13,2 g (6,9 mmol) 2,4,6-Triiod-5-(3-aza-5-methyl-1 ,4-dioxopentan-1 ,5-diyl-{10- [1 ,4,7-tris-(carboxymethyl)-1 ,4,7, 10-tetraazacyclododecanyl]})methylaminoiso- phthalsäure-Λ/,Λ/-bis-(3-aza-5-methyl-4-oxopentan-1 ,5-diyl-{10-[1 ,4,7-tris- (carboxymethyl)-l ,4,7,10-tetraazacyclododecanyl]})amid (Titelverbindung 1g) werden in 100 ml Wasser gelöst und durch Zugabe von 3 ml Essigsäure angesäuert. Es werden 2,35 g (10,4 mmol) Yttriumoxid zugegeben und 6 h am Rückfluß erhitzt. Nach beendeter Komplexierung wird mit Ammoniak auf pH 7,4 eingestellt und an Kieselgel chromatographiert (Laufmittel: Dichlormethan /Methanol /Ammoniak: 10/10/1). Die das Produkt enthaltenden Fraktionen werden vereinigt und mit 10 g Ionenaustauscher (IR 267 H-Form) 2 h ausgerührt und abfiltriert, dann mit 10 g Ionenaustauscher (IRA 67 OH-Form) 2 h ausgerührt, abfiltriert, mit 2 g Aktivkohle versetzt, 2 h auf 60 °C erwärmt, abfiltriert und gefriergetrocknet.
Ausbeute 9,4 g (58 % d. Th.) eines farblosen Feststoffes Wassergehalt (Karl-Fischer): 7,9 % Elementaranalyse (bezogen auf die wasserfreie Substanz): ber.: C 36.48H 4.45 N 11.60 1 17.52 Y 12.27 gef.: C 36.61 H 4.52 N 11.65 1 17.44 Y 12.19

Claims

Patentansprüche
1. Metallkomplexe der allgemeinen Formel I
worin Hai für Brom oder Jod, A1 für den Rest
-CONH-(CH2)2-NH-CO-CH(CH3)-K A für den Rest — N(CH3)-CO-CH2-NH-CO-CH(CH3)-K stehen, K für einen Makrocyclus der Formel lA
mit X in der Bedeutung eines Wasserstoffatoms oder eines Metallionenäquivalents der Ordnungszahlen 20-29,39, 42, 44 oder 57-83 stehen, mit den Maßgaben, dass mindestens zwei X für Metallionenäquivalente stehen und gegebenenfalls vorhandene freie Carboxygruppen gegebenenfalls als Salze organischer und/oder anorganischer Basen oder Aminosäuren oder Aminosäureamide vorliegen.
2. Metallkomplexe nach Anspruch 1 , dadurch gekennzeichnet, dass X für ein Metallionenäquivalent der Ordnungszahlen 21-29, 42, 44, 58-70 steht.
3. Metallkomplexe nach Anspruch 4, dadurch gekennzeichnet, dass X für ein Metallionenäquivalent der Ionen Gadolinium (III), Dysprosium (III), Europium (IM), Eisen(lll) oder Mangan (II) steht.
4. Pharmazeutische Mittel enthaltend mindestens einen Metallkomplex der allgemeinen Formel I gemäß Anspruch 1 , gegebenenfalls mit den in der Galenik üblichen Zusätzen.
5. Verwendung von mindestens einem Metallkomplex nach Anspruch 1 für die Herstellung von Mitteln für die Röntgen-Diagnostik.
6. Verwendung von mindestens einem Metallkomplex nach Anspruch 4 für die Herstellung von Mitteln für die MRT-Diagnostik.
7. Pharmazeutische Mittel enthaltend je einen Metallkomplex nach Anspruch 1 und 4 in einem Molverhältnis von 2000: 1 bis 1 : 1 , bevorzugt 49: 1 bis 4: 1.
8. Pharmazeutische Mittel nach Anspruch 6, dadurch gekennzeichnet, dass der/die in Wasser oder physiologischer Salzlösung gelöste(n) oder suspendierte(n) Metallkomplex(e) in einer Konzentration von 0,001 bis 1 Mol/I vorliegt/vorliegen.
9. Verwendung von mindestens einem Metallkomplex nach Anspruch 1 für die Herstellung von Mitteln für die Röntgen- und MR Diagnostik von Gehirninfarkten und Tumoren der Leber bzw. von raumfordernden Prozessen in der Leber sowie von Tumoren des Abdomens (inklusive der Nieren) und des Muskel-Skelett-Systems und für die Darstellung von Blutgefäßen nach intraarterieller oder intravenöser Injektion.
10. Verfahren zur Herstellung der Metallkomplexe der allgemeinen Formel I gemäß Anspruch 1 , dadurch gekennzeichnet, dass man einen Trijod- oder Tribromaromaten der allgemeinen Formel II
in an sich bekannter Weise mit einem Makrocyclus der allgemeinen Formel III
worin W für eine Schutzgruppe, A , r in der Bedeutung von — CO-NH-(CH2)2-NH2 und A in der Bedeutung von — N(CH3)-CO-CH2-NH2 stehen, umsetzt und anschließend die Schutzgruppe W entfernt und die Reste CH2COOX in an sich bekannter Weise einführt und anschließend in an sich bekannter Weise mit einem Metalloxid oder Metallsalz eines Elements der Ordnungszahlen 20-29, 39, 42, 44 oder 57-83 umsetzt.
1.Verfahren zur Herstellung der pharmazeutischen Mittel gemäß Anspruch 4, dadurch gekennzeichnet, dass man die in Wasser oder physiologischer Salzlösung gelöste oder suspendierte Komplexverbindung, gegebenenfalls mit den in der Galenik üblichen Zusätzen, in eine für die enterale oder parenterale Applikation geeignete Form bringt.
EP05741025A 2004-05-25 2005-04-22 Trimere makrocyclisch substituierte aminoisophthalsäure-halogen-benzolderivate Withdrawn EP1748992A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004026103A DE102004026103A1 (de) 2004-05-25 2004-05-25 Trimere makrocyclisch substituierte Aminoisophthalsäure-Halogen-Benzolderivate
PCT/EP2005/004493 WO2005115997A1 (de) 2004-05-25 2005-04-22 Trimere makrocyclisch substituierte aminoisophthalsäure-halogen-benzolderivate

Publications (1)

Publication Number Publication Date
EP1748992A1 true EP1748992A1 (de) 2007-02-07

Family

ID=34967416

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05741025A Withdrawn EP1748992A1 (de) 2004-05-25 2005-04-22 Trimere makrocyclisch substituierte aminoisophthalsäure-halogen-benzolderivate

Country Status (12)

Country Link
US (1) US20060120965A1 (de)
EP (1) EP1748992A1 (de)
JP (1) JP2008500293A (de)
AR (1) AR050156A1 (de)
DE (1) DE102004026103A1 (de)
GT (1) GT200500123A (de)
PA (1) PA8634301A1 (de)
PE (1) PE20060365A1 (de)
SV (1) SV2005002124A (de)
TW (1) TW200616982A (de)
UY (1) UY28919A1 (de)
WO (1) WO2005115997A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007058220A1 (de) 2007-12-03 2009-06-04 Bayer Schering Pharma Aktiengesellschaft Dimere macrocyclisch substituierte Benzolderivate
EP3101012A1 (de) 2015-06-04 2016-12-07 Bayer Pharma Aktiengesellschaft Neue gadoliniumchelat-verbindung zur verwendung in der magnetresonanzbildgebung
CN110035996B (zh) 2016-11-28 2022-08-09 拜耳医药股份公司 用于磁共振成像的新型高弛豫性钆螯合物
KR20210095168A (ko) 2018-11-23 2021-07-30 바이엘 악티엔게젤샤프트 조영 매체의 제형 및 그의 제조 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324503A (en) * 1992-02-06 1994-06-28 Mallinckrodt Medical, Inc. Iodo-phenylated chelates for x-ray contrast
AU6996594A (en) * 1993-06-02 1994-12-20 Bracco S.P.A. Iodinated paramagnetic chelates, and their use as contrast agents
US7208140B2 (en) * 2003-02-19 2007-04-24 Schering Aktiengesellschaft Trimeric macrocyclic substituted benzene derivatives
DE10307759B3 (de) * 2003-02-19 2004-11-18 Schering Ag Trimere makrocyclisch substituierte Benzolderivate, deren Herstellung und Verwendung als Kontrastmittel sowie diese enthaltende pharmazeutische Mittel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005115997A1 *

Also Published As

Publication number Publication date
GT200500123A (es) 2006-03-17
UY28919A1 (es) 2005-12-30
DE102004026103A1 (de) 2005-12-22
JP2008500293A (ja) 2008-01-10
PA8634301A1 (es) 2006-07-03
US20060120965A1 (en) 2006-06-08
WO2005115997A1 (de) 2005-12-08
AR050156A1 (es) 2006-10-04
SV2005002124A (es) 2005-12-06
TW200616982A (en) 2006-06-01
PE20060365A1 (es) 2006-05-27

Similar Documents

Publication Publication Date Title
EP0993306B1 (de) Oligomere, perfluoralkylhaltige verbindungen, verfahren zu deren herstellung und ihre verwendung in der nmr-diagnostik
DE19525924A1 (de) Kaskaden-Polymer-Komplexe, Verfahren zu ihrer Herstellung und diese enthaltende pharmazeutische Mittel
DE10307759B3 (de) Trimere makrocyclisch substituierte Benzolderivate, deren Herstellung und Verwendung als Kontrastmittel sowie diese enthaltende pharmazeutische Mittel
EP1017684B1 (de) Kontrastmittel für das infarkt- und nekroseimaging
EP1904462A2 (de) Perfluoralkylhaltige komplexe, verfahren zu deren herstellung, sowie deren verwendung
EP1742926B1 (de) Trimere makrocyclisch substituierte halogen-benzolderivate
EP1904463A2 (de) Perfluoralkylhaltige komplexe, verfahren zu deren herstellung sowie deren verwendung
EP2111236A2 (de) Neue kaskaden-polymer-komplexe, verfahren zu ihrer herstellung und diese enthaltende pharmazeutische mittel
DE102007058220A1 (de) Dimere macrocyclisch substituierte Benzolderivate
DE10040858C2 (de) Perfluoralkylhaltige Komplexe mit polaren Resten, Verfahren zu deren Herstellung und ihre Verwendung
EP0868202A1 (de) Kaskaden-polymer-komplexe, verfahren zu ihrer herstellung und diese enthaltende pharmazeutische mittel
EP1748992A1 (de) Trimere makrocyclisch substituierte aminoisophthalsäure-halogen-benzolderivate
US7208140B2 (en) Trimeric macrocyclic substituted benzene derivatives
EP0946526B1 (de) Macrocyclische metallkomplexcarbonsäuren, ihre verwendung sowie verfahren zu ihrer herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060804

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER SCHERING PHARMA AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER SCHERING PHARMA AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091103