EP1741320B1 - Schaltungsanordnung zum betrieb von hochdruckentladungslampen und betriebsverfahren für eine hochdruckentladungslampe - Google Patents

Schaltungsanordnung zum betrieb von hochdruckentladungslampen und betriebsverfahren für eine hochdruckentladungslampe Download PDF

Info

Publication number
EP1741320B1
EP1741320B1 EP05742608A EP05742608A EP1741320B1 EP 1741320 B1 EP1741320 B1 EP 1741320B1 EP 05742608 A EP05742608 A EP 05742608A EP 05742608 A EP05742608 A EP 05742608A EP 1741320 B1 EP1741320 B1 EP 1741320B1
Authority
EP
European Patent Office
Prior art keywords
circuit
voltage
pressure discharge
discharge lamp
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05742608A
Other languages
English (en)
French (fr)
Other versions
EP1741320A1 (de
Inventor
Günther Hirschmann
Daniel Lerchegger
Bernhard Siessegger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP1741320A1 publication Critical patent/EP1741320A1/de
Application granted granted Critical
Publication of EP1741320B1 publication Critical patent/EP1741320B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2881Load circuits; Control thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2821Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2821Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage
    • H05B41/2822Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage using specially adapted components in the load circuit, e.g. feed-back transformers, piezoelectric transformers; using specially adapted load circuit configurations

Definitions

  • the invention relates to a circuit arrangement for operating high-pressure discharge lamps according to the preamble of patent claim 1 and to a method for operating a high-pressure discharge lamp.
  • Such a circuit arrangement is for example in the article by Michael Gulko and Sam Ben-Yaakov "A MHz Electronic Ballast for Automotive-Type HID Lamps" IEEE Power Electronics Specialists Conference, PESC-97, pp. 39-45, St. Louis, 1997 s.
  • a current-fed push-pull converter is disclosed, which acts on a load circuit, in which a high-pressure discharge lamp is connected, with a high-frequency alternating voltage via a transformer.
  • the secondary winding of the ignition transformer of an ignition device is also connected, which generates the ignition voltage for igniting the gas discharge in the high-pressure discharge lamp.
  • the publication WO 98/18297 describes a push-pull converter, which acts on a transformer, a load circuit and a galvanically separate pulsed ignition device with high-frequency AC voltage.
  • a high-pressure discharge lamp is connected in the load circuit.
  • the pulse ignition device supplies during the ignition phase high voltage pulses to a starting auxiliary electrode of the high pressure discharge lamp.
  • the DE 40 32 292 discloses a gas discharge lamp assembly and a motor vehicle headlamp with such an arrangement and a circuit arrangement for operating such a gas discharge lamp.
  • the FR 2 698 515 A describes a circuit arrangement for igniting and operating a gas discharge lamp for motor vehicle headlights.
  • the DE 199 09 530 A1 discloses a circuit arrangement for operating at least one high-pressure discharge lamp and an operating method.
  • the ignition device for the high-pressure discharge lamp is designed as a cascade circuit.
  • the object of the invention to provide a generic circuit arrangement with an improved power supply for the pulse ignition device. Furthermore, the circuit arrangement according to the invention is intended to ensure high-frequency operation of the high-pressure discharge lamp with alternating voltages in the megahertz range and reliable ignition of the gas discharge in the lamp.
  • the circuit arrangement according to the invention for operating high-pressure discharge lamps has a voltage converter for generating an alternating voltage and a transformer connected thereto or formed as part of the voltage converter whose secondary winding feeds a load circuit which is provided with connections for a high-pressure discharge lamp and for the ignition voltage output of a pulse ignition device, and a series resonant circuit on, which is provided for supplying voltage to the pulse ignition device during the ignition phase of the high-pressure discharge lamp.
  • a resonance-elevated supply voltage generated from the output voltage of the voltage converter is provided at the voltage input of the pulse ignition device during the ignition phase of the high-pressure discharge lamp.
  • an ignition transformer with a lower turn ratio between the secondary and primary windings and a correspondingly reduced inductance can be used for the pulse ignition device in order to provide the required ignition voltage for the high-pressure discharge lamp.
  • the reduced inductance of the ignition transformer has the advantage that after ignition of the gas discharge in the high pressure discharge lamp, a significantly reduced voltage drop occurs at the secondary winding of the ignition transformer through the lamp current and thereby the losses in the transformer at the voltage output of the voltage converter and significantly reduced in the electronic components of the voltage converter.
  • the aforementioned series resonant circuit therefore allows the combination of a voltage converter, which comparatively high operating frequencies is designed well above 100 kilohertz, with a pulse igniter, the ignition transformer is connected directly in the load circuit powered by the voltage converter and not, as in the published patent application WO 98/18297 described, must be arranged galvanically isolated from the load circuit.
  • the topology of the circuit arrangement can be considerably simplified. In particular, can be dispensed with in the high-pressure discharge lamp on a Zündangeselektrode.
  • the invention can be applied particularly advantageously to a single-stage voltage converter, in particular a voltage converter designed as a current-fed push-pull converter or a class E converter, which dispenses with the generation of a DC link voltage.
  • a single-stage voltage converter in particular a voltage converter designed as a current-fed push-pull converter or a class E converter, which dispenses with the generation of a DC link voltage.
  • the circuit topology of these aforementioned single-stage voltage converter is relatively simple and therefore inexpensive.
  • the abovementioned series resonant circuit is connected to the secondary winding of the transformer and, with the high-pressure discharge lamp connected, connected in parallel to the discharge path of the high-pressure discharge lamp.
  • Characterized a higher voltage for the pulse ignition device is generated at the components of the series resonant circuit as in the secondary winding of the transformer when the switching frequency of the voltage converter during the ignition phase of the high pressure discharge lamp is in the vicinity of the resonance frequency of the series resonant circuit.
  • the series resonant circuit is short-circuited by the now conductive discharge path of the high-pressure discharge lamp, thereby deactivating the pulse ignition device.
  • the series resonant circuit is connected in the voltage converter on the primary side of the transformer.
  • the resonance inductance of the series resonant circuit is preferably designed as an autotransformer whose secondary winding can be connected to the voltage input of a pulse ignition device.
  • the deactivation of the pulse ignition device after completion of the ignition phase of the high-pressure discharge lamp can here in a simple manner by a change, preferably an increase, the Switching frequency of the voltage converter are brought about.
  • the switching frequency of the voltage converter is in the vicinity of the resonance frequency of the series resonant circuit.
  • a capacitor is arranged in the load circuit in an advantageous manner, which is connected in series with the pulse ignition device in series with the secondary winding of the ignition transformer and whose capacitance is dimensioned such that it for the ignition pulses generated by the pulse in the ignition device essentially represents a short circuit and causes after the ignition of the gas discharge in the high pressure discharge lamp, a partial compensation of the inductance of the lamp current flowing through the ignition transformer.
  • This capacitor can be advantageously designed as part of the series resonant circuit.
  • the series resonant circuit is formed according to an advantageous embodiment of the invention as part of a pulse ignition device, which, separated from the other components of the operating device of the high pressure discharge lamp, is housed in the lamp base of the high pressure discharge lamp.
  • a pulse ignition device which, separated from the other components of the operating device of the high pressure discharge lamp, is housed in the lamp base of the high pressure discharge lamp.
  • all high-voltage-carrying components are arranged in the lamp cap, so that the interface between the operating device, which contains the voltage transformer with the transformer at its voltage output, and the high-pressure discharge lamp is subjected only to a comparatively low voltage of less than 100 volts. Therefore, this interface does not require high voltage insulation, but only a shielding of the high frequency AC voltage to ensure sufficient electromagnetic compatibility of the operating device and the lamp. For example, this is achieved by means of earthed, metallic housings or shields and coaxial cables whose shielding braid is also earthed in a known manner.
  • the pulse ignition device therefore has, in addition to the usual components, a series resonant circuit which is connected to its voltage input and serves to boost the resonance of the supply voltage provided at the voltage input during the ignition phase.
  • a voltage multiplying cascade circuit may be used in the circuit or pulsed ignition device to provide a higher input voltage than the induction voltage for the pulse firing device generated by the secondary winding of the transformer. It offers, in combination with the voltage converter, similar advantages to the series resonant circuit described above. However, the variant with the series resonant circuit has the advantage over the one with the cascade circuit in that it does not need any switching means for deactivating the pulse ignition device.
  • the voltage multiplying cascade circuit is. advantageously powered either directly from the voltage transformer or from the secondary winding of the transformer at the voltage output of the push-pull converter with energy. If the voltage multiplying cascade circuit is used in combination with the series resonant circuit, then the voltage input of the cascade circuit is connected in parallel with a resonant circuit component and its voltage output is connected to the voltage input of the pulse firing device.
  • a balanced voltage doubler circuit may be used in the circuit or pulse firing device to provide a higher input voltage than the induction pulse for the pulse firing device generated by the secondary winding of the transformer. It offers in combination similar advantages as the cascade circuit described above, when a voltage doubling is sufficient.
  • This balanced voltage doubler circuit can also be used in combination with the series resonant circuit described above.
  • the symmetrical voltage doubling circuit has the advantage of an approximately symmetrical current consumption during the positive and negative half cycles of the supply voltage and avoids an asymmetrical magnetic modulation of the core of the transformer at the voltage output of the voltage converter.
  • the balanced voltage doubler circuit is advantageously supplied with energy either directly from the voltage converter or from the secondary winding of the transformer at the voltage output of the push-pull converter. If the balanced voltage doubler circuit is used in combination with the series resonant circuit, then the voltage input of the balanced voltage doubler circuit is connected in parallel with a resonant circuit component and its voltage output is connected to the voltage input of the pulse ignitor.
  • the method according to the invention for operating a high-discharge lamp by means of a voltage converter and a pulse ignition device is characterized in that an increase in the supply voltage for the pulse ignition device is carried out during the ignition phase of the high-pressure discharge lamp with the aid of a series resonant circuit operated close to its resonance frequency and / or by means of a voltage-multiplying cascade circuit.
  • the operation of the invention enables reliable high-frequency operation of the high-pressure discharge lamp with alternating current frequencies which are far above the acoustic resonances of the discharge medium within the high-pressure discharge lamp.
  • a sufficiently high ignition voltage is generated and on the other hand after completion of the ignition during lamp operation caused by the high-frequency lamp current secondary winding of the ignition transformer caused no unreasonable high power losses in the circuit.
  • the voltage converter is advantageously operated at a switching frequency close to the resonant frequency of the series resonant circuit to provide a resonant power supply to the pulse firing device.
  • the switching frequency of the switching means of the voltage converter is preferably to a frequency significantly above the resonant frequency of the series resonant circuit displaced to thereby deactivate the pulse ignition device.
  • FIGS. 1 to 8 illustrated embodiments of the invention are circuit arrangements and pulse ignition devices for the operation of a mercury-free metal halide high-pressure discharge lamp with an electrical power consumption of about 35 watts, which is intended for use in the headlight of a motor vehicle.
  • FIG. 1 a first embodiment of a circuit arrangement according to the invention for operating the above-mentioned mercury-free metal halide high-pressure discharge lamp is shown.
  • a pulse ignition device for igniting the gas discharge in the mercury-free metal halide high-pressure discharge lamp is housed, which is housed in the lamp cap.
  • the circuit arrangement comprises a DC voltage source U0, which is formed by the battery or alternator of the motor vehicle, and a choke L1, a capacitor Cl, two controllable semiconductor switches S1, S2 each having a diode D1 or D2 connected in parallel therewith and a transformer T1 two primary and one secondary winding.
  • the switches S1, S2 are designed as field effect transistors (MOSFETs) and the diodes D1 and D2 are the so-called body diode integrated in the field effect transistor S1 or S2.
  • the inductor L1, the capacitor C1, the semiconductor switches S1, S2 with their diodes D1, D2 and the transformer T1 are connected to each other in the manner of a current-fed push-pull converter, as described in the above-cited prior art. With the aid of the inductor L1, an approximately constant current is impressed on the center tap M1 between the two poles of the transformer T1, which are poled in the same direction.
  • the semiconductor switches S1, S2 switch alternately, so that always one of the two switches S1, S2 is closed.
  • the aforementioned components of the circuit arrangement form the operating part for the lamp, which is arranged in a housing, separate from the lamp.
  • a load circuit is connected, with connections for the mercury-free metal halide high-pressure discharge lamp La and the pulse ignition device is equipped.
  • the pulse ignition device IZV comprises an ignition transformer T2 whose secondary winding L2b is connected in the load circuit.
  • the voltage input of the pulse ignition device IZV is connected in parallel to the resonance capacitor C4.
  • the series resonant circuit C4, L3 is formed here as part of the pulse ignition device IZV and housed together with this in the base of the mercury-free metal halide high-pressure discharge lamp La.
  • the operating and ignition parts are connected to each other via shielded coaxial cables.
  • FIG. 2 illustrated second embodiment of the invention differs from the first Ausrumbleungsbeispiel described above only in that the components L3, C4 of the series resonant circuit are not formed as part of the Impulszündvortechnik IZV, but as part of the operating part. Because of this, were in the Figures 1 and 2 for identical components, the same reference numerals.
  • the illustrated circuit arrangement according to the third embodiment differs from the first embodiment only by the additional capacitor C6 and the dimensioning of the capacitor C5. For this reason, in the embodiments in the FIGS. 1 and 3 for identical components, the same reference numerals.
  • the capacitors C5. C6 and the inductor L3 together form a series resonant circuit which supplies the pulse ignition device IZV with energy during the ignition phase of the high-pressure discharge lamp La.
  • the voltage input of the pulse ignition device IZV is connected in parallel with the capacitors C5, C6 connected in series during the ignition phase of the lamp La.
  • the components C5, L3 of the series resonant circuit which are connected in parallel with the discharge path of the high-pressure discharge lamp La become conductive through the now conductive discharge path the lamp La is short-circuited and the switching frequency of the current-fed push-pull converter is increased so that it is close to the resonance frequency of the series resonant circuit which is formed by the now connected in series to the secondary winding L2b of the ignition transformer T2 capacitor C6 and the aforementioned secondary winding L2b.
  • the capacitor C6 causes, after completion of the ignition phase, during lamp operation, a partial compensation of the inductance of the current flowing through the lamp current secondary winding L2b of the ignition transformer T2, whereby the power losses in the semiconductor switches S1, S2 of the push-pull converter and the transformer T1 can be reduced.
  • Table 1 indicates a dimensioning for the components used in the first to third embodiments.
  • a circuit diagram of the pulse ignition device IZV for the aforementioned embodiments is in the FIG. 5 displayed.
  • the field effect transistors S1, S2 are switched alternately by their control device (not shown), for example as a microcontroller control, with a switching frequency of 350 kilohertz, that of the resonant frequency of the scribe resonant circuit L3, C4 or L3, C5, C6 equivalent.
  • their control device for example as a microcontroller control
  • a switching frequency of 350 kilohertz that of the resonant frequency of the scribe resonant circuit L3, C4 or L3, C5, C6 equivalent.
  • a correspondingly high input voltage U1 is available for the pulse ignition device IZV at the capacitor C4 or at the series connection of the capacitors C5, C6, which is sufficient to supply the ignition capacitor C3 of the pulse ignition device IZV via the rectifier diode D3 and the resistor R1 to the breakdown voltage of the Spark gap FS of the pulse ignition device IZV charge.
  • the capacitor C3 discharges via the primary winding L2a of the ignition transformer T2 and in its secondary winding L2b Hochhardszündimpulse of up to 30,000 volts for igniting the gas discharge in the high-pressure discharge lamp La generated.
  • the series resonant circuit components L3, C4 and L3, C5 are short-circuited by the now conductive discharge path of the lamp La and thus the provided on the resonant capacitor C4 or C5 and C6 input voltage for the pulse ignition device IZV is no longer sufficient to the ignition capacitor C3 to the breakdown voltage of the spark gap FS charge.
  • the switching frequency of the push-pull converter is raised to a center frequency of 550 kilohertz and frequency modulation of the alternating current in the load circuit with a frequency of 30 Hertz and a modulation frequency of 500 Hertz performed by the aforementioned center frequency.
  • the lamp La is supplied with an excessive power to achieve a rapid evaporation of the charge components of the discharge medium of the high-pressure discharge lamp La and thus in the shortest possible time the full light emission of the lamp La.
  • the center frequency of the lamp AC current is raised to the value of 715 kilohertz to ensure operation at the lamp power of 35 watts.
  • the above-described frequency modulation of the lamp current serves to avoid acoustic resonances in the discharge medium of the lamp La. At sufficiently high AC frequencies at which acoustic resonances are no longer stimulated to any significant extent, can be dispensed with the frequency modulation.
  • FIG. 4 the circuit arrangement according to a fourth embodiment of the invention is shown.
  • This circuit arrangement differs from the first embodiment only in that the inductor L1 in the current-fed push-pull converter has been replaced by the auto-transformer L4, L4b and the pulse ignition device IZV by the pulse ignition device IZV '. Identical components were therefore in the FIGS. 1 and 4 provided with the same reference numerals.
  • the function of the inductor L1 is adopted in the fourth embodiment of the primary winding L4 of the autotransformer L4, L4b.
  • the secondary winding L4b of the aforementioned autotransformer has ten times the number of turns of the primary winding L4 and is connected to the voltage input of the pulse ignition device IZV 'connected.
  • the pulse ignition device IZV ' also has the in the FIG. 5 illustrated construction, but differs by the dimensioning of their components of the pulse ignition device IZV.
  • the components of the pulse ignition device IZV 'and its ignition transformer T3 with the primary L3a and secondary winding L3b are dimensioned according to the information in Table 2.
  • the current-supplied push-pull converter according to the fourth embodiment operated at a switching frequency of 100 kilohertz.
  • the components L4, C1 and T1 form during the aforementioned ignition phase a series resonant circuit, so that at the secondary winding L4b generated by the method of resonance peaking and still increased according to the turns ratio of secondary and primary winding of the autotransformer L4, L4b input voltage of about 1000 volts for the pulse ignition device IZV 'is provided.
  • This input voltage is sufficient to charge the ignition capacitor C3 to the breakdown voltage of the spark gap FS and to generate high voltage pulses for igniting the gas discharge in the high-pressure discharge lamp La by means of the ignition transformer T3.
  • the switching frequency of the push-pull converter As already above in the first embodiment has been raised.
  • L4b not longer to charge the ignition capacitor C3 to the breakdown voltage of the spark gap FS.
  • the deactivation of the pulse ignition device IZV 'at the end of the ignition phase but also by means of an additional switch can be ensured.
  • the operation of the high-pressure discharge lamp La after completion of its ignition phase is identical to the first embodiment.
  • FIG. 6 a circuit arrangement according to the fifth to eighth embodiment is shown schematically.
  • This circuit comprises a current-fed push-pull converter, which is identical to the first embodiment is trained.
  • FIG. 6 is different from FIG. 1
  • the fifth to eighth embodiments differ from the above-described embodiments in that the input voltage for the pulse ignition device IZV "is generated not by a series resonant circuit but by a voltage multiplying circuit KK.
  • the circuit KK is formed as a three-stage cascade circuit While the input voltage U2 for the voltage multiplying circuit KK is provided to the secondary winding of the transformer T1, the voltage input j1, j2 of the voltage multiplying circuit KK is in parallel with the secondary winding of the transformer T1 switched into the load circuit.
  • the pulse ignition device IZV " is identical to the in FIG. 5 formed pulse ignition device IZV and the circuit KK designed as a three-stage cascade circuit. Details of the three-stage cascade connection are in the FIG. 7 displayed. Information on the dimensioning of the three-stage cascade connection are listed in Table 3.
  • the push-pull converter is operated at a switching frequency of 100 kilohertz and the three-stage cascade circuit increases the induction voltage of the secondary winding of the transformer T1 according to the number of its stages and provides at its voltage output, the input voltage U1 for the pulse ignition IZV "available.
  • the three-stage cascade connection is switched off by means of a switch (not shown) which cuts off its power supply. The further lamp operation takes place as already in the first embodiment.
  • the sixth embodiment of the invention differs from the fifth embodiment only in that the pulse ignition device and the three-stage cascade circuit are intertwined with each other. That is, components of the three-stage cascade circuit, such as the capacitors C12, C22 and C23, also simultaneously form components of the pulse ignition device. As a result, components can be saved.
  • FIG. 8 the structure of the combination of three-stage cascade connection with the pulse ignition device is shown schematically. The function of the circuit arrangement and the operation of the lamp La are identical to the fifth embodiment.
  • the pulse ignition device IZV is identical to that in FIG. 5 formed Impulszündvorraum IZV and the circuit KK designed as a symmetrical differencessverdoppelungsscrien. Details of the symmetric voltage doubling circuit are in the FIG. 9 displayed. Information on the dimensioning of the symmetrical voltage doubling circuit are shown in Table 4. The output voltage U1 of the balanced voltage doubler circuit is fed to the voltage input of the pulse ignition device IZV.
  • the push-pull converter is operated at a switching frequency of 100 kilohertz and the balanced voltage doubling circuit doubles the induction voltage of the secondary winding of the transformer T1 and provides the input voltage at its voltage output U1 for the pulse ignition device IZV "available.
  • the balanced voltage doubler circuit is turned off by means of a switch (not shown) which cuts its power supply. The further lamp operation takes place as already in the first embodiment.
  • the eighth embodiment of the invention differs from the seventh embodiment only in that the pulse firing device and the balanced voltage doubling circuit are intermeshed with each other. That is, components of the balanced voltage doubler circuit, such as the capacitors C7 and C8, also simultaneously form components of the pulse firing device. As a result, components can be saved.
  • FIG. 10 the structure of the combination of balanced voltage doubling circuit with the pulse ignition device is shown schematically. The function of the circuit arrangement and the operation of the lamp La are identical to the seventh embodiment.
  • the invention is not limited to the exemplary embodiments described in more detail above.
  • the invention can also be applied to a pulse ignition device whose ignition voltage output is provided for connection to the auxiliary ignition electrode of a high-pressure discharge lamp.
  • the voltage input of the voltage multiplying cascade circuit and the balanced voltage doubling circuit may also be connected on the primary side to the push-pull converter and do not necessarily have to be fed by the secondary winding T1b of the transformer T1.
  • Table 1 Dimensioning of the components of the circuit arrangements according to the first to third embodiments C1 1.0 nF, FKP 1 (WIMA) C4 33 pF C5 35 pF C6 570 pF L1 60 ⁇ H, 20Wdg.
  • L3b 60 ⁇ H C11, C21, C31 1.0 nF, FKP1 (WIMA) C12, C22, C32 33 nF, FKP1 (WIMA) D11, D21, D31 US1M D12, D22, D32 US1M FS 2000 volts R2 1000 ohms R3 30000 ohms D4, D5 BY505 C7, C8 22 nF, 1200 volts FS 2000 volts

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Description

  • Die Erfindung betrifft eine Schaltungsanordnung zum Betreiben von Hochdruckentladungslampen gemäß dem Oberbegriff des Patentanspruchs 1 und ein Verfahren zum Betreiben einer Hochdruckentladungslampe.
  • I. Stand der Technik
  • Eine derartige Schaltungsanordnung ist beispielsweise in dem Artikel von Michael Gulko und Sam Ben-Yaakov "A MHz Electronic Ballast for Automotive-Type HID Lamps" IEEE Power Electronics Specialists Conference, PESC-97, Seiten 39-45, St. Louis, 1997 beschrieben. In dieser Veröffentlichung wird ein stromgespeister Gegentaktwandler offenbart, der über einen Transformator einen Lastkreis, in den eine Hochdruckentladungslampe geschaltet ist, mit einer hochfrequenten Wechselspannung beaufschlagt. In den Lastkreis ist außerdem die Sekundärwicklung des Zündtransformators einer Zündvorrichtung geschaltet, welche die Zündspannung zum Zünden der Gasentladung in der Hochdruckentladungslampe generiert.
  • Die Offenlegungsschrift WO 98/18297 beschreibt einen Gegentaktwandler, der über einen Transformator einen Lastkreis und eine galvanisch davon getrennte Impulszündvorrichtung mit hochfrequenter Wechselspannung beaufschlagt. In den Lastkreis ist eine Hochdruckentladungslampe geschaltet. Die Impulszündvorrichtung liefert während der Zündphase Hochspannungsimpulse an eine Zündhilfselektrode der Hochdruckentladungslampe.
  • Die DE 40 32 292 offenbart eine Gasentladungslampenanordnung und einen Kfz-Scheinwerfer mit einer solchen Anordnung sowie eine Schaltungsanordnung zum Betrieb einer solchen Gasentladungslampe.
  • Die FR 2 698 515 A beschreibt eine Schaltungsanordnung zum Zünden und Betreiben einer Gasentladungslampe für Kfz-Scheinwerfer.
  • Die DE 199 09 530 A1 offenbart eine Schaltungsanordnung zum Betrieb mindestens einer Hochdruckentladungslampe und ein Betriebsverfahren. Die Zündvorrichtung für die Hochdruckentladungslampe ist als Kaskadenschaltung ausgebildet.
  • II. Darstellung der Erfindung
  • Es ist die Aufgabe der Erfindung, eine gattungsgemäße Schaltungsanordnung mit einer verbesserten Spannungsversorgung für die Impulszündvorrichtung bereitzustellen. Ferner soll die erfindungsgemäße Schaltungsanordnung einen Hochfrequenzbetrieb der Hochdruckentladungslampe mit Wechselspannungen im Megahertzbereich und eine sichere Zündung der Gasentladung in der Lampe gewährleisten.
  • Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1 gelöst. Besonders vorteilhafte Ausführungen der Erfindung sind in den abhängigen Patentansprüchen beschrieben.
  • Die erfindungsgemäße Schaltungsanordnung zum Betreiben von Hochdruckentladungslampen weist einen Spannungswandler zum Erzeugen einer Wechselspannung sowie einen daran angeschlossenen oder als Bestandteil des Spannungswandlers ausgebildeten Transformator, dessen Sekundärwicklung einen Lastkreis speist, der mit Anschlüssen für eine Hochdruckentladungslampe und für den Zündspannungsausgang einer Impulszündvorrichtung versehen ist, und einen Serienresonanzkreis auf, der zur Spannungsversorgung der Impulszündvorrichtung während der Zündphase der Hochdruckentladungslampe vorgesehen ist. Mittels des vorgenannten Serienresonanzkreises wird während der Zündphase der Hochdruckentladungslampe an dem Spannungseingang der Impulszündvorrichtung eine aus der Ausgangsspannung des Spannungswandlers generierte, resonanzüberhöhte Versorgungsspannung bereitgestellt. Durch die mit dem Serienresonanzkreis bewirkte Resonanzüberhöhung der Versorgungsspannung kann für die Impulszündvorrichtung ein Zündtransformator mit einem geringeren Windungsverhältnis zwischen Sekundär- und Primärwicklung und einer dementsprechend reduzierten Induktivität verwendet werden, um die erforderliche Zündspannung für die Hochdruckentladungslampe bereitzustellen. Insbesondere bei Betriebsfrequenzen weit oberhalb von 100 Kilohertz hat die reduzierte Induktivität des Zündtransformators den Vorteil, dass nach erfolgter Zündung der Gasentladung in der Hochdruckentladungslampe ein deutlich verringerter Spannungsabfall an der vom Lampenstrom durchflossenen Sekundärwicklung des Zündtransformators auftritt und dadurch die Verluste in dem Transformator am Spannungsausgang des Spannungswandlers und in den elektronischen Komponenten des Spannungswandlers deutlich reduziert werden. Der vorgenannte Serienresonanzkreis ermöglicht daher die Kombination eines Spannungswandlers, der für vergleichsweise hohe Betriebsfrequenzen deutlich oberhalb von 100 Kilohertz ausgelegt ist, mit einer Impulszündvorrichtung, deren Zündtransformator unmittelbar in dem vom Spannungswandler versorgten Lastkreis geschaltet ist und die nicht, wie in der Offenlegungsschrift WO 98/18297 beschrieben, galvanisch getrennt von dem Lastkreis angeordnet sein muss. Dadurch kann die Topologie der Schaltungsanordnung erheblich vereinfacht werden. Insbesondere kann bei der Hochdruckentladungslampe auf eine Zündhilfselektrode verzichtet werden. Besonders vorteilhaft kann die Erfindung auf einen einstufigen Spannungswandler, insbesondere einen als stromgespeisten Gegentaktwandler oder als Klasse-E-Konverter ausgebildeten Spannungswandler, angewandt werden, der auf die Erzeugung einer Zwischenkreisspannung verzichtet. Die Schaltungstopologie dieser vorgenannten einstufigen Spannungswandler ist vergleichsweise einfach und daher kostengünstig.
  • Gemäß einer bevorzugten Variante der Erfindung ist der vorgenannte Serienresonanzkreis an die Sekundärwicklung des Transformators angeschlossen und, bei angeschlossener Hochdruckentladungslampe, parallel zur Entladungsstrecke der Hochdruckentladungslampe geschaltet. Dadurch wird an den Bauteilen des Serienresonanzkreises eine höhere Spannung für die Impulszündvorrichtung generiert als in der Sekundärwicklung des Transformators, wenn die Schaltfrequenz des Spannungswandlers während der Zündphase der Hochdruckentladungslampe in die Nähe der Resonanzfrequenz des Serienresonanzkreises liegt. Nach Beendigung der Zündphase wird der Serienresonanzkreis durch die nun leitfähige Entladungsstrecke der Hochdruckentladungslampe kurzgeschlossen und dadurch die Impulszündvorrichtung deaktiviert.
  • Gemäß einer anderen bevorzugten Variante der Erfindung ist der Serienresonanzkreis auf der Primärseite des Transformators in den Spannungswandler geschaltet. Zu diesem Zweck ist die Resonanzinduktivität des Serienresonanzkreises vorzugsweise als Spartransformator ausgebildet, dessen Sekundärwicklung mit dem Spannungseingang einer Impulszündvorrichtung verbindbar ist. Das Deaktivieren der Impulszündvorrichtung nach Beendigung der Zündphase der Hochdruckentladungslampe kann hier auf einfache Weise durch eine Änderung, vorzugsweise eine Erhöhung, der Schaltfrequenz des Spannungswandlers herbeigeführt werden. Während der Zündphase liegt die Schaltfrequenz des Spannungswandlers in der Nähe der Resonanzfrequenz des Serienresonanzkreises.
  • Um die Verlustleistung in der Schaltungsanordnung weiter zu verringern, ist in vorteilhafter Weise in dem Lastkreis ein Kondensator angeordnet, der bei angeschlossener Impulszündvorrichtung in Serie zur Sekundärwicklung des Zündtransformators geschaltet ist und dessen Kapazität derart dimensioniert ist, dass er für die von der Impulszündvorrichtung generierten Zündimpulse im wesentlichen einen Kurzschluss darstellt und nach erfolgter Zündung der Gasentladung in der Hochdruckentladungslampe eine teilweise Kompensation der Induktivität des vom Lampenstrom durchflossenen Zündtransformators bewirkt. Dieser Kondensator kann vorteilhaft auch als Bestandteil des Serienresonanzkreises ausgebildet sein.
  • Der Serienresonanzkreis ist gemäß einer vorteilhaften Ausführungsform der Erfindung als Bestandteil einer Impulszündvorrichtung ausgebildet, die, getrennt von den übrigen Komponenten des Betriebgerätes der Hochdruckentladungslampe, in dem Lampensockel der Hochdruckentladungslampe untergebracht ist. Dadurch sind alle Hochspannung führenden Komponenten in dem Lampensockel angeordnet, so dass die Schnittstelle zwischen dem Betriebsgerät, das den Spannungswandler mit dem Transformator an seinem Spannungsausgang enthält, und der Hochdruckentladungslampe nur mit einer vergleichsweise geringen Spannung von weniger als 100 Volt beaufschlagt wird. Diese Schnittstelle erfordert daher keine Hochspannungsisolierung, sondern nur eine Abschirmung der Hochfrequenz-Wechselspannung, um eine ausreichende elektromagnetische Verträglichkeit des Betriebsgerätes und der Lampe zu gewährleisten. Beispielsweise wird das mittels geerdeter, metallischer Gehäuse bzw. Abschirmungen und Koaxialkabel, deren Abschirmgeflecht ebenfalls geerdet ist, in bekannter Weise erreicht.
  • Die erfindungsgemäße Impulszündvorrichtung besitzt daher zusätzlich zu den üblichen Komponenten noch einen Serienresonanzkreis, der mit ihrem Spannungseingang verbunden ist und zur Resonanzüberhöhung der am Spannungseingang bereitgestellten Versorgungsspannung während der Zündphase dient.
  • Alternativ oder zusätzlich zu dem vorgenannten Serienresonanzkreis kann auch eine spannungsvervielfachende Kaskadenschaltung in der Schaltungsanordnung oder Impulszündvorrichtung verwendet werden, um eine höhere Eingangsspannung als die von der Sekundärwicklung des Transformators generierte Induktionsspannung für die Impulszündvorrichtung bereitzustellen. Sie bietet in Kombination mit dem Spannungswandler ähnliche Vorteile wie der oben beschriebene Serienresonanzkreis. Allerdings hat die Variante mit dem Serienresonanzkreis gegenüber der mit der Kaskadenschaltung den Vorteil, dass sie kein Schaltmittel zum Deaktivieren der Impulszündvorrichtung benötigt.
  • Die spannungsvervielfachende Kaskadenschaltung wird. in vorteilhafter Weise entweder direkt von dem Spannungswandler oder von der Sekundärwicklung des Transformators am Spannungsausgang des Gegentaktwandlers mit Energie versorgt. Falls die spannungsvervielfachende Kaskadenschaltung in Kombination mit dem Serienresonanzkreis verwendet wird, dann ist der Spannungseingang der Kaskadenschaltung parallel zu einem Resonanzkreisbauteil geschaltet und ihr Spannungsausgang mit dem Spannungseingang der Impulszündvorrichtung verbunden.
  • Gemäß einer weiteren Variante der Erfindung kann alternativ zu der oben beschriebenen spannungsvervielfachenden Kaskadenschaltung eine symmetrische Spannungsverdoppelungsschaltung in der Schaltungsanordnung oder Impulszündvorrichtung verwendet werden, um eine höhere Eingangsspannung als die von der Sekundärwicklung des Transformators generierte Induktionsspannung für die Impulszündvorrichtung bereitzustellen. Sie bietet in Kombination ähnliche Vorteile wie die oben beschriebene Kaskadenschaltung, wenn eine Spannungsverdoppelung ausreichend ist. Diese symmetrische Spannungsverdoppelungsschaltung kann auch in Kombination mit dem oben beschriebenen Serienresonanzkreis verwendet werden. Die symmetrische Spannungsverdoppelungsschaltung hat den Vorteil einer annähernd symmetrische Stromaufnahme während der positiven und negativen Halbwelle der Versorgungsspannung und vermeidet eine unsymmetrische magnetische Aussteuerung des Kerns des Transformators am Spannungsausgang des Spannungswandlers.
  • Die symmetrische Spannungsverdoppelungsschaltung wird in vorteilhafter Weise entweder direkt von dem Spannungswandler oder von der Sekundärwicklung des Transformators am Spannungsausgang des Gegentaktwandlers mit Energie versorgt. Falls die symmetrische Spannungsverdoppelungsschaltung in Kombination mit dem Serienresonanzkreis verwendet wird, dann ist der Spannungseingang der symmetrische Spannungsverdoppelungsschaltung parallel zu einem Resonanzkreisbauteil geschaltet und ihr Spannungsausgang mit dem Spannungseingang der Impulszündvorrichtung verbunden.
  • Das erfindungsgemäße Verfahren zum Betreiben einer Hochentladungslampe mittels eines Spannungswandlers und einer Impulszündvorrichtung zeichnet sich dadurch aus, dass während der Zündphase der Hochdruckentladungslampe mit Hilfe eines nahe seiner Resonanzfrequenz betriebenen Serienresonanzkreises oder bzw. und mittels einer spannungsvervielfachenden Kaskadenschaltung eine Erhöhung der Versorgungsspannung für die Impulszündvorrichtung durchgeführt wird.
  • Die erfindungsgemäße Betriebsweise ermöglicht einen zuverlässigen Hochfrequenzbetrieb der Hochdruckentladungslampe mit Wechselstromfrequenzen, die weit oberhalb der akustischen Resonanzen des Entladungsmediums innerhalb der Hochdruckentladungslampe liegen. Insbesondere kann durch die erfindungsgemäße Betriebsweise gewährleistet werden, dass einerseits während der Zündphase der Hochdruckentladungslampe eine ausreichend hohe Zündspannung generiert wird und andererseits nach Beendigung der Zündphase während des Lampenbetriebs die vom hochfrequenten Lampenstrom durchflossene Sekundärwicklung des Zündtransformators keine unzumutbar hohen Leistungsverluste in der Schaltungsanordnung verursacht.
  • Während der Zündphase der Hochdruckentladungslampe wird der Spannungswandler in vorteilhafter Weise mit einer Schaltfrequenz nahe der Resonanzfrequenz des Serienresonanzkreises betrieben, um eine resonanzüberhöhte Versorgungsspannung für die Impulszündvorrichtung bereitzustellen. Nach Beendigung der Zündphase wird die Schaltfrequenz der Schaltmittel des Spannungswandlers vorzugsweise zu einer Frequenz deutlich oberhalb der Resonanzfrequenz des Serienresonanzkreises verlagert, um die Impulszündvorrichtung dadurch zu deaktivieren.
  • III. Beschreibung der bevorzugten Ausführungsbeispiele Nachstehend wird die Erfindung anhand einiger bevorzugter Ausführungsbeispiele näher erläutert. Es zeigen:
  • Figur 1
    Eine Schaltskizze der Schaltungsanordnung gemäß eines ersten Ausfüh- rungsbeispiels der Erfindung
    Figur 2
    Eine Schaltskizze der Schaltungsanordnung gemäß eines zweiten Ausfüh- rungsbeispiels der Erfindung
    Figur 3
    Eine Schaltskizze der Schaltungsanordnung gemäß eines dritten Ausfüh- rungsbeispiels der Erfindung
    Figur 4
    Eine Schaltskizze der Schaltungsanordnung gemäß eines vierten Ausfüh- rungsbeispiels der Erfindung
    Figur 5
    Eine Schaltskizze der Impulszündvorrichtung für das erste bis vierte Aus- führungsbeispiel
    Figur 6
    Eine Schaltskizze der Schaltungsanordnung gemäß des fünften bis achten Ausführungsbeispiels der Erfindung
    Figur 7
    Eine Schaltskizze einer Kaskadenschaltung zur Versorgung der Impuls- zündvorrichtung des in Figur 6 abgebildeten fünften Ausführungsbeispiels
    Figur 8
    Eine Schaltskizze einer Kombination der Kaskadenschaltung mit der Im- pulszündvorrichtung für das in Figur 6 abgebildete fünfte Ausführungsbei- spiel
    Figur 9
    Eine Schaltskizze einer symmetrischen Spannungsverdoppelungsschaltung zur Versorgung der Impulszündvorrichtung des in Figur 6 abgebildeten sechsten Ausführungsbeispiels
    Figur 10
    Eine Schaltskizze einer Kombination der symmetrischen Spannungsver- doppelungsschaltung mit der Impulszündvorrichtung für das in Figur 6 abgebildete sechste Ausführungsbeispiel
  • Bei den in Figuren 1 bis 8 abgebildeten Ausführungsbeispielen der Erfindung handelt es sich um Schaltungsanordnungen und Impulszündvorrichtungen für den Betrieb einer quecksilberfreien Halogen-Metalldampf-Hochdruckentladungslampe mit einer elektrischen Leistungsaufnahme von ca. 35 Watt, die für den Einsatz in dem Scheinwerfer eines Kraftfahrzeugs vorgesehen ist.
  • In Figur 1 ist ein erstes Ausführungsbeispiel einer erfindungsgemäßen Schaltungsanordnung zum Betreiben der oben genannten quecksilberfreien Halogen-Metalldampf-Hochdruckentladungslampe abgebildet. Zusätzlich ist auch eine Impulszündvorrichtung zum Zünden der Gasentladung in der quecksilberfreien Halogen-Metalldampf-Hochdruckentladungslampe abgebildet, die in dem Lampensockel untergebracht ist. Die Schaltungsanordnung umfasst eine Gleichspannungsquelle U0, die von der Batterie bzw. Lichtmaschine des Kraftfahrzeugs gebildet wird, und eine Drossel L1, einen Kondensator Cl, zwei steuerbare Halbleiterschalter S1, S2 mit jeweils einer parallel dazu geschalteten Diode D1 bzw. D2 und einen Transformator T1 mit zwei Primär- und einer Sekundärwicklung. Die Schalter S1, S2 sind als Feldeffekttransistoren (MOSFETS) ausgebildet und bei den Dioden D1 bzw. D2 handelt es sich um die in den Feldeffekttransistor S1 bzw. S2 integrierte sogenannte Body-Diode. Die Drossel L1, der Kondensator C1, die Halbleiterschalter S1, S2 mit ihren Dioden D1, D2 und der Transformator T1 sind nach der Art eines stromgespeisten Gegentaktwandlers, wie in dem oben zitierten Stand der Technik beschrieben, miteinander verschaltet. Mit Hilfe der Drossel L1 wird an dem Mittenabgriff M1 zwischen den beiden gleichsinnig gepolten Primärwicklungen des Transformators T1 ein näherungsweise konstanter Strom eingeprägt. Die Halbleiterschalter S1, S2 schalten alternierend, so dass immer einer der beiden Schalter S1, S2 geschlossen ist. Die vorgenannten Komponenten der Schaltungsanordnung bilden den Betriebsteil für die Lampe, der in einem Gehäuse, separat von der Lampe angeordnet ist. An die Sekundärwicklung des Transformators T1 ist ein Lastkreis angeschlossen, der mit Anschlüssen für die quecksilberfreie Halogen-Metalldampf Hochdruckentladungslampe La und die Impulszündvorrichtung ausgestattet ist. Die Impulszündvorrichtung IZV umfasst einen Zündtransformator T2, dessen Sekundärwicklung L2b in den Lastkreis geschaltet ist. Parallel zu der Sekundärwicklung des Transformators T1, die den Spannungsausgang des stromgespeisten Gegentaktwandlers bildet, ist ein Serienresonanzkreis angeschlossen, der aus der Resonanzinduktivität L3 und dem Resonanzkondensator C4 besteht. Der Spannungseingang der Impulszündvorrichtung IZV ist parallel zu dem Resonanzkondensator C4 geschaltet. Der Serienresonanzkreis C4, L3 ist hier als Bestandteil der Impulszündvorrichtung IZV ausgebildet und zusammen mit dieser in dem Sockel der quecksilberfreien Halogen-Metalldampf-Hochdruckentladungslampe La untergebracht. Das Betriebs- und Zündteil sind hier über abgeschirmte Koaxialkabel miteinander verbunden.
  • Das in Figur 2 abgebildete zweite Ausführungsbeispiel der Erfindung unterscheidet sich von dem oben beschrieben ersten Ausrührungsbeispiel nur dadurch, dass die Komponenten L3, C4 des Serienresonanzkreises nicht als Bestandteil der Impulszündvorrichtung IZV, sondern als Bestandteil des Betriebsteils ausgebildet sind. Aus diesem Grund wurden in den Figuren 1 und 2 für identische Bauteile dieselben Bezugszeichen verwendet.
  • Die in Figur 3 abgebildete Schaltungsanordnung gemäß des dritten Ausführungsbeispiels unterscheidet sich von dem ersten Ausführungsbeispiel nur durch den zusätzlichen Kondensator C6 und die Dimensionierung des Kondensators C5. Aus diesem Grund wurden bei den Ausführungsbeispielen in den Figuren 1 und 3 für identische Bauteile dieselben Bezugszeichen verwendet. Die Kondensatoren C5. C6 und die Induktivität L3 bilden zusammen einen Serienresonanzkreis, der während der Zündphase der Hochdruckentladungslampe La die Impulszündvorrichtung IZV mit Energie versorgt. Der Spannungseingang der Impulszündvorrichtung IZV ist zu diesem Zweck parallel zu den während der Zündphase der Lampe La in Serie geschalteten Kondensatoren C5, C6 geschaltet. Nach Beendigung der Zündphase werden die parallel zu der Entladungsstrecke der Hochdruckentladungslampe La geschalteten Bauteile C5, L3 des Serienresonanzkreises durch die nun leitfähige Entladungsstrecke der Lampe La kurzgeschlossen und die Schaltfrequenz des stromgespeisten Gegentaktwandlers wird so weit erhöht, dass sie nahe der Resonanzfrequenz des Serienresonanzkreise liegt, der von dem nun in Serie zu der Sekundärwicklung L2b des Zündtransformators T2 geschalteten Kondensators C6 und der vorgenannten Sekundärwicklung L2b gebildet wird. Der Kondensator C6 bewirkt, nach Beendigung der Zündphase, während des Lampenbetriebs eine partielle Kompensation der Induktivität der vom Lampenstrom durchflossenen Sekundärwicklung L2b des Zündtransformators T2, wodurch die Verlustleistungen in den Halbleiterschaltern S1, S2 des Gegentaktwandlers und dem Transformator T1 reduziert werden.
  • In der Tabelle 1 ist eine Dimensionierung für die in dem ersten bis dritten Ausführungsbeispiel verwendeten Bauteile angegeben. Eine Schaltskizze der Impulszündvorrichtung IZV für die vorgenannten Ausführungsbeispiele ist in der Figur 5 abgebildet.
  • Während der Zündphase der Hochdruckentladungslampe La werden die Feldeffekttransistoren S1, S2 von ihrer, beispielsweise als Mikrocontroller-Steuerung ausgebildeten Ansteuerungsvorrichtung (nicht abgebildet) alternierend mit einer Schaltfrequenz von 350 Kilohertz geschaltet, die der Resonanzfrequenz des Scrienresonanzkreises L3, C4 bzw. L3, C5, C6 entspricht. An der Sekundärwicklung des Transformators T1 wird dadurch eine Wechselspannung von derselben Frequenz generiert, aus der mittels des vorgenannten Serienresonanzkreises eine durch Resonanz überhöhte Wechselspannung von ca. 2500 Volt erzeugt wird. An dem Kondensator C4 bzw. an der Serienschaltung der Kondensatoren C5, C6 steht daher für die Impulszündvorrichtung IZV eine entsprechend hohe Eingangsspannung U1 zur Verfügung, die ausreicht, um den Zündkondensator C3 der Impulszündvorrichtung IZV über die Gleichrichterdiode D3 und den Widerstand R1 auf die Durchbruchsspannung der Funkenstrecke FS der Impulszündvorrichtung IZV aufzuladen. Beim Durchbruch der Funkenstrecke FS entlädt sich der Kondensator C3 über die Primärwicklung L2a des Zündtransformators T2 und in seiner Sekundärwicklung L2b werden Hochspannungszündimpulse von bis zu 30000 Volt zum Zünden der Gasentladung in der Hochdruckentladungslampe La generiert. Nach erfolgter Zündung der Gasentladung in der Hochdruckentladungslampe La werden die Serienresonanzkreisbauteile L3, C4 bzw. L3, C5 durch die nun leitfähige Entladungsstrecke der Lampe La kurzgeschlossen und dadurch reicht die an dem Resonanzkondensator C4 bzw. C5 und C6 bereitgestellte Eingangsspannung für die Impulszündvorrichtung IZV nicht mehr aus, um den Zündkondensator C3 auf die Durchbruchsspannung der Funkenstrecke FS aufzuladen. Nach erfolgter Zündung der Gasentladung in der Hochdruckentladungslampe La wird die Schaltfrequenz des Gegentaktwandlers auf eine Mittenfrequenz von 550 Kilohertz angehoben und eine Frequenzmodulation des Wechselstroms im Lastkreis mit einem Frequenzhub von 30 Hertz und einer Modulationsfrequenz von 500 Hertz um die vorgenannte Mittenfrequenz durchgeführt. Während dieser Betriebsphase, der sogenannten Anlaufphase oder dem sogenannten Leistungsanlauf der Lampe, wird der Lampe La eine überhöhte Leistung zugeführt, um ein schnelles Verdampfen der Füllungskomponenten des Entladungsmediums der Hochdruckentladungslampe La und damit in möglichst kurzer Zeit die volle Lichtemission der Lampe La zu erreichen. Am Ende des vorgenannten Leistungsanlaufs wird die Mittenfrequenz des Lampenwechselstroms auf den Wert von 715 Kilohertz angehoben, um den Betrieb bei der Lampennennleistung von 35 Watt zu gewährleisten. Die oben beschriebene Frequenzmodulation des Lampenstroms dient zur Vermeidung von akustischen Resonanzen in dem Entladungsmedium der Lampe La. Bei ausreichend hohen Wechselstromfrequenzen, bei denen akustische Resonanzen nicht mehr in nennenswertem Maße angeregt werden, kann auf die Frequenzmodulation verzichtet werden.
  • In der Figur 4 ist die Schaltungsanordnung gemäß eines vierten Ausführungsbeispiels der Erfindung abgebildet. Diese Schaltungsanordnung unterscheidet sich von der ersten Ausführungsbeispiels nur dadurch, dass die Drossel L1 in dem stromgespeisten Gegentaktwandler durch den Spartransformator L4, L4b und die Impulszündvorrichtung IZV durch die Impulszündvorrichtung IZV' ersetzt wurde. Identische Bauteile wurden daher in den Figuren 1 und 4 mit denselben Bezugszeichen versehen. Die Funktion der Drossel L1 wird in dem vierten Ausführungsbeispiel von der Primärwicklung L4 des Spartransformators L4, L4b übernommen. Die Sekundärwicklung L4b des vorgenannten Spartransformators besitzt die zehnfache Windungszahl der Primärwicklung L4 und ist mit dem Spannungseingang der Impulszündvorrichtung IZV' verbunden. Sie versorgt diese während der Zündphase der Hochdruckentladungslampe La mit Energie. Die Induktivität der Primärwicklung L4 beträgt 75 µH. Die Impulszündvorrichtung IZV' besitzt ebenfalls den in der Figur 5 dargestellten Aufbau, unterscheidet sich aber durch die Dimensionierung ihrer Bauteile von der Impulszündvorrichtung IZV. Die Bauteile der Impulszündvorrichtung IZV' und ihr Zündtransformator T3 mit der Primär- L3a und Sekundärwicklung L3b sind gemäß der Angaben in der Tabelle 2 dimensioniert.
  • Während der Zündphase der Hochdruckentladungslampe La wird der stromgespeiste Gegentaktwandler gemäß des vierten Ausführungsbeispiels (Figur 4) mit einer Schaltfrequenz von 100 Kilohertz betrieben. Die Bauteile L4, C1 und T1 bilden während der vorgenannten Zündphase einen Serienresonanzkreis, so dass an der Sekundärwicklung L4b eine mittels der Methode der Resonanzüberhöhung generierte und noch entsprechend des Windungsverhältnisses von Sekundär- und Primärwicklung des Spartransformators L4, L4b erhöhte Eingangsspannung von ungefähr 1000 Volt für die Impulszündvorrichtung IZV' bereitgestellt wird. Diese Eingangsspannung reicht aus, um den Zündkondensator C3 auf die Durchbruchsspannung der Funkenstrecke FS aufzuladen und mittels des Zündtransformators T3 Hochspannungsimpulse zum Zünden der Gasentladung in der Hochdruckentladungslampe La zu generieren. Nach erfolgter Zündung der Gasentladung in der Hochdruckenttadungslampe La wird die Schaltfrequenz des Gegentaktwandlers, wie bereits oben bei dem ersten Ausführungsbeispiel wurde, angehoben. Durch die Erhöhung der Schaltfrequenz reicht der Spannungsabfall an dem Spartransformator L4. L4b nicht mehr aus, um den Zündkondensator C3 auf die Durchbruchsspannung der Funkenstrecke FS aufzuladen. Gegebenenfalls kann das Deaktivieren der Impulszündvorrichtung IZV' am Ende der Zündphase aber auch mittels eines zusätzlichen Schalters sichergestellt werden. Der Betrieb der Hochdruckentladungslampe La nach Beendigung ihrer Zündphase ist identisch zu dem ersten Ausführungsbeispiel.
  • In der Figur 6 ist eine Schaltungsanordnung gemäß des fünften bis achten Ausführungsbeispiels schematisch dargestellt. Diese Schaltungsanordnung umfasst einen stromgespeisten Gegentaktwandler, der identisch zum ersten Ausführungsbeispiel ausgebildet ist. In Figur 6 ist im Unterschied zur Figur 1 auch der interne Aufbau der Feldeffekttransistoren S1, S2 mit ihren integrierten Body-Dioden und ihrer Sperrschichtkapazität sowie der Ansteuerungsvorrichtung schematisch dargestellt. Identische Bauteile tragen daher in den Figuren 1 und 6 dieselben Bezugszeichen. Das fünfte bis achte Ausführungsbeispiel unterscheiden sich von den oben beschriebenen Ausführungsbeispielen dadurch, dass die Eingangsspannung für die Impulszündvorrichtung IZV" nicht mittels eines Serienresonanzkreises, sondern mittels einer spannungsvervielfachenden Schaltung KK erzeugt wird. Bei dem fünften und sechstens Ausführungsbeispiel ist die Schaltung KK als dreistufige Kaskadenschaltung ausgebildet, während sie bei dem siebten und achten Ausführungsbeispiel als eine symmetrische Spannungsverdoppelungsschaltung ausgebildet ist. Die Eingangsspannung U2 für die spannungsvervielfachende Schaltung KK wird an der Sekundärwicklung des Transformators T1 bereitgestellt. Der Spannungseingang j1, j2 der spannungsvervielfachenden Schaltung KK ist parallel zu der Sekundärwicklung des Transformators T1 in den Lastkreis geschaltet.
  • Gemäß des fünften Ausführungsbeispiels der Erfindung ist die Impulszündvorrichtung IZV" identisch zu der in Figur 5 dargestellten Impulszündvorrichtung IZV ausgebildet und die Schaltung KK als dreistufige Kaskadenschaltung ausgeführt. Details der dreistufigen Kaskadenschaltung sind in der Figur 7 abgebildet. Angaben zur Dimensionierung der dreistufigen Kaskadenschaltung sind in der Tabelle 3 aufgeführt. Die Ausgangsspannung U1 der dreistufigen Kaskadenschaltung wird dem Spannungseingang der Impulszündvorrichtung IZV" zugeführt. Während der Zündphase der Hochdruckentladungslampe La wird der Gegentaktwandler mit einer Schaltfrequenz von 100 Kilohertz betrieben und die dreistufige Kaskadenschaltung erhöht die Induktionsspannung der Sekundärwicklung des Transformators T1 entsprechend der Anzahl ihrer Stufen und stellt an ihrem Spannungsausgang die Eingangsspannung U1 für die Impulszündvorrichtung IZV" zur Verfügung. Am Ende der Zündphase wird die dreistufige Kaskadenschaltung mittels eines Schalters (nicht abgebildet), der ihre Spannungsversorgung unterbricht, abgeschaltet. Der weitere Lampenbetrieb erfolgt wie bereits bei dem ersten Ausführungsbeispiel wurde.
  • Das sechste Ausführungsbeispiel der Erfindung unterscheidet sich von dem fünften Ausführungsbeispiel nur dadurch, dass die Impulszündvorrichtung und die dreistufige Kaskadenschaltung miteinander verquickt sind. Das heißt, Bauteile der dreistufigen Kaskadenschaltung, wie zum Beispiel die Kondensatoren C12, C22 und C23, bilden auch gleichzeitig Bauteile der Impulszündvorrichtung. Dadurch können Bauteile eingespart werden. In Figur 8 ist der Aufbau der Kombination von dreistufiger Kaskadenschaltung mit der Impulszündvorrichtung schematisch dargestellt. Die Funktion der Schaltungsanordnung und der Betrieb der Lampe La sind identisch zu dem fünften Ausführungsbeispiel.
  • Gemäß des siebten Ausführungsbeispiels der Erfindung ist die Impulszündvorrichtung IZV" identisch zu der in Figur 5 dargestellten Impulszündvorrichtung IZV ausgebildet und die Schaltung KK als symmetrische Spannungsverdoppelungsschaltung ausgeführt. Details der symmetrische Spannungsverdoppelungsschaltung sind in der Figur 9 abgebildet. Angaben zur Dimensionierung der symmetrische Spannungsverdoppelungsschaltung sind in der Tabelle 4 aufgerührt. Die Ausgangsspannung U1 der symmetrische Spannungsverdoppelungsschaltung wird dem Spannungseingang der Impulszündvorrichtung IZV" zugeführt. Während der Zündphase der Hochdruckentladungslampe La wird der Gegentaktwandler mit einer Schaltfrequenz von 100 Kilohertz betrieben und die symmetrische Spannungsverdoppelungsschaltung verdoppelt die Induktionsspannung der Sekundärwicklung des Transformators T1 und stellt an ihrem Spannungsausgang die Eingangsspannung U1 für die Impulszündvorrichtung IZV" zur Verfügung. Am Ende der Zündphase wird die symmetrische Spannungsverdoppelungsschaltung mittels eines Schalters (nicht abgebildet), der ihre Spannungsversorgung unterbricht, abgeschaltet. Der weitere Lampenbetrieb erfolgt wie bereits bei dem ersten Ausführungsbeispiel wurde.
  • Das achte Ausführungsbeispiel der Erfindung unterscheidet sich von dem siebten Ausführungsbeispiel nur dadurch, dass die Impulszündvorrichtung und die symmetrische Spannungsverdoppelungsschaltung miteinander verquickt sind. Das heißt, Bauteile der symmetrische Spannungsverdoppelungsschaltung, wie zum Beispiel die Kondensatoren C7 und C8, bilden auch gleichzeitig Bauteile der Impulszündvorrichtung. Dadurch können Bauteile eingespart werden. In Figur 10 ist der Aufbau der Kombination von symmetrischer Spannungsverdoppelungsschaltung mit der Impulszündvorrichtung schematisch dargestellt. Die Funktion der Schaltungsanordnung und der Betrieb der Lampe La sind identisch zu dem siebten Ausführungsbeispiel.
  • Die Erfindung beschränkt sich nicht auf die oben näher beschriebenen Ausführungbeispiele. Beispielsweise kann die Erfindung auch auf eine Impulszündvorrichtung angewandt werden, deren Zündspannungsausgang zum Anschließen an die Zündhilfselektrode einer Hochdruckentladungslampe vorgesehen ist. Der Spannungseingang der spannungsvervielfachenden Kaskadenschaltung und der symmetrischen Spannungsverdoppelungsschaltung können auch primärseitig mit dem Gegentaktwandler verbunden sein und müssen nicht unbedingt von der Sekundärwicklung T1b des Transformators T1 gespeist werden. Tabelle 1: Dimensionierung der Bauteile der Schaltungsanordnungen gemäß des ersten bis dritten Ausführungsbeispiels
    C1 1.0 nF, FKP 1 (WIMA)
    C4 33 pF
    C5 35 pF
    C6 570 pF
    L1 60 µH, 20Wdg. auf RM5, N49 (EPCOS)
    L3 4,6 mH, EFD15, N49, 300 Wdg. (EPCOS)
    T1 EFD25, N59, ohne Luftspalt, Sekundär: 40 Wdg., zwei Primärwicklungen mit jeweils 8 Wdg.
    T2 Primär: 1 Wdg., Sekundär: 20 Wdg.
    L2b 60 µH
    S1 (& D1) IRF740, Power-MOSFET (International Rectifier)
    S2 (& D2) IRF740, Power-MOSFET (International Rectifier)
    U0 nominal 42 Volt, zulässig: 30Volt bis 58 Volt
    La quechsilberfreie Halogen-Metalldampf-Hochdruckentladungslampe, nominal 35 Watt, 45 Volt
    C3 10 nF, 2,5 kV
    D3 zwei Dioden BY505 in Reihe geschaltet
    FS 2000 Volt
    R1 30 Kilo-Ohm
    Tabelle 2: Dimensionierung der Bauteile der Impulszündvorrichtung IZV' gemäß des vierten Ausführungsbeispiels
    C3 70 nF, 1000 Volt
    D3 BY505
    FS 800 Volt
    R1 12 Kilo-Ohm
    T3 Primär: 1 Wdg., Sekundär: 40 Wdg.
    L3b 60 µH
    Tabelle 3: Dimensionierung der Bauteile der dreistufigen Kaskadenschaltung gemäß Figur 7
    C11, C21, C31 1,0 nF, FKP1 (WIMA)
    C12, C22, C32 33 nF, FKP1 (WIMA)
    D11, D21, D31 US1M
    D12, D22, D32 US1M
    FS 2000 Volt
    R2 1000 Ohm
    Tabelle 4: Dimensionierung der Bauteile der symmetrischen Spannungsverdoppelungsschaltung gemäß Figur 9 und 10
    R3 30000 Ohm
    D4, D5 BY505
    C7, C8 22 nF, 1200 Volt
    FS 2000 Volt

Claims (16)

  1. Schaltungsanordnung zum Betreiben von Hochdruckentladungslampen, wobei die Schaltungsanordnung folgende Merkmale aufweist,
    - Einen Spannungswandler (S1, S2) zum Erzeugen einer Wechselspannung,
    - Einen Transformator (T1) mit einer Sekundärwicklung (T1b), der an den Spannungswandler (S1, S2) angeschlossen oder als Bestandteil des Spannungswandlers (S1, S2) ausgebildet ist,
    - Einen Lastkreis, der von der Sekundärwicklung (T1b) des Transformators (T1) gespeist wird und Anschlüsse für eine Hochdruckentladungslampe (La) und den Zündspannungsausgang einer Impulszündvorrichtung (IZV) aufweist, die zum Zünden der Gasentladung in der Hochdruckentladungslampe (La) dient,
    dadurch gekennzeichnet, dass ein Serienresonanzkreis (L3, C4) oder eine spannungsvervielfachende Kaskadenschaltung oder eine symmetrische Spannungsverdoppelungsschaltung oder die Kombination eines Serienresonanzkreises mit einer spannungsvervielfachenden Kaskadenschaltung oder einer symmetrischen Spannungsverdoppelungsschaltung zur Spannungsversorgung der Impulszündvorrichtung (IZV) während der Zündphase der Hochdruckentladungslampe (La) vorgesehen ist.
  2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass der Serienresonanzkreis (L3, C4) an die Sekundärwicklung (T1b) des Transformators (T1) angeschlossen ist und, bei angeschlossener Hochdruckentladungslampe, parallel zur Entladungsstrecke der Hochdruckentladungslampe (La) geschaltet ist.
  3. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass der Serienresonanzkreis primärseitig an den Transformator (T1) angeschlossen ist.
  4. Schaltungsanordnung nach Anspruch 3, dadurch gekennzeichnet, dass die Resonanzinduktivität des Serienresonanzkreises als Spartransformator (L4, L4b) ausgebildet ist, dessen Sekundärwicklung (L4b) mit dem Spannungseingang einer Impulszündvorrichtung verbindbar ist.
  5. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass in dem Lastkreis ein Kondensator (C6) angeordnet ist, der bei angeschlossener Impulszündvorrichtung (IZV) in Serie zur Sekundärwicklung (L2b) des Zündtransformators (T2) der Impulszündvorrichtung (IZV) geschaltet ist und derart dimensioniert ist, dass er für die von der Impulszündvorrichtung (IZV) generierten Zündimpulse im wesentlichen einen Kurzschluss darstellt und nach erfolgter Zündung der Gasentladung in der Hochdruckentladungslampe (La) eine teilweise Kompensation der Induktivität des Zündtransformators (L2b) bewirkt.
  6. Schaltungsanordnung nach Anspruch 5, dadurch gekennzeichnet, dass der Kondensator (C6) als Bestandteil des Serienresonanzkreises ausgebildet ist, wobei der Serienresonanzkreis (L3, C4) an die Sekundärwicklung (T1b) des Transformators (T1) angeschlossen ist und, bei angeschlossener Hochdruckentladungslampe, parallel zur Entladungsstrecke der Hochdruckentladungslampe (La) geschaltet ist.
  7. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die spannungsvervielfachende Kaskadenschaltung während der Zündphase der Hochdruckentladungslampe (La) von der Sekundärwicklung (T1b) des Transformators (T1) mit Energie versorgt wird.
  8. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass der Spannungseingang der spannungsvervielfachenden Kaskadenschaltung auf der Primärseite des Transformators (T1) in den Spannungswandler (S1, S2) geschaltet ist.
  9. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die symmetrische Spannungsverdoppelungsschaltung während der Zündphase der Hochdruckentladungslampe (La) von der Sekundärwicklung (T1b) des Transformators (T1) mit Energie versorgt wird.
  10. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass der Spannungseingang der symmetrischen Spannungsverdoppelungsschaltung auf der Primärseite des Transformators (T1) in den Spannungswandler (S1, S2) geschaltet ist.
  11. Schaltungsanordnung nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Spannungswandler (S1, S2) als stromgespeister Gegentaktwandler ausgebildet ist.
  12. Schaltungsanordnung nach einem der Ansprüche 1 bis 11, wobei die Impulszündvorrichtung (IZV) im Sockel einer Hochdruckentladungslampe (La) angeordnet ist.
  13. Verfahren zum Betreiben einer Hochdruckentladungslampe mittels eines Spannungswandlers und einer Impulszündvorrichtung, wobei die Versorgungsspannung für die Impulszündvorrichtung mit Hilfe des Spannungswandlers generiert wird,
    dadurch gekennzeichnet, dass während der Zündphase der Hochdruckentladungslampe mit Hilfe eines nahe seiner Resonanz betriebenen Serienresonanzkreises oder einer spannungsvervielfachenden Kaskadenschaltung oder einer symmetrische Spannungsverdoppelungsschaltung oder mittels der Kombination eines Serienresonanzkreises mit einer spannungsvervielfachenden Kaskadenschaltung oder einer symmetrischen Spannungsverdoppelungsschaltung eine Erhöhung der Versorgungsspannung für die Impulszündvorrichtung durchgeführt wird.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Hochdruckentladungslampe nach erfolgter Zündung der Gasentladung in der Hochdruckentladungslampe mit Wechselspannungen betrieben wird, deren Frequenz oberhalb der Resonanzfrequenz des Serienresonanzkreises liegt.
  15. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die spannungsvervielfachende Kaskadenschaltung nach erfolgter Zündung der Gasentladung in der Hochdruckentladungslampe deaktiviert wird.
  16. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die symmetrische Spannungsverdoppelungsschaltung nach erfolgter Zündung der Gasentladung in der Hochdruckentladungslampe deaktiviert wird.
EP05742608A 2004-04-26 2005-04-14 Schaltungsanordnung zum betrieb von hochdruckentladungslampen und betriebsverfahren für eine hochdruckentladungslampe Not-in-force EP1741320B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004020499A DE102004020499A1 (de) 2004-04-26 2004-04-26 Schaltungsanordnung zum Betrieb von Hochdruckentladungslampen und Betriebsverfahren für eine Hochdruckentladungslampe
PCT/DE2005/000685 WO2005104632A1 (de) 2004-04-26 2005-04-14 Schaltungsanordnung zum betrieb von hochdruckentladungslampen und betriebsverfahren für eine hochdruckentladungslampe

Publications (2)

Publication Number Publication Date
EP1741320A1 EP1741320A1 (de) 2007-01-10
EP1741320B1 true EP1741320B1 (de) 2008-11-19

Family

ID=34967538

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05742608A Not-in-force EP1741320B1 (de) 2004-04-26 2005-04-14 Schaltungsanordnung zum betrieb von hochdruckentladungslampen und betriebsverfahren für eine hochdruckentladungslampe

Country Status (8)

Country Link
US (1) US7656099B2 (de)
EP (1) EP1741320B1 (de)
JP (1) JP2007535101A (de)
CN (1) CN1947473A (de)
AT (1) ATE415075T1 (de)
DE (2) DE102004020499A1 (de)
ES (1) ES2317233T3 (de)
WO (1) WO2005104632A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004055976A1 (de) * 2004-11-19 2006-05-24 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung zum Betrieb einer Hochdruckentladungslampe
DE102005023290A1 (de) * 2005-05-20 2006-11-23 Sma Technologie Ag Bidirektionaler Batteriewechselrichter
JP4462119B2 (ja) * 2005-06-10 2010-05-12 セイコーエプソン株式会社 バラスト及びプロジェクタ
WO2009049674A1 (de) * 2007-10-17 2009-04-23 Osram Gesellschaft mit beschränkter Haftung Elektronisches vorschaltgerät und verfahren zum betreiben einer entladungslampe
CN101965754B (zh) * 2008-02-25 2014-06-04 奥斯兰姆有限公司 用于产生灯的点燃电压的装置和方法
CN101309540B (zh) * 2008-07-10 2011-10-05 北方工业大学 电子触发器及hid灯
KR101069966B1 (ko) * 2010-02-03 2011-10-04 삼성전기주식회사 광원체 구동 장치
DE102010054381B4 (de) * 2010-12-13 2012-09-06 B & S Elektronische Geräte GmbH Verfahren zur Stromversorgung einer Entladungslampe, Schaltungsanordnung mit einem elektronischen Vorschaltgerät und einer Entladungslampe sowie Vorschaltgerät
DE102011076333A1 (de) * 2011-05-24 2012-11-29 Osram Ag Schaltungsanordnung und Verfahren zum Betreiben mindestens einer Hochdruckentladungslampe
DE102011087703A1 (de) * 2011-12-05 2013-06-06 Osram Gmbh Schaltungsanordnung zum Zünden und Betrieb einer Entladungslampe
CN103841737B (zh) * 2014-03-10 2016-06-15 湖南星联顶晟电子科技有限公司 一种hid灯电子镇流器的混合点火方法
JP6424533B2 (ja) * 2014-09-17 2018-11-21 株式会社リコー 電圧共振型インバータ装置及びその制御方法と表面改質装置
US11351556B2 (en) * 2016-08-31 2022-06-07 Selfrag Ag Method for operating a high-voltage pulse system
CN109526128B (zh) * 2018-11-20 2020-10-16 福建睿能科技股份有限公司 一种驱动电路及开关电源

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683404A (en) * 1986-09-29 1987-07-28 Cooper Industries Starting circuit and apparatus for high pressure sodium lamps
JPH03136938A (ja) 1989-10-23 1991-06-11 Nissan Motor Co Ltd 車両用放電灯ヘッドランプ装置
FR2686762B1 (fr) * 1992-01-29 1997-05-16 Valeo Vision Dispositif d'alimentation d'une lampe a decharge et projecteur de vehicule comportant un tel dispositif.
FR2698515B1 (fr) 1992-11-20 1995-01-06 Valeo Vision Dispositif d'alimentation de lampes à décharge notamment pour projecteur de véhicule.
JP2946390B2 (ja) 1993-12-17 1999-09-06 株式会社小糸製作所 放電灯の点灯回路
JP3329929B2 (ja) * 1994-02-15 2002-09-30 松下電工株式会社 高圧放電灯点灯装置
JPH07272879A (ja) 1994-03-28 1995-10-20 Matsushita Electric Works Ltd 放電灯点灯装置
EP0702887B1 (de) 1994-04-06 1999-12-29 Koninklijke Philips Electronics N.V. Schaltungsanordnung
DE19644115A1 (de) * 1996-10-23 1998-04-30 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zum Betrieb einer Hochdruckentladungslampe sowie Beleuchtungssystem mit einer Hochdruckentladungslampe und einem Betriebsgerät für die Hochdruckentladungslampe
US6124682A (en) * 1996-11-19 2000-09-26 Micro Tech Limited Lamp driver circuit using resonant circuit for starting lamp
US5861718A (en) * 1997-08-28 1999-01-19 In Focus Systems, Inc. ARC lamp igniter apparatus and method
DE19823641A1 (de) * 1998-05-27 2000-02-10 Bosch Gmbh Robert Zünder für eine Gasentladungslampe, insbesondere Hochdruck-Gasentladungslampe für Kraftfahrzeugscheinwerfer
DE19909530A1 (de) * 1999-03-04 2001-01-18 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zum Betrieb mindestens einer Hochdruckentladungslampe und Betriebsverfahren
WO2002051214A1 (de) * 2000-12-19 2002-06-27 Vogt Electronic Ag Gasentladungslampensockel mit zündeinrichtung
DE10210805B4 (de) * 2002-03-12 2004-05-27 B & S Elektronische Geräte GmbH Vorschaltgerät für eine Entladungslampe
JP4202862B2 (ja) * 2003-08-13 2008-12-24 株式会社小糸製作所 放電灯点灯回路
JP2005078910A (ja) * 2003-08-29 2005-03-24 Mitsubishi Electric Corp 高輝度放電ランプ点灯装置
US7164239B2 (en) * 2004-02-17 2007-01-16 Mitsubishi Denki Kabushiki Kaisha Discharge lamp ballast circuit

Also Published As

Publication number Publication date
US20070228997A1 (en) 2007-10-04
DE102004020499A1 (de) 2005-11-10
EP1741320A1 (de) 2007-01-10
DE502005006006D1 (de) 2009-01-02
ES2317233T3 (es) 2009-04-16
US7656099B2 (en) 2010-02-02
CN1947473A (zh) 2007-04-11
WO2005104632A1 (de) 2005-11-03
ATE415075T1 (de) 2008-12-15
JP2007535101A (ja) 2007-11-29

Similar Documents

Publication Publication Date Title
EP1741320B1 (de) Schaltungsanordnung zum betrieb von hochdruckentladungslampen und betriebsverfahren für eine hochdruckentladungslampe
EP1654913B1 (de) Vorschaltgerät für mindestens eine hochdruckentladungslampe, betriebsverfahren und beleuchtungssystem für eine hochdruckentladungslampe
EP0868833B1 (de) Hochdruckentladungslampe mit einer zündhilfselektrode sowie schaltungsanordnung und verfahren zum betrieb
DE60225425T2 (de) Elektronisch dimmbare ballastschaltung für eine hochintensitätsentladungslampe
DE60006046T2 (de) Vorschaltgerät für Starkstromgasentladungslampe
DE4017415C2 (de) Schaltungsanordnung zum Betrieb einer Hochdruck-Entladungslampe für einen Fahrzeugscheinwerfer
EP1869951A1 (de) Hochdruckgasentladungslampeimpulszündvorrichtung mit piezoelektrischem transformator
EP0485866B1 (de) Getaktetes Schaltnetzteil für den Betrieb einer Entladungslampe
DE102005006828A1 (de) Entladungslampenvorschaltgerät
EP1869954A1 (de) Vorrichtung zum betreiben oder zünden einer hochdruckentladungslampe, lampensockel und beleuchtungssystem mit einer derartigen vorrichtung sowie verfahren zum betreiben einer hochdruckentladungslampe
WO2008071547A1 (de) Zündvorrichtung für eine hochdruckentladungslampe und hochdruckentladungslampe mit zündvorrichtung
EP1033907A2 (de) Schaltungsanordnung zum Betrieb mindestens einer Hochdruckentladungslampe und Betriebsverfahren
WO2005011338A1 (de) Schaltungsanordnung zum betreiben von hochdruckentladungslampen
EP1583403B1 (de) Vorschaltgerät für mindestens eine Lampe
WO2006053529A1 (de) Schaltungsanordnung zum betrieb einer hochdruckentladungslampe
EP1385358B1 (de) Schaltungsvorrichtung zum Betrieb von Entladungslampen
WO2005107339A1 (de) Vorrichtung zur erzeugung von elektrischen spannungsimpulsfolgen, insbesondere zum betrieb von kapazitiven entladungslampen
DE102004039222B4 (de) Entladungslampenansteuerschaltung
EP0794695B1 (de) Schaltung zum Betrieb einer Hochdruckgasentladungslampe
EP1263267A2 (de) Verfahren zum Start einer Entladungslampe
DE112005000771T5 (de) Entladungslampen-Schaltvorrichtung
DE102004020500A1 (de) Schaltungsanordnung zum Betreiben von Hochdruckentladungslampen
DE202007006644U1 (de) Adapter-System für eine Gasentladungslampe
EP1496725A2 (de) Zündvorrichtung mit einem piezoelektrischen Transformator für eine Hochdruckentladungslampe
WO2004054327A1 (de) Elektrische schaltung zum zünden einer entladungslampe und verfahren zum zünden der entladungslampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060904

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070308

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005006006

Country of ref document: DE

Date of ref document: 20090102

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2317233

Country of ref document: ES

Kind code of ref document: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20081119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090319

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090219

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E005392

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090428

Year of fee payment: 5

Ref country code: NL

Payment date: 20090409

Year of fee payment: 5

Ref country code: SE

Payment date: 20090407

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090424

Year of fee payment: 5

26N No opposition filed

Effective date: 20090820

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090415

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090220

BERE Be: lapsed

Owner name: PATENT-TREUHAND-GESELLSCHAFT FUR ELEKTRISCHE GLUH

Effective date: 20100430

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20101101

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502005006006

Country of ref document: DE

Effective date: 20110909

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005006006

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005006006

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005006006

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130823

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170419

Year of fee payment: 13

Ref country code: FR

Payment date: 20170419

Year of fee payment: 13

Ref country code: GB

Payment date: 20170419

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005006006

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430