EP1739308B1 - Pompe à vide - Google Patents

Pompe à vide Download PDF

Info

Publication number
EP1739308B1
EP1739308B1 EP20050425468 EP05425468A EP1739308B1 EP 1739308 B1 EP1739308 B1 EP 1739308B1 EP 20050425468 EP20050425468 EP 20050425468 EP 05425468 A EP05425468 A EP 05425468A EP 1739308 B1 EP1739308 B1 EP 1739308B1
Authority
EP
European Patent Office
Prior art keywords
pump
valve
rotor
duct
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20050425468
Other languages
German (de)
English (en)
Other versions
EP1739308A1 (fr
Inventor
Christian Maccarrone
Roberto c/o Varian S.P.A. Cerruti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian SpA
Original Assignee
Varian SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian SpA filed Critical Varian SpA
Priority to DE200560007593 priority Critical patent/DE602005007593D1/de
Priority to EP20050425468 priority patent/EP1739308B1/fr
Publication of EP1739308A1 publication Critical patent/EP1739308A1/fr
Application granted granted Critical
Publication of EP1739308B1 publication Critical patent/EP1739308B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0292Stop safety or alarm devices, e.g. stop-and-go control; Disposition of check-valves

Definitions

  • the present invention concerns a rotary vacuum pump and a method of operating said vacuum pump.
  • the invention also concerns a pumping system including at least one rotary vacuum pump and a method of operating said pumping system.
  • rotary vacuum pumps and in particular turbomolecular pumps, are machines including a part rotating at very high speed, comprising a rotating shaft to which a set of parallel rotor discs are secured and cooperating with a stationary part, generally a set of stator rings or discs, in order to achieve gas pumping from an inlet port to an outlet port of the pump.
  • a turbomolecular pump may produce a vacuum of the order of 10 -7 mbar (10 -5 Pa) at a nominal shaft rotation speed ranging from 2x10 4 to 9x10 4 revolutions per minute.
  • turbomolecular pumps One of the technical problems encountered when developing turbomolecular pumps is how to stop the pump, i.e. its rotating part, during the shut-down phase, while avoiding the risks related with too fast or too slow a deceleration of said rotating part.
  • a gas (generally at atmospheric pressure), is introduced into the pump and such gas slows down the rotating part of the pump by friction.
  • the gas introduced into the pump not only frictionally slows down the rotor but, due to the parallel-disc geometry of the rotor, the gas also has a lift effect on said rotor, tending to raise it towards the inlet port.
  • a lift effect may cause contact between the pump rotor and the stationary pump components, which contact clearly would be destroying for the pump itself.
  • the lift effect entails a rotor deformation, which may lead to stresses and permanent damages to the rotor itself.
  • the preload conditions of the bearings supporting the rotating shaft and the rotor of the pump is strongly modified by the aforementioned lift effect, with a consequent decrease in the bearing life.
  • the opening of the vent or back-to-air valve is controlled by a control device associated with the vacuum pump, and said valve is kept open for a predetermined time interval, which is deemed sufficient to stop the pump.
  • Vacuum pumps equipped with a programmed electronic control device to control the pump during the shut-down phase and to cause the vent valve opening in such phase are disclosed for instance in U.S. 6,461,113 , US 5,443,368 and US 2004/0013531 .
  • Vacuum pumps equipped with adjustable valves are also known from prior art.
  • US 2004/0228747 discloses a vacuum pump having an outlet stage equipped with a radial outlet orifice and an annular coaxial closure member bearing against the radial outlet orifice. Said annular coaxial closure member can be caused to turn in order to be placed in register with the radial outlet orifice or partially in register with the radial outlet orifice, in order to adjust the opening of the valve and regulate the gas flow pumped by the pump.
  • EP 982 500 discloses a vacuum pump provided with a conductance variable mechanism that allows the area of a cross-section of the inlet port of said vacuum pump to be increased or decreased relative to the direction where gas is fed, so that an amount of gas to be sucked from the inlet port can be controlled.
  • EP 898,083 discloses a vacuum pumping system for use with a vacuum chamber, comprising a first vacuum pump whose inlet is adapted for communication via a first line with a chamber outlet and a second vacuum pump whose inlet is adapted for communication via a second line with a first pump outlet; a third line containing a throttle valve means is linked to the first and to the second lines to enable variable amounts of gas to flow through the valve from the second line to the first line.
  • turbomolecular vacuum pumps are not used alone, since they cannot pump a gas from high vacuum levels (10 -3 to 10 -8 mbars) up to atmospheric pressure.
  • said turbomolecular pumps are inserted into pumping systems comprising one or more turbomolecular pumps, operating between the high vacuum and an intermediate pressure, and one or more forepumps, operating between said intermediate pressure and atmospheric pressure.
  • the flow rate of gas within the pump, and consequently the braking effect of said gas onto the pump rotor can be increased or decreased.
  • opening and closing of the vent valve are controlled based on the monitoring of an operating parameter of the vacuum pump, more particularly based on the rate at which its rotation frequency decreases, that is on its deceleration.
  • said deceleration can be kept within a desired range of values.
  • said vent valve is preferably in communication with the chamber evacuated by the pumping system according to the invention, so that gas can be simultaneously introduced into all rotary pumps connected to said chamber.
  • a turbomolecular rotary pump 101 is schematically shown.
  • Said pump 101 comprises a stationary part and a rotating part.
  • the stationary part includes a base 103, onto which there are mounted stator 105 of electric motor 107 (e.g. an asynchronous or a brushless or a d.c. electric motor, etc) used to rotate the rotating part of pump 101, and housing 111 of the same pump.
  • stator 105 of electric motor 107 e.g. an asynchronous or a brushless or a d.c. electric motor, etc
  • the latter bears a plurality of stator discs 115, smooth or provided with vanes, depending on the pump kind.
  • the rotating part of pump 101 comprises a rotating shaft 117, which is supported by rolling bearings 119 and onto which there are mounted rotor 109 of electric motor 107 and pump rotor 121, the latter being equipped with discs 123, smooth or provided with vanes, depending on the pump kind.
  • Stationary stator discs 115 and rotating rotor discs 123 cooperate to build successive pumping stages through which a gas can be pumped from an inlet port 125 at lower pressure until an exhaust port (not shown) at higher pressure.
  • pump 101 further comprises a vent valve 133 (for instance a pneumatically controlled valve), communicating on the one side with the interior of pump 101 through a first duct 135, and on the other side either with the outer environment or with a tank for a gas (e.g. nitrogen) or a gas mixture, through a second duct 127.
  • a vent valve 133 for instance a pneumatically controlled valve
  • said valve 133 is a one-way valve that can take an open or a closed position. In its open position, the valve puts the interior of the pump in communication with the outer environment (or with the gas tank connected to the same valve) through duct 135, thereby allowing the passage of a gas from the outer environment (or from said tank). In its closed position, the valve prevents said gas from entering the pump.
  • rotating shaft 117 and rotor 121 are rotated at a nominal shaft rotation speed ranging from 2x10 4 to 9x10 4 revolutions per minute and a vacuum of the order of 10 -7 mbar (10 -5 Pa) is achieved at inlet port 125.
  • vent valve 133 remains closed.
  • control device 129 connected to pump 101 by electric conductors 131 (e.g. an RS-232 cable) and provided with a microprocessor in order to control pump 101 according to programmed control sequences corresponding to the different operating phases of the same pump.
  • electric conductors 131 e.g. an RS-232 cable
  • vent valve 133 is controlled by control device 129, e.g. pneumatically through a duct 137, depending on the deceleration value of rotor 121 detected by the same control device 129.
  • control device 129 includes means for detecting the rotation frequency of rotor 121 of pump 101 and means for computing the variations of said frequency during the shut-down phase.
  • Said means for detecting the rotation frequency of rotor 121 may include either rotation speed detectors (e.g. optical readers or encoders) for a direct detection of the rotation frequency of said rotor, or vibration or pressure detectors, allowing an indirect attainment of the rotation frequency through known relations.
  • rotation speed detectors e.g. optical readers or encoders
  • vibration or pressure detectors allowing an indirect attainment of the rotation frequency through known relations.
  • Fig. 2 shows the flow chart of control cycle 201 of vent valve 133 during the shut-down phase of pump 101.
  • Said control cycle 201 begins with a stop command (step 203) by which control device 129 cuts off the supply to the vacuum pump motor.
  • step 207 the control cycle of the vent valve cannot be performed (step 207), and thus the vent valve will be opened for a predetermined time interval (step 208), deemed theoretically sufficient for stopping the pump.
  • the control device sets an opening time interval Topen for the vent valve to a preset value stored in the control device and equal to 1 preset time unit (e.g. equal to 0.1 sec, 0.5 sec, 1 sec, etc) and sets a monitoring time interval Tperiod for the pump rotation frequency to a value that also is preset and stored in the control device and that is equal to a certain multiple of Topen, e.g. 5, as in the example of Fig. 2 (step 211).
  • 1 preset time unit e.g. equal to 0.1 sec, 0.5 sec, 1 sec, etc
  • control device checks whether pump rotation frequency Frot exceeds minimum rotation frequency Fmin, substantially corresponding to the frequency below which the detectors cannot detect the rotation frequency and the pump can be considered as wholly decelerated (step 213).
  • the control device monitors rotation frequency Frot of the pump for a time interval equal to Tperiod and, based on the detected values, it computes pump deceleration SD, i.e. the rate at which said rotation frequency decreases with time (step 215). Said pump deceleration value SD is compared with a preset maximum threshold value SDmax stored in the control device (step 217).
  • pump deceleration SD is compared with a minimum threshold value SDmin that is also preset and stored in the control device (step 219).
  • opening time Topen of the vent valve is kept at its starting value (step 221), and said valve is opened and kept open for a time interval equal to Topen. Thereafter, the valve is closed again (steps 223a to 223c).
  • vent valve opening time Topen was previously incremented (according to the modalities described below), in case SDmin ⁇ SD ⁇ SDmax, the value of Topen is reset to its starting value (as shown in solid line in the chart in Fig. 2 ).
  • Topen is kept unchanged at the increased value (as shown in dashed line in the chart in Fig. 2 ).
  • step 219 deceleration SD is lower than threshold SDmin (too slow a deceleration)
  • the control device increments vent valve opening time Topen by one time unit (step 227) after having checked that the new opening time is still shorter than monitoring time Tperiod (step 225).
  • control device opens the vent valve and keeps it open for that incremented opening period Topen, and then closes again the valve (steps 229a to 229c), so as to allow gas entering the pump and hence to bring again pump deceleration SD within the preset value range.
  • control device monitors again the pump rotation frequency (steps 213,215).
  • control cycles are repeated as long as pump rotation frequency Frot exceeds preset minimum frequency Fmin, by alternating more or less long closing and opening periods of the vent valve so as to keep pump deceleration SD within the preset value range, thereby avoiding too fast or too slow decelerations with the consequent drawbacks.
  • the vent valve can be kept in closed or open condition (steps 233, 235) until the pump is restarted.
  • the pump electric motor could be used as a supplementary means for controlling said deceleration.
  • T Tmotor
  • Figs. 1 and 2 refers to a vent valve 133 that can take only two positions (completely open/completely closed)
  • use of an adjustable-opening vent valve can be envisaged, so as to achieve a fine control of vacuum pump deceleration.
  • the control device could act on the opening degree of the vent valve instead of acting on the opening time Topen of said valve, or in the alternative, it could act on both said parameters.
  • control device 129 could just simply be a personal computer.
  • FIG. 3 a block diagram of vacuum pumping system 301 according to the invention is shown.
  • turbomolecular pumps like that shown in Fig. 1 are not used alone, since they cannot exhaust gas at atmospheric pressure, and therefore they are associated with corresponding forepumps
  • the vacuum pumping system generally includes one or more turbomolecular pumps 305a, 305b (of the kind shown in Fig. 1 ), associated with a chamber 303 to be evacuated and operating between the high vacuum and an intermediate pressure, and one or more forepumps 307a, 307b (for instance, mechanical oil pumps), operating between said intermediate pressure and atmospheric pressure.
  • turbomolecular pumps 305a, 305b of the kind shown in Fig. 1
  • forepumps 307a, 307b for instance, mechanical oil pumps
  • Pumping system 301 further includes a control device 309, connected with chamber 303 and vacuum pumps 305a, 305b and 307a, 307b through electrical connectors (e.g. RS-232 cables) and equipped with a microprocessor programmed for monitoring the pressure in said chamber and for controlling said pump according to programmed control sequences corresponding to the different operating phases of the same pumps.
  • a control device 309 connected with chamber 303 and vacuum pumps 305a, 305b and 307a, 307b through electrical connectors (e.g. RS-232 cables) and equipped with a microprocessor programmed for monitoring the pressure in said chamber and for controlling said pump according to programmed control sequences corresponding to the different operating phases of the same pumps.
  • the vacuum pumping system further includes at least one vent valve 311 so arranged that it can selectively establish communication between at least one of turbomolecular pumps 305a, 305b and the outer environment or a tank filled with a suitable gas (e.g. nitrogen).
  • a suitable gas e.g. nitrogen
  • vent valve 311 is controlled by control device 309 based on the deceleration values of the turbomolecular pump(s) detected by the same control device 309.
  • vent valve 311 is in communication with vacuum chamber 303, whereby the valve can simultaneously put all turbomolecular pumps 305a, 305b connected with said vacuum chamber in communication with the outer environment (or the gas tank).
  • vent valve 311 must simultaneously take the deceleration values of all pumps 305a, 305 b into account.
  • individual vent valves 313a, 313b can be provided for each of turbomolecular pumps 305a - 305b, as shown by a dashed line in Fig. 3 .
  • a vent valve is arranged on foreline 315a, 315b between each turbomolecular pump 305a, 305b and each forepump 307a, 307b, and such valve allows putting the turbomolecular pump connected with the respective foreline in communication with the outer environment (or the gas tank). It is evident that said gas, due to the lower pressure, will tend to pass from the foreline to turbomolecular pump 305a, 305b and to enter such pump through the exhaust port.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Claims (41)

  1. Pompe à vide rotative (101) comprenant :
    - une pluralité d'étages de pompage obtenus par coopération entre des disques de rotor (123) et des anneaux ou disques de stator (115) disposés en alternance ;
    - un moteur électrique (107) pour mettre lesdits disques de rotor en rotation ;
    - au moins un conduit (135, 127) destiné à introduire un gaz ou un mélange gazeux dans la pompe, ledit conduit étant interrompu par une soupape commandable électriquement (133) ;
    la pompe étant caractérisée en ce qu'elle comprend un dispositif de commande électronique (129) programmé pour exécuter les étapes de :
    - détection d'au moins un paramètre de fonctionnement de la pompe, indiquant la fréquence de rotation du rotor de pompe (121) ;
    - calcul des variations de ladite fréquence de rotation pendant la phase d'arrêt de ladite pompe ;
    - modification de la configuration de ladite soupape (133) de façon à provoquer une augmentation ou une diminution de la quantité de gaz passant à travers ledit conduit (135) sur la base des variations calculées de ladite fréquence de rotation.
  2. Pompe à vide rotative (101) selon la revendication 1, dans laquelle ladite modification de la configuration de ladite soupape (133) est l'ouverture/fermeture de ladite soupape.
  3. Pompe à vide rotative (101) selon la revendication 1, dans laquelle ladite modification de la configuration de ladite soupape (133) est l'ajustement du degré d'ouverture de ladite soupape.
  4. Pompe à vide rotative (101) selon la revendication 1, dans laquelle ledit dispositif de commande électronique (129) est en outre programmé pour arrêter l'alimentation électrique vers le moteur de ladite pompe pendant lesdites étapes de détection et de modification.
  5. Pompe à vide rotative (101) selon la revendication 1, dans laquelle ledit dispositif de commande électronique est en outre programmé pour arrêter et rétablir l'alimentation électrique vers le moteur de ladite pompe pendant lesdites étapes de détection et de modification.
  6. Pompe à vide rotative (101) selon la revendication 1, dans laquelle ledit paramètre de fonctionnement est la vitesse de rotation du rotor de ladite pompe.
  7. Pompe à vide rotative (101) selon la revendication 1, dans laquelle ledit paramètre de fonctionnement est la fréquence de vibration du rotor de ladite pompe.
  8. Pompe à vide rotative (101) selon la revendication 1, dans laquelle ladite soupape (133) met ledit conduit (135) en communication avec l'environnement extérieur.
  9. Pompe à vide rotative (101) selon la revendication 1, dans laquelle ladite soupape (133) met ledit conduit (135) en communication avec un réservoir pour un gaz ou un mélange gazeux, par exemple de l'azote.
  10. Pompe à vide rotative (101) selon l'une quelconque des revendications précédentes, dans laquelle ladite pompe à vide est une pompe turbomoléculaire.
  11. Procédé destiné à commander une pompe à vide rotative (101) du type comprenant :
    - une pluralité d'étages de pompage obtenus par coopération entre des disques de rotor (123) et des anneaux de stator (115) disposés en alternance ;
    - un moteur électrique (107) pour mettre lesdits disques de rotor en rotation ;
    - au moins un conduit (135, 127) destiné à introduire un gaz ou un mélange gazeux dans la pompe, ledit conduit étant interrompu par une soupape commandable électriquement (133) ;
    ledit procédé étant caractérisé en ce qu'il comprend les étapes de :
    - détection d'au moins un paramètre de fonctionnement de la pompe, indiquant la fréquence de rotation du rotor de pompe (121) ;
    - calcul des variations de ladite fréquence de rotation pendant la phase d'arrêt de ladite pompe ;
    - modification de la configuration de ladite soupape de façon à provoquer une augmentation ou une diminution de la quantité de gaz passant à travers ledit conduit (135) sur la base des variations calculées de ladite fréquence de rotation.
  12. Procédé selon la revendication 11, dans lequel ladite modification de la configuration de ladite soupape (133) est l'ouverture/fermeture de ladite soupape.
  13. Procédé selon la revendication 11, dans lequel ladite modification de la configuration de ladite soupape (133) est l'ajustement du degré d'ouverture de ladite soupape.
  14. Procédé selon la revendication 11, comprenant en outre l'étape d'arrêt de l'alimentation électrique vers le moteur de ladite pompe pendant lesdites étapes de détection et de modification.
  15. Procédé selon la revendication 11, comprenant en outre les étapes d'arrêt ou de rétablissement de l'alimentation électrique vers le moteur de ladite pompe pendant lesdites étapes de détection et de modification.
  16. Procédé selon la revendication 11, dans lequel ledit paramètre de fonctionnement est la vitesse de rotation du rotor de ladite pompe.
  17. Procédé selon la revendication 11, dans lequel ledit paramètre de fonctionnement est la fréquence de vibration du rotor de ladite pompe.
  18. Système de pompage par le vide (301) muni d'au moins une pompe à vide rotative (305a, 305b) du type comprenant une pluralité d'étages de pompage obtenus par coopération entre des disques de rotor et des anneaux de stator disposés en alternance, et un moteur électrique pour mettre lesdits disques de rotor en rotation, ledit système comprenant en outre au moins un conduit destiné à introduire un gaz ou un mélange gazeux dans ladite au moins une pompe, ledit conduit étant interrompu par une soupape commandable électriquement (311 ; 313a, 313b), le système étant caractérisé en ce qu'il comprend un dispositif de commande électronique (309) programmé pour :
    - détecter au moins un paramètre de fonctionnement de la pompe, indiquant la fréquence de rotation du rotor de pompe ;
    - calculer les variations de ladite fréquence de rotation pendant la phase d'arrêt de ladite pompe ;
    - modifier la configuration de ladite soupape (311 ; 313a, 313b) de façon à provoquer une augmentation ou une diminution de la quantité de gaz passant à travers ledit conduit sur la base des variations calculées de ladite fréquence de rotation.
  19. Système de pompage (301) selon la revendication 18, dans lequel ladite modification de la configuration de ladite soupape (311 ; 313a, 313b) est l'ouverture/fermeture de ladite soupape.
  20. Système de pompage (301) selon la revendication 16, dans lequel ladite modification de la configuration de ladite soupape (311 ; 313a, 313b) est l'ajustement du degré d'ouverture de ladite soupape.
  21. Système de pompage (301) selon la revendication 18, dans lequel ledit paramètre de fonctionnement est la vitesse de rotation du rotor de ladite au moins une pompe.
  22. Système de pompage (301) selon la revendication 18, dans lequel ledit paramètre de fonctionnement est la fréquence de vibration du rotor de ladite au moins une pompe.
  23. Système de pompage (301) selon la revendication 18, dans lequel ladite soupape (311 ; 313a, 313b) met ladite au moins une pompe (135) en communication avec l'environnement extérieur.
  24. Système de pompage (301) selon la revendication 18, dans lequel ladite soupape (311 ; 313a, 313b) met ladite au moins une pompe en communication avec un réservoir pour un gaz ou un mélange gazeux, par exemple de l'azote.
  25. Système de pompage (301) selon l'une quelconque des revendications 18 à 24, dans lequel ladite au moins une pompe à vide rotative (305a, 305b) est une pompe turbomoléculaire.
  26. Système de pompage (301) selon l'une quelconque des revendications 18 à 25, comprenant en outre une chambre (303) connectée avec ladite au moins une pompe et agencée pour être évacuée au moyen de ladite au moins une pompe, dans lequel ledit conduit destiné à introduire un gaz ou un mélange gazeux dans la pompe est prévu en correspondance avec ladite chambre.
  27. Système de pompage (301) selon l'une quelconque des revendications 18 à 25, comprenant en outre au moins une pompe primaire (307a, 307b) connectée à ladite au moins une pompe à vide rotative (305a, 305b) par une conduite de refoulement (315a, 315b), ledit conduit destiné à introduire un gaz ou un mélange gazeux dans la pompe étant prévu en correspondance avec ladite conduite de refoulement.
  28. Procédé destiné à commander un système de pompage par le vide muni d'au moins une pompe à vide rotative (305a, 305b) du type comprenant une pluralité d'étages de pompage obtenus par coopération entre des disques de rotor et des anneaux de stator disposés en alternance, et un moteur électrique pour mettre lesdits disques de rotor en rotation, ledit système comprenant au moins un conduit destiné à introduire un gaz ou un mélange gazeux dans la pompe, ledit conduit étant interrompu par une soupape commandable électriquement, ledit procédé étant caractérisé en ce qu'il comprend les étapes de :
    - détection d'au moins un paramètre de fonctionnement de ladite au moins une pompe, indiquant la fréquence de rotation du rotor de pompe ;
    - calcul des variations de ladite fréquence de rotation pendant la phase d'arrêt de ladite pompe ;
    - modification de la configuration de ladite au moins une soupape de façon à provoquer une augmentation ou une diminution de la quantité de gaz passant à travers ledit au moins un conduit sur la base des variations calculées de ladite fréquence de rotation.
  29. Procédé selon la revendication 28, dans lequel ladite modification de la configuration de ladite soupape (311 ; 313a, 313b) est l'ouverture/fermeture de ladite soupape.
  30. Procédé selon la revendication 28, dans lequel ladite modification de la configuration de ladite soupape (311 ; 313a, 313b) est l'ajustement du degré d'ouverture de ladite soupape.
  31. Procédé selon la revendication 28, comprenant en outre l'étape d'arrêt de l'alimentation électrique vers le moteur de ladite au moins une pompe pendant lesdites étapes de détection et de modification.
  32. Procédé selon la revendication 28, comprenant en outre les étapes d'arrêt ou de rétablissement de l'alimentation électrique vers le moteur de ladite au moins une pompe pendant lesdites étapes de détection et de modification.
  33. Procédé selon la revendication 28, dans lequel ledit paramètre de fonctionnement est la vitesse de rotation du rotor de ladite au moins une pompe.
  34. Procédé selon la revendication 28, dans lequel ledit paramètre de fonctionnement est la fréquence de vibration du rotor de ladite au moins une pompe.
  35. Programme d'ordinateur destiné à actionner une ou plusieurs pompes à vide rotatives (101 ; 305a, 305b) comprenant une pluralité d'étages de pompage obtenus par coopération entre des disques de rotor (123) et des anneaux ou disques de stator (115) disposés en alternance, un moteur électrique (107) pour mettre lesdits disques de rotor en rotation, et au moins un conduit (135, 127) destiné à introduire un gaz ou un mélange gazeux dans la pompe, ledit conduit étant interrompu par une soupape commandable électriquement (133 ; 311; 313a, 313b), ledit programme étant caractérisé en ce qu'il comprend les étapes de :
    - détection d'au moins un paramètre de fonctionnement de ladite ou desdites pompe(s), indiquant la fréquence de rotation du/des rotor(s) de pompe (s) ;
    - calcul des variations de ladite fréquence de rotation pendant la phase d'arrêt de ladite pompe ;
    - modification de la configuration de ladite ou desdites soupape(s) de façon à provoquer une augmentation ou une diminution de la quantité de gaz passant à travers ledit ou lesdits conduit(s) sur la base des variations calculées de ladite fréquence de rotation.
  36. Programme selon la revendication 35, dans lequel ladite modification de la configuration de ladite soupape (133 ; 311 ; 313a, 313b) est l'ouverture/fermeture de ladite soupape.
  37. Programme selon la revendication 35, dans lequel ladite modification de la configuration de ladite soupape (133 ; 311 ; 313a, 313b) est l'ajustement du degré d'ouverture de ladite soupape.
  38. Programme selon la revendication 35, comprenant en outre l'étape d'arrêt de l'alimentation électrique vers le(s) moteur(s) de ladite ou desdites pompe(s) pendant lesdites étapes de détection et de modification.
  39. Programme selon la revendication 35, comprenant en outre les étapes d'arrêt ou de rétablissement de l'alimentation électrique vers le(s) moteur(s) de ladite ou desdites pompe(s) pendant lesdites étapes de détection et de modification.
  40. Programme selon la revendication 35, dans lequel ledit paramètre de fonctionnement est la vitesse de rotation du rotor de ladite ou desdites pompe(s).
  41. Programme selon le revendication 35, dans lequel ledit paramètre de fonctionnement est la fréquence de vibration du rotor de ladite ou desdites pompe(s).
EP20050425468 2005-06-30 2005-06-30 Pompe à vide Expired - Fee Related EP1739308B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE200560007593 DE602005007593D1 (de) 2005-06-30 2005-06-30 Vakuumpumpe
EP20050425468 EP1739308B1 (fr) 2005-06-30 2005-06-30 Pompe à vide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20050425468 EP1739308B1 (fr) 2005-06-30 2005-06-30 Pompe à vide

Publications (2)

Publication Number Publication Date
EP1739308A1 EP1739308A1 (fr) 2007-01-03
EP1739308B1 true EP1739308B1 (fr) 2008-06-18

Family

ID=35063300

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050425468 Expired - Fee Related EP1739308B1 (fr) 2005-06-30 2005-06-30 Pompe à vide

Country Status (2)

Country Link
EP (1) EP1739308B1 (fr)
DE (1) DE602005007593D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2960520A1 (fr) 2014-06-26 2015-12-30 Pfeiffer Vacuum Gmbh Procédé et dispositif d'admission pour une chambre à vide

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007051045B4 (de) 2007-10-25 2020-11-12 Pfeiffer Vacuum Gmbh Anordnung mit Vakuumpumpe und Verfahren
DE102010055058A1 (de) 2010-12-17 2012-06-21 Pfeiffer Vacuum Gmbh Verfahren zum Belüften einer Vakuumpumpe und Anordnung mit einer Vakuumpumpe
EP3916231A1 (fr) * 2020-05-29 2021-12-01 Agilent Technologies, Inc. Système de pompage à vide doté d'une pluralité de pompes sous vide à déplacement positif et son procédé de fonctionnement
JP7208276B2 (ja) 2021-01-26 2023-01-18 日本電子株式会社 イオンビーム加工装置及びその動作制御方法
JP7341200B2 (ja) * 2021-09-24 2023-09-08 株式会社Kokusai Electric システム、処理装置、半導体装置の製造方法、及びプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19704234B4 (de) * 1997-02-05 2006-05-11 Pfeiffer Vacuum Gmbh Verfahren und Vorrichtung zur Regelung des Saugvermögens von Vakuumpumpen
GB9717400D0 (en) * 1997-08-15 1997-10-22 Boc Group Plc Vacuum pumping systems
JP3010529B1 (ja) * 1998-08-28 2000-02-21 セイコー精機株式会社 真空ポンプ、及び真空装置
DE10308420A1 (de) * 2003-02-27 2004-09-09 Leybold Vakuum Gmbh Testgaslecksuchgerät
FR2854933B1 (fr) * 2003-05-13 2005-08-05 Cit Alcatel Pompe moleculaire, turbomoleculaire ou hybride a vanne integree

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2960520A1 (fr) 2014-06-26 2015-12-30 Pfeiffer Vacuum Gmbh Procédé et dispositif d'admission pour une chambre à vide
DE102014109005A1 (de) 2014-06-26 2015-12-31 Pfeiffer Vacuum Gmbh Verfahren und Vorrichtung zum Fluten einer Vakuumkammer

Also Published As

Publication number Publication date
EP1739308A1 (fr) 2007-01-03
DE602005007593D1 (de) 2008-07-31

Similar Documents

Publication Publication Date Title
EP1739308B1 (fr) Pompe à vide
CA2696868C (fr) Ameliorations dans la commande de compresseurs
US6604918B2 (en) Turbomolecular pump
KR100803574B1 (ko) 냉장고의 팬 모터 운전제어장치
JP2786955B2 (ja) 高速回転真空ポンプに注気を行なうための注気装置
KR20070099635A (ko) 펌핑 시스템 및 그 제어 방법
US20130115042A1 (en) Dynamic thrust balancing for centrifugal compressors
EP2655890A1 (fr) Compresseur centrifuge pour fluide frigorigène sans huile et à vitesse variable, comportant un diffuseur à géométrie variable
EP2756240A1 (fr) Commande de diffuseur pour compresseur centrifuge
JP4882558B2 (ja) ターボ分子ポンプ
US7140833B2 (en) Integrated turbo/drag/regenerative pump with counter-rotating turbo blades
JP2011169164A (ja) ターボ分子ポンプ、その起動方法および真空処理システム
JP2000038998A (ja) 真空ポンプ及び真空装置
EP4208646B1 (fr) Systèmes et procédés de commande d'arrêt et de démarrage pour machine à palier aérodynamique
JP2714867B2 (ja) 磁気軸受保護装置
EP1573205B1 (fr) Systeme de pompage a vide et procede d'actionnement d'une unite de pompage a vide
US20100322798A1 (en) Rapidly rotating vacuum pump
JP2003232292A (ja) 真空ポンプ
JPH10288190A (ja) 磁気軸受装置
JPH0720395Y2 (ja) 真空排気装置
JP2001324083A (ja) 水撃現象防止構造
TW202411536A (zh) 泵啟動控制
JP2024035054A (ja) 排気速度が改善された分子真空ポンプ及び改善された排気速度を達成するように分子真空ポンプを運転する方法
JPH0536093U (ja) 真空ポンプ
JP3606637B2 (ja) 可変案内羽根付き流体機械

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060330

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005007593

Country of ref document: DE

Date of ref document: 20080731

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090319

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100624

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100625

Year of fee payment: 6

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110505 AND 20110511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110621

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005007593

Country of ref document: DE

Representative=s name: DILG HAEUSLER SCHINDELMANN PATENTANWALTSGESELL, DE

Effective date: 20110809

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005007593

Country of ref document: DE

Owner name: AGILENT TECHNOLOGIES, INC., US

Free format text: FORMER OWNER: VARIAN S.P.A., LEINI, IT

Effective date: 20110809

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005007593

Country of ref document: DE

Owner name: AGILENT TECHNOLOGIES ITALIA S.P.A., IT

Free format text: FORMER OWNER: VARIAN S.P.A., LEINI, IT

Effective date: 20110809

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005007593

Country of ref document: DE

Owner name: AGILENT TECHNOLOGIES, INC., SANTA CLARA, US

Free format text: FORMER OWNER: VARIAN S.P.A., LEINI, TURIN/TORINO, IT

Effective date: 20110809

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: AGILENT TECHNOLOGIES ITALIA, S.P.A., IT

Effective date: 20110922

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005007593

Country of ref document: DE

Representative=s name: DILG HAEUSLER SCHINDELMANN PATENTANWALTSGESELL, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120702

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005007593

Country of ref document: DE

Representative=s name: DILG HAEUSLER SCHINDELMANN PATENTANWALTSGESELL, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005007593

Country of ref document: DE

Owner name: AGILENT TECHNOLOGIES, INC., US

Free format text: FORMER OWNER: AGILENT TECHNOLOGIES ITALIA S.P.A., CERNUSCO SUL NAVIGLIO, IT

Effective date: 20130521

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005007593

Country of ref document: DE

Representative=s name: DILG HAEUSLER SCHINDELMANN PATENTANWALTSGESELL, DE

Effective date: 20130521

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005007593

Country of ref document: DE

Representative=s name: DILG HAEUSLER SCHINDELMANN PATENTANWALTSGESELL, DE

Effective date: 20130205

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005007593

Country of ref document: DE

Owner name: AGILENT TECHNOLOGIES, INC., SANTA CLARA, US

Free format text: FORMER OWNER: AGILENT TECHNOLOGIES ITALIA S.P.A., CERNUSCO SUL NAVIGLIO, MILANO, IT

Effective date: 20130521

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180619

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005007593

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101