EP1737559A1 - Verfahren und vorrichtung zum einbringen eines reagenzmittels in einen abgaskanal einer brennkraftmaschine - Google Patents
Verfahren und vorrichtung zum einbringen eines reagenzmittels in einen abgaskanal einer brennkraftmaschineInfo
- Publication number
- EP1737559A1 EP1737559A1 EP05717025A EP05717025A EP1737559A1 EP 1737559 A1 EP1737559 A1 EP 1737559A1 EP 05717025 A EP05717025 A EP 05717025A EP 05717025 A EP05717025 A EP 05717025A EP 1737559 A1 EP1737559 A1 EP 1737559A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- exhaust gas
- reagent
- internal combustion
- combustion engine
- parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9495—Controlling the catalytic process
Definitions
- the invention is based on a method for introducing a reagent into an exhaust gas chamber of an internal combustion engine and a device for carrying out the method according to the type of the independent claims.
- DE 101 39 142 A1 describes an exhaust gas aftertreatment system of an internal combustion engine in which an SCR catalytic converter (selective catalytic reduction) is used to reduce the NOx emissions, which adds the nitrogen oxides NO and N02 contained in the exhaust gas with the reducing agent ammonia Nitrogen reduced.
- the ammonia is obtained from a urea-water solution in a hydrolysis catalytic converter arranged upstream of the SCR catalytic converter.
- the hydrolysis catalyst converts the urea contained in the urea-water solution with water to ammonia and carbon dioxide. To ensure an exact dosage, it is intended to determine the concentration of the urea-water solution.
- the urea-water solution is brought to a predetermined pressure with a pump.
- a dosing valve defines a given flow.
- Compressed air is added to the reagent in an isch chamber.
- the urea-water solution is mixed with the mixed air in the Exhaust gas sprayed in such a way that a largely uniform flow against the SCR catalytic converter is achieved.
- Flow elements such as baffles may have to be provided.
- An exhaust gas aftertreatment system of an internal combustion engine is known from EP 1 024254 A2, in which an SCR catalytic converter is used to reduce the NOx emissions.
- Ammonia is provided as the reducing agent, which is obtained in the exhaust duct from a urea-water solution.
- the amount of the measured urea-water solution is determined on the basis of an operating variable of the internal combustion engine, for example the fuel injection quantity and / or the speed and at least one parameter of the exhaust gas, for example the exhaust gas temperature.
- DE 100 65 105 A1 specifies a method which provides for modeling an exhaust gas temperature of an internal combustion engine.
- the exhaust gas temperature is calculated as a function of an air signal provided by an air sensor and as a function of the engine speed.
- the invention is based on the object of specifying a method for introducing a reagent into an exhaust gas duct of an internal combustion engine and a device for carrying out the method, which enable the most exact possible metering of a reagent and a high utilization of a catalyst.
- the pressure of a reagent is introduced upstream of at least one catalytic converter into the exhaust gas of an internal combustion engine, depending on a characteristic variable, to be set to a predetermined reagent pressure setpoint.
- the procedure according to the invention enables good atomization and a uniform distribution of the reagent in the exhaust gas stream upstream of the at least one catalyst.
- the reagent strikes the entire surface that the catalyst has in the flow direction of the exhaust gas.
- the reagent can therefore reach the entire available catalytic surface inside the catalyst.
- the procedure according to the invention therefore enables the best possible utilization of the catalytic surface made available by the catalyst. Through the efficient use of the catalyst, the desired purification of the exhaust gas is achieved with the smallest possible amount of reagent.
- At least one operating variable of the internal combustion engine is used as the parameter.
- An air signal for example, is suitable as the operating variable of the internal combustion engine.
- a torque and / or a fuel signal can be used in connection with the speed.
- the one or more operating variables are known to a controller. Additional sensors are not required.
- a parameter of the exhaust gas is used as the parameter.
- the exhaust gas volume flow or the exhaust gas velocity and / or the exhaust gas pressure and / or the exhaust gas temperature is suitable, for example, as a parameter of the exhaust gas.
- the one or more parameters of the exhaust gas can be determined from known operating parameters of the internal combustion engine. Additional sensors are not required in this case either. If necessary, an exhaust gas temperature sensor be provided for detecting the exhaust gas temperature. The measured exhaust gas temperature can also be used to check the plausibility of the calculated exhaust gas temperature.
- the reagent temperature is used as a parameter.
- the reagent temperature can be estimated, for example, on the basis of a temperature signal from an existing temperature sensor that detects the air temperature.
- a reagent temperature sensor is preferably used.
- the figure shows an internal combustion engine, in the environment of which a method according to the invention runs.
- the figure shows an internal combustion engine 10, in the intake area of which an air sensor 11 and in the exhaust duct 12, a spray device 13, an exhaust gas temperature sensor 14 and a catalytic converter 15 are arranged.
- the controller 20 receives an air signal mL provided by the air sensor 11, a speed N provided by the internal combustion engine 10, an exhaust gas temperature Tabglw measured by the exhaust gas temperature sensor 14, an actual reagent pressure value pRealw provided by a reagent pressure sensor 21, and one by a compressed air pressure sensor 22 provided compressed air pressure actual value pDLIw, a reagent temperature TRea provided by a reagent temperature sensor 23 and a torque setpoint mifa.
- the controller 20 inputs a fuel signal mK to the internal combustion engine 10, a metering valve control signal qRea to a metering valve 30 Reagent pump control signal 31 to a reagent pump 32 and a compressed air control valve control signal 33 to a compressed air control valve 34.
- the controller 20 contains a first function block 41 for determining the exhaust gas velocity vabg, a second function block 42 for determining the exhaust gas pressure pabg, a third function block 43 for determining a calculated exhaust gas temperature TabgR and a fourth function block 44 for determining a torque Md.
- the controller 20 also contains a reagent pressure setpoint specification 50, which outputs a reagent pressure setpoint pReaSw to a reagent pump control 51, which provides the reagent pump control signal 31, and a compressed air pressure setpoint specification 52, which supplies a compressed air pressure setpoint pDLSw to a compressed air control valve.
- Control 53 outputs, which provides the compressed air control valve control signal 33.
- the reagent temperature sensor 23 detects the temperature of the reagent stored in a reagent container 60.
- the compressed air control valve 34 sets the compressed air pressure setpoint pDLSw of a compressed air which is available in a compressed air container 61.
- the compressed air flows through a supercritical throttle 62 and a check valve 63 and then reaches a mixer 64 which mixes the compressed air with the reagent introduced by the metering valve 30.
- the mixer 64 is connected to the spray device 13.
- the method according to the invention works as follows:
- the catalytic converter 15 arranged in the exhaust gas area of the internal combustion engine 10 is preferably an SCR catalytic converter which reduces the nitrogen oxides NO and NO 2 contained in the exhaust gas of the internal combustion engine 10 to nitrogen.
- the SCR catalytic converter 15 requires ammonia for the reduction reaction.
- the ammonia can be arranged in a hydrolysis catalyst (not shown in more detail) from a urea-water solution, which is arranged upstream of the SCR catalytic converter 15 can be obtained, which is introduced into the exhaust gas flow with the spray device 13.
- the urea-water solution is an example of a reagent.
- the reagent stored in the reagent tank 60 is brought by the reagent pump 32 to the reagent pressure setpoint pReaSw of, for example, 4 bar and then fed to the metering valve 30.
- the amount of reagent / unit of time is specified by the dosing valve control signal qRea.
- the control valve 20 can determine the metering valve control signal qRea from a predefined characteristic diagram which is spanned by the speed N and the fuel signal mK or which is spanned by the speed N and the torque Md.
- the metering valve control signal qRea causes the metering valve 30 to release a specific opening cross section for the reagent, for example.
- the reagent is mixed with the compressed air in the mixer 64.
- the compressed air is limited in the compressed air control valve 34 to a pressure of, for example, 8 bar.
- the pressure after the supercritical throttle 62 is to be set to a value which is sufficient for the check valve 63 in front of the mixer 64 to be opened and the compressed air to be able to penetrate into the mixer 64.
- a pressure of 4.6 bar occurs.
- the compressed air pressure in the mixer 64 is finally 4 bar.
- the torque Md is determined as a function of the torque setpoint mifa and as a function of other known variables of the internal combustion engine 10 in accordance with the prior art mentioned at the beginning.
- the specified reagent pressure setpoint pReaSw and the optionally specified compressed air pressure setpoint pDLSw should preferably be determined experimentally in such a way that good atomization after the spray device 13 and a uniform distribution of the reagent over the cross section of the exhaust duct 12 is achieved.
- the size of the reagent droplets obviously plays a role here.
- This measure means that the catalytic surface provided by the SCR catalytic converter 15 can be fully utilized. It should be taken into account here that after the reagent has entered the SCR catalytic converter 15 there is no longer any possibility for further mixing with the exhaust gas and for distribution on the catalytic surface.
- the procedure according to the invention further enables the required amount of reducing agent to be reduced by adapting to the actual demand in the SCR catalytic converter 15.
- the pressure of the reagent stored in the reagent container 60 can be brought to the specified reagent pressure setpoint pReaSw, which is, for example, 4 bar, by a corresponding determination of the reagent pump control signal 31 in the reagent pump control 51.
- the reagent mean pressure value pRealw can be detected with the reagent pressure sensor 21 and made available to the reagent pump control 51 for carrying out the regulation.
- the compressed air pressure of the compressed air stored in the compressed air tank 61 can also be set to the specified compressed air pressure setpoint pDLSw before being introduced into the mixing chamber 64.
- a compressed air control valve 34 is provided, which is controlled by the compressed air control valve control signal 33 provided by the compressed air pressure control 53.
- the actual compressed air pressure value pDLIw can be detected with the compressed air pressure sensor 22 and fed to the compressed air pressure control 53 for carrying out the regulation.
- At least one operating variable of the internal combustion engine 10 is suitable as a parameter for determining the reagent pressure setpoint pReaSw and, if appropriate, for determining the compressed air pressure setpoint pDLSw.
- the air signal mL alone can be used.
- the torque Md and the fuel signal mK in each case in connection with the speed N are also suitable.
- the last-mentioned combinations of at least two operating variables mL, mK are particularly suitable.
- a one-dimensional or multi-dimensional relationship is established between the individual operating variables N, mL, Md, mK and the reagent pressure setpoint pReaSw to be specified and the compressed air pressure setpoint pDLSw, which may be specified.
- the named operating parameters N, mL, Md, mK have an influence on the parameters of the exhaust gas.
- Characteristics of the exhaust gas are the exhaust gas velocity vabg or the exhaust gas volume flow, the exhaust gas pressure pabg and, for example, the exhaust gas temperature TabgR, Tabglw.
- the characteristic variables vabg, pabg, TabgR of the exhaust gas can be determined from the known operating variables N, mL, Md, mK of the internal combustion engine 10 in the function blocks 41, 42, 43 entered within the controller 20.
- the exhaust gas velocity vabg can already be determined in the first function block 41 solely from the air signal mL. If necessary, the fuel signal mK can also be taken into account.
- the exhaust gas pressure pabg can be determined from the exhaust gas velocity vabg in the second function block 42.
- the exhaust gas velocity vabg and / or the exhaust gas back pressure pabg are preferably determined on the basis of a two-dimensional map which is spanned by the engine speed N and the fuel signal K or by the engine speed N and the air signal mL. If a turbocharger is provided, the boost pressure and / or the boost temperature can be taken into account as further operating variables of the internal combustion engine 10.
- the exhaust gas temperature TabgR which is determined in the third function block 43, also has an influence on the atomization of the reagent.
- the exhaust gas temperature TabgR is likely to have an influence in particular on the size of the reagent droplets.
- the determination can be carried out, for example, according to DE 10065 125 A1 mentioned at the outset, according to which the exhaust gas temperature TabgR is modeled from the speed N and from the air signal mL.
- the characteristics of the exhaust gas described so far are determined in the function blocks 41, 42, 43 from operating variables N, mL, Md, mK of the internal combustion engine 10.
- the characteristics of the exhaust gas can be measured with sensors.
- the exhaust gas temperature sensor 14 can be used, which forwards the actual exhaust gas temperature value Tabglw to the controller 20.
- the exhaust gas pressure could be measured with an exhaust gas pressure sensor, not shown in detail.
- the reagent temperature TRea which is detected by the reagent temperature sensor 23, which can be arranged on or in the reagent tank 60, for example, can be taken into account when determining the reagent pressure setpoint pReaSw and, if appropriate, the determination of the compressed air pressure setpoint pDLSw.
- the reagent temperature TRea generally corresponds to the ambient temperature, which can be measured with an existing temperature sensor, not shown. In this case, the additional reagent temperature sensor 23 can be omitted.
- the reagent with compressed air before it is introduced into the exhaust duct 12 Mixer 64 is mixed.
- the procedure according to the invention can of course also be used in systems without compressed air support.
- the metering valve 30 can be mounted directly on the exhaust duct 12, so that the metering valve 30 becomes identical to the spray device 13.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Es werden ein Verfahren zum Einbringen eines Reagenzmittels in einen Abgaskanal (12) einer Brennkraftmaschine (10) und eine Vorrichtung zur Durchführung des Verfahrens vorgeschlagen. In einem Abgaskanal (12) der Brennkraftmaschine (10) ist wenigstens ein Katalysator (15) angeordnet, vor dem ein unter Druck stehendes Reagenzmittel in das Abgas eingesprüht wird. Der Reagenzmitteldruck-Sollwert (pReaSw) wird in Abhängigkeit von einer Kenngröße (N, mL, Md, mK, vabg, pabg, TabgR, TRea) festgelegt. Die erfindungsgemäße Vorgehensweise ermöglicht einen gezielten Einsatz des Reagenzmittels und eine hohe Nutzung des Katalysators (15).
Description
VERFAHREN UND VORRICHTUNG ZUM EINBRINGEN EINES REAGENZMITTELS IN EINEN ABGASKANAL EINER BRENNKRAFTMASCHINE
Stand der Technik
Die Erfindung geht aus von einem Verfahren zum Einbringen eines Reageπzmittels in einen Abgaskaπal einer Brennkraftmaschine und einer Vorrichtung zur Durchführung des Verfahrens nach der Gattung der unabhängigen Ansprüche.
In der DE 101 39 142 A1 ist ein Abgasnachbehandlungssystem einer Brennkraftmaschine beschrieben, bei dem zur Verringerung der NOx- Emissionen ein SCR-Katalysator (Selektiv-Catalytic-Reduction) eingesetzt ist, der die im Abgas enthaltenen Stickoxide NO und N02 mit dem Reduktionsmittel Ammoniak zu Stickstoff reduziert. Das Ammoniak wird in einem stromaufwärts vor dem SCR-Katalysator angeordneten Hydrolyse-Katalysator aus einer Harnstoff-Wasser-Lösung gewonnen. Der Hydrolyse-Katalysator setzt den in der Harnstoff-Wasser-Lösung enthaltenen Harnstoff mit Wasser zu Ammoniak und Kohlendioxid um. Zum Sicherstellen einer exakten Dosierung ist vorgesehen, die Konzentration der Hamstoff-Wasser-Lösung zu ermitteln.
Die Hamstoff-Wasser-Lösung wird mit einer Pumpe auf einen vorgegebenen Druck gebracht. Ein Dosierventil legt einen vorgegebenen Durchfluss fest. In einer ischkammer wird dem Reagenzmittel Druckluft zugemischt. Die Harnstoff-Wasser-Lösung wird zusammen mit der zugemischten Luft in das
Abgas derart eingesprüht, dass eine weitgehend gleichmäßige Anströmung des SCR-Katalysators erreicht wird. Gegebenenfalls sind Strömungselemente wie Umlenkbleche vorzusehen.
Aus der EP 1 024254 A2 ist ein Abgasnachbehandlungssystem einer Brenn kraftmaschine bekannt geworden, bei dem zur Verringerung der NOx- Emissionen ein SCR-Katalysator eingesetzt ist. Als Reduktionsmittel ist Ammoniak vorgesehen, das im Abgaskanal aus einer Hamstoff-Wasser-Lösung gewonnen wird. Die Menge der zugemessenen Harnstoff-Wasser-Lösung wird ausgehend von einer Betriebsgröße der Brennkraftmaschine, beispielsweise der Kraftstoff-Einspritzmenge und/oder der Drehzahl und wenigstens einer Kenngröße des Abgases, beispielsweise der Abgastemperatur, festgelegt.
In der DE 100 65 105 A1 ist ein Verfahren angegebenen, das eine Modellierung einer Abgastemperatur einer Brennkraftmaschine vorsieht. Die Abgastemperatur wird in Abhängigkeit von einem Luftsignal, das ein Luftsensor bereitstellt, und in Abhängigkeit von der Drehzahl berechnet.
Aus der Fachpublikation "Ottomotor-Managemenl/BOSCH", 1. Aufl., Verlag Vieweg, Braunschweig, 1998, Seiten 333 - 335 ist eine Drehmomentstruktur zum Betreiben einer Brennkraftmaschine bekannt geworden.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Einbringen eines Reagenzmittels in einen Abgaskanal einer Brennkraftmaschine und eine Vorrichtung zur Durchführung des Verfahrens anzugeben, die eine möglichst exakte Dosierung eines Reagenzmittels und eine hohe Nutzung eines Katalysators ermöglichen.
Die Aufgabe wird durch die in den unabhängigen Ansprüchen angegebenen Merkmale jeweils gelöst.
Vorteile der Erfindung
Erfindungsgemäß ist vorgesehen, den Druck eines Reagenzmittels, das
stromaufwärts von wenigstens einem Katalysator in das Abgas einer Brennkraftmaschine eingebracht wird, in Abhängigkeit von einer Kenngröße auf einen vorgegebenen Reagenzmitteldruck-Sollwert festzulegen.
Die erfindungsgemäße Vorgehensweise ermöglicht das Erreichen einer guten Zerstäubung und einer gleichmäßigen Verteilung des Reagenzmittels im Abgasstrom vor dem wenigstens einen Katalysator. Das Reagenzmittel trifft auf die gesamte Oberfläche, die der Katalysator in Strömungsrichtung des Abgases aufweist. Das Reagenzmittel kann daher die gesamte zur Verfügung stehende katalytische Oberfläche im Innern des Katalysators erreichen. Die erfindungsgemäße Vorgehensweise ermöglicht daher die bestmögliche Ausnutzung der vom Katalysator zur Verfügung gestellten katalytischen Fläche. Durch die effiziente Nutzung des Katalysators wird die angestrebte Reinigung des Abgases mit der geringst möglichen Menge an Reagenzmittel erzielt.
Vorteilhafte Ausgestaltungen und Weiterbildungen der erfindungsgemäßen Vorgehensweise ergeben sich aus abhängigen Ansprüchen.
Eine Ausgestaltung sieht vor, dass als Kenngröße wenigstens eine Betriebsgröße der Brennkraftmaschine herangezogen wird. Als Betriebsgröße der Brennkraftmaschine ist beispielsweise ein Luftsignal geeignet. Zusätzlich oder alternativ können ein Drehmoment und/oder ein Kraftstoffsignal jeweils in Verbindung mit der Drehzahl herangezogen werden. Die eine oder mehreren Betriebsgrößen sind einer Steuerung bekannt. Zusätzliche Sensoren werden nicht benötigt.
Eine Ausgestaltung sieht vor, dass als Kenngröße eine Kenngröße des Abgases herangezogen wird. Als Kenngröße des Abgases ist beispielsweise der Abgasvolumenstrom bzw. die Abgasgeschwindigkeit und/oder der Abgasdruck und/oder die Abgastemperatur geeignet. Bei bekanntem Abgasmassenstrom reicht beispielsweise allein die Kenntnis der Abgastemperatur aus. Die eine oder mehreren Kenngrößen des Abgases können aus bekannten Betriebsgrößen der Brennkraftmaschine ermittelt werden. Zusätzliche Sensoren werden auch in diesem Fall nicht benötigt. Gegebenenfalls kann ein Abgas-Temperatursensor
zur Erfassung der Abgastemperatur vorgesehen sein. Die gemessene Abgastemperatur kann zusätzlich zur Plausibilisierung der berechneten Abgastemperatur herangezogen werden.
Eine Ausgestaltung sieht vor, dass als Kenngröße die Reagenzmittel- Temperatur herangezogen wird. Die Reagenzmittel-Temperatur kann beispielsweise auf der Grundlage eines Temperatursignals eines vorhandenen Temperatursensors abgeschätzt werden, der die Lufttemperatur erfasst. Vorzugsweise wird ein Reagenzmittel-Temperatursensor eingesetzt.
Weitere vorteilhafte Weiterbildungen und Ausgestaltungen der erfindungsgemäßen Vorgehensweise ergeben sich aus weiteren abhängigen Ansprüchen und aus der folgenden Beschreibung.
Zeichnung
Die Figur zeigt eine Brennkraftmaschine, in deren Umfeld ein erfindungsgemäßes Verfahren abläuft.
Die Figur zeigt eine Brennkraftmaschine 10, in deren Ansaugbereich ein Luftsensor 11 und in deren Abgaskanal 12 eine Sprühvorrichtung 13, ein Abgas- Temperatursensor 14 sowie ein Katalysator 15 angeordnet sind.
Die Steuerung 20 erhält ein vom Luftsensor 11 bereitgestelltes Luftsignal mL, eine von der Brennkraftmaschine 10 bereitgestellte Drehzahl N, eine vom Abgas-Temperatursensor 14 gemessene Abgastemperatur Tabglw, einen von einem Reagenzmittel-Druckssensor 21 bereitgestellten Reagenzmitteldruck- Istwert pRealw, ein von einem Druckluft-Druckssensor 22 bereitgestellten Druckluftdruck-Istwert pDLIw, eine von einem Reagenzmittel-Temperatursensor 23 bereitgestellte Reagenzmitteltemperatur TRea sowie einen Drehmoment- Sollwert mifa zur Verfügung gestellt.
Die Steuerung 20 gibt ein Kraftstoffsignal mK an die Brennkraftmaschine 10, ein Dosierventil-Ansteuersignal qRea an ein Dosierventil 30, ein
Reagenzmittelpumpen-Ansteuersignal 31 an eine Reagenzmittelpumpe 32 und ein Druckluftregelventil-Ansteuersignal 33 an ein Druckluftregelventil 34 ab.
Die Steuerung 20 enthält einen ersten Funktionsblock 41 zum Ermitteln der Abgasgeschwindigkeit vabg, einen zweiten Funktionsblock 42 zum Ermitteln des Abgasdrucks pabg, einen dritten Funktionsblock 43 zum Ermitteln einer berechneten Abgastemperatur TabgR und einen vierten Funktionsblock 44 zum Ermitteln eines Drehmoments Md.
Die Steuerung 20 enthält weiterhin eine Reagenzmitteldruck-Sollwertvorgabe 50, die einen Reagenzmitteldruck-Sollwert pReaSw an eine Reagenzmittel pumpen- Ansteuerung 51 abgibt, welche das Reagenzmittelpumpen-Ansteuerungssignal 31 bereitstellt und eine Druckluftdruck-Sollwertvorgabe 52, die einen Druckluftdruck-Sollwert pDLSw an eine Druckluftregelventil-Ansteuerung 53 abgibt, welche das Druckluftregelventil-Ansteuersignal 33 bereitstellt.
Der Reagenzmittel-Temperatursensor 23 erfasst die Temperatur des in einem Reagenzmittel behälter 60 gelagerten Reagenzmittels. Das Druckluftregelventil 34 stellt den Druckluftdruck-Sollwert pDLSw einer Druckluft ein, die in einem Druckluftbehälter 61 zur Verfügung steht.
Die Druckluft durchströmt eine überkritische Drossel 62 und ein Rückschlagventil 63 und gelangt danach in einen Mischer 64, der die Druckluft mit dem vom Dosierventil 30 eingebrachten Reagenzmittel mischt. Der Mischer 64 ist mit der Sprühvorrichtung 13 verbunden.
Das erfindungsgemäße Verfahren arbeitet folgendermaßen:
Der im Abgasbereich der Brennkraftmaschine 10 angeordnete Katalysator 15 ist vorzugsweise ein SCR-Katalysator, der die im Abgas der Brennkraftmaschine 10 enthaltenen Stickoxide NO und N02 zu Stickstoff reduziert. Der SCR- Katalysator 15 benötigt für die Reduktionsreaktion Ammoniak. Das Ammoniak kann in einem stromaufwärts vom SCR-Katalysator 15 angeordneten, nicht näher gezeigten Hydrolyse-Katalysator aus einer Hamstoff-Wasser-Lösung
gewonnen werden, die mit der Sprühvorrichtung 13 in den Abgasstrom eingebracht wird. Die Hamstoff-Wasser-Lösung ist ein Beispiel für ein Reagenzmittel.
Das im Reagenzmitteltank 60 gelagerte Reagenzmittel wird von der Reagenzmittelpumpe 32 auf den Reagenzmitteldruck-Sollwert pReaSw von beispielsweise 4 bar gebracht und anschließend dem Dosierventil 30 zugeleitet. Die Reagenzmittelmenge/Zeiteinheit wird vom Dosierventil-Ansteuersignal qRea vorgegeben. Das Dosierventil-Ansteuersignal qRea kann die Steuerung 20 aus einem vorgegebenen Kennfeld ermitteln, das von der Drehzahl N und dem Kraftstoffsignal mK oder das von der Drehzahl N und dem Drehmoment Md aufgespannt wird. Das Dosierventil-Ansteuersignal qRea veranlasst das Dosierventil 30 beispielsweise zur Freigabe eines bestimmten Öffnungsquerschnitts für das Reagenzmittel. Im Mischer 64 wird das Reagenzmittel mit der Druckluft vermischt.
Die Druckluft wird im Druckluftregelventil 34 auf einen Druck von beispielsweise 8 bar begrenzt. Der Druck nach der überkritischen Drossel 62 ist auf einen Wert festzulegen, der ausreicht, dass das Rückschlagventil 63 vor dem Mischer 64 geöffnet werden und die Druckluft in den Mischer 64 eindringen kann. Nach Durchströmen der überkritischen Drossel 62 tritt beispielsweise ein Druck von 4,6 bar auf. Unter Berücksichtigung eines Druckabfalls am Rückschlagventil 63 von beispielsweise 0,6 bar beträgt der Druckluftdruck im Mischer 64 schließlich 4 bar.
Das Drehmoment Md wird in Abhängigkeit vom Drehmoment-Sollwert mifa und in Abhängigkeit von weiteren bekannten Größen der Brennkraftmaschine 10 gemäß des eingangs genannten Standes der Technik festgelegt.
Gemäß der Erfindung ist vorgesehen, den Reagenzmitteldruck-Sollwert pReaSw und gegebenenfalls den Druckluftdruck-Sollwert pDLSw vorzugeben. Der vorgegebene Reagenzmitteldruck-Sollwert pReaSw und der gegebenenfalls vorgegebene Druckluftdruck-Sollwert pDLSw sind vorzugsweise experimentell derart festzulegen, dass nach der Sprühvorrichtung 13 eine gute Zerstäubung
und eine gleichmäßige Verteilung des Reagenzmittels über den Querschnitt des Abgaskanals 12 erreicht wird. Hierbei spielt offensichtlich die Größe der Reagenzmittel-Tröpfchen eine Rolle.
Diese Maßnahme bewirkt, dass die vom SCR-Katalysator 15 zur Verfügung gestellte katalytische Oberfläche vollständig ausgenutzt werden kann. Zu berücksichtigen hierbei ist, dass nach dem Eintritt des Reagenzmittels in den SCR-Katalysator 15 keine Möglichkeit mehr zur weiteren Vermischung mit dem Abgas und zur Verteilung auf der katalytischeπ Oberfläche besteht. Die erfindungsgemäße Vorgehensweise ermöglicht weiterhin eine Verminderung der erforderlichen Menge an Reduktionsmittel durch eine Anpassung an den tatsächlichen Bedarf im SCR-Katalysator 15.
Der Druck des im Reagenzmittelbehälter 60 gelagerten Reagenzmittels kann durch eine entsprechende Festlegung des Reagenzmittelpumpen- Ansteuersignais 31 in der Reagenzmittelpumpen-Ansteuerung 51 auf den vorgegebenen Reagenzmitteldruck-Sollwert pReaSw gebracht werden, der beispielsweise 4 bar beträgt. Zur Realisierung einer Regelung auf den vorgegebenen Reagenzmitteldruck-Sollwert pReaSw kann der Reagenzmitteldructelstwert pRealw mit dem Reagenzmittel-Druckssensor 21 erfasst und der Reagenzmittelpumpen-Ansteuerung 51 zur Durchführung der Regelung zur Verfügung gestellt werden.
Gegebenenfalls kann zusätzlich der Druckluftdruck der im Druckluftbehälter 61 bevorrateten Druckluft vor dem Einbringen in die Mischkammer 64 auf den vorgegebenen Druckluftdruck-Sollwert pDLSw festgelegt werden. Zur Festlegung des Druckluftdrucks ist das ein Druckluftregelventil 34 vorgesehen, das mit dem von der Druckluftdruck-Ansteuerung 53 bereitgestellten Druckluftregelventil-Ansteuersignal 33 angesteuert wird. Zur Realisierung einer Regelung auf den vorgegebenen Druckluftdruck-Sollwert pDLSw kann der Druckluftdruck-Istwert pDLIw mit dem Druckluftdruck-Druckssensor 22 erfasst und der Druckluftdruck-Ansteuerung 53 zur Durchführung der Regelung zugeführt werden.
Als Kenngröße zur Festlegung des Reagenzmitteldruck-Sollwerts pReaSw und gegebenenfalls zur Festlegung des Druckluftdruck-Sollwerts pDLSw ist wenigstens eine Betriebsgröße der Brennkraftmaschine 10 geeignet. Herangezogen werden kann bereits allein das Luftsignal mL. Weiterhin geeignet sind das Drehmoment Md sowie das Kraftstoffeignal mK jeweils in Verbindung mit der Drehzahl N. Besonders geeignet sind die zuletzt genannten Kombinationen von wenigstens zwei Betriebsgrößen mL, mK.
In einem nicht näher dargestellten Kennfeld wird ein ein- oder mehrdimensionaler Zusammenhang hergestellt zwischen den einzelnen Betriebsgrößen N, mL, Md, mK und dem vorzugebenden Reagenzmitteldruck- Sollwert pReaSw und dem gegebenenfalls vorzugebenden Druckluftdruck- Sollwert pDLSw.
Die genannten Betriebsgrößen N, mL, Md, mK haben einen Einfluss auf Kenngrößen des Abgases. Kenngrößen des Abgases sind die Abgasgeschwindigkeit vabg bzw. der Abgasvolumenstrom, der Abgasdruck pabg und beispielsweise die Abgastemperatur TabgR, Tabglw. Die Kenngrößen vabg, pabg, TabgR des Abgases können aus den bekannten Betriebsgrößen N, mL, Md, mK der Brennkraftmaschine 10 in den innerhalb der Steuerung 20 eingetragenen Funktionsblöcken 41, 42, 43 ermittelt werden.
Die Abgasgeschwindigkeit vabg kann im ersten Funktionsblock 41 bereits allein aus dem Luftsignal mL ermittelt werden. Gegebenenfalls kann das Kraftstoffsignal mK mit berücksichtigt werden.
Bei bekannter Geometrie der Abgasanlage und bekanntem Strömungswiderstand des Katalysators 15 kann im zweiten Funktionsblock 42 der Abgasdruck pabg aus der Abgasgeschwindigkeit vabg ermittelt werden. Die Abgasgeschwindigkeit vabg und/oder der Abgasgegendruck pabg werden vorzugsweise anhand eines zweidimensionalen Kennfelds ermittelt, das von der Drehzahl N und vom Kraftstoffsignal K oder von der Drehzahl N und vom Luftsignal mL aufgespannt wird.
Sofern ein Turbolader vorgesehen ist, können als weitere Betriebsgrößen der Brennkraftmaschine 10 der Ladedruck und/oder die Ladetemperatur berücksichtigt werden.
Einen Einfluss auf die Zerstäubung des Reagenzmittels hat weiterhin die Abgastemperatur TabgR, die im dritten Funktionsblock 43 ermittelt wird. Die Abgastemperatur TabgR dürfte insbesondere einen Einfluss auf die Reagenzmittel-Tröpfchengröße haben. Die Ermittlung kann beispielsweise gemäß der eingangs genannten DE 10065 125 A1 erfolgen, gemäß der die Abgastemperatur TabgR aus der Drehzahl N und aus dem Luftsignal mL modelliert wird.
Die bislang beschriebenen Kenngrößen des Abgases werden in den Funktionsblöcken 41, 42, 43 aus Betriebsgrößen N, mL, Md, mK der Brennkraftmaschine 10 ermittelt. Alternativ oder zusätzlich können die Kenngrößen des Abgases mit Sensoren gemessen werden. Zur Messung der Abgastemperatur kann der Abgas-Temperatursensor 14 eingesetzt werden, der den Abgastemperatur-Istwert Tabglw an die Steuerung 20 weitergibt. Weiterhin könnte der Abgasdruck mit einem nicht näher gezeigten Abgas-Druckssensor gemessen werden.
Alternativ oder zusätzlich kann bei der Festlegung des Reagenzmitteldruck- Sollwerts pReaSw und gegebenenfalls der Festlegung des Druckluftdruck- Sollwerts pDLSw die Reagenzmitteltemperatur TRea berücksichtigt werden, die der Reagenzmittel-Temperatursensor 23 erfasst, der beispielsweise am oder im Reagenzmitteltank 60 angeordnet sein kann.
Die Reagenzmitteltemperatur TRea entspricht im allgemeinen der Umgebungstemperatur, die mit einem vorhandenen, nicht näher gezeigten Temperatursensor gemessen werden kann. In diesem Fall kann der zusätzliche Reagenzmittel-Temperatursensor 23 entfallen.
Im gezeigten Ausführungsbeispiel ist davon ausgegangen, dass das Reagenzmittel mit Druckluft vor der Einbringung in den Abgaskanal 12 im
Mischer 64 vermischt wird. Die erfindungsgemäße Vorgehensweise kann selbstverständlich auch bei Systemen ohne Druckluft-Unterstützung eingesetzt werden. Bei solchen Systemen kann das Dosierventil 30 unmittelbar am Abgaskanal 12 montiert werden, sodass das Dosierventil 30 identisch wird mit der Sprühvorrichtung 13.
Claims
1. Verfahren zum Betreiben einer Brennkraftmaschine (10), in deren Abgasbereich wenigstens ein Katalysator (14) angeordnet ist, bei dem vor dem Katalysator (14) ein unter Druck stehendes Reagenzmittel in das Abgas eingebracht wird, dadurch gekennzeichnet, dass der Druck des Reagenzmittels in Abhängigkeit von einer Kenngröße (N, mL, Md, mK, vabg, pabg, TabgR, TabgR, TRea) auf einen vorgegebenen Reagenzmittel- Solldruck (pReaSw) festgelegt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als Kenngröße wenigstens eine Betriebsgröße (N, mL, Md, mK) der Brennkraftmaschine (10) herangezogen wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass als Betriebsgröße der Brennkraftmaschine (10) das Luftsignal (mL) herangezogen wird.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass als Betriebsgrößen der Brennkraftmaschine (10) die Drehzahl (N) und ein Drehmoment (Md) oder die Drehzahl (N) und ein Kraftstoffsignal (mK) herangezogen werden.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Kenngröße wenigstens eine Kenngröße (vabg, pabg, TabgR, Tabglw) des Abgases der Brennkraftmaschine (10) herangezogen wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass als Kenngröße des Abgases die Abgasgeschwindigkeit (vabg) herangezogen wird.
7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass als Kenngröße des Abgases der Abgasdruck (pabg) herangezogen wird.
8. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass als Kenngröße des Abgases die Abgastemperatur (TabgR, Tabglw) herangezogen wird.
9. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Kenngröße (vabg, pabg, TabgR, Tabglw) des Abgases aus wenigstens einer Betriebsgröße (N, mL, Md, mK) der Brennkraftmaschine (10) hergeleitet wird.
10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Kenngröße die Reagenzmittel-Temperatur (TRea) herangezogen wird.
11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Druck einer Druckluft, die in einem Mischer (64) dem Reagenzmittel zugemischt wird, in Abhängigkeit von einer Kenngröße (N, mL, Md, mK, vabg, pabg, TabgR, TabgR, TRea) auf einen vorgegebenen Druckluftdruck-Sollwert (pDLSw) festgelegt wird.
12. Vorrichtung zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004018221A DE102004018221A1 (de) | 2004-04-15 | 2004-04-15 | Verfahren zum Einbringen eines Reagenzmittels in einen Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens |
PCT/EP2005/051142 WO2005099874A1 (de) | 2004-04-15 | 2005-03-14 | Verfahren und vorrichtung zum einbringen eines reagenzmittels in einen abgaskanal einer brennkraftmaschine |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1737559A1 true EP1737559A1 (de) | 2007-01-03 |
Family
ID=34961405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05717025A Withdrawn EP1737559A1 (de) | 2004-04-15 | 2005-03-14 | Verfahren und vorrichtung zum einbringen eines reagenzmittels in einen abgaskanal einer brennkraftmaschine |
Country Status (5)
Country | Link |
---|---|
US (1) | US20070209349A1 (de) |
EP (1) | EP1737559A1 (de) |
JP (1) | JP2007531843A (de) |
DE (1) | DE102004018221A1 (de) |
WO (1) | WO2005099874A1 (de) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004043366A1 (de) * | 2004-09-08 | 2006-03-09 | Robert Bosch Gmbh | Verfahren zum Einbringen eines Reagenzmittels in einen Abgasbereich einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens |
DE102004050989B4 (de) * | 2004-10-20 | 2015-06-25 | Robert Bosch Gmbh | Verfahren zum Betreiben einer Abgasbehandlungsvorrichtung einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens |
DE102004056412B4 (de) * | 2004-11-23 | 2016-06-16 | Robert Bosch Gmbh | Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens |
DE102004061247B4 (de) | 2004-12-20 | 2024-03-21 | Robert Bosch Gmbh | Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens |
DE102005001119B4 (de) * | 2005-01-10 | 2018-02-15 | Robert Bosch Gmbh | Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens |
DE102005009464B4 (de) | 2005-03-02 | 2016-07-21 | Robert Bosch Gmbh | Verfahren zur Diagnose eines Systems zur Dosierung von Reagenzmittel und Druckluft in den Abgasbereich einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens |
DE102006005863B4 (de) | 2006-02-09 | 2015-04-30 | Robert Bosch Gmbh | Verfahren zur Diagnose einer Abgasbehandlungsvorrichtung und Vorrichtung zur Durchführung des Verfahrens |
DE102006013293B4 (de) * | 2006-03-23 | 2016-08-18 | Robert Bosch Gmbh | Verfahren zur Diagnose einer Abgasnachbehandlungsvorrichtung und Vorrichtung zur Durchführung des Verfahrens |
JP4867675B2 (ja) * | 2007-01-23 | 2012-02-01 | 株式会社デンソー | 還元剤供給装置 |
US8500857B2 (en) | 2007-05-21 | 2013-08-06 | Peter Eisenberger | Carbon dioxide capture/regeneration method using gas mixture |
US20080289495A1 (en) | 2007-05-21 | 2008-11-27 | Peter Eisenberger | System and Method for Removing Carbon Dioxide From an Atmosphere and Global Thermostat Using the Same |
US20140130670A1 (en) | 2012-11-14 | 2014-05-15 | Peter Eisenberger | System and method for removing carbon dioxide from an atmosphere and global thermostat using the same |
US8163066B2 (en) | 2007-05-21 | 2012-04-24 | Peter Eisenberger | Carbon dioxide capture/regeneration structures and techniques |
US20090199537A1 (en) * | 2008-02-11 | 2009-08-13 | Detroit Diesel Corporation | Methods to protect selective catalyst reducer aftertreatment devices during uncontrolled diesel particulate filter regeneration |
DE102008013960A1 (de) * | 2008-03-12 | 2009-09-17 | Albonair Gmbh | Dosiersystem zur Eindüsung einer Harnstofflösung in den Abgasstrom eines Verbrennungsmotors |
DE102008047860B3 (de) * | 2008-09-18 | 2009-12-24 | Continental Automotive Gmbh | Verfahren zur Dichtheitsprüfung eines Reagenzmittelinjektors |
US9028592B2 (en) | 2010-04-30 | 2015-05-12 | Peter Eisenberger | System and method for carbon dioxide capture and sequestration from relatively high concentration CO2 mixtures |
DK2563495T3 (da) | 2010-04-30 | 2020-01-06 | Peter Eisenberger | Fremgangsmåde til carbondioxidopfangning |
US20120012298A1 (en) * | 2010-07-18 | 2012-01-19 | Taylor Scott A | Method and Appratus for Heating an Aqueous Mixture to Vaporization |
DE102010038394A1 (de) | 2010-07-26 | 2012-01-26 | Robert Bosch Gmbh | Verfahren zur Dosierung eines Reagenzmittels in einen Abgaskanal und Vorrichtung zur Durchführung des Verfahrens |
US8635854B2 (en) * | 2011-08-05 | 2014-01-28 | Tenneco Automotive Operating Company Inc. | Reductant injection control system |
US20130095999A1 (en) | 2011-10-13 | 2013-04-18 | Georgia Tech Research Corporation | Methods of making the supported polyamines and structures including supported polyamines |
US11059024B2 (en) | 2012-10-25 | 2021-07-13 | Georgia Tech Research Corporation | Supported poly(allyl)amine and derivatives for CO2 capture from flue gas or ultra-dilute gas streams such as ambient air or admixtures thereof |
BR112016015436B8 (pt) | 2013-12-31 | 2022-08-30 | Graciela Chichilnisky | Sistema de movimento rotativo de leitos multimonolíticos para a remoção de co2 da atmosfera |
KR101684135B1 (ko) * | 2015-06-26 | 2016-12-08 | 현대자동차주식회사 | Scr 시스템의 고장진단방법 |
DE102019007085B4 (de) * | 2019-10-12 | 2023-05-11 | Man Truck & Bus Se | Verfahren zum Betrieb eines Förder-Dosiersystems für ein Fluid, Förder-Dosiersystem und Kraftfahrzeug mit einem derartigen Förder-Dosiersystem |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4307694A (en) * | 1980-06-02 | 1981-12-29 | Ford Motor Company | Digital feedback system |
DE4315278A1 (de) * | 1993-05-07 | 1994-11-10 | Siemens Ag | Verfahren und Einrichtung zur Dosierung eines Reduktionsmittels in ein stickoxidhaltiges Abgas |
DE19947198B4 (de) * | 1999-10-01 | 2008-05-15 | Robert Bosch Gmbh | Vorrichtung zum Nachbehandeln von Abgasen einer Brennkraftmaschine |
JP2002038941A (ja) * | 2000-07-24 | 2002-02-06 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
DE10047516A1 (de) * | 2000-09-22 | 2002-04-18 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Dosierung eines Reduktionsmittels zur Entfernung von Stickoxiden aus Abgasen |
DE10108720A1 (de) * | 2001-02-23 | 2002-09-05 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine |
DE10150518C1 (de) * | 2001-10-12 | 2003-05-08 | Siemens Ag | Verfahren und Vorrichtung zur Abgasnachbehandlung bei einer Brennkraftmaschine |
JP2004036488A (ja) * | 2002-07-03 | 2004-02-05 | Honda Motor Co Ltd | 炭化水素吸着材の状態判定装置 |
DE10346220A1 (de) * | 2003-09-23 | 2005-04-14 | Robert Bosch Gmbh | Brennkraftmaschine mit Abgasnachbehandlungssystem |
-
2004
- 2004-04-15 DE DE102004018221A patent/DE102004018221A1/de not_active Withdrawn
-
2005
- 2005-03-14 WO PCT/EP2005/051142 patent/WO2005099874A1/de active Application Filing
- 2005-03-14 JP JP2007506754A patent/JP2007531843A/ja not_active Withdrawn
- 2005-03-14 EP EP05717025A patent/EP1737559A1/de not_active Withdrawn
- 2005-03-14 US US11/578,383 patent/US20070209349A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2005099874A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2007531843A (ja) | 2007-11-08 |
US20070209349A1 (en) | 2007-09-13 |
DE102004018221A1 (de) | 2005-11-10 |
WO2005099874A1 (de) | 2005-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005099874A1 (de) | Verfahren und vorrichtung zum einbringen eines reagenzmittels in einen abgaskanal einer brennkraftmaschine | |
EP2310112B1 (de) | Verfahren zum betreiben einer abgasreinigungsanlage mit einem scr-katalysator | |
EP1745197B1 (de) | Verfahren zum einbringen eines reagenzmittels in einen abgaskanal einer brennkraftmaschine | |
EP1024254B1 (de) | Verfahren und Vorrichtung zur Steuerung eines Abgasnachbehandlungssystems | |
EP2376752B1 (de) | Verfahren und Vorrichtung zur tropfenförmigen Zugabe eines flüssigen Reduktionsmittels in eine Abgasleitung | |
EP1926543B1 (de) | Verfahren zum betreiben einer brennkraftmaschine und vorrichtung zur durchführung des verfahrens | |
EP1866062B1 (de) | Vorrichtung zur entfernung von stickoxiden aus brennkraftmaschinenabgas und verfahren zur dosierung eines zuschlagstoffs für brennkraftmaschinenabgas | |
EP2307676B1 (de) | Verfahren zum betreiben einer abgasreinigungsanlage mit einem scr-katalysator | |
EP2684597A1 (de) | Verfahren zur Verminderung von Stickoxiden aus Dieselmotorenabgasen | |
DE102004031624A1 (de) | Verfahren zum Betreiben eines zur Reinigung des Abgases einer Brennkraftmaschine verwendeten Katalysators und Vorrichtung zur Durchführung des Verfahrens | |
EP1926894A1 (de) | Verfahren zum betreiben einer brennkraftmaschine und vorrichtung zur durchführung des verfahrens | |
DE102008042943A1 (de) | Reduziermittelsprühsteuersystem, das einen Betriebswirkungsgrad sicherstellt | |
EP2606210B1 (de) | Verfahren zum betrieb einer abgasbehandlungsvorrichtung | |
DE102006039381A1 (de) | Verfahren zur Steuerung der Einspritzung eines Reduziermittels in einem Steuerungssystem für Motoremissionen | |
EP1637707B1 (de) | Verfahren zum Betreiben einer Abgasbehandlungsvorrichtung einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens | |
DE102011085952A1 (de) | SCR-Katalysatorsystem und Verfahren zu seinem Betrieb | |
DE102014018037A1 (de) | Verfahren zur Ermittlung einer NOx-Verminderungsleistung einer in einer Abgasleitung eines Kraftfahrzeugverbrennungsmotors angeordneten NOx-Reduktionskatalysatoreinrichtung | |
DE102018104444B4 (de) | Verfahren zum Betreiben eines Verbrennungsmotors unter Verwendung eines Nachbehandlungssystems mit einer Nachbehandlungsvorrichtung und ein entsprechendes Nachbehandlungssystem | |
DE102005041660A1 (de) | Verfahren zum Einbringen eines Reagenzmittels in einen Abgasbereich einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens | |
EP3139013B1 (de) | Verfahren zum betrieb einer abgasreinigungsanlage | |
DE102014018032A1 (de) | Verfahren zur Überwachung einer in einer Abgasleitung eines Kraftfahrzeugverbrennungsmotors angeordneten SCR-Katalysatoreinrichtung in Bezug auf Ammoniak-Schlupf | |
DE102018213383A1 (de) | Verfahren zum Erkennen einer Manipulation eines Abgasnachbehandlungssystems | |
EP3324015A1 (de) | Reduktionsmitteldosiersystem mit leitungsbeheizung | |
AT521127B1 (de) | Verfahren zur Beladungsregelung von mindestens zwei SCR-Anlagen einer Abgasnachbehandlungsanlage einer Verbrennungskraftmaschine | |
WO2007020023A1 (de) | Verfahren und vorrichtung zur selektiven katalytischen reduktion von stickoxiden im abgas einer verbrennungskraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20061115 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR IT NL SE |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR IT NL SE |
|
17Q | First examination report despatched |
Effective date: 20070730 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20101001 |