EP1735419B1 - Produits de lavage pour lave-vaisselle - Google Patents

Produits de lavage pour lave-vaisselle Download PDF

Info

Publication number
EP1735419B1
EP1735419B1 EP05700895.5A EP05700895A EP1735419B1 EP 1735419 B1 EP1735419 B1 EP 1735419B1 EP 05700895 A EP05700895 A EP 05700895A EP 1735419 B1 EP1735419 B1 EP 1735419B1
Authority
EP
European Patent Office
Prior art keywords
automatic dishwasher
dishwasher detergent
branched
carbon atoms
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP05700895.5A
Other languages
German (de)
English (en)
Other versions
EP1735419A1 (fr
Inventor
Ulrich Pegelow
Arnd Kessler
Christian Nitsch
Maren Jekel
Pavel Gentschev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34960012&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1735419(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1735419A1 publication Critical patent/EP1735419A1/fr
Application granted granted Critical
Publication of EP1735419B1 publication Critical patent/EP1735419B1/fr
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/36Organic compounds containing phosphorus
    • C11D3/361Phosphonates, phosphinates or phosphonites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3723Polyamines or polyalkyleneimines

Definitions

  • This application relates to detergents or cleaners.
  • this application relates to polymer-containing detergents or cleaners.
  • Machine-washed dishes are often subject to more stringent requirements today than manually-washed dishes. So even a completely cleaned of leftovers dishes is then rated as not flawless if it has after dishwasher washing whitish, based on water hardness or other mineral salts stains that come from lack of wetting agent from dried water droplets.
  • rinse aid In order to obtain glossy and spotless dishes, it is therefore successfully used today rinse aid.
  • the addition of rinse aid at the end of the washing program ensures that the water runs as completely as possible from the items to be washed, so that the different surfaces at the end of the washing program are residue-free and flawless gloss.
  • the automatic cleaning of dishes in household dishwashers usually includes a pre-wash, a main wash, and a rinse cycle interrupted by intermediate rinses.
  • the pre-rinse for heavily soiled dishes is switchable, but is selected only in exceptional cases by the consumer, so that in most machines a main rinse, an intermediate rinse with pure water and a rinse cycle are performed.
  • the temperature of the main wash cycle varies between 40 and 65 ° C, depending on the machine type and program level selection.
  • rinse aids are added from a dosing tank in the machine, which usually contain nonionic surfactants as the main constituent. Such rinse aids are in liquid form and are widely described in the art. Your task is primarily to prevent limescale and deposits on the cleaned dishes. In addition to water and low-foaming nonionic surfactants, these rinse aids often also contain hydrotopes, pH regulators such as citric acid or scale-inhibiting polymers.
  • the storage tank in the dishwasher must be filled with rinse aid at regular intervals, with a filling sufficient for 10 to 50 rinses, depending on the machine type. If the filling of the tank is forgotten, then glasses in particular by lime stains and coverings become unsightly. In the prior art, therefore, there are some solutions proposed to integrate a rinse aid in the detergent for machine dishwashing. These proposed solutions are tied to the offer form of the compact molded article.
  • EP-A-0 851 024 Unilever
  • the first layer of which contains peroxy bleach, builder and enzyme while the second layer contains acidifying agents and a continuous medium with a melting point of between 55 and 70 ° C and scale inhibitors. Due to the high-melting continuous medium, the acid (s) and scale inhibitor (s) are to be released with a delay and bring about a clear rinse effect. Powdered automatic dishwashing or surfactant-containing rinse systems are not mentioned in this document.
  • a combination of amphoteric polymer and phosphonate in automatic dishwashing and rinse aids is in the international application WO 03/099980 A1 disclosed.
  • automatic dishwashing detergent refers to solid or liquid additives for automatic dishwashing.
  • the group of automatic dishwashing agents thus includes, for example, the compact automatic dishwashing detergents with combined cleaning and rinsing function ("2 in 1" products) as well as the compact automatic dishwashing detergents with combined cleaning, rinsing and desalting function ("3 in 1" products) or the simple, separately dosed rinse aid.
  • compositions of the invention contain from 0.01 to 10% by weight of at least one polymer having a molecular weight of 2000 gmol -1 or above and having at least one positive charge.
  • the above positive charge polymers may in principle be cationic or amphoteric polymers.
  • Preferred machine dishwashing detergents according to the invention are characterized in that the polymer comprising cationic monomer units is a cationic polymer and / or an amphoteric polymer.
  • “Cationic polymers” in the context of the present invention are polymers which carry a positive charge in the polymer molecule. This can be realized, for example, by (alkyl) ammonium groups or other positively charged groups present in the polymer chain.
  • Particularly preferred cationic polymers come from the groups of quaternized cellulose derivatives, the polysiloxanes with quaternary groups, the cationic guar derivatives, the polymeric dimethyldiallylammonium salts and their copolymers with esters and amides of acrylic acid and methacrylic acid, the copolymers of vinylpyrrolidone with quaternized derivatives of dialkylamino and methacrylates, the vinylpyrrolidone-methoimidazolinium chloride copolymers, the quaternized polyvinyl alcohols or the polymers specified under the INCI names Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 and Polyquaternium 27.
  • amphoteric polymers furthermore have, in addition to a positively charged group in the polymer chain, also negatively charged groups or monomer units. These groups may be, for example, carboxylic acids, sulfonic acids or phosphonic acids.
  • particularly preferred cationic or amphoteric polymers comprise as monomer unit a compound of the general formula (I) in which R 1 and R 4 are each independently H or a linear or branched hydrocarbon radical having 1 to 6 carbon atoms; R 2 and R 3 are independently an alkyl, hydroxyalkyl, or aminoalkyl group in which the alkyl group is linear or branched and has from 1 to 6 carbon atoms, preferably a methyl group; x and y independently represent integers between 1 and 3.
  • R 1 and R 4 are each independently H or a linear or branched hydrocarbon radical having 1 to 6 carbon atoms
  • R 2 and R 3 are independently an alkyl, hydroxyalkyl, or aminoalkyl group in which the alkyl group is linear or branched and has from 1 to 6 carbon atoms, preferably a methyl group
  • x and y independently represent integers between 1 and 3.
  • X - represents a counterion, preferably a counterion from the group chloride, bromide, iodide, sulfate, hydrogen sulfate, methosulfate, lauryl sulfate, dodecylbenzenesulfonate, p-toluenesulfonate (tosylate), cumenesulfonate, xylenesulfonate, phosphate, citrate, formate, acetate or mixtures thereof.
  • Preferred radicals R 1 and R 4 in the above formula (VII) are selected from -CH 3 , -CH 2 -CH 3 , -CH 2 -CH 2 -CH 3 , -CH (CH 3 ) -CH 3 , -CH 2 -OH, -CH 2 -CH 2 -OH, -CH (OH) -CH 3 , -CH 2 -CH 2 -OH, -CH 2 -CH (OH) -CH 3 , -CH (OH ) -CH 2 -CH 3 , and - (CH 2 CH 2 -O) n H.
  • polymers which have a cationic monomer unit of the general formula (I) in which R 1 and R 4 are H, R 2 and R 3 are methyl and x and y are each 1.
  • R 1 and R 4 are H
  • R 2 and R 3 are methyl
  • x and y are each 1.
  • R 1 HC CR 2 -C (O) -NH- (CH 2 ) x -N + R 3 R 4 R 5 X - (II) in which R 1 , R 2 , R 3 , R 4 and R 5 independently of one another are a linear or branched, saturated or unsaturated alkyl or hydroxyalkyl radical having 1 to 6 carbon atoms, preferably a linear or branched alkyl radical selected from -CH 3 , -CH 2 -CH 3 , -CH 2 -CH 2 -CH 3 , -CH (CH 3 ) -CH 3 , -CH 2 -OH, -CH 2 -CH 2 -OH, -CH (OH) -CH 3 , -CH 2 -CH 2 -CH 2 -OH, -CH 2 -CH (OH) -CH 3 , -CH 2 -CH 2 -CH 2 -OH, -CH 2 -CH (OH) -CH 3 ,
  • X - chloride also referred to as MAPTAC (Methyacrylamidopropyltrimethylammonium chloride).
  • Automated dishwashing agents which are preferred according to the invention are characterized in that the polymer a) contains, as monomer units, diallyldimethylammonium salts and / or acrylamidopropyltrimethylammonium salts.
  • amphoteric polymers have not only cationic groups but also anionic groups.
  • anionic Monomereinhajien originate for example from the group of linear or branched, saturated or unsaturated carboxylates, linear or branched, saturated or unsaturated phosphonates, linear or branched, saturated or unsaturated sulfates or linear or branched, saturated or unsaturated sulfonates.
  • Preferred monomer units are acrylic acid, (meth) acrylic acids, (dimethyl) acrylic acid, (ethyl) acrylic acid, cyanoacrylic acid, vinylessingic acid, allylacetic acid, crotonic acid, maleic acid, fumaric acid, cinnamic acid and its derivatives, allylsulfonic acids such as allyloxybenzenesulfonic acid and methallylsulfonic acid or the allylphosphonic acids.
  • Preferred employable amphoteric polymers are from the group of the alkylacrylamide / acrylic acid copolymers, the alkylacrylamide / methacrylic acid copolymers, the alkylacrylamide / methylmethacrylic acid copolymers, the alkylacrylamide / acrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the alkylacrylamide / methacrylic acid / alkylaminoalkyl (meth ) -acrylic acid copolymers, the alkylacrylamide / methylmethacrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the alkylacrylamide / alkymethacrylate / alkylaminoethylmethacrylate / alkylmethacrylate copolymers and the copolymers of unsaturated carboxylic acids, cationically derivatized unsaturated carboxylic acids and optionally further ionic or non
  • Preferably usable zwitterionic polymers are selected from the group of acrylamidoalkyltrialkylammonium chloride / acrylic acid copolymers and their alkali metal and ammonium salts, the Acrylamidoalkyltrialkylammonium chloride / methacrylic acid copolymers and their alkali metal and ammonium salts and the Methacroylethylbetain / methacrylate copolymers.
  • amphoteric polymers which comprise, in addition to one or more anionic monomers as cationic monomers Methacrylamidoalkyl-trialkylammonium chloride and dimethyl (diallyl) -ammonium chloride.
  • amphoteric polymers are selected from the group consisting of the methacrylamidoalkyltrialkylammonium chloride / dimethyl (diallyl) ammonium chloride / acrylic acid copolymers, the methacrylamidoalkyltrialkylammonium chloride / dimethyl (diallyl) ammonium chloride / methacrylic acid copolymers and the methacrylamidoalkyltrialkylammonium chloride / dimethyl (diallyl) ammonium chloride / alkyl - (meth) acrylic acid copolymers and their alkali metal and ammonium salts.
  • amphoteric polymers from the group of the methacrylamidopropyltrimethylammonium chloride / dimethyl (diallyl) ammonium chloride / acrylic acid copolymers, the methacrylamidopropyltrimethylammonium chloride / dimethyl (diallyl) ammonium chloride / acrylic acid copolymers and the methacrylamidopropyltrimethylammonium chloride / dimethyl (diallyl) ammonium chloride / alkyl (meth) acrylic acid -Copolymers and their alkali metal and ammonium salts.
  • All of these products contain, as a first essential ingredient, one or more polymer (s) having a molecular weight of 2000 gmol -1 or above, which has at least one positive charge.
  • the compositions of the invention have a weight fraction of these polymers between 0.01 and 10 wt .-%, each based on the total weight of the automatic dishwashing detergent.
  • the weight fraction of the polymer a) is between 0.01 and 8% by weight, preferably between 0.01 and 6% by weight, preferably between 0.01 and 4 Wt .-%, particularly preferably between 0.01 and 2 wt .-% and in particular between 0.01 and 1 wt .-%, each based on the total weight of the automatic dishwashing agent is.
  • compositions of the invention 1.2 to 10 wt .-% 1-hydroxyethane-1,1-diphosphonic acid (HEDP) and / or salts thereof, wherein phosphorus-containing complexing agent from the group of phosphonates and / or the condensed Phosphates of the general formula (MPO 3 ) x , M x + 2 P x O 3x + 1 and / or M x H 2 P x O 3x + 1 , in which M is a cation and x is a number greater than or equal to 5 , contained in total in an amount of 1.2 to 10 wt .-%.
  • HEDP 1-hydroxyethane-1,1-diphosphonic acid
  • the group of phosphonates is one of the complexing agents and includes a number of different compounds such as 1-hydroxyethane-1,1-diphosphonic acid (HEDP) or diethylenetriamine penta (methylenephosphonic acid) (DTPMP).
  • HEDP 1-hydroxyethane-1,1-diphosphonic acid
  • DTPMP diethylenetriamine penta
  • preference is given in particular to hydroxyalkane or aminoalkanephosphonates.
  • 1-hydroxyethane-1,1-diphosphonate (HEDP) is of particular importance as a co-builder. It is preferably used as the sodium salt, the disodium salt neutral and the tetrasodium salt alkaline (pH 9).
  • Preferred aminoalkanephosphonates are ethylenediamine tetramethylenephosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologs. They are preferably in the form of neutral sodium salts, eg. B. as the hexasodium salt of EDTMP or as hepta- and octa-sodium salt of DTPMP used.
  • the builder used here is preferably HEDP from the class of phosphonates.
  • the aminoalkanephosphonates also have a pronounced heavy metal binding capacity. Accordingly, in particular if the agents also contain bleach, it may be preferable to use aminoalkanephosphonates, in particular DTPMP, or to use mixtures of the phosphonates mentioned.
  • the automatic dishwashing compositions of the invention may contain two or more different phosphonates. Particular preference is given to those automatic dishwashing compositions which contain as phosphonates both 1-hydroxyethane-1,1-diphosphonic acid (HEDP) and diethylenetriaminepenta (methylenephosphonic acid) (DTPMP), the weight ratio of HEDP to DTPMP being between 20: 1 and 1:20, preferably between 15: 1 and 1:15 and in particular between 10: 1 and 1:10.
  • HEDP 1-hydroxyethane-1,1-diphosphonic acid
  • DTPMP diethylenetriaminepenta
  • the weight fraction of the phosphonate (s) b) in the total weight of the automatic dishwashing agent is at least equal to the weight fraction of the polymer (s) a).
  • those agents are particularly preferred in which the ratio of the weight fraction of polymer a) to the weight fraction of phosphonate b) is at least 1: 1, preferably 1: 1 to 200: 1, preferably 2: 1 to 150: 1, particularly preferred 3: 1 to 120: 1, most preferably 4: 1 to 100: 1 and especially 10: 1 to 100: 1
  • the automatic dishwashing compositions according to the invention can furthermore comprise condensed phosphates.
  • the group of condensed phosphates can be divided into metaphosphates and polyphosphates.
  • the metaphosphates correspond to compounds of the general formula (MPO 3 ) x .
  • M is a cation, preferably an alkali metal
  • x is a number greater than or equal to 5.
  • the polyphosphates as well as the aforementioned phosphonates are among the complexing agents.
  • the stated degree of condensation x of the general formula (MPO 3 ) x represents a statistical average, which may be an integer or a fractional number for a specific product. Preferred degrees of condensation have a narrow homolog distribution.
  • the group of polyphosphates includes compounds of the general formula M x + 2 P x XO 3x + 1 or M x H 2 P x O 3x + 1 .
  • condensed phosphates takes place, for example, by condensation of NaH 2 PO 4 or KH 2 PO 4 .
  • the resulting polyphosphates can cyclic representatives, the sodium or potassium metaphosphates and chain types, the sodium and potassium polyphosphates, can distinguish.
  • hot or cold phosphates Graham's salt, Kurrolsches and Maddrell's salt. All higher sodium and potassium phosphates are collectively referred to as condensed phosphates.
  • condensed phosphates are the condensed phosphates of the general formula (MPO 3 ) x , M x + 2 P x O 3x + 1 and / or M x H 2 P x O 3x + 1 , in which M is a cation, preferably an alkali metal, more preferably sodium or potassium, and x is a number greater than or equal to 5, preferably greater than 5, preferably greater than 6, more preferably greater than 8, even more preferably greater than 10 and especially greater than 12.
  • M is a cation, preferably an alkali metal, more preferably sodium or potassium
  • x is a number greater than or equal to 5, preferably greater than 5, preferably greater than 6, more preferably greater than 8, even more preferably greater than 10 and especially greater than 12.
  • Particularly preferred condensed phosphates include, for example, the glassy condensed polyphosphate of the general formula (MPO 3 ) X, M x + 2 P x O 3 x + i and / or M x H 2 P x O 3 x + f, where x is a number between 15 and 20 , the condensed polyphosphates of the general formula (MPO 3 ) X, MX + 2 PxO 3 x + 1 and / or M x H 2 P x O 3x + 1 , where x is a number between 40 and 50.
  • water-soluble condensed polyphosphates of the general formula (MPO 3 ) x , M x + 2 P x O 3x + 1 and / or M x H 2 P x O 3x + 1 , where x is a number between 12 and 800 , preferably between 12 and 600, more preferably between 12 and 400 and in particular between 12 and 100.
  • the water-insoluble Madrell's salt (NaPO 3 ) x with x> 1000
  • the water-soluble Graham's salt (NaPO 3 ) 40-50
  • the glassy phosphate of the composition (NaPO 3 ) 15-20 known as Calgon®.
  • the automatic dishwashing compositions according to the invention can be two or more different condensed phosphates of the general formula (MPO 3 ) x , M x + 2 P x O 3x + 1 and / or M x H 2 P x O 3x + 1 , where M for a Cation and x is a number greater than or equal to 5 included.
  • the proportion by weight of the condensed polyphosphate (s) b) is of the general formula (MPO 3 ) x , M x + 2 P x O 3x + 1 and / or M x H 2 P x O 3x + 1 , where M is a cation and x is a number greater than or equal to 5, the total weight of the automatic dishwashing agent is at least equal to the weight fraction of the polymer (s) a).
  • those agents are particularly preferred in which the ratio of the weight fraction of polymer a) to the weight fraction of the condensed polyphosphate b) is at least 1: 1, preferably 1: 1 to 200: 1, preferably 2: 1 to 150: 1 preferably 3: 1 to 120: 1, very particularly preferably 4: 1 to 100: 1 and in particular 10: 1 to 100: 1
  • compositions of the invention have a weight fraction of one or more phosphorus-containing complexing agent from the group of phosphonates and / or condensed phosphates of the general formula (MPO 3 ) X, M x + 2 P x O 3x + 1 and / or M x H 2 P x O 3x-1 , in which M is a cation, preferably an alkali metal, and x is a number greater than or equal to 5 is between 1.2 and 10 wt .-%, each based on the total weight of the automatic dishwashing on , In the context of the present application, however, preference is given to those automatic dishwasher detergents in which the weight fraction of the phosphorus-containing complexing agent b) is between 1.5 and 8% by weight, preferably between 1.7 and 7% by weight and in particular between 2, 0 and 6 wt .-%, each based on the total weight of the automatic dishwashing detergent is.
  • MPO 3 general formula
  • the weight ratio of constituents i) to constituents ii) is preferably between 10: 1 and 1:10, preferably between 7: 1 and 1: 7, more preferably between 6: 1 and 1: 6, most preferably between 5: 1 and 1: 5 and in particular between 3: 1 and 1: 3.
  • Preferred machine dishwasher detergents according to the invention contain nonionic surfactants as further constituent c), particularly preferred agents being present as further constituent c) 0.5 to 15% by weight, preferably 1 to 12.5% by weight, more preferably 1.5 to 10 wt .-% and in particular 2 to 8 wt .-% nonionic (s) surfactant (s), each based on the total weight of the automatic dishwashing detergent, included.
  • nonionic surfactants as further constituent c
  • particularly preferred agents being present as further constituent c) 0.5 to 15% by weight, preferably 1 to 12.5% by weight, more preferably 1.5 to 10 wt .-% and in particular 2 to 8 wt .-% nonionic (s) surfactant (s), each based on the total weight of the automatic dishwashing detergent, included.
  • nonionic surfactants known to the person skilled in the art can be used as nonionic surfactants, provided that they are generally suitable for compounding with bleaching agents.
  • EO ethylene oxide
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • Preferred ethoxylated alcohols include, for example, C 12-14 alcohols with 3 EO or 4 EO, C9-11 alcohol containing 7 EO, C 13-16 alcohols containing 3 EO, 5 EO, 7 EO or 8 EO, C 12-18 alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12-14 -alcohol with 3 EO and C 12-18 -alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • nonionic surfactants and alkyl glycosides of the general formula RO (G) x can be used in which R is a primary straight-chain or methyl-branched, especially in the 2-position methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is the symbol which represents a glycose unit having 5 or 6 C atoms, preferably glucose.
  • the degree of oligomerization x, the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; preferably x is 1.2 to 1.4.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having from 1 to 4 carbon atoms in the alkyl chain.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • the machine dishwashing detergents according to the invention contain nonionic surfactants, in particular nonionic surfactants from the group of the alkoxylated alcohols.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or linear and methyl-branched radicals in the mixture can contain, as they are usually present in Oxoalkoholresten.
  • EO ethylene oxide
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols include, for example, C 12-14 alcohols with 3 EO or 4 EO, C 9-11 alcohols with 7 EO, C 13-15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12-18 alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12-14 -alcohol with 3 EO and C 12-18 -alcohol with 5 EO.
  • the stated degrees of ethoxylation represent statistical averages which may be an integer or a fractional number for a particular product.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • Nonionic surfactants from the group of alkoxylated alcohols particularly preferably from the group of mixed alkoxylated alcohols and in particular from the group of EO-AO-EO-nonionic surfactants, are used with particular preference in the context of the present application.
  • compositions according to the invention which comprise a nonionic surfactant which has a melting point above room temperature.
  • preferred dishwashing detergents are characterized in that they contain nonionic surfactant (s) having a melting point above 20 ° C., preferably above 25 ° C., more preferably between 25 and 60 ° C. and in particular between 26.6 and 43, 3 ° C, included.
  • Suitable nonionic surfactants which have melting or softening points in the temperature range mentioned are, for example, low-foaming nonionic surfactants which may be solid or highly viscous at room temperature. If highly viscous nonionic surfactants are used at room temperature, it is preferred that they have a viscosity above 20 Pas, preferably above 35 Pas and in particular above 40 Pas. Nonionic surfactants which have waxy consistency at room temperature are also preferred.
  • Preferred nonionic surfactants to be used at room temperature are from the groups of the alkoxylated nonionic surfactants, in particular the ethoxylated primary alcohols, and mixtures of these surfactants with structurally complicated surfactants such as polyoxypropylene / polyoxyethylene / polyoxypropylene (PO / EO / PO) surfactants.
  • Such (PO / EO / PO) nonionic surfactants are also characterized by good foam control.
  • the nonionic surfactant having a melting point above room temperature is an ethoxylated nonionic surfactant consisting of the reaction of a monohydroxyalkanol or alkylphenol having 6 to 20 carbon atoms, preferably at least 12 mol, more preferably at least 15 mol, especially at least 20 moles of ethylene oxide per mole of alcohol or alkylphenol emerged.
  • a particularly preferred room temperature solid nonionic surfactant is obtained from a straight chain fatty alcohol having 16 to 20 carbon atoms (C 16-20 alcohol), preferably a C 18 alcohol and at least 12 moles, preferably at least 15 moles and especially at least 20 moles of ethylene oxide , Of these, the so-called “narrow range ethoxylates" (see above) are particularly preferred.
  • particularly preferred dishwashing agents contain ethoxylated nonionic surfactant (s) consisting of C 6-20 monohydroxyalkanols or C 6-20 alkylphenols or C 16-20 fatty alcohols and more than 12 mol, preferably more than 15 mol and in particular more than 20 moles of ethylene oxide per mole of alcohol was recovered (n).
  • ethoxylated nonionic surfactant consisting of C 6-20 monohydroxyalkanols or C 6-20 alkylphenols or C 16-20 fatty alcohols and more than 12 mol, preferably more than 15 mol and in particular more than 20 moles of ethylene oxide per mole of alcohol was recovered (n).
  • the nonionic surfactant solid at room temperature preferably additionally has propylene oxide units in the molecule.
  • such PO units make up to 25% by weight, more preferably up to 20 wt .-% and in particular up to 15 wt .-% of the total molecular weight of the nonionic surfactant.
  • Particularly preferred nonionic surfactants are ethoxylated monohydroxyalkanols or alkylphenols which additionally have polyoxyethylene-polyoxypropylene block copolymer units.
  • the alcohol or alkylphenol part of such nonionic surfactant molecules preferably constitutes more than 30% by weight, more preferably more than 50% by weight and in particular more than 70% by weight of the total molecular weight of such nonionic surfactants.
  • Preferred dishwashing detergents are characterized in that they contain ethoxylated and propoxylated nonionic surfactants in which the propylene oxide units in the molecule contain up to 25% by weight, preferably up to 20% by weight and in particular up to 15% by weight of the total molecular weight of the nonionic Surfactants are included.
  • More particularly preferred nonionic surfactants having melting points above room temperature contain from 40 to 70% of a polyoxypropylene / polyoxyethylene / polyoxypropylene block polymer blend containing 75% by weight of a reverse block copolymer of polyoxyethylene and polyoxypropylene with 17 moles of ethylene oxide and 44 moles of propylene oxide and 25% by weight. % of a block copolymer of polyoxyethylene and polyoxypropylene initiated with trimethylolpropane and containing 24 moles of ethylene oxide and 99 moles of propylene oxide per mole of trimethylolpropane.
  • Nonionic surfactants which may be used with particular preference are available, for example, under the name Poly Tergent® SLF-18 from Olin Chemicals.
  • Another preferred dishwashing detergent according to the invention contains nonionic surfactant (s) of the formula R 1 O [CH 2 CH (CH 3) O] x [CH 2 CH 2 O] y CH 2 CH (OH) R 2 in which R 1 is a linear or branched aliphatic hydrocarbon radical having 4 to 18 carbon atoms or mixtures thereof, R 2 denotes a linear or branched hydrocarbon radical having 2 to 26 carbon atoms or mixtures thereof and x for values between 0.5 and 1.5 and y is a value of at least 15.
  • nonionic surfactant s of the formula R 1 O [CH 2 CH (CH 3) O] x [CH 2 CH 2 O] y CH 2 CH (OH) R 2 in which R 1 is a linear or branched aliphatic hydrocarbon radical having 4 to 18 carbon atoms or mixtures thereof, R 2 denotes a linear or branched hydrocarbon radical having 2 to 26 carbon atoms or mixtures thereof and x for values between 0.5 and 1.5 and y is
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula R 1 O [CH 2 CH (R 3 ) O] x [CH 2 ] k CH (OH) [CH 2 ] j OR 2 are in the R 1 and R 2 are linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, R 3 represents H or a Is methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2-butyl or 2-methyl-2-butyl, x for values between 1 and 30, k and j for values between 1 and 12, preferably between 1 and 5 stand.
  • each R 3 in the above formula may be different.
  • R 1 and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 6 to 22 carbon atoms, with radicals having 8 to 18 carbon atoms being particularly preferred.
  • R 3 H, -CH 3 or -CH 2 CH 3 are particularly preferred.
  • Particularly preferred values for x are in the range from 1 to 20, in particular from 6 to 15.
  • each R 3 in the above formula may be different if x ⁇ 2.
  • the alkylene oxide unit in the square bracket can be varied.
  • the value 3 for x has been selected here by way of example and may well be greater, with the variation width increasing with increasing x values and including, for example, a large number (EO) groups combined with a small number (PO) groups, or vice versa ,
  • R 1 , R 2 and R 3 are as defined above and x is from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18.
  • Particularly preferred are surfactants in which the radicals R 1 and R 2 has 9 to 14 C atoms, R 3 is H and x assumes values of 6 to 15.
  • dishwashing agents according to the invention are preferred, the end-capped poly (oxyalkylated) nonionic surfactants of the formula R 1 O [CH 2 CH (R 3 ) O] x [CH 2 ] k CH (OH) [CH 2 ] j OR 2 in which R 1 and R 2 are linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2-butyl or 2-methyl-2-butyl, x is for Values between 1 and 30, k and j are values between 1 and 12, preferably between 1 and 5, surfactants of the type R 1 O [CH 2 CH (R 3 ) O] x CH 2 CH (OH) CH 2 C) R 2 in which x is from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18, are particularly preferred.
  • R 1 and R 2 are linear or
  • nonionic surfactants have been low foaming nonionic surfactants which have alternating ethylene oxide and alkylene oxide units.
  • surfactants with EO-AO-EO-AO blocks are preferred, wherein in each case one to ten EO or AO groups are bonded to each other before a block of the other groups follows.
  • Machine dishwashing agents which are preferred as nonionic surfactant (s) of the general formula
  • R 1 is a straight-chain or branched, saturated or mono- or polyunsaturated C 6-24 alkyl or alkenyl radical; each group R 2 or R 3 is independently selected from -CH 3 ; -CH 2 CH 3 , -CH 2 CH 2 -CH 3 , CH (CH 3 ) 2 and the indices w, x, y, z independently of one another are integers from 1 to 6.
  • the preferred nonionic surfactants of formula II can be prepared by known methods from the corresponding alcohols R 1 -OH and ethylene or alkylene oxide.
  • the radical R 1 in formula II above may vary depending on the origin of the alcohol. If native sources are used, the radical R 1 has an even number of carbon atoms and is usually undisplayed, wherein the linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example from coconut, palm, tallow or Oleyl alcohol, are preferred.
  • Alcohols which are accessible from synthetic sources are, for example, the Guerbet alcohols or methyl-branched or linear and methyl-branched radicals in the 2-position, as they are usually present in oxo alcohol radicals.
  • R 1 in formula VII is an alkyl radical having 6 to 24, preferably 8 to 20, particularly preferably 9 to 15 and in particular 9 to 11 carbon atoms.
  • alkylene oxide unit which is contained in the preferred nonionic surfactants in alternation with the ethylene oxide unit, in particular butylene oxide is considered in addition to propylene oxide.
  • R 2 or R 3 are independently selected from -CH 2 CH 2 -CH 3 or CH (CH 3 ) 2 are suitable.
  • Preferred automatic dishwashing agents are characterized in that R 2 and R 3 are each a residue -CH 3 , w and x independently of one another for values of 3 or 4 and y and z independently of one another represent values of 1 or 2.
  • nonionic surfactants which have a C 9-15 -alkyl radical having 1 to 4 ethylene oxide units, followed by 1 to 4 propylene oxide units, followed by 1 to 4 ethylene oxide units, followed by 1 to 4 propylene oxide units.
  • These surfactants have the required low viscosity in aqueous solution and can be used according to the invention with particular preference.
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula R 1 O [CH 2 CH (R 3 ) O] x R 2 in which R 1 represents linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, R 2 represents linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, which preferably between 1 and have 5 hydroxy groups and are preferably further functionalized with an ether group, R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2-butyl or 2-methyl-2- Butyl radical, x for values between 1 and 40.
  • R 1 represents linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms
  • R 2 represents linear or branched, saturated or unsaturated, ali
  • R 3 in the abovementioned general formula is H.
  • R 1 is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, preferably having 4 to 20 carbon atoms
  • R 2 is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, which preferably have between 1 and 5 hydroxyl groups and x stands for values between 1 and 40.
  • those end-capped poly (oxyalkylated) nonionic surfactants are preferred which are in accordance with the formula R 1 O [CH 2 CH 2 O] x CH 2 CH (OH) R 2 in addition to a radical R 1 , which is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, preferably having 4 to 20 carbon atoms, furthermore a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radical with 1 have up to 30 carbon atoms R 2 , which is a monohydroxylated intermediate group -CH 2 CH (OH) - adjacent.
  • x in this formula stands for values between 1 and 90.
  • nonionic surfactant of the general formula R 1 O [CH 2 CH 2 O] x CH 2 CH (OH) R 2 containing, in addition to a radical R 1 , which is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, preferably having 4 to 20 carbon atoms, further a linear or branched, saturated or unsaturated, aliphatic or aromatic Hydrocarbon radical having 1 to 30 carbon atoms R 2 , which is a monohydroxylated intermediate group -CH 2 CH (OH) - adjacent and in which x stands for values between 1 and 90.
  • R 1 which is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, preferably having 4 to 20 carbon atoms, further a linear or branched, saturated or unsaturated, aliphatic or aromatic Hydrocarbon radical having 1 to 30 carbon atoms R 2 , which is a monohydroxylated intermediate group -CH
  • the corresponding end-capped poly (oxyalkylated) nonionic surfactants of the above formula can be prepared, for example, by reacting a terminal epoxide of the formula R 2 CH (O) CH 2 with an ethoxylated alcohol of the formula R 1 O [CH 2 CH 2 O] x-1 CH 2 Obtained CH 2 OH.
  • R 1 O [CH 2 CH 2 O] x [CH 2 CH (CH 3 ) O] y CH 2 CH (OH) R 2 in which R 1 and R 2 independently represents a linear or branched, saturated or mono- or polyunsaturated hydrocarbon radical having 2 to 26 carbon atoms, R 3 is independently selected from -CH 3; -CH 2 CH 3 , -CH 2 CH 2 -CH 3 , CH (CH 3 ) 2 , but preferably -CH 3 , and x and y are independently from each other values between 1 and 32, wherein nonionic surfactants with values for x from 15 to 32 and y of 0.5 and 1.5 are very particularly preferred.
  • the stated C chain lengths and degrees of ethoxylation or degrees of alkoxylation of the abovementioned nonionic surfactants represent statistical mean values which, for a specific product, may be an integer or a fractional number. Due to the manufacturing process, commercial products of the formulas mentioned are usually not made of an individual representative, but of mixtures, which may result in mean values for the C chain lengths as well as for the degrees of ethoxylation or degrees of alkoxylation and subsequently broken numbers.
  • the dishwasher detergents according to the invention may contain the aforementioned nonionic surfactants not only as individual substances but also as surfactant mixtures of two, three, four or more surfactants.
  • Mixtures of surfactants are not mixtures of nonionic surfactants which fall in their entirety under one of the abovementioned general formulas, but rather mixtures which contain two, three, four or more nonionic surfactants which can be described by different general formulas ,
  • Preferred automatic dishwashing detergents are characterized in that the surfactant system comprises the nonionic surfactants F and G in a weight ratio of F: G between 2: 9 and 90: 1, preferably between 1: 3 and 80: 1, preferably between 3: 7 and 70: 1, more preferably between 7:13 and 60: 1 and in particular between 2: 3 and 50: 1.
  • the automatic dishwashing compositions according to the invention preferably comprise further washing and cleaning-active substances, in particular washing and cleaning-active substances from the group of bleach activators, builders, surfactants, enzymes, disintegration aids, electrolytes, pH adjusters, fragrances, Perfume carriers, dyes, hydrotropes, foam inhibitors, corrosion inhibitors and glass corrosion inhibitors.
  • the builders include, in particular, the zeolites, silicates, carbonates, organic co-builders and-where there are no ecological prejudices against their use-also the phosphates.
  • Suitable crystalline layered sodium silicates have the general formula NaMSi x O 2x + 1 .H 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x 2, 3 or 4 are.
  • Preferred crystalline layered silicates of the formula given are those in which M is sodium and x assumes the values 2 or 3. In particular, both .beta. And .delta.-sodium disodium Na 2 Si 2 O 5 .yH 2 O are preferred.
  • amorphous sodium silicates with a Na 2 O: SiO 2 modulus of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which Delayed and have secondary washing properties.
  • the release delay compared to conventional Amorphous sodium silicates may have been produced in various ways, for example by surface treatment, compounding, compaction / densification or by overdrying.
  • the term "amorphous” is also understood to mean "X-ray amorphous”.
  • the silicates do not yield sharp X-ray reflections typical of crystalline substances in X-ray diffraction experiments, but at most one or more maxima of the scattered X-rays having a width of several degrees of diffraction angle. However, it may well even lead to particularly good builder properties if the silicate particles provide blurred or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline regions of size 10 to a few hundred nm, values of up to max. 50 nm and in particular up to max. 20 nm are preferred. Such so-called X-ray amorphous silicates also have a dissolution delay compared with the conventional water glasses. Particularly preferred are compacted / compacted amorphous silicates, compounded amorphous silicates and overdried X-ray amorphous silicates.
  • these silicates preferably alkali metal silicates, particularly preferably crystalline or amorphous alkali disilicates, be present in detergents or cleaners in amounts of from 10 to 60% by weight, preferably from 15 to 50% by weight. % and in particular from 20 to 40 wt .-%, each based on the weight of the washing or cleaning agent, are included.
  • these compositions preferably contain at least one crystalline layered silicate of the general formula NaMSi x O 2x + 1 .yH 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 22, preferably from 1.9 to 4, and y is a number from 0 to 33.
  • the crystalline layer-form silicates of the formula NaMSi x O 2x + 1 .yH 2 O are sold, for example, by the company Clariant GmbH (Germany) under the trade name Na-SKS, eg Na-SKS-1 (Na 2 Si 22 O 45 .xH 2 O, Kenyaite), Na-SKS-2 (Na 2 Si 14 O 29 .xH 2 O, magadiite), Na-SKS-3 (Na 2 Si 8 O 17 .xH 2 O) or Na-SKS-4 ( Na 2 Si 4 O 9 .xH 2 O, Makatite).
  • Na-SKS eg Na-SKS-1 (Na 2 Si 22 O 45 .xH 2 O, Kenyaite)
  • Na-SKS-2 Na 2 Si 14 O 29 .xH 2 O, magadiite
  • Na-SKS-3 Na 2 Si 8 O 17 .xH 2 O
  • Na-SKS-4 Na 2 Si 4 O 9 .xH 2 O, Makatit
  • crystalline phyllosilicates of the formula (I) in which x is 2.
  • x is 2.
  • Na-SKS-5 ⁇ -Na 2 Si 2 O 5
  • Na-SKS-7 ⁇ -Na 2 Si 2 O 5 , natrosilite
  • Na-SKS-9 NaHSi 2 O 5 H 2 O
  • Na-SKS-10 NaHSi 2 O 5 .3H 2 O, kanemite
  • Na-SKS-11 t-Na 2 Si 2 O 5
  • Na-SKS-13 Na-SKS-13
  • Na-SKS-6 ⁇ -Na 2 Si 2 O 5
  • these compositions in the context of the present application contain a proportion by weight of the crystalline layered silicate of the formula NaMSi x O 2x + 1 .yH 2 O of 0.1 to 20% by weight, preferably of 0 , 2 to 15 wt .-% and in particular from 0.4 to 10 wt .-%, each based on the total weight of these agents.
  • Such automatic dishwashing agents have a total silicate content of less than 7% by weight, preferably less than 6% by weight, preferably less than 5% by weight, more preferably less than 4% by weight, most preferably less than 3% by weight % and in particular below 2.5 wt .-%, wherein it is in this silicate, based on the total weight of the silicate contained, preferably at least 70 wt .-%, preferably at least 80 wt .-% and in particular to At least 90 wt .-% of silicate of the general formula NaMSi x O 2x + 1 ⁇ yH 2 O is.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • zeolite P zeolite MAP® (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are particularly preferred.
  • zeolite X and zeolite A are cocrystal of zeolite X and zeolite A (about 80% by weight of zeolite X) ), which is sold by the company CONDEA Augusta SpA under the brand name VEGOBOND AX® and by the formula nNa 2 O • (1-n) K 2 O • Al 2 O 3 • (2-2.5) SiO 2 • (3.5-5.5) H 2 O can be described.
  • the zeolite can be used both as a builder in a granular compound, as well as to a kind of "powdering" of the entire mixture to be pressed, wherein usually both ways for incorporating the zeolite are used in the premix.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution, measuring method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • phosphates as builders are possible, unless such use should not be avoided for environmental reasons. This applies in particular to the use of agents according to the invention as automatic dishwasher detergents, which is particularly preferred in the context of the present application.
  • agents according to the invention as automatic dishwasher detergents, which is particularly preferred in the context of the present application.
  • the alkali metal phosphates with a particular preference for pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate), have the greatest importance in the washing and cleaning agent industry.
  • Alkali metal phosphates is the summary term for the alkali metal (especially sodium and potassium) salts of various phosphoric acids, in which one can distinguish metaphosphoric acids (HPO 3 ) n and orthophosphoric H 3 PO 4 in addition to higher molecular weight representatives.
  • the phosphates combine several advantages: they act as alkali carriers, prevent lime deposits on machine parts or lime incrustations in fabrics and also contribute to the cleaning performance.
  • Suitable phosphates are, for example, the sodium dihydrogen phosphate, NaH 2 PO 4 , in the form of the dihydrate (density 1.91 gcm -3 , melting point 60 °) or in the form of the monohydrate (density 2.04 gcm -3 ), the disodium hydrogen phosphate (secondary sodium phosphate) , Na 2 HPO 4 , which is anhydrous or with 2 moles (density 2.066 gcm -3 , water loss at 95 °), 7 mol. (Density 1.68 gcm -3 , melting point 48 ° with loss of 5 H 2 O) and 12 mol.
  • Trisatriumphosphat (tertiary sodium phosphate) Na 3 PO 4 which as Dodecahydrat, as Decahydrat (according to 19 -20% P 2 O 5 ) and in anhydrous form (corresponding to 39-40% P 2 O 5 ) can be used.
  • Another preferred phosphate is the tripotassium phosphate (tertiary or tribasic potassium phosphate), K 3 PO 4 .
  • the tetrasodium diphosphate sodium pyrophosphate
  • Na 4 P 2 O 7 which is in anhydrous form (density 2.534 gcm -3 , melting point 988 °, also indicated 880 °) and as decahydrate (density 1.815-1.836 gcm -3 , melting point 94 ° with loss of water)
  • potassium salt potassium diphosphate potassium 4 P 2 O 7 .
  • the corresponding potassium salt pentapotassium triphosphate, K 5 P 3 O 10 (potassium tripolyphosphate) is marketed, for example, in the form of a 50% strength by weight solution (> 23% P 2 O 5 , 25% K 2 O).
  • the potassium polyphosphates are widely used in the washing and cleaning industry.
  • sodium potassium tripolyphosphates which can also be used in the context of the present invention. These arise, for example, when hydrolyzed sodium trimetaphosphate with KOH: (NaPO 3 ) 3 + 2 KOH ⁇ Na 3 K 2 P 3 O 10 + H 2 O
  • sodium tripolyphosphate, potassium tripolyphosphate or mixtures of these two are used according to the invention exactly as sodium tripolyphosphate, potassium tripolyphosphate or mixtures of these two; also mixtures of sodium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of potassium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of sodium tripolyphosphate and potassium tripolyphosphate and sodium potassium tripolyphosphate can be used according to the invention.
  • phosphates are used as detergents or cleaning agents in the context of the present application
  • preferred agents comprise this phosphate (s), preferably alkali metal phosphate (s), particularly preferably pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate). , in amounts of from 5 to 80% by weight, preferably from 15 to 75% by weight, in particular from 20 to 70% by weight, in each case based on the weight of the washing or cleaning agent.
  • potassium tripolyphosphate and sodium tripolyphosphate in a weight ratio of more than 1: 1, preferably more than 2: 1, preferably more than 5: 1, more preferably more than 10: 1 and in particular more than 20: 1. It is particularly preferred to use exclusively potassium tripolyphosphate without admixtures of other phosphates. Further builders are the alkali carriers.
  • Suitable alkali carriers are, for example, alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogencarbonates, alkali metal sesquicarbonates, the cited alkali metal silicates, alkali metal silicates and mixtures of the abovementioned substances, preference being given to using alkali metal carbonates, in particular sodium carbonate, sodium bicarbonate or sodium sesquicarbonate for the purposes of this invention.
  • alkali metal carbonates in particular sodium carbonate, sodium bicarbonate or sodium sesquicarbonate for the purposes of this invention.
  • a builder system comprising a mixture of tripolyphosphate and sodium carbonate.
  • a builder system comprising a mixture of tripolyphosphate and sodium carbonate and sodium disilicate.
  • the alkali metal hydroxides are preferably only in small amounts, preferably in amounts below 10 wt .-%, preferably below 6 wt .-%, more preferably below 4 wt .-% and in particular below 2 wt .-%, each based on the total weight of the detergent or Reinigugnsstoffs used.
  • Particularly preferred are agents which, based on their total weight, contain less than 0.5% by weight and in particular no alkali metal hydroxides.
  • carbonate (s) and / or bicarbonate (s) preferably alkali metal carbonate (s), more preferably sodium carbonate
  • agents which, based on the weight of the washing or cleaning agent (ie the total weight of the combination product without packaging) less than 20 wt .-%, preferably less than 17 wt .-%, preferably less than 13 wt .-% and in particular less than 9% by weight of carbonate (s) and / or bicarbonate (s), preferably alkali metal carbonates, particularly preferably sodium carbonate.
  • organic co-builders are polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, other organic cobuilders (see below) and phosphonates. These classes of substances are described below.
  • Useful organic builder substances are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids meaning those carboxylic acids which carry more than one acid function. These are, for example, citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures thereof.
  • the acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaners.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any desired mixtures of these can be mentioned here.
  • polymeric polycarboxylates for example the alkali metal salts of polyacrylic acid or of polymethacrylic acid, for example those having a relative molecular mass of from 500 to 70,000 g / mol.
  • the molecular weights stated for polymeric polycarboxylates are weight-average molar masses M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UV detector being used. The measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship with the polymers investigated. These data differ significantly from the molecular weight data, in which polystyrene sulfonic acids are used as standard. The molar masses measured against polystyrenesulfonic acids are generally significantly higher than the molecular weights specified in this document.
  • Suitable polymers are, in particular, polyacrylates which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, this group may in turn, the short-chain polyacrylates, the molar masses of 2000 to 10,000 g / mol, and more preferably from 3000 to 5000 g / mol, have to be preferred.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids is generally from 2000 to 70000 g / mol, preferably from 20,000 to 50,000 g / mol and in particular from 30,000 to 40,000 g / mol.
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution.
  • the content of detergents or cleaners to (co) polymeric polycarboxylates is preferably 0.5 to 20 wt .-%, in particular 3 to 10 wt .-%.
  • the polymers may also contain allylsulfonic acids such as allyloxybenzenesulfonic acid and methallylsulfonic acid as a monomer.
  • biodegradable polymers of more than two different monomer units for example those which contain as monomers salts of acrylic acid and maleic acid and vinyl alcohol or vinyl alcohol derivatives or as monomers salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives ,
  • copolymers are those which preferably have as monomers acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate.
  • polymeric aminodicarboxylic acids their salts or their precursors.
  • Particularly preferred are polyaspartic acids or their salts and.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 C atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme catalyzed processes be performed.
  • it is hydrolysis products having average molecular weights in the range of 400 to 500,000 g / mol.
  • a polysaccharide with a dextrose equivalent (DE) in the range from 0.5 to 40, in particular from 2 to 30 is preferred, DE being a common measure of the reducing action of a polysaccharide compared to dextrose, which has a DE of 100 , is.
  • DE dextrose equivalent
  • oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Oxydisuccinates and other derivatives of disuccinates are other suitable co-builders.
  • ethylenediamine-N, N'-disuccinate (EDDS) is preferably used in the form of its sodium or magnesium salts.
  • glycerol disuccinates and glycerol trisuccinates are also preferred in this context. Suitable amounts are in zeolithissen and / or silicate-containing formulations at 3 to 15 wt .-%.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may optionally also be present in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • Automatic dishwashing agents which contain from 10 to 80% by weight, preferably from 15 to 75% by weight, particularly preferably from 20 to 70% by weight and in particular from 25 to 65% by weight, of one or more water-soluble builders are available the present application particularly preferred.
  • anionic, cationic and amphoteric surfactants are also counted among the group of surfactants.
  • anionic surfactants are part of automatic dishwasher detergents, their content, based on the total weight of the compositions, is preferably less than 4% by weight, preferably less than 2% by weight and very particularly preferably less than 1% by weight. Machine dishwashing detergents which do not contain anionic surfactants are particularly preferred.
  • the content of cationic and / or amphoteric surfactants is preferably less than 6% by weight, preferably less than 4% by weight, very particularly preferably less than 2% by weight and in particular less than 1% by weight. %. Automatic dishwashing detergents containing no cationic or amphoteric surfactants are particularly preferred.
  • the group of polymers includes, in particular, the washing or cleaning-active polymers, for example the rinse aid polymers and / or polymers which act as softeners.
  • the washing or cleaning-active polymers for example the rinse aid polymers and / or polymers which act as softeners.
  • cationic, anionic and amphoteric polymers can be used in detergents or cleaners in addition to nonionic polymers.
  • Effective polymers as softeners are, for example, the sulfonic acid-containing polymers which are used with particular preference.
  • Suldonklare phenomenon-containing polymers are copolymers of unsaturated carboxylic acids, sulfonic acid-containing monomers and optionally other ionic or nonionic monomers.
  • R 1 (R 2 ) C C (R 3 ) COOH (VI)
  • R 1 to R 3 independently of one another are -H-CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, with -NH 2 , -OH or - COOH substituted alkyl or alkenyl radicals as defined above or is -COOH or - COOR 4 , wherein R 4 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 1 to 12 carbon atoms.
  • R 5 (R 6 ) C C (R 7 ) -X-SO 3 H (VII)
  • H 2 C CH-X-SO 3 H (VIIa)
  • H 2 C C (CH 3 ) -X-SO 3 H (VIIb)
  • HO 3 SX- (R 6 ) C C (R 7 ) -X-SO 3 H (VIIc)
  • R 6 and R 7 are independently selected from -H, -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH (CH 3 ) 2
  • Suitable further ionic or nonionic monomers are, in particular, ethylenically unsaturated compounds.
  • the content of the polymers used in monomers of group iii) is preferably less than 20% by weight, based on the polymer.
  • Particularly preferred polymers to be used consist only of monomers of groups i) and ii).
  • the copolymers may contain the monomers from groups i) and ii) and, if appropriate, iii) in varying amounts, it being possible for all representatives from group i) to be combined with all representatives from group ii) and all representatives from group iii).
  • Particularly preferred polymers have certain structural units, which are described below.
  • These polymers are prepared by copolymerization of acrylic acid with a sulfonic acid-containing acrylic acid derivative.
  • acrylic acid derivative containing sulfonic acid groups is copolymerized with methacrylic acid, another polymer is obtained whose use is likewise preferred.
  • Acrylic acid and / or methacrylic acid can also be copolymerized completely analogously with methacrylic acid derivatives containing sulfonic acid groups, as a result of which the structural units in the molecule are changed.
  • copolymers which are structural units of the formula X are structural units of the formula X.
  • the sulfonic acid groups may be wholly or partially in neutralized form, i. in that the acidic hydrogen atom of the sulfonic acid group in some or all sulfonic acid groups can be exchanged for metal ions, preferably alkali metal ions and in particular for sodium ions.
  • metal ions preferably alkali metal ions and in particular for sodium ions.
  • partially or fully neutralized sulfonic acid-containing copolymers is preferred according to the invention.
  • the monomer distribution of the copolymers preferably used according to the invention in the case of copolymers which contain only monomers from groups i) and ii) is preferably in each case from 5 to 95% by weight i) or ii), particularly preferably from 50 to 90% by weight monomer from group i) and from 10 to 50% by weight of monomer from group ii), in each case based on the polymer.
  • terpolymers particular preference is given to those containing from 20 to 85% by weight of monomer from group i), from 10 to 60% by weight of monomer from group ii) and from 5 to 30% by weight of monomer from group iii) ,
  • the molar mass of the sulfo copolymers preferably used according to the invention can be varied in order to adapt the properties of the polymers to the desired end use.
  • Preferred detergent or cleaning compositions are characterized in that the copolymers have molecular weights of from 2000 to 200,000 gmol -1 , preferably from 4000 to 25,000 gmol -1 and in particular from 5000 to 15,000 gmol -1 .
  • Bleach activators are used, for example, in detergents or cleaners to achieve improved bleaching performance when cleaned at temperatures of 60 ° C and below.
  • As bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate and 2,5-diacetoxy- 2,5-dihydrofuran.
  • TAED tetraacet
  • Further bleach activators preferably used in the context of the present application are compounds from the group of cationic nitriles, in particular cationic nitriles of the formula in the R 1 is -H, -CH 3 , a C 2-24 alkyl or alkenyl radical, a substituted C 2-24 alkyl or alkenyl radical having at least one substituent from the group -Cl, -Br, - OH, -NH 2 , -CN, an alkyl or alkenylaryl radical having a C 1-24 -alkyl group, or represents a substituted alkyl or alkenylaryl radical having a C 1-24 -alkyl group and at least one further substituent on the aromatic ring, R 2 and R 3 are independently selected from -CH 2 -CN, -CH 3 , -CH 2 -CH 3 , -CH 2 -CH 2 -CH 3 , -CH (CH 3 ) -CH 3 , -CH 2 -
  • bleach activators it is also possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate, 2,5-diacetoxy-2,5-dihydrofuran, n-methyl-morpholin
  • bleach catalysts can also be used. These substances are bleach-enhancing transition metal salts or transition metal complexes such as Mn, Fe, Co, Ru or Mo saline complexes or carbonyl complexes. Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands and Co, Fe, Cu and Ru ammine complexes can also be used as bleach catalysts.
  • bleach activators preference is given to bleach activators from the group of the polyacylated alkylenediamines, in particular tetraacetylethylenediamine (TAED), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (US Pat.
  • TAED tetraacetylethylenediamine
  • N-acylimides in particular N-nonanoylsuccinimide (NOSI)
  • acylated phenolsulfonates in particular n-nonanoyl or isononanoyloxybenzenesulfonate
  • N- or iso-NOBS N- or iso-NOBS
  • n-methyl-morpholinium acetonitrile-methyl sulfate (MMA) preferably in amounts of up to 10 wt .-%, in particular 0.1 wt .-% to 8 wt .-%, especially 2 to 8 wt .-% and particularly preferably 2 to 6 wt .-%, each based on the total weight of the bleach activator-containing agents used.
  • Bleach-enhancing transition metal complexes in particular having the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, preferably selected from the group of manganese and / or cobalt salts and / or complexes, particularly preferably the cobalt (ammine) Complexes of the cobalt (acetate) complexes, the cobalt (carbonyl) complexes, the chlorides of cobalt or manganese, manganese sulfate are used in conventional amounts, preferably in an amount up to 5 wt .-%, in particular of 0.0025 wt % to 1 wt .-% and particularly preferably from 0.01 wt .-% to 0.25 wt .-%, each based on the total weight of the bleach activator-containing agents used. But in special cases, more bleach activator can be used.
  • Glass corrosion inhibitors prevent the occurrence of haze, streaks and scratches, but also iridescence of the glass surface of machine-cleaned glasses.
  • Preferred glass corrosion inhibitors come from the group of magnesium and / or zinc salts and / or magnesium and / or zinc complexes.
  • a preferred class of compounds that can be used to prevent glass corrosion are insoluble zinc salts.
  • Insoluble zinc salts in the context of this preferred embodiment are zinc salts which have a solubility of a maximum of 10 grams of zinc salt per liter of water at 20 ° C.
  • Examples of particularly preferred insoluble zinc salts according to the invention are zinc silicate, zinc carbonate, zinc oxide, basic zinc carbonate (Zn 2 (OH) 2 CO 3 ), zinc hydroxide, zinc oxalate, zinc monophosphate (Zn 3 (PO 4 ) 2 ), and zinc pyrophosphate (Zn 2 (P 2 O 7 )).
  • the zinc compounds mentioned are preferably used in amounts which have a content of the zinc ions of between 0.02 and 10% by weight, preferably between 0.1 and 5.0% by weight and in particular between 0.2 and 1.0 % By weight, based in each case on the entire glass corrosion inhibitor-containing agent.
  • the exact content of the agent on the zinc salt or zinc salts is naturally dependent on the type of zinc salts - the less soluble the zinc salt used, the higher its concentration should be in the funds.
  • the particle size of the salts is a criterion to be observed, so that the salts do not adhere to glassware or machine parts.
  • the insoluble zinc salts have a particle size below 1.7 millimeters.
  • the insoluble zinc salt has an average particle size which is significantly below this value in order to further minimize the risk of insoluble residues, for example an average particle size of less than 250 ⁇ m. Again, this is even more true the less the zinc salt is soluble.
  • the glass corrosion inhibiting effectiveness increases with decreasing particle size.
  • the average particle size is preferably below 100 microns. For still less soluble salts, it may be even lower; For example, average particle sizes below 100 ⁇ m are preferred for the very poorly soluble zinc oxide.
  • Another preferred class of compounds are magnesium and / or zinc salt (s) of at least one monomeric and / or polymeric organic acid. The effect of this is that even with repeated use, the surfaces of glassware do not change corrosively, in particular, no turbidity, streaks or scratches, but also iridescence of the glass surfaces are not caused.
  • magnesium and / or zinc salt (s) of monomeric and / or polymeric organic acids can be used, as described above, the magnesium and / or zinc salts of monomeric and / or polymeric organic acids from the groups of unbranched saturated or unsaturated monocarboxylic acids, the branched saturated or unsaturated monocarboxylic acids, the saturated and unsaturated dicarboxylic acids, the aromatic mono-, di- and tricarboxylic acids, the sugar acids, the hydroxy acids, the oxo acids, the amino acids and / or the polymeric carboxylic acids are preferred.
  • the spectrum of the inventively preferred zinc salts of organic acids ranges from salts which are difficult or insoluble in water, ie a solubility below 100 mg / L, preferably below 10 mg / L, in particular have no solubility, to those salts which have a solubility in water above 100 mg / L, preferably above 500 mg / L, more preferably above 1 g / L and in particular above 5 g / L (all solubilities at 20 ° C water temperature).
  • the first group of zinc salts includes, for example, zinc citrate, zinc oleate and zinc stearate
  • the group of soluble zinc salts includes, for example, zinc formate, zinc acetate, zinc lactate and zinc gluconate.
  • the glass corrosion inhibitor used is at least one zinc salt of an organic carboxylic acid, more preferably a zinc salt from the group zinc stearate, zinc oleate, zinc gluconate, zinc acetate, zinc lactate and / or zinc citrate.
  • Zinc ricinoleate, zinc abietate and zinc oxalate are also preferred.
  • the content of cleaning agents to zinc salt is preferably between 0.1 to 5 wt .-%, preferably between 0.2 to 4 wt .-% and in particular between 0.4 to 3 wt .-%, or the content of zinc in oxidized form (calculated as Zn 2+ ) is between 0.01 and 1% by weight, preferably between 0.02 and 0.5% by weight and in particular between 0.04 and 0.2% by weight. -%, in each case based on the total weight of the glass corrosion inhibitor-containing agent.
  • Corrosion inhibitors serve to protect the items to be washed or the machine, with particular silver protectants being of particular importance in the field of automatic dishwashing. It is possible to use the known substances of the prior art. In general, silver protectants selected from the group of the triazoles, the benzotriazoles, the bisbenzotriazoles, the aminotriazoles, the alkylaminotriazoles and the transition metal salts or complexes can be used in particular. Particularly preferred to use are benzotriazole and / or alkylaminotriazole.
  • Examples of the 3-amino-5-alkyl-1,2,4-triazoles preferably used according to the invention may be: 5-propyl, -butyl, -pentyl, -heptyl, -octyl, -nonyl , Decyl, undecyl, dodecyl, isononyl, versatic-10-alkyl, phenyl, p-tolyl, - (4-tert-butylphenyl) -, - (4- Methoxyphenyl) -, - (2-, -3-, 4-pyridyl) -, - (2-thienyl) -, - (5-methyl-2-furyl) -, - (5-oxo-2-pyrrolidinyl) , -3-amino-1,2,4-triazole.
  • Preferred acids for salt formation are hydrochloric acid, sulfuric acid, phosphoric acid, carbonic acid, sulphurous acid, organic carboxylic acids such as acetic, glycolic, citric, succinic acid.
  • cleaner formulations often contain active chlorine-containing agents which can markedly reduce the corrosion of the silver surface.
  • active chlorine-containing agents are particularly oxygen and nitrogen-containing organic redox-active compounds, such as di- and trihydric phenols, eg. As hydroquinone, pyrocatechol, hydroxyhydroquinone, gallic acid, phloroglucinol, pyrogallol or derivatives of these classes of compounds.
  • salt and complex inorganic compounds such as salts of the metals Mn, Ti, Zr, Hf, V, Co and Ce are often used.
  • transition metal salts which are selected from the group of manganese and / or cobalt salts and / or complexes, more preferably the cobalt (amine) complexes, the cobalt (acetate) complexes, the cobalt (carbonyl) complexes , the chlorides of cobalt or manganese and manganese sulfate.
  • zinc compounds can be used to prevent corrosion on the items to be washed.
  • redox-active substances can be used. These substances are preferably inorganic redox-active substances from the group of manganese, titanium, zirconium, hafnium, vanadium, cobalt and cerium salts and / or complexes, wherein the metals preferably in one of the oxidation states II, III , IV, V or VI.
  • the metal salts or metal complexes used should be at least partially soluble in water.
  • the counterions suitable for salt formation comprise all customary mono-, di- or tri-positively negatively charged inorganic anions, eg. As oxide, sulfate, nitrate, fluoride, but also organic anions such. Stearate.
  • Metal complexes in the context of the invention are compounds which consist of a central atom and one or more ligands and optionally additionally one or more of the abovementioned anions.
  • the central atom is one of the above-mentioned metals in one of the abovementioned oxidation states.
  • the ligands are neutral molecules or anions that are mono- or polydentate;
  • the term "ligands" within the meaning of the invention is, for example, in " Römpp Chemie Lexikon, Georg Thieme Verlag Stuttgart / New York, 9th edition, 1990, page 2507 If, in a metal complex, the charge of the central atom and the charge of the ligand (s) are not zero, either one or more of the abovementioned anions or one or more, depending on whether there is a cationic or an anionic charge surplus Cations, for example sodium, potassium and ammonium ions, for charge balance Suitable complexing agents are, for example, citrate, acetylacetonate or 1-hydroxyethane-1,1-diphosphonate.
  • metal salts and / or metal complexes are selected from the group MnSO 4 , Mn (II) citrate, Mn (II) stearate, Mn (II) acetylacetonate, Mn (II) - [1-hydroxyethane-1,1- diphosphonate], V 2 O 5 , V 2 O 4 , VO 2 , TiOSO 4 , K 2 TiF 6 , K 2 ZrF 6 , CoSO 4 , Co (NO 3 ) 2 , Ce (NO 3 ) 3 and mixtures thereof.
  • metal salts and / or metal complexes are selected from the group MnSO 4 , Mn (II) citrate, Mn (II) stearate, Mn (II) acetylacetonate, Mn (II) - [1-hydroxyethane-1,1-diphosphonate], V 2 O 5 , V 2 O 4 , VO 2 , TiOSO 4 , K 2 TiF 6 , K 2 ZrF 6 , CoSO 4 , Co (NO 3 ) 2 , Ce (NO 3 ) 3 .
  • metal salts or metal complexes are generally commercially available substances that can be used for the purpose of silver corrosion protection without prior purification in the compositions of the invention.
  • the mixture of pentavalent and tetravalent vanadium (V 2 O 5 , VO 2 , V 2 O 4 ) known from the SO 3 preparation (contact method) is suitable, as is the case by diluting a Ti (SO 4 ) 2 - Solution resulting titanyl sulfate, TiOSO 4 .
  • the inorganic redox-active substances are preferably coated, i. completely coated with a waterproof, but easily soluble in the cleaning temperatures material to prevent their premature decomposition or oxidation during storage.
  • Preferred coating materials which are applied by known methods, such as Sandwik from the food industry, are paraffins, microwaxes, waxes of natural origin such as carnauba wax, candellila wax, beeswax, higher melting alcohols such as hexadecanol, soaps or fatty acids.
  • the coating material which is solid at room temperature, is applied in the molten state to the material to be coated, e.g.
  • the melting point must be chosen so that the coating material easily dissolves or melts during the silver treatment.
  • the melting point should ideally be in the range between 45 ° C and 65 ° C and preferably in the range 50 ° C to 60 ° C.
  • the metal salts and / or metal complexes mentioned are contained in cleaning agents, preferably in an amount of 0.05 to 6 wt .-%, preferably 0.2 to 2.5 wt .-%, each based on the total corrosion inhibitor-containing agent.
  • enzymes can be used. These include in particular proteases, amylases, lipases, hemicellulases, cellulases or oxidoreductases, and preferably mixtures thereof. These enzymes are basically of natural origin; Starting from the natural molecules, improved variants are available for use in detergents and cleaners, which are preferably used accordingly. Agents according to the invention preferably contain enzymes in total amounts of 1 ⁇ 10 -6 to 5 percent by weight, based on active protein. The protein concentration can be determined by known methods, for example the BCA method or the biuret method.
  • subtilisin type examples thereof are the subtilisins BPN 'and Carlsberg, the protease PB92, the subtilisins 147 and 309, the alkaline protease from Bacillus lentus, subtilisin DY and the enzymes thermitase, proteinase K and the subtilases, but not the subtilisins in the narrower sense Proteases TW3 and TW7.
  • subtilisin Carlsberg is available in a further developed form under the trade name Alcalase® from Novozymes A / S, Bagsvaerd, Denmark.
  • subtilisins 147 and 309 are sold under the trade names Esperase®, and Savinase® by the company Novozymes. From the protease from Bacillus lentus DSM 5483 derived under the name BLAP® variants are derived.
  • proteases are, for example, those under the trade names Durazym®, Relase®, Everlase®, Nafizym, Natalase®, Kannase® and Ovozymes® from Novozymes, sold under the trade names, Purafect®, Purafect®OxP and Properase® by the company Genencor, sold under the trade name Protosol® by the company Advanced Biochemicals Ltd., Thane, India, under the trade name Wuxi® by Wuxi Snyder Bioproducts Ltd., China, under the trade names Proleather® and Protease P® by the company Amano Pharmaceuticals Ltd., Nagoya, Japan, and the enzyme available under the name Proteinase K-16 from Kao Corp., Tokyo, Japan.
  • amylases which can be used according to the invention are the ⁇ -amylases from Bacillus licheniformis, from B. amyloliquefaciens or from B. stearothermophilus and their improved for use in detergents and cleaners further developments.
  • the B. licheniformis enzyme is available from Novozymes under the name Termamyl® and from Genencor under the name Purastar®ST. Further development products of this ⁇ -amylase are available from Novozymes under the trade name Duramyl® and Termamyl®ultra, from Genencor under the name Purastar®OxAm and from Daiwa Seiko Inc., Tokyo, Japan Keistase® available.
  • amyloliquefaciens ⁇ -amylase is sold by Novozymes under the name BAN®, and variants derived from the B. stearothermophilus ⁇ -amylase under the names BSG® and Novamyl®, also from Novozymes.
  • ⁇ -amylase from Bacillus sp. A7-7 (DSM 12368) and the cyclodextrin glucanotransferase (CGTase) from B. agaradherens (DSM 9948).
  • lipases or cutinases are also usable according to the invention, in particular because of their triglyceride-splitting activities, but also in order to generate in situ peracids from suitable precursors.
  • lipases originally obtainable from Humicola lanuginosa ( Thermomyces lanuginosus ) or further developed, in particular those with the amino acid exchange D96L. They are sold for example by the company Novozymes under the trade names Lipolase®, Lipolase®Ultra, LipoPrime®, Lipozyme® and Lipex®.
  • the cutinases can be used, which were originally isolated from Fusarium solani pisi and Humicola insolens .
  • Lipases which are likewise useful are sold by Amano under the names Lipase CE®, Lipase P®, Lipase B® or Lipase CES®, Lipase AKG®, Bacillis sp. Lipase®, Lipase AP®, Lipase M-AP® and Lipase AML®. From the company Genencor, for example, the lipases, or cutinases can be used, the initial enzymes were originally isolated from Pseudomonas mendocina and Fusarium solanii . Further important commercial products are the preparations M1 Lipase.RTM.
  • Lipomax.RTM which were originally sold by Gist-Brocades, and the enzymes marketed by Meito Sangyo KK, Japan, under the name Lipase MY-30®, Lipase OF® and Lipase PL® to mention also the product Lumafast® from the company Genencor.
  • mannanases include, for example, under the names Gamanase® and PektinexAR® from Novozymes, under the name Rohapec®B1L from AB Enzymes and under the name Pyrolase® from Diversa Corp., San Diego, CA, USA.
  • the ⁇ -glucanase obtained from B. subtilis is available under the name Cereflo® from Novozymes.
  • Oxidoreductases for example oxidases, oxygenases, catalases, peroxidases, such as halo, chloro, bromo, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases) can be used according to the invention to increase the bleaching effect.
  • Suitable commercial products are Denilite® 1 and 2 from Novozymes.
  • the enzymes originate, for example, either originally from microorganisms, such as the genera Bacillus, Streptomyces, Humicola, or Pseudomonas, and / or are produced by biotechnological methods known per se by suitable microorganisms, such as transgenic expression hosts of the genera Bacillus or filamentous fungi.
  • the purification of the relevant enzymes is preferably carried out by conventional methods, for example by precipitation, sedimentation, concentration, filtration of the liquid phases, microfiltration, ultrafiltration, exposure to chemicals, deodorization or suitable combinations of these steps.
  • the enzymes can be used in any form known in the art. These include, for example, the solid preparations obtained by granulation, extrusion or lyophilization or, especially in the case of liquid or gel-form detergents, solutions of the enzymes, advantageously as concentrated as possible, sparing in water and / or added with stabilizers.
  • the enzymes may be encapsulated for both the solid and liquid dosage forms, for example by spray-drying or extruding the enzyme solution together with a preferably natural polymer or in the form of capsules, for example those in which the enzymes are entrapped as in a solidified gel or in those of the core-shell type, in which an enzyme-containing core is coated with a water, air and / or chemical impermeable protective layer.
  • further active ingredients for example stabilizers, emulsifiers, pigments, bleaches or dyes, may additionally be applied.
  • Such capsules are applied by methods known per se, for example by shaking or rolling granulation or in fluid-bed processes.
  • such granules for example by applying polymeric film-forming agent, low in dust and storage stable due to the coating.
  • a protein and / or enzyme may be particularly protected during storage against damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • inhibition of proteolysis is particularly preferred, especially if the agents also contain proteases.
  • Compositions according to the invention may contain stabilizers for this purpose; the provision of such means constitutes a preferred embodiment of the present invention.
  • One group of stabilizers are reversible protease inhibitors. Frequently, benzamidine hydrochloride, borax, boric acids, boronic acids or their salts or esters are used, including in particular derivatives with aromatic groups, such as ortho-substituted, meta-substituted and para-substituted phenylboronic acids, or their salts or esters.
  • peptidic protease inhibitors are, inter alia, ovomucoid and leupeptin to mention; An additional option is the formation of fusion proteins from proteases and peptide inhibitors.
  • enzyme stabilizers are amino alcohols such as mono-, di-, triethanol- and -propanolamine and mixtures thereof, aliphatic carboxylic acids up to C 12 , such as succinic acid, other dicarboxylic acids or salts of said acids. End-capped fatty acid amide alkoxylates are also suitable. Certain organic acids used as builders are additionally capable of stabilizing a contained enzyme.
  • Lower aliphatic alcohols but especially polyols such as glycerol, ethylene glycol, propylene glycol or sorbitol are other frequently used enzyme stabilizers.
  • polyols such as glycerol, ethylene glycol, propylene glycol or sorbitol are other frequently used enzyme stabilizers.
  • calcium salts such as calcium acetate or calcium formate, and magnesium salts.
  • Polyamide oligomers or polymeric compounds such as lignin, water-soluble vinyl copolymers or cellulose ethers, acrylic polymers and / or polyamides stabilize the enzyme preparation, inter alia, against physical influences or pH fluctuations.
  • Polyamine N-oxide containing polymers act as enzyme stabilizers.
  • Other polymeric stabilizers are the linear C 8 -C 18 polyoxyalkylenes.
  • Alkylpolyglycosides can stabilize the enzymatic components of the agent according to the invention and even increase their performance.
  • Crosslinked N-containing compounds also act as enzyme stabilizers.
  • a sulfur-containing reducing agent is, for example, sodium sulfite.
  • combinatons of stabilizers are used, for example of polyols, boric acid and / or borax, the combination of boric acid or borate, reducing salts and succinic acid or other dicarboxylic acids or the combination of boric acid or borate with polyols or polyamino compounds and with reducing salts.
  • the effect of peptide-aldehyde stabilizers is enhanced by the combination with boric acid and / or boric acid derivatives and polyols and further enhanced by the additional use of divalent cations, such as calcium ions.
  • disintegration aids so-called tablet disintegrants
  • disintegrants and disintegrants are according to Römpp (9th edition, Bd. 6, p 4440) and Voigt "textbook of pharmaceutical technology” (6th edition, 1987, pp. 182-184 ) Excipients, which ensure the rapid disintegration of tablets in water or gastric juice and for the release of the pharmaceuticals in resorbable form.
  • Disintegration aids are preferably used in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight and in particular from 4 to 6% by weight, based in each case on the total weight of the disintegration assistant-containing agent.
  • Preferred disintegrating agents used in the present invention are cellulose-based disintegrating agents, so that preferred washing and cleaning compositions comprise such a cellulose-based disintegrating agent in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight and in particular 4 contain up to 6 wt .-%.
  • Pure cellulose has the formal gross composition (C 6 H 10 O 5 ) n and is formally a ⁇ -1,4-polyacetal of cellobiose, which in turn is composed of two molecules of glucose.
  • Suitable celluloses consist of about 500 to 5000 glucose units and therefore have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrating agents which can be used in the context of the present invention are also cellulose derivatives obtainable by polymer-analogous reactions of cellulose.
  • Such chemically modified celluloses include, for example, products of esterifications or etherifications in which hydroxy hydrogen atoms have been substituted.
  • Celluloses in which the hydroxy groups have been replaced by functional groups which are not bound by an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali metal celluloses, carboxymethylcellulose (CMC), cellulose esters and ethers, and aminocelluloses.
  • the cellulose derivatives mentioned are preferably not used alone as disintegrating agents based on cellulose, but used in admixture with cellulose.
  • the content of these mixtures of cellulose derivatives is preferably below 50% by weight, particularly preferably below 20% by weight, based on the cellulose-based disintegrating agent. It is particularly preferred to use cellulose-based disintegrating agent which is free of cellulose
  • the cellulose used as a disintegration aid is preferably not used in finely divided form, but converted into a coarser form, for example granulated or compacted, before it is added to the premixes to be tabletted.
  • the particle sizes of such disintegrating agents are usually above 200 .mu.m, preferably at least 90 wt .-% between 300 and 1600 .mu.m and in particular at least 90 wt .-% between 400 and 1200 microns.
  • microcrystalline cellulose As a further disintegrating agent based on cellulose or as a component of this component microcrystalline cellulose can be used.
  • This microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions which attack and completely dissolve only the amorphous regions (about 30% of the total cellulose mass) of the celluloses, leaving the crystalline regions (about 70%) intact. Subsequent deaggregation of the microfine celluloses resulting from the hydrolysis provides the microcrystalline Celluloses which have primary particle sizes of about 5 microns and are compacted, for example, to granules with an average particle size of 200 microns.
  • Disintegration auxiliaries preferred in the context of the present invention preferably a cellulose-based disintegration assistant, preferably in granular, cogranulated or compacted form, are present in the disintegrating agent-containing agents in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight. and in particular from 4 to 6 wt .-%, each based on the total weight of the disintegrating agent-containing agent.
  • gas-evolving effervescent systems can furthermore be used as tablet disintegration auxiliaries.
  • the gas-evolving effervescent system may consist of a single substance that releases a gas upon contact with water.
  • the gas-releasing effervescent system in turn consists of at least two constituents which react with one another to form gas.
  • the effervescent system used in the detergent and cleaner compositions according to the invention can be selected both on the basis of economic and ecological considerations.
  • Preferred effervescent systems consist of alkali metal carbonate and / or bicarbonate and an acidifying agent which is suitable for liberating carbon dioxide from the alkali metal salts in aqueous solution.
  • the sodium and potassium salts are clearly preferred over the other salts for reasons of cost.
  • the relevant pure alkali metal carbonates or bicarbonates do not have to be used; Rather, mixtures of different carbonates and bicarbonates may be preferred.
  • Acidifying agents which release carbon dioxide from the alkali metal salts in aqueous solution include, for example, boric acid and alkali metal hydrogen sulfates, alkali metal dihydrogen phosphates and other inorganic salts.
  • organic acidifying agents preference is given to using organic acidifying agents, the citric acid being a particularly preferred acidifying agent.
  • Organic sulfonic acids such as sulfamic acid are also usable.
  • Sokalan® DCS commercially available and likewise preferably usable as acidifying agent in the context of the present invention is Sokalan® DCS (trademark of BASF), a mixture of succinic acid (maximum 31% by weight), glutaric acid (maximum 50% by weight) and adipic acid ( at most 33% by weight).
  • Acidifying agents in the effervescent system from the group of organic di-, tri- and oligocarboxylic acids or mixtures are preferred within the scope of the present invention.
  • fragrance compounds e.g. the synthetic products of the type of esters, ethers, aldehydes, ketones, alcohols and hydrocarbons are used. Fragrance compounds of the ester type are known e.g.
  • the ethers include, for example, benzyl ethyl ether, to the aldehydes e.g.
  • the linear alkanals having 8-18 C atoms citral, citronellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones e.g. the ionones, ⁇ -isomethylionone and methylcedryl ketone, among the alcohols anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes such as limonene and pinene.
  • fragrance oils may also contain natural fragrance mixtures such as are available from vegetable sources, e.g. Pine, citrus, jasmine, patchouly, rose or ylang-ylang oil. Also suitable are muscatel, sage, chamomile, clove, lemon balm, mint, cinnamon, lime, juniper, vetiver, olibanum, galbanum and labdanum, and orange blossom, neroliol, orange peel and sandalwood.
  • the fragrances can be processed directly, but it can also be advantageous to apply the fragrances on carriers that provide a slower fragrance release for long-lasting fragrance.
  • carrier materials for example, cyclodextrins have been proven, the cyclodextrin-perfume complexes can be additionally coated with other excipients.
  • Preferred dyestuffs the choice of which presents no difficulty to a person skilled in the art, have a high storage stability and insensitivity to the other ingredients of the compositions and to light, as well as no pronounced substantivity to those with the dye-containing Agents to be treated substrates such as glass, ceramic or plastic dishes, so as not to stain them.
  • the automatic dishwashing compositions according to the invention can be made available to the consumer in different ready-made forms.
  • the automatic dishwashing agent according to the invention is preferably in the form of prefabricated dosage units.
  • Such dosing units can in principle be made up for single or multiple use, but in the context of the present application prefabricated dosing units for single use are preferred.
  • the aforementioned dosing units can be inserted, for example, in the cutlery box or the dosing compartment of the dishwasher. In the context of this application, preference is given to those metering units which can be inserted into the dispensing compartment of the dishwasher. While the metering units can in principle have any spatial shape that can be produced by a person skilled in the art, the preferred metering units provided for the metering box are characterized by certain geometries adapted to the spatial conditions of the commercially available metering units.
  • dosage units according to the invention which have a volume of between 1 and 35 ml, preferably between 2 and 30 ml, preferably between 4 and 25 ml, more preferably between 8 and 22 ml and in particular between 10 and 20 ml.
  • the weight of preferred metering units per metering unit is between 0.5 and 30 g, preferably between 1 and 25 g, preferably between 2 and 24 g, more preferably between 4 and 23 g and in particular between 8 and 22.
  • a preferred machine dishwashing detergent according to the invention is characterized in that the automatic dishwashing detergent is in the form of a prefabricated dosage unit which contains between 0.001 and 1 g, preferably between 0.01 and 0.1 g, particularly preferably between 0.01 and 0.07 g in particular between 0.01 and 0.05 g of the polymer a).
  • Another preferred machine dishwashing detergent is characterized in that the automatic dishwashing detergent is in the form of a prefabricated metering unit which contains between 0.2 and 4 g, preferably between 0.3 and 3 g, more preferably between 0.4 and Contains 3.0 g and in particular between 0.5 and 3.0 g of the phosphorus-containing complexing agent b).
  • the automatic dishwashing compositions according to the invention also contain nonionic surfactants
  • the prefabricated dosing units in particular the tablet, the extrudate, the casting, the thermoforming body or the injection-molded body or combinations of these dosing units are preferred.
  • Automatic dishwashing detergent in a prefabricated dosing unit characterized in that the prefabricated dosing unit is a tablet, an extrudate, a filled water-soluble container, preferably a filled injection-molded body, a filled casting body or a filled foil pouch, are particularly suitable within the scope of the present application prefers.
  • a first preferred prefabricated dosage unit is the tablet.
  • particulate premixes are compacted in a so-called matrix between two punches to form a solid compressed product. This process, hereinafter referred to as tabletting, is divided into four sections: dosing, compaction, plastic deformation and ejection.
  • the premix is introduced into the die, wherein the filling amount and thus the weight and the shape of the resulting shaped body are determined by the position of the lower punch and the shape of the pressing tool.
  • the constant dosage even at high molding throughputs is preferably achieved via a volumetric metering of the premix.
  • the upper punch contacts the pre-mix and continues to descend toward the lower punch.
  • the particles of the premix are pressed closer to each other, with the void volume within the filling between the punches decreasing continuously. From a certain position of the upper punch (and thus from a certain pressure on the premix) begins the plastic deformation, in which the particles flow together and it comes to the formation of the molding.
  • the finished molded body is pushed out of the die by the lower punch and carried away by subsequent transport means. At this time, only the weight of the shaped body is finally determined because the compacts due to physical processes (re-expansion, crystallographic effects, cooling, etc.) can change their shape and size.
  • the tabletting is carried out in commercial tablet presses, which can be equipped in principle with single or double punches. In the latter case, not only the upper punch is used to build up pressure, and the lower punch moves during the pressing on the upper punch, while the upper punch presses down.
  • eccentric tablet presses are preferably used in which the die or punches are attached to an eccentric disc, which in turn is mounted on an axis at a certain rotational speed. The movement of these punches is comparable to the operation of a conventional four-stroke engine.
  • the compression can be done with a respective upper and lower punch, but it can also be attached more stamp on an eccentric disc, the number of Matrizenbohritch is extended accordingly.
  • the throughputs of eccentric presses vary depending on the type of a few hundred to a maximum of 3000 tablets per hour.
  • the lower punch is usually not moved during the pressing process. A consequence of this is that the resulting tablet has a hardness gradient, i. harder in the areas closer to the upper punch than in the areas closer to the lower punch.
  • rotary tablet presses are selected in which a larger number of dies are arranged in a circle on a so-called die table.
  • the number of matrices varies between 6 and 55 depending on the model, although larger matrices are commercially available.
  • Each die on the die table is assigned an upper and lower punch, in turn, the pressing pressure can be actively built only by the upper or lower punch, but also by both stamp.
  • the die table and the punches move about a common vertical axis, the punches are brought by means of rail-like cam tracks during the circulation in the positions for filling, compression, plastic deformation and ejection.
  • these curved paths are supported by additional low-pressure pieces, Nierderzugschienen and lifting tracks.
  • the pressing pressure on the premix is individually adjustable via the compression paths for upper and lower punches, wherein the pressure build-up is done by the Vorbeirollen the stamp shank heads on adjustable pressure rollers.
  • Concentric presses can be provided with two Drik to increase the throughput, with the production of a tablet only a semicircle must be traversed.
  • several filling shoes are arranged one after the other without the slightly pressed-on first layer being ejected before further filling.
  • suitable process control coat and point tablets can be produced in this way, which have a zwiebelschalenartigen structure, wherein in the case of the point tablets, the top of the core or the core layers is not covered and thus remains visible.
  • Even rotary tablet presses can be equipped with single or multiple tools, so that, for example, an outer circle with 50 and an inner circle with 35 holes are used simultaneously for pressing.
  • the throughputs of modern rotary tablet presses amount to over one million moldings per hour.
  • the tablets can also in the context of the present invention, multi-phase, in particular multi-layered, ausgestalten.
  • the moldings can be made in a predetermined spatial form and predetermined size.
  • the training as a blackboard the bar or bar shape, cubes, cuboids and corresponding space elements with flat side surfaces and in particular cylindrical configurations with circular or oval cross-section.
  • This last embodiment covers the presentation form of the tablet up to compact cylinder pieces with a ratio of height to diameter above 1.
  • the spatial form of another embodiment of the moldings is adapted in their dimensions of the dispenser of commercial household washing machines or the dosing of commercial dishwashers, so that the moldings can be metered without dosing directly into the dispenser, where they dissolve during the dispensing process, or from where they are released during the cleaning process.
  • the washing and cleaning agent tablets via dosing aids without problems.
  • the detergent tablets After pressing, the detergent tablets have a high stability.
  • is the diametrical fracture stress (DFS) in Pa
  • P is the force in N which results in the pressure applied to the molded article causing the breakage of the molded article
  • D is the molded article diameter in meters and t the height of the moldings.
  • a further preferred embodiment of the present application relates to automatic dishwashing compositions according to the invention, which are in the form of a prefabricated dosage unit, characterized in that the prefabricated dosage unit is a shaped body, preferably a multi-phase shaped body, preferably a multi-phase tablet and in particular a multi-phase Tablet with a trough, preferably with a filled trough, acts.
  • thermoforming body refers to such containers which are obtained by deep drawing of a first film-like wrapping material.
  • the deep drawing is preferably carried out by bringing the wrapping material over a receiving trough located in a die forming the deep-drawing tray and shaping the wrapping material into this receiving trough by the action of pressure and / or vacuum.
  • the shell material may be pre-treated before or during the molding by the action of heat and / or solvent and / or conditioning by relative to ambient conditions changed relative humidity and / or temperatures.
  • the pressure action can be carried out by two parts of a tool, which behave as positive and negative to each other and deform a spent between these tools film when squeezed.
  • the action of compressed air and / or the weight of the film and / or the weight of an active substance applied to the upper side of the film is also suitable as pressure forces.
  • the deep-drawn shell materials are preferably fixed after deep drawing by using a vacuum within the receiving wells and in their achieved by the deep-drawing process space shape.
  • the vacuum is preferably applied continuously from deep drawing to filling until sealing and in particular until the separation of the receiving chambers.
  • a discontinuous vacuum for example, for deep drawing of the receiving chambers and (after an interruption) before and during the filling of the receiving chambers, possible.
  • the continuous or discontinuous vacuum can vary in its thickness and, for example, take higher values at the beginning of the process (during deep drawing of the film) than at its end (during filling or sealing or singulation).
  • the shell material can be pre-treated by the action of heat before or during the molding into the receiving troughs of the matrices.
  • the shell material preferably a water-soluble or water-dispersible polymer film, is heated to temperatures above 60 ° C. for up to 5 seconds, preferably for 0.1 to 4 seconds, particularly preferably for 0.2 to 3 seconds and in particular for 0.4 to 2 seconds. preferably above 80 ° C, more preferably between 100 and 120 ° C and in particular heated to temperatures between 105 and 115 ° C.
  • the dies used and the receiving cavities located in these dies are preferably carried out at temperatures below 20 ° C, preferably below 15 ° C, more preferably at temperatures between 2 and 14 ° C and in particular at temperatures between 4 and 12 ° C.
  • the cooling takes place continuously from the beginning of the deep-drawing process to the sealing and separation of the receiving chambers. Cooling fluids, preferably water, which are circulated in special cooling lines within the matrix, are particularly suitable for cooling.
  • This cooling as well as the previously described continuous or discontinuous application of a vacuum has the advantage of preventing shrinkage of the deep-drawn containers after deep drawing, whereby not only the appearance of the process product is improved, but also at the same time the discharge of the filled into the receiving chambers means the edge of the receiving chamber, for example in the sealing areas of the chamber, is avoided. Problems with the sealing of the filled chambers are thus avoided.
  • the deep-drawing process can be between methods in which the shell material is guided horizontally in a forming station and from there in a horizontal manner for filling and / or sealing and / or separating and methods in which the shell material via a continuously rotating Matrizenformwalze (optionally optionally with a counter-guided Patrizenformwalze, which lead the forming upper punch to the cavities of the Matrizenformwalze) is different.
  • the first-mentioned process variant of the flat bed process is to operate both continuously and discontinuously, the process variant using a molding roll is usually continuous. All of the mentioned deep drawing methods are suitable for the production of the inventively preferred means.
  • the receiving troughs located in the matrices can be arranged "in series" or staggered.
  • thermoforming bodies can have one, two, three or more receiving chambers. These receiving chambers can be arranged side by side and / or one above the other in the deep-drawn part.
  • inventive machine dishwashing agent in a water-soluble or water-dispersible thermoformed body confectioned which in addition to the solid automatic dishwashing detergent according to the invention in a separate receiving chamber further contains a liquid or gel detergent or detergent mixture.
  • a further preferred embodiment of the present application relates to automatic dishwashing agents according to the invention, which are in the form of a prefabricated dosing unit, characterized in that the prefabricated dosing unit is a thermoformed body, preferably a thermoformed body with two or more receiving chambers, in particular a thermoformed body with one above the other arranged receiving chambers acts.
  • the water-soluble or wasseridispergierbaren container can be prepared by injection molding in addition to deep drawing.
  • Injection molding refers to the forming of a molding material such that the mass contained in a mass cylinder for more than one injection molding plastically softens under heat and flows under pressure through a nozzle into the cavity of a previously closed tool.
  • the method is mainly applied to non-hardenable molding compounds which solidify in the tool by cooling.
  • Injection molding is a very economical modern process for producing non-cutting shaped articles and is particularly suitable for automated mass production.
  • thermoplastic molding compounds are heated to liquefaction (up to 180 ° C) and injected under high pressure (up to 140 MPa) in closed, two-piece, that is from Gesenk (earlier Die) and core (formerly male) existing, preferably water-cooled molds, where they cool and solidify.
  • Suitable molding compositions are water-soluble polymers, for example the abovementioned cellulose ethers, pectins, polyethylene glycols, polyvinyl alcohols, polyvinylpyrrolidones, alginates, gelatin or starch.
  • a further preferred embodiment of the present application relates to automatic dishwashing agents according to the invention, which are in the form of a prefabricated dosing unit, characterized in that the prefabricated dosing unit is an injection-molded body, preferably an injection-molded body with two or more receiving chambers.
  • the shell materials can also be cast into molds.
  • the hollow form of the resulting inventively preferred water-soluble or water-dispersible portioned agent comprises at least one solidified melt.
  • This melt may be a melted pure substance or a mixture of several substances. It is of course possible to mix the individual substances of a multi-substance melt before melting or to produce separate melts, which are then combined. Melting out Substance mixtures may be advantageous, for example, if eutectic mixtures are formed which melt much lower and thus lower the process costs.
  • the shell material poured into the mold comprises at least partially a washing or cleaning agent according to the invention.
  • a washing or cleaning agent according to the invention.
  • cast hollow molds which consist entirely of a washing or cleaning agent according to the invention.
  • a further preferred embodiment of the present application relates to automatic dishwashing agents according to the invention which are in the form of a prefabricated dosing unit, characterized in that the prefabricated dosing unit is a casting body, preferably a casting body having at least one depression.
  • the automatic dishwashing compositions according to the invention in particular the automatic dishwashing compositions according to the invention in the form of prefabricated metering units, preferably have a water-soluble coating.
  • a water-soluble casing is, for example, a water-soluble or water-dispersible deep-drawn or injection-molded body described above.
  • Further preferred water-soluble coatings are water-soluble coatings of tablets, castings or extrudates, in particular in the form of a spray or dip coating or in the form of a water-soluble or water-dispersible outer packaging.
  • the water-soluble coating preferably contains organic polymers or organic salts, in particular salts of carboxylic acids.
  • Another object of the present application is a method for automatic dishwashing, in which a machine dishwashing detergent according to the invention is introduced into the interior of a dishwasher before or while the dishwasher is running through a cleaning program.
  • Another object of the present application is the use of a machine dishwasher according to the invention as a rinse aid.
  • Another object of the present application is the use of 1-hydroxyethane-1,1-diphosphonic acid (HEDP) to improve the rinsing performance of polymers having a molecular weight of 2000 gmol -1 or more, which have at least one positive charge.
  • HEDP 1-hydroxyethane-1,1-diphosphonic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Claims (19)

  1. Détergent pour lave-vaisselle, comprenant
    a. de 0,01 à 10 % en poids d'au moins un polymère ayant un poids moléculaire de 2 000 gmol-1 ou plus, qui présente au moins une charge positive ;
    b. de 1,2 à 10 % en poids d'acide 1-hydroxyéthane-1,1-diphosphonique (HEDP) et/ou de sels de celui-ci,
    dans lequel des agents de chélation phosphorés du groupe des phosphonates et/ou des phosphates condensés de formule générale (MPO3)x, Mx+2PxO3x+1 et/ou MxH2PxO3x+1, où M représente un cation et x un nombre supérieur ou égal à 5, sont présents en une quantité totale située dans la plage allant de 1,2 à 10 % en poids.
  2. Détergent pour lave-vaisselle selon la revendication 1, caractérisé en ce que le pourcentage en poids du polymère a) est compris entre 0,01 et 8 % en poids, de préférence entre 0,01 et 6 % en poids, préférentiellement entre 0,01 et 4 % en poids, de façon particulièrement préférée entre 0,01 et 2 % en poids et en particulier entre 0,01 et 1 % en poids, rapporté au poids total du détergent pour lave-vaisselle.
  3. Détergent pour lave-vaisselle selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que le détergent pour lave-vaisselle se présente sous la forme d'une unité de dosage préfabriquée, qui contient entre 0,001 et 1 g, de préférence entre 0,01 et 0,1 g, de façon particulièrement préférée entre 0,01 et 0,07 g et en particulier entre 0,01 et 0,05 g du polymère a).
  4. Détergent pour lave-vaisselle selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le polymère a) présente des unités monomères de formule R1R2C=CR3R4, dans laquelle chacun des radicaux R1, R2, R3 et R4 est choisi, indépendamment des autres, parmi
    i) l'hydrogène ;
    ii) un groupe hydroxy dérivé ;
    iii) des groupes alkyle linéaires ou ramifiés en C1 à C30, aryle, alkyle linéaires ou ramifiés à substitution aryle en C1-30 ;
    iv) des groupes alkyle polyalkoxylés.
  5. Détergent pour lave-vaisselle selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le polymère a) présente, en tant qu'unités monomères, des sels de diallyldiméthylammonium et/ou d'acrylamidopropyltriméthylammonium.
  6. Détergent pour lave-vaisselle selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le pourcentage en poids de l'agent de chélation phosphoré b) est compris entre 1,5 et 8 % en poids, de préférence entre 1,7 et 7 % en poids et en particulier entre 2,0 et 6 % en poids, rapporté au poids total du détergent pour lave-vaisselle.
  7. Détergent pour lave-vaisselle selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le détergent pour lave-vaisselle se présente sous la forme d'une unité de dosage préfabriquée, qui contient entre 0,2 et 4 g, de préférence entre 0,3 et 3 g, de façon particulièrement préférée entre 0,4 et 3,0 g et en particulier entre 0,5 et 3,0 g de l'agent de chélation phosphoré b).
  8. Détergent pour lave-vaisselle selon l'une qelconque des revendications 1 à 7, caractérisé en ce qu'il contient, en tant que constituant supplémentaire c), de 0,5 à 15 % en poids, de préférence de 1 à 12,5% en poids, de façon particulièrement préférée de 1,5 à 10 % en poids et en particulier de 2 à 8 % en poids de tensioactif(s) non-ionique(s), rapporté au poids total du détergent pour lave-vaisselle.
  9. Détergent pour lave-vaisselle selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le détergent pour lave-vaisselle se présente sous la forme d'une unité de dosage préfabriquée, qui contient entre 0,2 et 2,5 g, de préférence entre 0,3 et 2,2 g, de façon particulièrement préférée entre 0,4 et 1,9 g et en particulier entre 0,5 et 1,5 g de tensioactif(s) non-ionique(s).
  10. Détergent pour lave-vaisselle selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il contient un ou plusieurs tensioactif(s) non-ionique(s) de formule générale, R

            1O[CH2CH(CH3)O]x[CH2CH2O]yCH2CH(OH)R2

    dans laquelle R1 est un radical hydrocarboné aliphatique linéaire ou ramifié ayant de 4 à 18 atomes de carbone ou un mélange de tels radicaux, R2 est un radical hydrocarboné linéaire ou ramifié ayant de 2 à 26 atomes de carbone ou un mélange de tels radicaux et x représente des valeurs comprises entre 0,5 et 1,5, et y représente une valeur d'au moins 15.
  11. Détergent pour lave-vaisselle selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il contient un ou plusieurs tensioactif(s) non-ionique(s) de formule générale
    Figure imgb0016
    dans laquelle R1 est un radical alkyle ou alcényle en C6-24, linéaire ou ramifié, saturé ou mono- ou polyinsaturé ; chacun des groupes R2 ou R3 est, indépendamment des autres, choisi parmi-CH3 ; -CH2CH3, -CH2CH2-CH3, CH(CH3)2 et les indices w, x, y, z représentent, indépendamment les uns des autres, des nombres entiers situés dans la plage allant de 1 à 6.
  12. Détergent pour lave-vaisselle selon l'une quelconque des revendications 1 à 11, caractérisé en ce qu'il contient un ou plusieurs tensioactif(s) non-ionique(s) de formule générale

            R1O[CH2CH(R3)O]xR2

    dans laquelle R1 est un radical hydrocarboné aliphatique ou aromatique linéaire ou ramifié, saturé ou insaturé, ayant de 1 à 30 atomes de carbone, R2 est un radical hydrocarboné aliphatique ou aromatique linéaire ou ramifié, saturé ou insaturé, ayant de 1 à 30 atomes de carbone, lesquels présentent de préférence entre 1 et 5 groupes hydroxy et sont de préférence en outre fonctionnalisés avec un groupe éther, R3 est l'hydrogène ou un radical méthyle, éthyle, n-propyle, iso-propyle, n-butyle, 2-butyle ou 2-méthyl-2-butyle et x représente des valeurs comprises entre 1 et 40.
  13. Détergent pour lave-vaisselle selon l'une quelconque des revendications 1 à 12, caractérisé en ce qu'il contient un ou plusieurs tensioactif(s) non-ionique(s) de formule générale

            R1O[CH2CH2O]xCH2CH(OH)R2

    qui présentent également, outre un radical R1 qui est un radical hydrocarboné aliphatique ou aromatique linéaire ou ramifié, saturé ou insaturé, ayant de 1 à 30 atomes de carbone, de péférence de 4 à 20 atomes de carbone, un radical hydrocarboné aliphatique ou aromatique linéaire ou ramifié, saturé ou insaturé R2, ayant de 1 à 30 atomes de carbone, qui est adjacent à un groupe intermédiaire monohydroxylé -CH2CH(OH)- et dans lesquels x représente des valeurs comprises entre 1 et 90.
  14. Détergent pour lave-vaisselle selon l'une quelconque des revendications 1 à 13, caractérisé en ce qu'il contient un ou plusieurs tensioactif(s) non-ionique(s) de formule générale
    Figure imgb0017
    dans laquelle R1 et R2 représentent, indépendamment l'un de l'autre, un radical hydrocarboné linéaire ou ramifié, saturé ou mono- ou polyinsaturé ayant de 2 à 26 atomes de carbone, R3 est indépendamment choisi parmi -CH3 ; -CH2CH3, -CH2CH2-CH3, CH(CH3)2, mais représente de préférence -CH3, et x et y représentent indépendamment l'un de l'autre des valeurs comprises entre 1 et 32, dans lequel les tensioactifs nonioniques tout particulièrement préférés ont des valeurs x situées dans la plage allant de 15 à 32 et des valeurs y situées dans la plage allant de 0,5 à 1,5.
  15. Détergent pour lave-vaisselle selon l'une quelconque des revendications 1 à 14, caractérisé en ce qu'il se présente sous la forme d'une unité de dosage préfabriquée avec une ou plusieurs phase(s).
  16. Détergent pour lave-vaisselle selon l'une quelconque des revendications 1 à 14, caractérisé en ce qu'il présente une enveloppe hydrosoluble.
  17. Procédé de lavage de vaisselle en machine, dans lequel on introduit un détergent pour lave-vaisselle selon l'une quelconque des revendications 1 à 16 dans le compartiment intérieur du lave-vaisselle avant ou pendant que le lave-vaisselle exécute un cycle de lavage.
  18. Utilisation d'un détergent pour lave-vaisselle selon l'une quelconque des revendications 1 à 16 en tant que produit de rinçage.
  19. Utilisation d'acide 1-hydroxyéthane-1,1-diphosphonique (HEDP) pour améliorer la performance de rinçage de polymères ayant un poids moléculaire de 2 000 gmol-1 ou plus, qui présentent au moins une charge positive.
EP05700895.5A 2004-03-26 2005-01-12 Produits de lavage pour lave-vaisselle Revoked EP1735419B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410015401 DE102004015401A1 (de) 2004-03-26 2004-03-26 Maschinelles Geschirrspülmittel
PCT/EP2005/000287 WO2005097963A1 (fr) 2004-03-26 2005-01-12 Produits de lavage pour lave-vaisselle

Publications (2)

Publication Number Publication Date
EP1735419A1 EP1735419A1 (fr) 2006-12-27
EP1735419B1 true EP1735419B1 (fr) 2018-09-19

Family

ID=34960012

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05700895.5A Revoked EP1735419B1 (fr) 2004-03-26 2005-01-12 Produits de lavage pour lave-vaisselle

Country Status (3)

Country Link
EP (1) EP1735419B1 (fr)
DE (1) DE102004015401A1 (fr)
WO (1) WO2005097963A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005060431A1 (de) * 2005-12-15 2007-06-21 Henkel Kgaa Maschinelles Geschirrspülmittel
DE102007044418A1 (de) 2007-09-17 2009-03-19 Henkel Ag & Co. Kgaa Reinigungsmittel
CA2704568C (fr) 2007-11-09 2016-01-26 The Procter & Gamble Company Compositions de nettoyage contenant des monomeres acides monocarboxyliques, monomeres dicarboxyliques et monomeres comprenant des groupes acides sulfoniques
EP2260070B1 (fr) 2008-03-31 2015-07-22 Nippon Shokubai Co., Ltd. Solution aqueuse de copolymère hydrosoluble à base d'acide maléique contenant un groupe sulfonique et poudre obtenue par séchage de cette solution aqueuse
WO2010057977A1 (fr) * 2008-11-21 2010-05-27 Thermphos Trading Gmbh Composition de lavage et de nettoyage
DE102016223589A1 (de) 2016-11-28 2018-05-30 Clariant International Ltd Copolymer enthaltendes maschinelles geschirrspülmittel
DE102018221674A1 (de) * 2018-12-13 2020-06-18 Henkel Ag & Co. Kgaa Vorrichtung und Verfahren zur Herstellung einer wasserlöslichen Hülle sowie diese wasserlösliche Hülle enthaltene Wasch- oder Reinigungsmittelportionen
DE102018221671A1 (de) * 2018-12-13 2020-06-18 Henkel Ag & Co. Kgaa Vorrichtung und Verfahren zur Herstellung einer wasserlöslichen Hülle sowie diese wasserlösliche Hülle enthaltene Wasch- oder Reinigungsmittelportionen mit viskoelastischer, festförmiger Füllsubstanz
ES2980490T3 (es) 2019-05-28 2024-10-01 Clariant Int Ltd Detergente que contiene éster de glicerol etoxilado para lavavajillas a máquina
WO2023057335A1 (fr) 2021-10-07 2023-04-13 Clariant International Ltd Compositions détergentes pour lave-vaisselle comprenant des esters de glycérol éthoxylés et des alcoxylates d'alcools gras modifiés

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0077588A1 (fr) 1981-10-16 1983-04-27 Unilever N.V. Composition pour lave-vaisselle
EP0299360A2 (fr) 1987-07-15 1989-01-18 Henkel Kommanditgesellschaft auf Aktien Hydroxy-éthers mélangés, procédé pour leur fabrication et leur utilisation
EP0203486B1 (fr) 1985-05-25 1992-09-16 Henkel Kommanditgesellschaft auf Aktien Détergent avec additifs pour éviter le transfert de colorant ou d'azurant optique
WO1994022800A1 (fr) 1993-04-05 1994-10-13 Olin Corporation Tensioactifs biodegradables peu moussants pour lave-vaisselle
EP0659873A1 (fr) 1993-12-23 1995-06-28 The Procter & Gamble Company Compositions de rinçage
WO1997009408A1 (fr) 1995-09-04 1997-03-13 Henkel Kommanditgesellschaft Auf Aktien Agents de rinçage contenant des polymeres cationiques
EP0851024A2 (fr) 1996-12-23 1998-07-01 Unilever N.V. Comprimés détergents pour le lavage de vaisselle en machine avec un effet de rinçage bénéfique
WO1999049009A1 (fr) 1998-03-23 1999-09-30 The Procter & Gamble Company Compositions detergentes liquides de lessive contenant hedp et des polyamines
US6281180B1 (en) 1997-07-23 2001-08-28 Lever Brothers Company, Division Of Conopco, Inc. Automatic dishwashing compositions containing water soluble cationic or amphoteric polymers
US6310023B1 (en) 1999-11-12 2001-10-30 Unilever Home & Personal Care Usa, Division Of Conopco Machine dish wash compositions
WO2002074891A2 (fr) 2001-03-16 2002-09-26 Unilever Plc Sachet hydrosoluble contenant une composition pour lave-vaisselle
WO2003010263A1 (fr) 2001-07-24 2003-02-06 Henkel Kommanditgesellschaft Auf Aktien Detergents pour lave-vaisselle comportant des tensioactifs a coefficients de diffusion determines
WO2003099980A1 (fr) 2002-05-27 2003-12-04 Rhodia Chimie Utilisation, d'un copolymere amphotere dans une composition lavante de la vaisselle en machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020304A (en) * 1996-04-01 2000-02-01 The Procter & Gamble Company Fabric softener compositions
US6630438B1 (en) * 1999-03-12 2003-10-07 The Procter & Gamble Company Perfumed detergent tablet
US20020160924A1 (en) * 1999-06-15 2002-10-31 The Procter & Gamble Company Cleaning compositions
DE10021726A1 (de) * 2000-05-04 2001-11-15 Henkel Kgaa Verwendung von nanoskaligen Teilchen zur Verbesserung der Schmutzablösung

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0077588A1 (fr) 1981-10-16 1983-04-27 Unilever N.V. Composition pour lave-vaisselle
EP0203486B1 (fr) 1985-05-25 1992-09-16 Henkel Kommanditgesellschaft auf Aktien Détergent avec additifs pour éviter le transfert de colorant ou d'azurant optique
EP0299360A2 (fr) 1987-07-15 1989-01-18 Henkel Kommanditgesellschaft auf Aktien Hydroxy-éthers mélangés, procédé pour leur fabrication et leur utilisation
WO1994022800A1 (fr) 1993-04-05 1994-10-13 Olin Corporation Tensioactifs biodegradables peu moussants pour lave-vaisselle
EP0659873A1 (fr) 1993-12-23 1995-06-28 The Procter & Gamble Company Compositions de rinçage
WO1997009408A1 (fr) 1995-09-04 1997-03-13 Henkel Kommanditgesellschaft Auf Aktien Agents de rinçage contenant des polymeres cationiques
EP0851024A2 (fr) 1996-12-23 1998-07-01 Unilever N.V. Comprimés détergents pour le lavage de vaisselle en machine avec un effet de rinçage bénéfique
US6281180B1 (en) 1997-07-23 2001-08-28 Lever Brothers Company, Division Of Conopco, Inc. Automatic dishwashing compositions containing water soluble cationic or amphoteric polymers
WO1999049009A1 (fr) 1998-03-23 1999-09-30 The Procter & Gamble Company Compositions detergentes liquides de lessive contenant hedp et des polyamines
US6310023B1 (en) 1999-11-12 2001-10-30 Unilever Home & Personal Care Usa, Division Of Conopco Machine dish wash compositions
WO2002074891A2 (fr) 2001-03-16 2002-09-26 Unilever Plc Sachet hydrosoluble contenant une composition pour lave-vaisselle
WO2003010263A1 (fr) 2001-07-24 2003-02-06 Henkel Kommanditgesellschaft Auf Aktien Detergents pour lave-vaisselle comportant des tensioactifs a coefficients de diffusion determines
WO2003099980A1 (fr) 2002-05-27 2003-12-04 Rhodia Chimie Utilisation, d'un copolymere amphotere dans une composition lavante de la vaisselle en machine

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"HEDP", RÖMPPS CHEMIE-LEXIKON, 1983, pages 1804
JOANNA JAWORSKA: "Environmental risk assessment of phosphonates, used in domestic laundry and cleaning agents", CHEMOSPHERE, vol. 47, 2002, pages 655 - 665
NALCO, MERQUAT POLYQUATERNIUM 39 SERIES, 2003
ULLMANNS ENCYKLOPÄDIE DER TECHNISCHEN CHEMIE, vol. 14, 1987, pages 350 - 353
VERGLEICHSBEISPIELE VON HENKEL, 17 December 2010 (2010-12-17)

Also Published As

Publication number Publication date
EP1735419A1 (fr) 2006-12-27
WO2005097963A1 (fr) 2005-10-20
DE102004015401A1 (de) 2005-10-20

Similar Documents

Publication Publication Date Title
EP1711589B1 (fr) Produits pour lave-vaisselle
EP1735419B1 (fr) Produits de lavage pour lave-vaisselle
DE102004020720A1 (de) Verfahren zur Herstellung von Wasch- oder Reinigungsmitteln
DE102007059970A1 (de) Reinigungsmittel
DE102007059968A1 (de) Reinigungsmittel
WO2006032371A1 (fr) Constituants de produits nettoyants
DE10313172A1 (de) Gestaltsoptimierte Wasch- oder Reinigungsmitteltabletten
DE10313457A1 (de) Wasch- oder Reinigungsmittel
DE102005060431A1 (de) Maschinelles Geschirrspülmittel
DE102005025690B4 (de) Verpackungssystem für Wasch-oder Reinigungsmittel
EP1727884B1 (fr) Produits de lavage pour lave-vaisselle
EP1660623B1 (fr) Detergent ou nettoyant
EP1922401B1 (fr) Detergent ou nettoyant
DE10253479A1 (de) Befüllte Muldentabletten und Verfahren zu ihrer Herstellung II
WO2004085596A1 (fr) Produit de lavage ou de nettoyage
EP1871865A1 (fr) Lessive ou detergent
EP2097503A1 (fr) Corps moulé d'agent de lavage ou de nettoyage
WO2006066721A1 (fr) Unite de dosage pour detergent ou nettoyant
WO2008049652A1 (fr) Corps moulé d'agent de lavage ou de nettoyage
WO2005019402A1 (fr) Procedes pour fabriquer des agents de lavage ou de nettoyage
EP2097253A1 (fr) Corps moulés de lessive ou de détergent
WO2006045453A1 (fr) Unite dosee de lessive ou detergent
WO2006045447A1 (fr) Unite de dosage pour produit nettoyant ou detergent

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20061215

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GENTSCHEV, PAVEL

Inventor name: PEGELOW, ULRICH

Inventor name: KESSLER, ARND

Inventor name: NITSCH, CHRISTIAN

Inventor name: JEKEL, MAREN

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HENKEL AG & CO. KGAA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180417

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NITSCH, CHRISTIAN

Inventor name: KESSLER, ARND

Inventor name: JEKEL, MAREN

Inventor name: PEGELOW, ULRICH

Inventor name: GENTSCHEV, PAVEL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005015912

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1043275

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181220

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502005015912

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH

Effective date: 20190617

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

R26 Opposition filed (corrected)

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190112

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190112

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1043275

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190112

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050112

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20190619

R26 Opposition filed (corrected)

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20190619

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH

Effective date: 20190617

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230124

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230123

Year of fee payment: 19

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 502005015912

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 502005015912

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20231116

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20231116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240119

Year of fee payment: 20

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 1043275

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231116