EP1660623B1 - Detergent ou nettoyant - Google Patents

Detergent ou nettoyant Download PDF

Info

Publication number
EP1660623B1
EP1660623B1 EP04764486.9A EP04764486A EP1660623B1 EP 1660623 B1 EP1660623 B1 EP 1660623B1 EP 04764486 A EP04764486 A EP 04764486A EP 1660623 B1 EP1660623 B1 EP 1660623B1
Authority
EP
European Patent Office
Prior art keywords
acid
washing
weight
preferred
bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04764486.9A
Other languages
German (de)
English (en)
Other versions
EP1660623A1 (fr
Inventor
Thomas Holderbaum
Maren Jekel
Alexander Lambotte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to PL04764486T priority Critical patent/PL1660623T3/pl
Publication of EP1660623A1 publication Critical patent/EP1660623A1/fr
Application granted granted Critical
Publication of EP1660623B1 publication Critical patent/EP1660623B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • C11D17/043Liquid or thixotropic (gel) compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets

Definitions

  • the present invention relates to detergents or cleaners, in particular detergents or cleaning products combination products, which also comprises liquids in addition to one or more solid constituents.
  • Detergents and cleaning agents and processes for their preparation are well known and therefore broadly described in the prior art. Usually, they are made available to the consumer in the form of spray-dried or granulated powder products or as liquid goods. Following the consumer's desire for simple dosing, in addition to these two classic variants, products in pre-portioned form have become established in the market and are also comprehensively described in the prior art, in particular compressed molded articles, ie tablets, blocks, briquettes and the like and packed in sachets Portions of solid or liquid detergents and cleaners are described.
  • German patent application DE 11 30 547 Packs of water-soluble films of polyvinyl alcohol filled with non-liquid synthetic detergents. This document does not comment on the particle sizes of the packaged detergents.
  • a single dose of a laundry or bleach in a bag having one or more seams of water-sensitive material is disclosed in the European patent application EP 143 476 (Akzo NV ).
  • EP 143 476 As a water-sensitive suture, this publication proposes a mixture of anionic and / or nonionic water-binding polymer and cationic polymer adhesive material.
  • Solid, in particular pressed washing or cleaning agents are characterized as a result of compression often by a delayed release of their ingredients. This detrimental property stands in contrast to the high density and thus low dosage volume of this product form as well as its high active ingredient content.
  • liquid washing or cleaning agents dissolve comparatively quickly, but as a rule they can not be formulated without the addition of solvents without washing or cleaning action.
  • An aim of the development of modern detergents or cleaners is therefore to provide supply forms which combine the advantages of solid detergents or cleaning agents with those of liquid forms.
  • the registration US 20030224959A1 (Procter & Gamble) describes a combination product of a disposable bag packaging made of a water-soluble PVA bag and a cleaning tablet.
  • the EP 1319706 (Unilever), in contrast, describes a bag of water-soluble polymer film with liquid filling, in which at least one solid body is located, wherein at storage temperature, the dissolution rate of the solid in the liquid filling is greater than the dissolution rate of the water-soluble polymer film in the liquid filling.
  • washing or cleaning agents provided with water-soluble or water-dispersible packaging generally require a special packaging form or an additional outer packaging in order to avoid damage during production, storage or transport.
  • thermoforming bags for the packaging of liquid detergents or cleaners.
  • water-soluble containers which are formed from a water-soluble laminate comprising an extruded and a cast film.
  • the object of the present application was therefore to provide a washing or cleaning agent combination product, which allows the separate packaging of solid and liquid components with minimal packaging costs.
  • the solid and liquid components of the washing or cleaning agent should be optically perceived as separate components of a compact and easy to dose body.
  • a first subject of the present application is therefore a combination product of at least one washing or cleaning agent molded body and at least one liquid-filled hollow body, which is an injection molding and / or blow molding and / or deep-drawing and at least partially consists of one or more water-soluble or water-dispersible polymers , characterized, the liquid-filled hollow body (s) is / are connected to the washing or cleaning agent shaped body by a plug-in and / or snap-action and / or latching and / or adhesive connection.
  • the dimensions of preferred combination products according to the invention ensure reliable metering in commercial metering devices for washing machines or dishwashers.
  • Characteristic of the spatial form of combination products according to the invention are their width, height and depth. Preference is given to those combination products whose dimensions in any of the three spatial directions is more than 45 mm, preferably more than 42 mm, particularly preferably more than 39 mm. If the largest dimension of the combination product is defined as its width, the shortest dimension of the combination product as its height, the preferred ratio of width to height of combination products according to the invention is between 4: 1 and 1.1: 1, preferably between 3: 1 and 1.2 : 1, most preferably between 2.8 and 1.4: 1 and especially between 2.5: 1 and 1.8: 1.
  • the maximum volume of the combination products in a preferred embodiment of the present invention is less than 30 ml.
  • Particularly preferred embodiments are those in which the volume of the combination product is less than 26 ml, more preferably less than 22 ml. most preferably less than 18 ml and in particular less than 16 ml.
  • combination products are preferred in which the volume ratio of washing or cleaning agent shaped body (s) to the liquid-filled (m / n) hollow body (s) is between 8: 1 and 1: 8, preferably between 5: 1 and 1: 5 , more preferably between 3: 1 and 1: 3.
  • the liquid-filled hollow body preferably occupies the smaller volume compared to the detergent or cleaning product.
  • Combination products in which the volume ratio of washing or cleaning agent shaped body (s) to liquid-filled (m / n) hollow bodies (s) 8: 1 to 1: 1, preferably 5: 1 to 1.5, are therefore particularly preferred in the context of the present application : 1 and in particular 4: 1 to 2: 1.
  • the inner volume of the invention particularly preferred hollow body is less than 6 ml, preferably less than 4 ml, more preferably between 0.5 and 3 ml and in particular between 1 and 2 ml.
  • Combination products according to the invention are particularly suitable for the preparation of washing or cleaning agent portions with a total weight of less than 35 g.
  • Particularly preferred Combination products with a total weight below 30 g, preferably below 27 g, more preferably below 25 and in particular below 23 g.
  • the weight ratio of detergent tablets to liquid-filled (m / n) hollow bodies in preferred combination products according to the invention is 11: 1 to 1:11, preferably 5: 1 to 1: 5 and in particular 3: 1 to 1: 3 amounts to.
  • the weight of combination products according to the invention is preferably between 10 and 50 g, preferably between 12 and 40 g, more preferably between 14 and 30 g and in particular between 16 and 25 g.
  • washing or cleaning agent tablets takes place in combination products according to the invention by plugging and / or snap-action and / or latching and / or adhesive connection, but preferably by gluing.
  • polymers or polymerizing mixtures of substances are suitable, among other substances.
  • the choice of adhesive will i.a. determined by the size of the adhesive surface, the weight and the shape of the components bonded together but in particular also by the chemical composition of the washing or cleaning agent shaped body.
  • Detergent tablets containing sodium percarbonate as a bleaching agent exhibit reduced stability and durability of the bonds compared to molded articles with another bleaching agent (e.g., sodium perborate, etc.).
  • a further object of the present application was therefore to provide sodium percarbonate-containing combination products according to the invention which have a permanent bond between the detergent or cleaning product tablet and the liquid-filled hollow body. It has now been found that this problem can be solved in addition to the use of larger amounts of adhesives by changing the surfactant content of the sodium percarbonate-containing detergent tablets.
  • Another object of the present application is therefore an inventive combination product of at least one sodium percarbonate-containing detergent tablets and at least one liquid-filled hollow body, which is an injection molding and / or blow molding and / or deep-drawing and at least partially from one or more water-soluble or water-dispersible Polymer, wherein the / the liquid-filled (s) hollow body (s) is connected to the detergent tablets by an adhesive bond, characterized in that the sodium percarbonate-containing detergent tablets do not contain anionic surfactants and / or cationic surfactants and / or nonionic surfactants and / or amphoteric surfactants contains.
  • the washing or cleaning performance of the combination products according to the invention is impaired by a reduction of the surfactant content.
  • Particularly preferred detergent tablets or detergent tablets have a surfactant content below 2% by weight.
  • Such washing or cleaning agent tablets with low nonionic surfactant content have permanent and stable bonds when bonded to liquid-filled hollow bodies by means of conventional adhesives.
  • combination products according to the invention offers the possibility of the separation of incompatible ingredients or the targeted individual preparation of certain active substances.
  • liquid-filled hollow body has at least 80% by weight, preferably at least 90% by weight and in particular the total amount of the enzymes and / or polymers present in the combination product, but in particular of the enzymes.
  • composition products can be produced which in the liquid-filled hollow body at least 50 wt .-%, preferably at least 70 wt .-%, more preferably at least 90 wt .-%, most preferably at least 95 wt .-% and in particular the total amount of have in the combination products contained silver protecting agent, while the liquid-filled hollow body is substantially free of bleaching agents and / or bleach activators.
  • the combination product according to the invention may comprise further constituents, preferably from the group of gelatin capsules and / or the coated shaped body.
  • the combination product according to the invention comprises washing or cleaning agent shaped bodies and at least one liquid-filled hollow body. Both components will be described in more detail below.
  • the detergent tablets may be any solid and dimensionally stable preparation suitable for washing or cleaning active ingredients known to the person skilled in the art. Useful are, for example, washing or cleaning agent tablets, washing or rotatesmittelg screen Eisenschreibschreibschreibg thinkschreibsuperatulose, sorbitol, mannitol, mannitol, sorbitol, mannitol, mannitol, sorbitol, mannitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol,
  • the washing or cleaning agent shaped body is one or more mono- or multiphase washing or cleaning agent tablets.
  • washing or cleaning agent tablets are carried out in a manner known to those skilled in the art by compressing particulate starting substances.
  • the premix is compressed in a so-called matrix between two punches to form a solid compressed product.
  • This process hereinafter referred to as tabletting, is divided into four sections: dosing, compaction (elastic deformation), plastic deformation and ejection.
  • the premix is introduced into the die, wherein the filling amount and thus the weight and the shape of the resulting tablet or moldings are determined by the position of the lower punch and the shape of the pressing tool.
  • the constant dosage even at high molding throughputs is preferably achieved via a volumetric metering of the premix.
  • the upper punch contacts the pre-mix and continues to descend toward the lower punch.
  • the particles of the premix are pressed closer to each other, with the void volume within the filling between the punches decreasing continuously. From a certain position of the upper punch (and thus from a certain pressure on the premix) begins the plastic deformation, in which the particles flow together and it comes to the formation of the molding.
  • the premix particles are also crushed, and even higher pressures cause sintering of the premix.
  • the phase of the elastic deformation is shortened more and more, so that the resulting moldings may have more or less large cavities.
  • the finished molded body is pushed out of the die by the lower punch and carried away by subsequent transport means. At this time, only the weight of the shaped body is finally determined because the compacts due to physical processes (re-expansion, crystallographic effects, cooling, etc.) can change their shape and size.
  • the tabletting is carried out in commercial tablet presses, which can be equipped in principle with single or double punches. In the latter case, not only the upper punch is used to build up pressure, and the lower punch moves during the pressing on the upper punch, while the upper punch presses down.
  • eccentric tablet presses are preferably used in which the die or punches are attached to an eccentric disc, which in turn is mounted on an axis at a certain rotational speed. The movement of these punches is comparable to the operation of a conventional four-stroke engine.
  • the compression can be done with a respective upper and lower punch, but it can also be attached more stamp on an eccentric disc, the number of Matrizenbohritch is extended accordingly.
  • the throughputs of eccentric presses vary depending on the type of a few hundred to a maximum of 3000 tablets per hour.
  • rotary tablet presses are selected in which a larger number of dies are arranged in a circle on a so-called die table.
  • the number of matrices varies between 6 and 55 depending on the model, although larger matrices are commercially available.
  • Each die on the die table is assigned an upper and lower punch, in turn, the pressing pressure can be actively built only by the upper or lower punch, but also by both stamp.
  • the die table and the punches move about a common vertical axis, the punches are brought by means of rail-like cam tracks during the circulation in the positions for filling, compression, plastic deformation and ejection.
  • these curved paths are supported by additional low-pressure pieces, Nierderzugschienen and lifting tracks.
  • the filling of the die via a rigidly arranged supply device, the so-called filling shoe, which is connected to a reservoir for the premix.
  • the pressing pressure on the premix is individually adjustable via the compression paths for upper and lower punches, wherein the pressure build-up is done by the Vorbeirollen the stamp shank heads on adjustable pressure rollers.
  • Concentric presses can be provided with two Drik to increase the throughput, with the production of a tablet only a semicircle must be traversed.
  • several filling shoes are arranged one after the other without the slightly pressed-on first layer being ejected before further filling.
  • suitable process control coat and point tablets can be produced in this way, which have a zwiebelschalenartigen structure, wherein in the case of the point tablets, the top of the core or the core layers is not covered and thus remains visible.
  • Even rotary tablet presses can be equipped with single or multiple tools, so that, for example, an outer circle with 50 and an inner circle with 35 holes are used simultaneously for pressing.
  • the throughputs of modern rotary tablet presses amount to over one million moldings per hour.
  • Plastic coatings, plastic inserts or plastic stamps are particularly advantageous.
  • Rotary punches have also proved to be advantageous, wherein, if possible, upper and lower punches should be rotatable. With rotating punches can be dispensed with a plastic insert usually. Here, the stamp surfaces should be electropolished.
  • Preferred processes in the context of the present invention are characterized in that the pressing takes place at compression pressures of from 0.01 to 50 kNcm -2 , preferably from 0.1 to 40 kNcm -2 and in particular from 1 to 25 kNcm -2 .
  • Tableting machines suitable for the purposes of the present invention are obtainable, for example, from Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, Horn & Noack Pharmatechnik GmbH, Worms, IMAmaschinessysteme GmbH Viersen, KILIAN, Cologne, KOMAGE, Kell on the lake, KORSCH presses AG, Berlin, as well as Romaco GmbH, Worms.
  • Other providers include Dr. med. Herbert Pete, Vienna (AU), Mapag Maschinenbau AG, Berne (CH), BWI Manesty, Liverpool (GB), I. Holand Ltd., Nottingham (GB), Courtoy NV, Halle (BE / LU) and Mediopharm Kamnik (SI ).
  • two-phase or multiphase washing or cleaning agent tablets as washing or cleaning agent tablets.
  • the individual phases of these two- or multi-phase detergent tablets differ with regard to their chemical composition, it being possible for the distribution of the ingredients contained in the individual phases in the context of the present application to take place in any desired manner.
  • combination products according to the invention are preferred in which the individual phases of the two- or more-phase detergent tablets differ with regard to their surfactant content, in particular with regard to their nonionic surfactant content, and / or with regard to their bleach content, in particular with regard to their sodium percarbonate content.
  • the washing or cleaning agent shaped body is a cast body.
  • the production of such casting is usually done by pouring a washing or cleaning active preparation in a mold and subsequent demolding of the solidified cast body.
  • a “mold” are preferably tools that have cavities that can be filled with pourable substances.
  • Such tools may be formed, for example, in the form of individual cavities but also in the form of plates having a plurality of cavities.
  • the single cavities or cavity plates are preferably mounted on horizontally circulating conveyor belts in industrial processes which allow continuous or discontinuous transport of the cavities, for example along a number of different workstations (e.g., casting, cooling, filling, sealing, demolding, etc.).
  • the washing or cleaning active preparations are potted in the preferred method and solidify subsequently to a dimensionally stable body.
  • solidification characterizes any curing mechanism which delivers a body which is solid at room temperature from a deformable, preferably flowable mixture or such a substance or mass without the need for pressing or compacting forces.
  • Solidification in the context of the present invention is therefore, for example, the curing of melts of solid substances at room temperature by cooling.
  • “Solidification processes” in the context of the present application are also the curing of formable materials by time-delayed water binding, by evaporation of solvents, by chemical reaction, crystallization, etc. and the reactive curing of flowable powder mixtures to form stable hollow bodies.
  • methods according to the invention are preferred in which the cast body is reduced by time-delayed water binding, by cooling below the melting point, by evaporation of solvents, by crystallization, by chemical reaction (s), in particular polymerization, by changing the rheological properties e.g. produced by altered shearing, by sintering or by radiation curing, in particular by UV, alpha-beta or gamma rays.
  • cooling below the melting point In the context of the present application, preference is given to processes in which the solidification of the cast bodies takes place by cooling below the melting point.
  • the cooling below the melting point can be done for example by heat to the environment, in particular to the mold.
  • a cooling medium for example, cold air, dry ice or liquid nitrogen are suitable.
  • circulating, preferably liquid coolant are used in the mold.
  • the cooling of the mold is preferably carried out at temperatures below 20 ° C, preferably below 17 ° C, more preferably below 14 ° C, most preferably below 11 ° C and especially below 8 ° C.
  • washing or cleaning-active preparations are characterized in that they contain the dispersant in amounts above 11 wt.%, Preferably above 13 wt.%, More preferably above 15 wt.%, Most preferably above 17 wt. and in particular above 19 wt .-%, each based on the total weight of the dispersion.
  • dispersions which have a dispersion with a proportion by weight of dispersant above 20% by weight, preferably above 21% by weight and in particular above 22% by weight, in each case based on the total weight of the dispersion.
  • the maximum content of preferred dispersions of dispersant, based on the total weight of the dispersion, is preferably less than 63% by weight, preferably less than 57% by weight, particularly preferably less than 52% by weight, very particularly preferably less than 47% by weight .-% and in particular less than 37 wt .-%.
  • those preparations which are active in washing or cleaning and which, based on their total weight, are dispersing agents in amounts of from 12 to 62% by weight, preferably from 17 to 49% by weight and in particular from 23 to 38% by weight. % contain.
  • the dispersants used are preferably water-soluble or water-dispersible.
  • the solubility of these dispersants is preferably more than 200 g / l at 25 ° C., preferably more than 300 g / l, more preferably more than 400 g / l, most preferably between 430 and 620 g / l and especially between 470 and 580 g / l.
  • Suitable dispersants in the context of the present invention are preferably the water-soluble or water-dispersible polymers, in particular the water-soluble or water-dispersible nonionic polymers.
  • the dispersant may be both a single polymer and mixtures of various water-soluble or water-dispersible polymers.
  • dispersions which contain, as dispersants, a nonionic polymer, preferably a poly (alkylene) glycol, preferably a poly (ethylene) glycol and / or a poly (propylene) glycol, the weight fraction of the poly (ethylene) glycol being based on the total weight of all dispersing agents is preferably between 10 and 90% by weight, more preferably between 30 and 80% by weight and in particular between 50 and 70% by weight.
  • the dispersions in which the dispersant contains more than 92% by weight, preferably more than 94% by weight, more preferably more than 96% by weight, very particularly preferably more than 98% by weight.
  • Dispersing agents which also contain poly (propylene) glycol in addition to poly (ethylene) glycol preferably have a ratio of the weight proportions of poly (ethylene) glycol to poly (propylene) glycol between 40: 1 and 1: 2, preferably between 20: 1 and 1: 1, more preferably between 10: 1 and 1.5: 1 and in particular between 7: 1 and 2: 1 on.
  • nonionic surfactants which are used alone, but particularly preferably in combination with a nonionic polymer.
  • Detailed information on the usable nonionic surfactants can be found in the description of washing or cleaning-active substances below.
  • the agents used with preference as detergent tablets are characterized by a high density. Particular preference is given to using moldings having a density of above 1.040 g / cm 3 . Agents preferred according to the invention are characterized in that they have a density above 1.040 g / cm 3 , preferably above 1.15 g / cm 3 , more preferably above 1.30 g / cm 3 and in particular above 1.40 g / cm 3 . This high density not only reduces the total volume of a dosing unit but at the same time improves its mechanical stability.
  • Particularly preferred combination products according to the invention are therefore characterized in that the washing or cleaning composition shaped body having a density from 1050 to 1670 g / cm 3, preferably 1.120 to 1.610 g / cm 3, particularly preferably 1.210 to 1.570 g / cm 3, most preferably between 1.290 and 1.510 g / cm 3 , and in particular between 1.340 and 1.480 g / cm 3
  • the density data refer to the densities of the media at 20 ° C.
  • Dispersions preferably used as detergent tablets according to the invention are characterized in that they are dissolved in water (40 ° C.) in less than 9 minutes, preferably less than 7 minutes, preferably less than 6 minutes, more preferably less than 5 minutes and in particular dissolve in less than 4 minutes.
  • 20 g of the dispersion are introduced into the interior of a dishwashing machine (Miele G 646 PLUS).
  • the main rinse of a standard rinse program (45 ° C) is started.
  • the determination of the solubility is carried out by the measurement of the conductivity, which is recorded via a conductivity sensor.
  • the dissolution process is completed when the maximum conductivity is reached. In the conductivity diagram, this maximum corresponds to a plateau.
  • the conductivity measurement starts with the replacement of the circulation pump in the main wash cycle.
  • the amount of water used is 5 liters.
  • Casting processes can be used to produce both compact and hollow shapes. If a potted washing or cleaning-active preparation is allowed to solidify in the cavity of the molding tool, simple, compact bodies are produced. However, detergent and cleaner tablets in the form of cast hollow bodies are more advantageous and preferred within the scope of the present application.
  • washing or cleaning active preparation can be done with different techniques.
  • a flowable mixture is filled into a corresponding mold, allowed to harden there and then removed from the mold.
  • the disadvantage here is the design the shape, since the desired wall thicknesses of the resulting hollow body does not allow a quick filling complicated geometries.
  • the solidifying mixture may be filled into a mold which is merely a cavity. If you let the mixture solidify there, you would get a compact body, no mold. By suitable process control can be ensured that the mixture first solidifies on the wall of the mold. If the mold is turned over after a certain time t, the excess mixture flows off, leaving behind a lining of the mold, which itself forms a hollow mold, which can be demoulded after complete solidification.
  • the cavity can only be partially filled.
  • the mixture is pressed in these cases with a suitable stamp on the wall of the cavity, where it solidifies to the hollow body.
  • This process variant is quasi an intermediate form between the "Abg screentechnik" and the casting technique in negative forms of the hollow body.
  • the combination products according to the invention also comprise at least one hollow body filled with liquid in addition to the detergent or cleaning product molding (s).
  • This hollow body may be an injection-molded and / or blow-molded and / or deep-drawn part.
  • “deep-drawn parts” are products produced by deep-drawing processes.
  • a first film-like wrapping material is usually deformed after being introduced via a receiving trough located in a die forming the deep-drawing mold and molding of the wrapping material into this receiving trough by the action of pressure and / or vacuum.
  • the shell material may be pre-treated before or during the molding by the action of heat and / or solvent and / or conditioning by relative to ambient conditions changed relative humidity and / or temperatures.
  • the pressure action can be carried out by two parts of a tool, which behave as positive and negative to each other and deform a spent between these tools film when squeezed.
  • the action of compressed air and / or the weight of the film and / or the weight of an active substance applied to the upper side of the film is also suitable as pressure forces.
  • the deep-drawn shell materials are preferably fixed after deep drawing by using a vacuum within the receiving wells and in their achieved by the deep-drawing process space shape.
  • the vacuum is preferably applied continuously from deep drawing to filling until sealing and in particular until the separation of the receiving chambers.
  • a discontinuous vacuum for example, for deep drawing of the receiving chambers and (after an interruption) before and during the filling of the receiving chambers, possible.
  • the continuous or discontinuous vacuum can vary in its thickness and, for example, take higher values at the beginning of the process (during deep drawing of the film) than at its end (during filling or sealing or singulation).
  • the shell material can be pre-treated by the action of heat before or during the molding into the receiving troughs of the matrices.
  • the shell material preferably a water-soluble or water-dispersible polymer film, is heated to temperatures above 60 ° C. for up to 5 seconds, preferably for 0.1 to 4 seconds, particularly preferably for 0.2 to 3 seconds and in particular for 0.4 to 2 seconds. preferably above 80 ° C, more preferably between 100 and 120 ° C and in particular heated to temperatures between 105 and 115 ° C.
  • the dies used and the receiving troughs located in these dies are preferably carried out at temperatures below 20 ° C, preferably below 15 ° C, more preferably at temperatures between 2 and 14 ° C and in particular at temperatures between 4 and 12 ° C.
  • the cooling takes place continuously from the beginning of the deep-drawing process to the sealing and separation of the receiving chambers. Cooling fluids, preferably water, which are circulated in special cooling lines within the matrix, are particularly suitable for cooling.
  • This cooling as well as the previously described continuous or discontinuous application of a vacuum has the advantage of preventing shrinkage of the deep-drawn containers after deep drawing, whereby not only the appearance of the process product is improved, but also at the same time the discharge of the filled into the receiving chambers means the edge of the receiving chamber, for example in the sealing areas of the chamber, is avoided. Problems with the sealing of the filled chambers are thus avoided.
  • the deep-drawing process can be between methods in which the shell material is guided horizontally in a forming station and from there in a horizontal manner for filling and / or sealing and / or separating and methods in which the shell material via a continuously rotating Matrizenformwalze (optionally optionally with a counter-guided Patrizenformwalze, which lead the forming upper punch to the cavities of the Matrizenformwalze) is different.
  • the first-mentioned process variant of the flat bed process is to operate both continuously and discontinuously, the process variant using a molding roll is usually continuous. All of the mentioned deep drawing methods are suitable for the production of the inventively preferred means.
  • the receiving troughs located in the matrices can be arranged "in series" or staggered.
  • injection molded parts are produced by injection molding.
  • Injection molding refers to the forming of a molding material such that the mass contained in a mass cylinder for more than one injection molding plastically softens under heat and flows under pressure through a nozzle into the cavity of a previously closed tool.
  • the method is mainly used in non-curable molding compositions which solidify in the tool by cooling.
  • Injection molding is a very economical modern process for producing non-cutting shaped articles and is particularly suitable for automated mass production.
  • thermoplastic molding compounds are heated to liquefaction (up to 180 ° C) and injected under high pressure (up to 140 MPa) in closed, two-piece, that is from Gesenk (earlier Die) and core (formerly male) existing, preferably water-cooled molds, where they cool and solidify.
  • Suitable molding compositions are water-soluble polymers, for example the abovementioned cellulose ethers, pectins, polyethylene glycols, polyvinyl alcohols, polyvinylpyrrolidones, alginates, gelatin or starch.
  • Inventive particularly preferred combination products are characterized in that the / the liquid-filled hollow body has a wall thickness of 100 to 1000 .mu.m, preferably from 110 to 800 .mu.m and in particular from 120 to 600 .mu.m.
  • the combination products according to the invention are detergents or cleaners, preferably textile cleaners, dishwashing detergents or surface cleaners.
  • the group of textile cleaners include, in particular, the universal detergents, color detergents, mild detergents, fabric softeners or ironing aids.
  • the group of dishwashing detergents includes automatic dishwashing and machine rinse aids as well as manual dishwashing detergents.
  • Surface cleaners include i.a. Decalcified, disinfectant or sterilization preparations for surfaces or objects, and agents for cleaning metal or glass surfaces.
  • Preferred such detergents or cleaners contain in the context of the present application at least one substance from the group of builders, surfactants, polymers, bleaches, bleach activators, enzymes, dyes, fragrances, electrolytes, pH adjusters, perfume carriers, fluorescers, hydrotopes, foam inhibitors, silicone oils, Anti-redeposition agents, optical brighteners, grayness inhibitors, anti-shrinkage agents, anti-crease agents, color transfer inhibitors, antimicrobial agents, germicides, fungicides, antioxidants, corrosion inhibitors, antistatic agents, ironing aids, repellents and impregnating agents, swelling and anti-slip agents and / or UV absorbers. These substances will be described in more detail below.
  • the builders include, in particular, the zeolites, silicates, carbonates, organic co-builders and-where there are no ecological prejudices against their use-also the phosphates.
  • Suitable crystalline layered sodium silicates have the general formula NaMSi x O 2x + 1 .H 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x 2, 3 or 4 are.
  • Preferred crystalline layered silicates of the formula given are those in which M is sodium and x assumes the values 2 or 3. In particular, both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 O 5 .yH 2 O are preferred.
  • amorphous sodium silicates with a Na 2 O: SiO 2 modulus of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which Delayed and have secondary washing properties.
  • the dissolution delay compared with conventional amorphous sodium silicates may have been caused in various ways, for example by surface treatment, compounding, compaction / densification or by overdrying.
  • the term "amorphous” is also understood to mean "X-ray amorphous”.
  • the silicates do not yield sharp X-ray reflections typical of crystalline substances in X-ray diffraction experiments, but at most one or more maxima of the scattered X-rays having a width of several degrees of diffraction angle. However, it may well even lead to particularly good builder properties if the silicate particles provide blurred or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline regions of size 10 to a few hundred nm, values of up to max. 50 nm and in particular up to max. 20 nm are preferred. Such so-called X-ray amorphous silicates also have a dissolution delay compared with the conventional water glasses. Particularly preferred are compacted / compacted amorphous silicates, compounded amorphous silicates and overdried X-ray amorphous silicates.
  • these silicates preferably alkali metal silicates, particularly preferably crystalline or amorphous alkali disilicates, be present in detergents or cleaners in amounts of from 10 to 60% by weight, preferably from 15 to 50% by weight. % and in particular from 20 to 40 wt .-%, each based on the weight of the washing or cleaning agent, are included.
  • these compositions preferably contain at least one crystalline layered silicate of the general formula NaMSi x O 2x + 1 .yH 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 22 , preferably from 1.9 to 4, and y is a number from 0 to 33.
  • the crystalline layer-form silicates of the formula NaMSi x O 2x + 1 .yH 2 O are sold, for example, by the company Clariant GmbH (Germany) under the trade name Na-SKS, eg Na-SKS-1 (Na 2 Si 22 O 45 .
  • crystalline phyllosilicates of the formula (I) in which x is 2.
  • x is 2.
  • Na-SKS-5 ⁇ -Na 2 Si 2 O 5
  • Na-SKS-7 ⁇ -Na 2 Si 2 O 5 , Natrosilit
  • Na-SKS-9 NaHSi 2 O 5 ⁇ H 2 O
  • Na-SKS-10 NaHSi 2 O 5 ⁇ 3H 2 O, kanemite
  • Na-SKS-11 t-Na 2 Si 2 O 5
  • Na-SKS-13 Na-SKS-13 (NaHSi 2 O 5 )
  • Na-SKS-6 ⁇ -Na 2 Si 2 O 5
  • these compositions in the context of the present application contain a proportion by weight of the crystalline layered silicate of the formula NaMSi x O 2x + 1 .yH 2 O from 0.1 to 20% by weight, preferably from 0.2 to 15 wt .-% and in particular from 0.4 to 10 wt .-%, each based on the total weight of these agents.
  • Such automatic dishwashing agents have a total silicate content of less than 7% by weight, preferably less than 6% by weight, preferably less than 5% by weight, more preferably less than 4% by weight, most preferably less than 3% by weight % and in particular below 2.5 wt .-%, wherein it is in this silicate, based on the total weight of the silicate contained, preferably at least 70 wt .-%, preferably at least 80 wt .-% and in particular to At least 90 wt .-% is silicate of the general formula NaMSi x O 2x + 1 ⁇ y H 2 O.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • zeolite P zeolite MAP® (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are particularly preferred.
  • zeolite X and zeolite A are cocrystal of zeolite X and zeolite A (about 80% by weight of zeolite X) ), which is sold by the company CONDEA Augusta SpA under the brand name VEGOBOND AX® and by the formula nNa 2 O • (1-n) K 2 O • Al 2 O 3 • (2 - 2.5) SiO 2 • (3.5-5.5) H 2 O can be described.
  • the zeolite can be used both as a builder in a granular compound, as well as to a kind of "powdering" of the entire mixture to be pressed, wherein usually both ways for incorporating the zeolite are used in the premix.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution, measuring method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • phosphates as builders are possible, unless such use should not be avoided for environmental reasons. This applies in particular to the use of agents according to the invention as automatic dishwasher detergents, which is particularly preferred in the context of the present application.
  • agents according to the invention as automatic dishwasher detergents, which is particularly preferred in the context of the present application.
  • the alkali metal phosphates with a particular preference for pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate), have the greatest importance in the washing and cleaning agent industry.
  • Alkali metal phosphates is the summary term for the alkali metal (especially sodium and potassium) salts of various phosphoric acids, in which one can distinguish metaphosphoric acids (HPO 3 ) n and orthophosphoric H 3 PO 4 in addition to higher molecular weight representatives.
  • the phosphates combine several advantages: they act as alkali carriers, prevent lime deposits on machine parts or lime incrustations in fabrics and also contribute to the cleaning performance.
  • Suitable phosphates are, for example, the sodium dihydrogen phosphate, NaH 2 PO 4 , in the form of the dihydrate (density 1.91 gcm -3 , melting point 60 °) or in the form of the monohydrate (density 2.04 gcm -3 ), the disodium hydrogen phosphate (secondary sodium phosphate) , Na 2 HPO 4 , which is anhydrous or with 2 moles (density 2.066 gcm -3 , water loss at 95 °), 7 mol. (Density 1.68 gcm -3 , melting point 48 ° with loss of 5 H 2 O) and 12 mol.
  • Water (density 1.52 gcm -3 , melting point 35 ° with loss of 5 H 2 O) can be used, but especially the trisodium phosphate (tertiary sodium phosphate) Na 3 PO 4 , which can be used as dodecahydrate, as decahydrate (corresponding to 19-20% P 2 O 3 ) and in anhydrous form (corresponding to 39-40% P 2 O 5 ).
  • trisodium phosphate tertiary sodium phosphate
  • Na 3 PO 4 trisodium phosphate (tertiary sodium phosphate) Na 3 PO 4
  • Another preferred phosphate is the tripotassium phosphate (tertiary or tribasic potassium phosphate), K 3 PO 4 .
  • the tetrasodium diphosphate sodium pyrophosphate
  • Na 4 P 2 O 7 which is in anhydrous form (density 2.534 gcm -3 , melting point 988 °, also indicated 880 °) and as decahydrate (density 1.815-1.836 gcm -3 , melting point 94 ° with loss of water)
  • potassium salt potassium diphosphate potassium 4 P 2 O 7 .
  • Sodium and potassium phosphates in which one can distinguish cyclic representatives, the sodium or Kaliummetaphosphate and chain types, the sodium or potassium polyphosphates. In particular, for the latter are a variety of names in use: hot or cold phosphates, Graham's salt, Kurrolsches and Maddrell's salt. All higher sodium and potassium phosphates are collectively referred to as condensed phosphates.
  • the corresponding potassium salt pentapotassium triphosphate, K 5 P 3 O 10 (potassium tripolyphosphate) is marketed, for example, in the form of a 50% strength by weight solution (> 23% P 2 O 5 , 25% K 2 O).
  • the potassium polyphosphates are widely used in the washing and cleaning industry.
  • sodium potassium tripolyphosphates which can also be used in the context of the present invention. These arise, for example, when hydrolyzed sodium trimetaphosphate with KOH: (NaPO 3 ) 3 + 2 KOH ⁇ Na 3 K 2 P 3 O 10 + H 2 O
  • phosphates are used as detergents or cleaning agents in the context of the present application
  • preferred agents comprise this phosphate (s), preferably alkali metal phosphate (s), particularly preferably pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate). , in amounts of from 5 to 80% by weight, preferably from 15 to 75% by weight, in particular from 20 to 70% by weight, in each case based on the weight of the washing or cleaning agent.
  • potassium tripolyphosphate and sodium tripolyphosphate in a weight ratio of more than 1: 1, preferably more than 2: 1, preferably more than 5: 1, more preferably more than 10: 1 and in particular more than 20: 1. It is particularly preferred to use exclusively potassium tripolyphosphate without admixtures of other phosphates.
  • alkali carriers are, for example, alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogencarbonates, alkali metal sesquicarbonates, the cited alkali metal silicates, alkali metal silicates and mixtures of the abovementioned substances, preference being given to using alkali metal carbonates, in particular sodium carbonate, sodium bicarbonate or sodium sesquicarbonate for the purposes of this invention.
  • alkali metal carbonates in particular sodium carbonate, sodium bicarbonate or sodium sesquicarbonate for the purposes of this invention.
  • a builder system comprising a mixture of tripolyphosphate and sodium carbonate.
  • a builder system comprising a mixture of tripolyphosphate and sodium carbonate and sodium disilicate.
  • the alkali metal hydroxides are preferably only in small amounts, preferably in amounts below 10 wt .-%, preferably below 6 wt .-%, more preferably below 4 wt .-% and in particular below 2 wt .-%, each based on the total weight of the detergent or cleaning agent used.
  • Particularly preferred are agents which, based on their total weight, contain less than 0.5% by weight and in particular no alkali metal hydroxides.
  • carbonate (s) and / or bicarbonate (s) preferably alkali metal carbonate (s), more preferably sodium carbonate
  • agents which, based on the weight of the washing or cleaning agent (ie the total weight of the combination product without packaging) less than 20 wt .-%, preferably less than 17 wt .-%, preferably less than 13 wt .-% and in particular less than 9% by weight of carbonate (s) and / or bicarbonate (s), preferably alkali metal carbonates, particularly preferably sodium carbonate.
  • organic co-builders are polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, other organic cobuilders (see below) and phosphonates. These classes of substances are described below.
  • Useful organic builder substances are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids meaning those carboxylic acids which carry more than one acid function. These are, for example, citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of the polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • the acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaners.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any desired mixtures of these can be mentioned here.
  • polymeric polycarboxylates for example the alkali metal salts of polyacrylic acid or of polymethacrylic acid, for example those having a relative molecular mass of from 500 to 70,000 g / mol.
  • the molecular weights stated for polymeric polycarboxylates are weight-average molar masses M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UV detector being used. The measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship with the polymers investigated. These data differ significantly from the molecular weight data, in which polystyrene sulfonic acids are used as standard. The molar masses measured against polystyrenesulfonic acids are generally significantly higher than the molecular weights specified in this document.
  • Suitable polymers are, in particular, polyacrylates which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates, which have molar masses of from 2000 to 10000 g / mol, and particularly preferably from 3000 to 5000 g / mol, may again be preferred from this group.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids is generally from 2000 to 70000 g / mol, preferably from 20,000 to 50,000 g / mol and in particular from 30,000 to 40,000 g / mol.
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution.
  • the content of detergents or cleaners to (co) polymeric polycarboxylates is preferably 0.5 to 20 wt .-%, in particular 3 to 10 wt .-%.
  • the polymers may also contain allylsulfonic acids such as allyloxybenzenesulfonic acid and methallylsulfonic acid as a monomer.
  • biodegradable polymers of more than two different monomer units for example those which contain as monomers salts of acrylic acid and maleic acid and vinyl alcohol or vinyl alcohol derivatives or as monomers salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives ,
  • copolymers are those which preferably have as monomers acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate.
  • polymeric aminodicarboxylic acids their salts or their precursors.
  • Particularly preferred are polyaspartic acids or their salts and.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 C atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme catalyzed processes.
  • it is hydrolysis products having average molecular weights in the range of 400 to 500,000 g / mol.
  • a polysaccharide with a dextrose equivalent (DE) in the range from 0.5 to 40, in particular from 2 to 30 is preferred, DE being a common measure of the reducing action of a polysaccharide compared to dextrose, which has a DE of 100 , is.
  • DE dextrose equivalent
  • oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Oxydisuccinates and other derivatives of disuccinates are other suitable co-builders.
  • ethylenediamine-N, N'-disuccinate (EDDS) is preferably used in the form of its sodium or magnesium salts.
  • EDDS ethylenediamine-N, N'-disuccinate
  • glycerol disuccinates and glycerol trisuccinates are also preferred. Suitable amounts are in zeolithissen and / or silicate-containing formulations at 3 to 15 wt .-%.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may optionally also be present in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • phosphonates are, in particular, hydroxyalkane or aminoalkanephosphonates.
  • hydroxyalkane phosphonates 1-hydroxyethane-1,1-diphosphonate (HEDP) is of particular importance as a co-builder.
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • Preferred aminoalkanephosphonates are ethylenediamine tetramethylenephosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologs. They are preferably in the form of neutral sodium salts, eg. B.
  • the builder used here is preferably HEDP from the class of phosphonates.
  • the aminoalkanephosphonates also have a pronounced heavy metal binding capacity. Accordingly, in particular if the agents also contain bleach, it may be preferable to use aminoalkanephosphonates, in particular DTPMP, or to use mixtures of the phosphonates mentioned.
  • the group of surfactants also includes the anionic, cationic and amphoteric surfactants.
  • nonionic surfactants are preferably used alkoxylated, preferably ethoxylated, especially primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol in which the alcohol radical is linear or preferably methyl-branched in the 2-position may contain or linear and methyl-branched radicals in the mixture, as they are usually present in Oxoalkoholresten.
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols include, for example, C 12-14 alcohols with 3 EO or 4 EO, C 9-11 alcohols with 7 EO, C 13-15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12-18 alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12-14 -alcohol with 3 EO and C 12-18 -alcohol with 5 EO.
  • the specified degrees of ethoxylation represent statistical averages that are suitable for a particular product can be a whole or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • nonionic surfactants and alkyl glycosides of the general formula RO (G) x can be used in which R is a primary straight-chain or methyl-branched, especially in the 2-position methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is the symbol which represents a glycose unit having 5 or 6 C atoms, preferably glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; preferably x is 1.2 to 1.4.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having from 1 to 4 carbon atoms in the alkyl chain.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • surfactants are polyhydroxy fatty acid amides of the formula (I)
  • RCO is an aliphatic acyl group having 6 to 22 carbon atoms
  • R 1 is hydrogen, an alkyl or hydroxyalkyl group having 1 to 4 carbon atoms
  • [Z] is a linear or branched polyhydroxyalkyl group having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula in the R is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 is a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms
  • R 2 is a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl radical having from 1 to 8 carbon atoms, with C 1-4 alkyl or phenyl radicals being preferred and [Z] being a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated Derivatives of this residue.
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • the machine dishwashing detergents according to the invention contain nonionic surfactants, in particular nonionic surfactants from the group of the alkoxylated alcohols.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or linear and methyl-branched radicals in the mixture can contain, as they are usually present in Oxoalkoholresten.
  • EO ethylene oxide
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • Preferred ethoxylated alcohols include, for example, C 12-14 alcohols with 3 EO or 4 EO, C9-11 alcohol containing 7 EO, C 13-16 alcohols containing 3 EO, 5 EO, 7 EO or 8 EO, C 12-18 alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12-14 -alcohol with 3 EO and C 12-18 -alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • nonionic surfactants which have a melting point above room temperature
  • nonionic surfactants having a melting point above 20 ° C., preferably above 25 ° C, more preferably between 25 and 60 ° C and especially between 26.6 and 43.3 ° C are particularly preferred.
  • Suitable nonionic surfactants which have melting or softening points in the temperature range mentioned are, for example, low-foaming nonionic surfactants which may be solid or highly viscous at room temperature. If highly viscous nonionic surfactants are used at room temperature, it is preferred that they have a viscosity above 20 Pas, preferably above 35 Pas and in particular above 40 Pas. Nonionic surfactants which have waxy consistency at room temperature are also preferred.
  • Preferred nonionic surfactants to be used at room temperature are from the groups of the alkoxylated nonionic surfactants, in particular the ethoxylated primary alcohols, and mixtures of these surfactants with structurally complicated surfactants such as polyoxypropylene / polyoxyethylene / polyoxypropylene (PO / EO / PO) surfactants.
  • Such (PO / EO / PO) nonionic surfactants are also distinguished by good foam control.
  • the nonionic surfactant having a melting point above room temperature is an ethoxylated nonionic surfactant consisting of the reaction of a monohydroxyalkanol or alkylphenol having 6 to 20 carbon atoms, preferably at least 12 mol, more preferably at least 15 mol, especially at least 20 moles of ethylene oxide per mole of alcohol or alkylphenol emerged.
  • a particularly preferred room temperature solid nonionic surfactant is obtained from a straight chain fatty alcohol having 16 to 20 carbon atoms (C 16-20 alcohol), preferably a C 18 alcohol and at least 12 moles, preferably at least 15 moles and especially at least 20 moles of ethylene oxide , Of these, the so-called “narrow range ethoxylates" (see above) are particularly preferred.
  • ethoxylated nonionic surfactants which are obtained from C 6-20 monohydroxyalkanols or C 6-20 -alkylphenols or C 16-20 fatty alcohols and more than 12 mol, preferably more than 15 mol and in particular more than 20 mol of ethylene oxide per mol of alcohol were.
  • the nonionic surfactant solid at room temperature preferably additionally has propylene oxide units in the molecule.
  • such PO units make up to 25 wt .-%, more preferably up to 20 wt .-% and in particular up to 15 wt .-% of the total molecular weight of the nonionic surfactant from.
  • Particularly preferred nonionic surfactants are ethoxylated monohydroxyalkanols or alkylphenols which additionally have polyoxyethylene-polyoxypropylene block copolymer units.
  • the alcohol or alkylphenol part of such nonionic surfactant molecules preferably makes up more than 30% by weight, more preferably more than 50% by weight and in particular more than 70% by weight of the total Molar mass of such nonionic surfactants.
  • Preferred dishwashing detergents are characterized in that they contain ethoxylated and propoxylated nonionic surfactants in which the propylene oxide units in the molecule contain up to 25% by weight, preferably up to 20% by weight and in particular up to 15% by weight of the total molecular weight of the nonionic Surfactants are included.
  • More particularly preferred nonionic surfactants having melting points above room temperature contain from 40 to 70% of a polyoxypropylene / polyoxyethylene / polyoxypropylene block polymer blend containing 75% by weight of a reverse block copolymer of polyoxyethylene and polyoxypropylene with 17 moles of ethylene oxide and 44 moles of propylene oxide and 25% by weight. % of a block copolymer of polyoxyethylene and polyoxypropylene initiated with trimethylolpropane and containing 24 moles of ethylene oxide and 99 moles of propylene oxide per mole of trimethylolpropane.
  • Nonionic surfactants which may be used with particular preference are available, for example, under the name Poly Tergent® SLF-18 from Olin Chemicals.
  • the nonionic surfactants of the formula (II) R 1 O [CH 2 CH (CH 3 ) O] x [CH 2 CH 2 O] y [CH 2 CH (OH) R 2 ], (II) in which R 1 is a linear or branched aliphatic hydrocarbon radical having 4 to 18 carbon atoms or mixtures thereof, R 2 denotes a linear or branched hydrocarbon radical having 2 to 26 carbon atoms or mixtures thereof and x for values between 0.5 and 1.5 and y is a value of at least 15, used.
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula R 1 O [CH 2 CH (R 3 ) O] x [CH 2 ] k CH (OH) [CH 2 ] j OR 2 in which R 1 and R 2 are linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n- Butyl, 2-butyl or 2-methyl-2-butyl radical, x are values between 1 and 30, k and j are values between 1 and 12, preferably between 1 and 5.
  • each R 3 in the above formula may be different.
  • R 1 and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 6 to 22 carbon atoms, with radicals having 8 to 18 carbon atoms being particularly preferred.
  • R 3 H, -CH 3 or -CH 2 CH 3 are particularly preferred.
  • Particularly preferred values for x are in the range from 1 to 20, in particular from 6 to 15.
  • each R 3 in the above formula may be different if x ⁇ 2.
  • the alkylene oxide unit in the square bracket can be varied.
  • the value 3 for x has been selected here by way of example and may well be greater, with the variation width increasing with increasing x values and including, for example, a large number (EO) groups combined with a small number (PO) groups, or vice versa ,
  • R 1 , R 2 and R 3 are as defined above and x is from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18.
  • Particularly preferred are surfactants in which the radicals R 1 and R 2 has 9 to 14 C atoms, R 3 is H and x assumes values of 6 to 15.
  • nonionic surfactants low foaming nonionic surfactants which have alternating ethylene oxide and alkylene oxide units have been found in the context of the present application.
  • surfactants with EO-AO-EO-AO blocks are preferred, wherein in each case one to ten EO or AO groups are bonded to each other before one block from the other Groups follows.
  • Machine dishwashing agents according to the invention which contain surfactants of the general formula III as nonionic surfactant (s) are preferred here
  • R 1 is a straight-chain or branched, saturated or mono- or polyunsaturated C 6-24 alkyl or alkenyl radical; each group R 2 or R 3 is independently selected from -CH 3 ; -CH 2 CH 3 , -CH 2 CH 2 -CH 3 , CH (CH 3 ) 2 and the indices w, x, y, z independently of one another are integers from 1 to 6.
  • the preferred nonionic surfactants of formula III can be prepared by known methods from the corresponding alcohols R 1 -OH and ethylene or alkylene oxide.
  • the radical R 1 in formula III above may vary depending on the origin of the alcohol. If native sources are used, the radical R 1 has an even number of carbon atoms and is usually undisplayed, wherein the linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example from coconut, palm, tallow or Oleyl alcohol, are preferred.
  • Alcohols which are accessible from synthetic sources are, for example, the Guerbet alcohols or methyl-branched or linear and methyl-branched radicals in the 2-position, as they are usually present in oxo alcohol radicals.
  • R 1 in formula III is an alkyl radical having 6 to 24, preferably 8 to 20, particularly preferably 9 to 15 and in particular 9 to 11 carbon atoms.
  • alkylene oxide unit which is contained in the preferred nonionic surfactants in alternation with the ethylene oxide unit, in particular butylene oxide is considered in addition to propylene oxide.
  • R 2 or R 3 are independently selected from -CH 2 CH 2 -CH 3 or CH (CH 3 ) 2 are suitable.
  • Preferred automatic dishwashing agents are characterized in that R 2 and R 3 are each a residue -CH 3 , w and x independently of one another for values of 3 or 4 and y and z independently of one another represent values of 1 or 2.
  • nonionic surfactants having a C 9-15 alkyl group having 1 to 4 ethylene oxide units followed by 1 to 4 propylene oxide units followed by 1 to 4 ethylene oxide units followed by 1 to 4 propylene oxide units.
  • These surfactants have the required low viscosity in aqueous solution and can be used according to the invention with particular preference.
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula (IV) R 1 O [CH 2 CH (R 3 ) O] x R 2 (IV) in which R 1 represents linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, R 2 represents linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, which preferably between 1 and have 5 hydroxy groups and are preferably further functionalized with an ether group, R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2-butyl or 2-methyl-2- Butyl radical, x for values between 1 and 40.
  • R 1 represents linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms
  • R 2 represents linear or branched, saturated or
  • R 3 is H.
  • R 1 O [CH 2 CH 2 O] x R 2 (V) R 1 O [CH 2 CH 2 O] x R 2 (V)
  • R 1 is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, preferably having 4 to 20 carbon atoms
  • R 2 is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, which preferably have between 1 and 5 hydroxyl groups and x stands for values between 1 and 40.
  • those end-capped poly (oxyalkylated) nonionic surfactants are preferred, which according to the formula (VI) R 1 O [CH 2 CH 2 O] x CH 2 CH (OH) R 2 (VI) in addition to a radical R 1 , which is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, preferably having 4 to 20 carbon atoms, furthermore a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radical with 1 have up to 30 carbon atoms R 2 , which is a monohydroxylated intermediate group -CH 2 CH (OH) - adjacent.
  • x stands for values between 1 and 40.
  • Such end-capped poly (oxyalkylated) nonionic surfactants can be prepared, for example, by reacting a terminal epoxide of the formula R 2 CH (O) CH 2 with an ethoxylated alcohol of the formula R 1 O [CH 2 CH 2 O] x-1 CH 2 CH 2 OH.
  • the stated C chain lengths and degrees of ethoxylation or degrees of alkoxylation of the aforementioned nonionic surfactants represent statistical mean values which, for a specific product, are a whole or a whole can be a fractional number. Due to the manufacturing process, commercial products of the formulas mentioned are usually not made of an individual representative, but of mixtures, which may result in mean values for the C chain lengths as well as for the degrees of ethoxylation or degrees of alkoxylation and subsequently broken numbers.
  • anionic surfactants for example, those of the sulfonate type and sulfates are used.
  • the surfactants of the sulfonate type are preferably C 9-13 -alkylbenzenesulfonates, olefinsulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and disulfonates, as are obtained, for example, from C 12-18 -monoolefins having terminal or internal double bonds by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acid hydrolysis of the sulfonation products into consideration.
  • alkanesulfonates which are obtained from C 12-18 alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of ⁇ -sulfo fatty acids for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids are suitable.
  • sulfated fatty acid glycerol esters are to be understood as meaning the mono-, di- and triesters and mixtures thereof, as obtained in the preparation by esterification of a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol.
  • Preferred sulfated fatty acid glycerol esters are the sulfonation products of saturated fatty acids having 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • Alk (en) ylsulfates are the alkali metal salts and in particular the sodium salts of the sulfuric monoesters of C 12 -C 18 fatty alcohols, for example coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 20 oxo alcohols and those half-esters of secondary alcohols of these chain lengths are preferred. Also preferred are alk (en) ylsulfates of said chain length, which contain a synthetic, produced on a petrochemical basis straight-chain alkyl radical having an analogous degradation behavior as the adequate compounds based on oleochemical raw materials.
  • C 12 -C 16 alkyl sulfates and C 12 -C 15 alkyl sulfates and C 14 -C 15 alkyl sulfates are preferred.
  • 2,3-alkyl sulfates which can be obtained as commercial products of the Shell Oil Company under the name DAN®, are suitable anionic surfactants.
  • EO ethylene oxide
  • Fatty alcohols with 1 to 4 EO are suitable. Due to their high foaming behavior, they are only used in detergents in relatively small amounts, for example in amounts of from 1 to 5% by weight.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and the monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8-18 fatty alcohol residues or mixtures of these.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue derived from ethoxylated fatty alcohols, which in themselves constitute nonionic surfactants (see description below).
  • Sulfosuccinates whose fatty alcohol residues are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are again particularly preferred.
  • alk (en) ylsuccinic acid having preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • anionic surfactants are particularly soaps into consideration.
  • Suitable are saturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular of natural fatty acids, e.g. Coconut, palm kernel or tallow fatty acids, derived soap mixtures.
  • the anionic surfactants may be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably present in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • anionic surfactants are part of automatic dishwasher detergents, their content, based on the total weight of the compositions, is preferably less than 4% by weight, preferably less than 2% by weight and very particularly preferably less than 1% by weight. Machine dishwashing detergents which do not contain anionic surfactants are particularly preferred.
  • the content of cationic and / or amphoteric surfactants is preferably less than 6% by weight, preferably less than 4% by weight, very particularly preferably less than 2% by weight and in particular less than 1% by weight. %. Automatic dishwashing detergents containing no cationic or amphoteric surfactants are particularly preferred.
  • the group of polymers includes, in particular, the washing or cleaning-active polymers, for example the rinse aid polymers and / or polymers which act as softeners.
  • the washing or cleaning-active polymers for example the rinse aid polymers and / or polymers which act as softeners.
  • cationic, anionic and amphoteric polymers can be used in detergents or cleaners in addition to nonionic polymers.
  • Effective polymers as softeners are, for example, the sulfonic acid-containing polymers which are used with particular preference.
  • Suldonklare phenomenon-containing polymers are copolymers of unsaturated carboxylic acids, sulfonic acid-containing monomers and optionally other ionic or nonionic monomers.
  • R 1 (R 2 ) C C (R 3 ) COOH (X)
  • R 1 to R 3 independently of one another are -H-CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, with -NH 2 , -OH or -COOH substituted alkyl or alkenyl radicals as defined above or is -COOH or -COOR 4 , wherein R 4 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 1 to 12 carbon atoms.
  • R 5 (R 6 ) C C (R 7 ) -X-SO 3 H (XI)
  • Suitable further ionic or nonionic monomers are, in particular, ethylenically unsaturated compounds.
  • the content of the monomers used according to the invention to monomers of group iii) is preferably less than 20% by weight, based on the polymer.
  • Particularly preferred polymers to be used consist only of monomers of groups i) and ii).
  • the copolymers may contain the monomers from groups i) and ii) and, if appropriate, iii) in varying amounts, it being possible for all representatives from group i) to be combined with all representatives from group ii) and all representatives from group iii).
  • Particularly preferred polymers have certain structural units, which are described below.
  • These polymers are prepared by copolymerization of acrylic acid with a sulfonic acid-containing acrylic acid derivative.
  • acrylic acid derivative containing sulfonic acid groups is copolymerized with methacrylic acid, another polymer is obtained whose use is likewise preferred.
  • Acrylic acid and / or methacrylic acid can also be copolymerized completely analogously with methacrylic acid derivatives containing sulfonic acid groups, as a result of which the structural units in the molecule are changed.
  • the sulfonic acid groups may be wholly or partly in neutralized form, ie that the acidic acid of the sulfonic acid group in some or all sulfonic acid groups may be exchanged for metal ions, preferably alkali metal ions and especially sodium ions.
  • metal ions preferably alkali metal ions and especially sodium ions.
  • the monomer distribution of the copolymers preferably used according to the invention in the case of copolymers which contain only monomers from groups i) and ii) is preferably in each case from 5 to 95% by weight i) or ii), particularly preferably from 50 to 90% by weight monomer from group i) and from 10 to 50% by weight of monomer from group ii), in each case based on the polymer.
  • terpolymers particular preference is given to those containing from 20 to 85% by weight of monomer from group i), from 10 to 60% by weight of monomer from group ii) and from 5 to 30% by weight of monomer from group iii) ,
  • the molar mass of the sulfo copolymers preferably used according to the invention can be varied in order to adapt the properties of the polymers to the desired end use.
  • Preferred detergent or cleaning compositions are characterized in that the copolymers have molecular weights of from 2000 to 200,000 gmol -1 , preferably from 4000 to 25,000 gmol -1 and in particular from 5000 to 15,000 gmol -1 .
  • amphoteric or cationic polymers are characterized by having at least one positive charge.
  • Such polymers are preferably water-soluble or water-dispersible, that is, they have a solubility in water at 25 ° C above 10 mg / ml.
  • amphoteric polymers contain as monomer units derivatives of diallylamine, in particular dimethyldiallylammonium salt and / or methacrylamidopropyl (trimethyl) ammonium salt, preferably in the form of the chloride, bromide, iodide, hydroxide, phosphate, sulfate, hydrosulfate, ethylsulfate, methylsulfate, mesylate, tosylate, formate or acetate in combination with monomer units from the group of ethylenically unsaturated carboxylic acids.
  • sodium percarbonate has particular significance.
  • Further useful bleaching agents are, for example, the sodium perborate tetrahydrate and the sodium perborate monohydrate, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid.
  • Bleaching agents from the group of organic bleaching agents can also be used according to the invention.
  • Typical organic bleaches are the diacyl peroxides such as dibenzoyl peroxide.
  • peroxyacids examples of which include the alkyl peroxyacids and the aryl peroxyacids.
  • Preferred representatives are (a) the peroxybenzoic acid and its ring-substituted derivatives, such as alkylperoxybenzoic acids, but also peroxy- ⁇ -naphthoic acid and magnesium monoperphthalate, (b) the aliphatic or substituted aliphatic peroxyacids, such as peroxylauric acid, peroxystearic acid, ⁇ -phthalimidoperoxycaproic acid [phthaloiminoperoxyhexanoic acid (PAP)] , o-carboxybenzamidoperoxycaproic acid, N-nonenylamidoperadipic acid and N-nonenylamidopersuccinate, and (c) aliphatic and araliphatic peroxydicarboxylic acids, such as 1,12-diperoxycarboxylic acid, 1,9-diper
  • chlorine or bromine releasing substances can be used as a bleaching agent and chlorine or bromine releasing substances.
  • suitable chlorine or bromine releasing materials are, for example, heterocyclic N-bromo and N-chloroamides, for example trichloroisocyanuric acid, tribromoisocyanuric acid, dibromoisocyanuric acid and / or dichloroisocyanuric acid (DICA) and / or their salts with cations such as potassium and sodium into consideration.
  • DICA dichloroisocyanuric acid
  • Hydantoin compounds such as 1,3-dichloro-5,5-dimethylhydantoin are also suitable.
  • Bleach activators are used, for example, in detergents or cleaners to achieve improved bleaching performance when cleaned at temperatures of 60 ° C and below.
  • As bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate and 2,5-diacetoxy- 2,5-dihydrofuran.
  • TAED tetraacet
  • Further bleach activators preferably used in the context of the present application are compounds from the group of cationic nitriles, in particular cationic nitriles of the formula in the R 1 is -H, -CH 3 , a C 2-24 alkyl or alkenyl radical, a substituted C 2-24 alkyl or alkenyl radical having at least one substituent from the group -Cl, -Br, - OH, -NH 2 , -CN, an alkyl or alkenylaryl radical having a C 1-24 -alkyl group, or represents a substituted alkyl or alkenylaryl radical having a C 1-24 -alkyl group and at least one further substituent on the aromatic ring, R 2 and R 3 are independently selected from -CH 2 -CN, -CH 3 , -CH 2 -CH 3 , -CH 2 -CH 2 -CH 3 , -CH (CH 3 ) -CH 3 , -CH 2 -
  • bleach activators it is also possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate, 2,5-diacetoxy- 2,5-dihydrofuran, n-methyl-morph
  • bleach catalysts can also be used.
  • These substances are bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo saline complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands and Co, Fe, Cu and Ru ammine complexes are useful as bleach catalysts.
  • bleach activators preference is given to bleach activators from the group of the polyacylated alkylenediamines, in particular tetraacetylethylenediamine (TAED), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (US Pat.
  • TAED tetraacetylethylenediamine
  • N-acylimides in particular N-nonanoylsuccinimide (NOSI)
  • acylated phenolsulfonates in particular n-nonanoyl or isononanoyloxybenzenesulfonate
  • N- or iso-NOBS N- or iso-NOBS
  • n-methyl-morpholinium acetonitrile-methyl sulfate (MMA) preferably in amounts of up to 10 wt .-%, in particular 0.1 wt .-% to 8 wt .-%, especially 2 to 8 wt .-% and particularly preferably 2 to 6 wt .-%, each based on the total weight of the bleach activator-containing agents used.
  • Bleach-enhancing transition metal complexes in particular having the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, preferably selected from the group of manganese and / or cobalt salts and / or complexes, particularly preferably the cobalt (ammine) Complexes of the cobalt (acetate) complexes, the cobalt (carbonyl) complexes, the chlorides of cobalt or manganese, manganese sulfate are used in conventional amounts, preferably in an amount up to 5 wt .-%, in particular of 0.0025 wt % to 1 wt .-% and particularly preferably from 0.01 wt .-% to 0.25 wt .-%, each based on the total weight of the bleach activator-containing agents used. But in special cases, more bleach activator can be used.
  • Glass corrosion inhibitors prevent the occurrence of haze, streaks and scratches, but also iridescence of the glass surface of machine-cleaned glasses.
  • Preferred glass corrosion inhibitors come from the group of magnesium and / or zinc salts and / or magnesium and / or zinc complexes.
  • a preferred class of compounds that can be used to prevent glass corrosion are insoluble zinc salts.
  • Insoluble zinc salts in the context of this preferred embodiment are zinc salts which have a solubility of a maximum of 10 grams of zinc salt per liter of water at 20 ° C.
  • Examples of particularly preferred insoluble zinc salts according to the invention are zinc silicate, zinc carbonate, zinc oxide, basic zinc carbonate (Zn 2 (OH) 2 CO 3 ), zinc hydroxide, zinc oxalate, zinc monophosphate (Zn 3 (PO 4 ) 2 ), and zinc pyrophosphate (Zn 2 (P 2 O 7 )).
  • the zinc compounds mentioned are preferably used in amounts which have a content of the zinc ions of between 0.02 and 10% by weight, preferably between 0.1 and 5.0% by weight and in particular between 0.2 and 1.0 % By weight, based in each case on the entire glass corrosion inhibitor-containing agent.
  • the exact content of the agent on the zinc salt or zinc salts is natural depending on the nature of the zinc salts, the less soluble the zinc salt used, the higher should be its concentration in the agents.
  • the particle size of the salts is a criterion to be observed, so that the salts do not adhere to glassware or machine parts.
  • the insoluble zinc salts have a particle size below 1.7 millimeters.
  • the insoluble zinc salt has an average particle size which is significantly below this value in order to further minimize the risk of insoluble residues, for example an average particle size of less than 250 ⁇ m. Again, this is even more true the less the zinc salt is soluble.
  • the glass corrosion inhibiting effectiveness increases with decreasing particle size.
  • the average particle size is preferably below 100 microns. For still less soluble salts, it may be even lower; For example, average particle sizes below 100 ⁇ m are preferred for the very poorly soluble zinc oxide.
  • Another preferred class of compounds are magnesium and / or zinc salt (s) of at least one monomeric and / or polymeric organic acid. The effect of this is that even with repeated use, the surfaces of glassware do not change corrosively, in particular, no turbidity, streaks or scratches, but also iridescence of the glass surfaces are not caused.
  • magnesium and / or zinc salt (s) of monomeric and / or polymeric organic acids can be used, as described above, the magnesium and / or zinc salts of monomeric and / or polymeric organic acids from the groups of unbranched saturated or unsaturated monocarboxylic acids, the branched saturated or unsaturated monocarboxylic acids, the saturated and unsaturated dicarboxylic acids, the aromatic mono-, di- and tricarboxylic acids, the sugar acids, the hydroxy acids, the oxo acids, the amino acids and / or the polymeric carboxylic acids are preferred.
  • the spectrum of the inventively preferred zinc salts of organic acids preferably organic carboxylic acids, ranging from salts which are difficult or insoluble in water, ie a solubility below 100 mg / L, preferably below 10 mg / L, in particular have no solubility, to such Salts which have a solubility in water above 100 mg / L, preferably above 500 mg / L, more preferably above 1 g / L and in particular above 5 g / L (all solubilities at 20 ° C water temperature).
  • the first group of zinc salts includes, for example, zinc citrate, zinc oleate and zinc stearate
  • the group of soluble zinc salts includes, for example, zinc formate, zinc acetate, zinc lactate and zinc gluconate.
  • the glass corrosion inhibitor used is at least one zinc salt of an organic carboxylic acid, more preferably a zinc salt from the group zinc stearate, zinc oleate, zinc gluconate, zinc acetate, zinc lactate and / or zinc citrate.
  • Zinc ricinoleate, zinc abietate and zinc oxalate are also preferred.
  • the content of cleaning agents to zinc salt is preferably between 0.1 to 5 wt .-%, preferably between 0.2 to 4 wt .-% and in particular between 0.4 to 3 wt .-%, or the content of zinc in oxidized form (calculated as Zn 2+ ) is between 0.01 and 1% by weight, preferably between 0.02 and 0.5% by weight and in particular between 0.04 and 0.2% by weight. -%, in each case based on the total weight of the glass corrosion inhibitor-containing agent.
  • Corrosion inhibitors serve to protect the items to be washed or the machine, with particular silver protectants being of particular importance in the field of automatic dishwashing. It is possible to use the known substances of the prior art. In general, silver protectants selected from the group of triazoles, benzotriazoles, bisbenzotriazoles, aminotriazoles, alkylaminotriazoles and transition metal salts or complexes can be used in particular. Particularly preferred to use are benzotriazole and / or alkylaminotriazole.
  • Examples of the 3-amino-5-alkyl-1,2,4-triazoles preferably used according to the invention may be: 5-propyl, -butyl, -pentyl, -heptyl, -octyl, -nonyl -, decyl, - undecyl, - dodecyl, - isononyl, - versatic-10-alkyl, -phenyl, -p-tolyl, - (4-tert-butylphenyl) -, - (4- Methoxyphenyl) -, - (2-, -3-, 4-pyridyl) -, - (2-thienyl) -, - (5-methyl-2-furyl) -, - (5-oxo-2-pyrrolidinyl) , -3-amino-1,2,4-triazole.
  • Preferred acids for salt formation are hydrochloric acid, sulfuric acid, phosphoric acid, carbonic acid, sulphurous acid, organic carboxylic acids such as acetic, glycolic, citric, succinic acid.
  • cleaner formulations often contain active chlorine-containing agents which can markedly reduce the corrosion of the silver surface.
  • active chlorine-containing agents are particularly oxygen and nitrogen-containing organic redox-active compounds, such as di- and trihydric phenols, eg. As hydroquinone, pyrocatechol, hydroxyhydroquinone, gallic acid, phloroglucinol, pyrogallol or derivatives of these classes of compounds.
  • salt and complex inorganic compounds such as salts of the metals Mn, Ti, Zr, Hf, V, Co and Ce are often used.
  • transition metal salts which are selected from the group of manganese and / or cobalt salts and / or complexes, more preferably the cobalt (amine) complexes, the cobalt (acetate) complexes, the cobalt (carbonyl) complexes , the chlorides of cobalt or manganese and manganese sulfate.
  • zinc compounds can be used to prevent corrosion on the items to be washed.
  • redox-active substances can be used. These substances are preferably inorganic redox-active substances from the group of manganese, titanium, zirconium, hafnium, vanadium, cobalt and cerium salts and / or complexes, wherein the metals preferably in one of the oxidation states II, III , IV, V or VI.
  • the metal salts or metal complexes used should be at least partially soluble in water.
  • the counterions suitable for salt formation comprise all customary mono-, di- or tri-positively negatively charged inorganic anions, eg. As oxide, sulfate, nitrate, fluoride, but also organic anions such. Stearate.
  • Metal complexes in the context of the invention are compounds which consist of a central atom and one or more ligands and optionally additionally one or more of the abovementioned anions.
  • the central atom is one of the above-mentioned metals in one of the abovementioned oxidation states.
  • the ligands are neutral molecules or anions that are mono- or polydentate;
  • the term "ligands" within the meaning of the invention is, for example, in " Römpp Chemie Lexikon, Georg Thieme Verlag Stuttgart / New York, 9th edition, 1990, page 2507 If, in a metal complex, the charge of the central atom and the charge of the ligand (s) are not zero, either one or more of the abovementioned anions or one or more, depending on whether there is a cationic or an anionic charge surplus Cations, for example sodium, potassium and ammonium ions, for charge balance Suitable complexing agents are, for example, citrate, acetylacetonate or 1-hydroxyethane-1,1-diphosphonate.
  • metal salts and / or metal complexes are selected from the group MnSO 4 , Mn (II) citrate, Mn (II) stearate, Mn (II) acetylacetonate, Mn (II) - [1-hydroxyethane-1,1- diphosphonate], V 2 O 5 , V 2 O 4 , VO 2 , TiOSO 4 , K 2 TiF 6 , K 2 ZrF 6 , CoSO 4 , Co (NO 3 ) 2 , Ce (NO 3 ) 3 and mixtures thereof.
  • metal salts and / or metal complexes are selected from the group MnSO 4 , Mn (II) citrate, Mn (II) stearate, Mn (II) acetylacetonate, Mn (II) - [1-hydroxyethane-1,1-diphosphonate], V 2 O 5 , V 2 O 4 , VO 2 , TiOSO 4 , K 2 TiF 6 , K 2 ZrF 6 , CoSO 4 , Co (NO 3 ) 2 , Ce (NO 3 ) 3 .
  • metal salts or metal complexes are generally commercially available substances which, for the purpose of silver corrosion protection, are not subject to prior purification in the inventive compositions Means can be used.
  • the mixture of pentavalent and tetravalent vanadium (V 2 O 5 , VO 2 , V 2 O 4 ) known from the SO 3 preparation (contact method) is suitable, as is the case by diluting a Ti (SO 4 ) 2 - Solution resulting titanyl sulfate, TiOSO 4 .
  • the inorganic redox-active substances are preferably coated, i. completely coated with a waterproof, but easily soluble in the cleaning temperatures material to prevent their premature decomposition or oxidation during storage.
  • Preferred coating materials which are applied by known methods, such as Sandwik from the food industry, are paraffins, microwaxes, waxes of natural origin such as carnauba wax, candellila wax, beeswax, higher melting alcohols such as hexadecanol, soaps or fatty acids.
  • the coating material which is solid at room temperature, is applied in the molten state to the material to be coated, e.g.
  • the melting point must be chosen so that the coating material easily dissolves or melts during the silver treatment.
  • the melting point should ideally be in the range between 45 ° C and 65 ° C and preferably in the range 50 ° C to 60 ° C.
  • the metal salts and / or metal complexes mentioned are contained in cleaning agents, preferably in an amount of 0.05 to 6 wt .-%, preferably 0.2 to 2.5 wt .-%, each based on the total corrosion inhibitor-containing agent.
  • enzymes can be used. These include in particular proteases, amylases, lipases, hemicellulases, cellulases or oxidoreductases, and preferably mixtures thereof. These enzymes are basically of natural origin; Starting from the natural molecules, improved variants are available for use in detergents and cleaners, which are preferably used accordingly. Agents according to the invention preferably contain enzymes in total amounts of 1 ⁇ 10 -6 to 5 percent by weight, based on active protein. The protein concentration can be determined by known methods, for example the BCA method or the biuret method.
  • subtilisin type examples thereof are the subtilisins BPN 'and Carlsberg, the protease PB92, the subtilisins 147 and 309, the alkaline protease from Bacillus lentus, subtilisin DY and the enzymes thermitase, proteinase K and the subtilases, but not the subtilisins in the narrower sense Proteases TW3 and TW7.
  • subtilisin Carlsberg is available in a further developed form under the trade name Alcalase® from Novozymes A / S, Bagsvaerd, Denmark.
  • Subtilisins 147 and 309 are trade names Esperase® or Savinase® sold by the company Novozymes. From the protease from Bacillus lentus DSM 5483 derived under the name BLAP® variants are derived.
  • proteases are, for example, those under the trade names Durazym®, Relase®, Everlase®, Nafizym, Natalase®, Kannase® and Ovozymes® from Novozymes, sold under the trade names, Purafect®, Purafect®OxP and Properase® by the company Genencor, sold under the trade name Protosol® by the company Advanced Biochemicals Ltd., Thane, India, under the trade name Wuxi® by Wuxi Snyder Bioproducts Ltd., China, under the trade names Proleather® and Protease P® by the company Amano Pharmaceuticals Ltd., Nagoya, Japan, and the enzyme available under the name Proteinase K-16 from Kao Corp., Tokyo, Japan.
  • amylases which can be used according to the invention are the ⁇ -amylases from Bacillus licheniformis, B. amyloliquefaciens or B. stearothermophilus and also their further developments improved for use in detergents and cleaners.
  • the B. licheniformis enzyme is available from Novozymes under the name Termamyl® and from Genencor under the name Purastar®ST. Further development products of this ⁇ -amylase are available from Novozymes under the trade names Duramyl® and Termamyl®ultra, from Genencor under the name Purastar®OxAm, and from Daiwa Seiko Inc., Tokyo, Japan, as Keistase®. B.
  • amyloliquefaciens ⁇ -amylase is sold by Novozymes under the name BAN®, and variants derived from the B. stearothermophilus ⁇ -amylase under the names BSG® and Novamyl®, also from Novozymes.
  • ⁇ -amylase from Bacillus sp. A 7-7 (DSM 12368) and the cyclodextrin glucanotransferase (CGTase) from B. agaradherens (DSM 9948).
  • lipases or cutinases are also usable according to the invention, in particular because of their triglyceride-splitting activities, but also in order to generate in situ peracids from suitable precursors.
  • lipases originally obtainable from Humicola lanuginosa ( Thermomyces lanuginosus ) or further developed, in particular those with the amino acid exchange D96L. They are sold for example by the company Novozymes under the trade names Lipolase®, Lipolase®Ultra, LipoPrime®, Lipozyme® and Lipex®.
  • the cutinases can be used, which were originally isolated from Fusarium solani pisi and Humicola insolens .
  • lipases are from the company Amano under the names Lipase CE®, Lipase P®, Lipase B® or Lipase CES®, Lipase AKG®, Bacillis sp. Lipase®, Lipase AP®, Lipase M-AP® and Lipase AML®. From the company Genencor, for example, the lipases, or cutinases can be used, the initial enzymes were originally isolated from Pseudomonas mendocina and Fusarium solanii . Other important commercial products are the preparations M1 Lipase.RTM. And Lipomax.RTM.
  • Lipase MY-30® Lipase OF®
  • Lipase PL® Lipase PL® to mention also the product Lumafast® from the company Genencor.
  • mannanases include, for example, under the names Gamanase® and Pektinex AR® from Novozymes, under the name Rohapec® B1L from AB Enzymes and under the name Pyrolase® from Diversa Corp., San Diego, CA, USA.
  • the ⁇ -glucanase obtained from B. subtilis is available under the name Cereflo® from Novozymes.
  • Oxidoreductases for example oxidases, oxygenases, catalases, peroxidases, such as halo, chloro, bromo, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases) can be used according to the invention to increase the bleaching effect.
  • Suitable commercial products are Denilite® 1 and 2 from Novozymes.
  • the enzymes originate, for example, either originally from microorganisms, such as the genera Bacillus, Streptomyces, Humicola, or Pseudomonas, and / or are produced by biotechnological methods known per se by suitable microorganisms, such as transgenic expression hosts of the genera Bacillus or filamentous fungi.
  • the purification of the relevant enzymes is preferably carried out by conventional methods, for example by precipitation, sedimentation, concentration, filtration of the liquid phases, microfiltration, ultrafiltration, exposure to chemicals, deodorization or suitable combinations of these steps.
  • the enzymes can be used in any form known in the art. These include, for example, the solid preparations obtained by granulation, extrusion or lyophilization or, especially in the case of liquid or gel-form detergents, solutions of the enzymes, advantageously as concentrated as possible, sparing in water and / or added with stabilizers.
  • the enzymes may be encapsulated for both the solid and liquid dosage forms, for example by spray-drying or extruding the enzyme solution together with a preferably natural polymer or in the form of capsules, for example those in which the enzymes are entrapped as in a solidified gel or in those of the core-shell type, in which an enzyme-containing core is coated with a water, air and / or chemical impermeable protective layer.
  • further active ingredients for example stabilizers, emulsifiers, pigments, bleaches or dyes, may additionally be applied.
  • Such capsules are applied by methods known per se, for example by shaking or rolling granulation or in fluid-bed processes.
  • such granules for example by applying polymeric film-forming agent, low in dust and storage stable due to the coating.
  • a protein and / or enzyme may be particularly protected during storage against damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • inhibition of proteolysis is particularly preferred, especially if the agents also contain proteases.
  • Compositions according to the invention may contain stabilizers for this purpose; the provision of such means constitutes a preferred embodiment of the present invention.
  • One group of stabilizers are reversible protease inhibitors. Frequently, benzamidine hydrochloride, borax, boric acids, boronic acids or their salts or esters are used, including in particular derivatives with aromatic groups, such as ortho-substituted, meta-substituted and para-substituted phenylboronic acids, or their salts or esters.
  • peptidic protease inhibitors are, inter alia, ovomucoid and leupeptin to mention; An additional option is the formation of fusion proteins from proteases and peptide inhibitors.
  • enzyme stabilizers are amino alcohols such as mono-, di-, triethanol- and -propanolamine and mixtures thereof, aliphatic carboxylic acids up to C 12 , such as succinic acid, other dicarboxylic acids or salts of said acids. End-capped fatty acid amide alkoxylates are also suitable. Certain organic acids used as builders are additionally capable of stabilizing a contained enzyme.
  • Lower aliphatic alcohols but especially polyols such as glycerol, ethylene glycol, propylene glycol or sorbitol are other frequently used enzyme stabilizers.
  • polyols such as glycerol, ethylene glycol, propylene glycol or sorbitol are other frequently used enzyme stabilizers.
  • calcium salts such as calcium acetate or calcium formate, and magnesium salts.
  • Polyamide oligomers or polymeric compounds such as lignin, water-soluble vinyl copolymers or cellulose ethers, acrylic polymers and / or polyamides stabilize the enzyme preparation, inter alia, against physical influences or pH fluctuations.
  • Polyamine N-oxide containing polymers act as enzyme stabilizers.
  • Other polymeric stabilizers are the linear C 8 -C 18 polyoxyalkylenes.
  • Alkylpolyglycosides can stabilize the enzymatic components of the agent according to the invention and even increase their performance.
  • Crosslinked N-containing compounds also act as enzyme stabilizers.
  • a sulfur-containing reducing agent is, for example, sodium sulfite.
  • combinatons of stabilizers are used, for example of polyols, boric acid and / or borax, the combination of boric acid or borate, reducing salts and succinic acid or other dicarboxylic acids or the combination of boric acid or borate with polyols or polyamino compounds and with reducing salts.
  • the effect of peptide-aldehyde stabilizers is enhanced by the combination with boric acid and / or boric acid derivatives and polyols and further enhanced by the additional use of divalent cations, such as calcium ions.
  • disintegration aids so-called tablet disintegrants
  • tablet disintegrants or Decay accelerators are prepared according to Römpp (9th edition, Vol. 6, p. 4440 ) and Voigt "textbook of pharmaceutical technology” (6th edition, 1987, pp. 182-184 ) Excipients, which ensure the rapid disintegration of tablets in water or gastric juice and for the release of the pharmaceuticals in resorbable form.
  • Disintegration aids are preferably used in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight and in particular from 4 to 6% by weight, based in each case on the total weight of the disintegration assistant-containing agent.
  • Preferred disintegrating agents used in the present invention are cellulose-based disintegrating agents, so that preferred washing and cleaning compositions comprise such a cellulose-based disintegrating agent in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight and in particular 4 contain up to 6 wt .-%.
  • Pure cellulose has the formal gross composition (C 6 H 10 O 5 ) n and is formally a ⁇ -1,4-polyacetal of cellobiose, which in turn is composed of two molecules of glucose.
  • Suitable celluloses consist of about 500 to 5000 glucose units and therefore have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrating agents which can be used in the context of the present invention are also cellulose derivatives obtainable by polymer-analogous reactions of cellulose.
  • Such chemically modified celluloses include, for example, products of esterifications or etherifications in which hydroxy hydrogen atoms have been substituted.
  • Celluloses in which the hydroxy groups have been replaced by functional groups which are not bonded via an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali metal celluloses, carboxymethylcellulose (CMC), cellulose esters and ethers, and aminocelluloses.
  • the cellulose derivatives mentioned are preferably not used alone as disintegrating agents based on cellulose, but used in admixture with cellulose.
  • the content of these mixtures of cellulose derivatives is preferably below 50% by weight, particularly preferably below 20% by weight, based on the cellulose-based disintegrating agent. It is particularly preferred to use cellulose-based disintegrating agent which is free of
  • the cellulose used as a disintegration aid is preferably not used in finely divided form, but converted into a coarser form, for example granulated or compacted, before it is added to the premixes to be tabletted.
  • the particle sizes of such disintegrating agents are usually above 200 .mu.m, preferably at least 90 wt .-% between 300 and 1600 .mu.m and in particular at least 90 wt .-% between 400 and 1200 microns.
  • the coarser cellulose-based disintegration aids described above and described in greater detail in the cited documents are preferred as disintegration aids in the context of the present invention can be used and commercially available, for example, under the name Arbocel® TF-30-HG from Rettenmaier.
  • microcrystalline cellulose As a further disintegrating agent based on cellulose or as a component of this component microcrystalline cellulose can be used.
  • This microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions which attack and completely dissolve only the amorphous regions (about 30% of the total cellulose mass) of the celluloses, leaving the crystalline regions (about 70%) intact. Subsequent deaggregation of the microfine celluloses produced by the hydrolysis yields the microcrystalline celluloses which have primary particle sizes of about 5 ⁇ m and can be compacted, for example, into granules having an average particle size of 200 ⁇ m.
  • Disintegration auxiliaries preferred in the context of the present invention preferably a cellulose-based disintegration assistant, preferably in granular, cogranulated or compacted form, are present in the disintegrating agent-containing agents in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight. and in particular from 4 to 6 wt .-%, each based on the total weight of the disintegrating agent-containing agent.
  • gas-evolving effervescent systems can furthermore be used as tablet disintegration auxiliaries.
  • the gas-evolving effervescent system may consist of a single substance that releases a gas upon contact with water.
  • the gas-releasing effervescent system in turn consists of at least two constituents which react with one another to form gas.
  • the effervescent system used in the detergent and cleaner compositions according to the invention can be selected both on the basis of economic and ecological considerations.
  • Preferred effervescent systems consist of alkali metal carbonate and / or bicarbonate and an acidifying agent which is suitable for liberating carbon dioxide from the alkali metal salts in aqueous solution.
  • the sodium and potassium salts are clearly preferred over the other salts for reasons of cost.
  • the relevant pure alkali metal carbonates or bicarbonates do not have to be used; Rather, mixtures of different carbonates and bicarbonates may be preferred.
  • Acidifying agents which release carbon dioxide from the alkali metal salts in aqueous solution include, for example, boric acid and alkali metal hydrogen sulfates, alkali metal dihydrogen phosphates and other inorganic salts.
  • Tartaric acid, succinic acid, malonic acid, adipic acid, maleic acid, fumaric acid, oxalic acid and polyacrylic acid are again preferred from this group.
  • Organic sulfonic acids such as sulfamic acid are also usable.
  • Sokalan® DCS commercially available and likewise preferably usable as acidifying agent in the context of the present invention is Sokalan® DCS (trademark of BASF), a mixture of succinic acid (maximum 31% by weight), glutaric acid (maximum 50% by weight) and adipic acid ( at most 33% by weight).
  • Acidifying agents in the effervescent system from the group of organic di-, tri- and oligocarboxylic acids or mixtures are preferred within the scope of the present invention.
  • fragrance compounds e.g. the synthetic products of the type of esters, ethers, aldehydes, ketones, alcohols and hydrocarbons are used. Fragrance compounds of the ester type are known e.g.
  • the ethers include, for example, benzyl ethyl ether, to the aldehydes e.g.
  • the linear alkanals having 8-18 C atoms citral, citronellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones e.g. the ionones, ⁇ -isomethylionone and methylcedryl ketone, among the alcohols anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes such as limonene and pinene.
  • fragrance oils may also contain natural fragrance mixtures such as are available from vegetable sources, e.g. Pine, citrus, jasmine, patchouly, rose or ylang-ylang oil. Also suitable are muscatel, sage, chamomile, clove, lemon balm, mint, cinnamon, lime, juniper, vetiver, olibanum, galbanum and labdanum, and orange blossom, neroliol, orange peel and sandalwood.
  • the fragrances can be processed directly, but it can also be advantageous to apply the fragrances on carriers that provide a slower fragrance release for long-lasting fragrance.
  • carrier materials have proven, for example, cyclodextrins, wherein the cyclodextrin-perfume complexes can be additionally coated with other excipients.
  • Preferred dyes the selection of which presents no difficulty to the skilled person, have a high storage stability and insensitivity to the other ingredients of the compositions and to light and no pronounced substantivity to the substrates to be treated with the dye-containing agents such as glass, ceramics, plastic dishes or textiles do not stain them.
  • the solvents include, in particular, the nonaqueous organic solvents, particular preference being given to using nonaqueous solvents from the group of monohydric or polyhydric alcohols, alkanolamines or glycol ethers, provided they are miscible with water in the given concentration range.
  • the solvents are preferably selected from ethanol, n- or i-propanol, butanols, glycol, propane or butanediol, glycerol, diglycol, propyl- or butyldiglycol, hexylene glycol, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol propyl ether, etheylene glycol mono-n-butyl ether, diethylene glycol methyl ether, di ethylene glycol ethyl ether, propylene glycol methyl, ethyl or propyl ether, dipropylene glycol methyl or ethyl ether, methoxy, ethoxy or butoxy triglycol, 1-butoxyethoxy-2-propanol, 3-methyl-3-methoxybutanol, propylene glycol t- Butyl ether and mixtures of these solvents.
  • Suitable foam inhibitors are, for example, soaps, paraffins or silicone oils, which may optionally be applied to support materials.
  • Suitable anti-redeposition agents which are also referred to as soil repellents, are, for example, nonionic cellulose ethers such as methylcellulose and methylhydroxypropylcellulose with a proportion of methoxy groups of 15 to 30% by weight and of hydroxypropyl groups of 1 to 15% by weight, based in each case on the nonionic cellulose ether as well as the known from the prior art polymers of phthalic acid and / or terephthalic acid or derivatives thereof, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionic and / or nonionic modified derivatives thereof.
  • Especially preferred of these are the sulfonated derivatives of the phthalic and terephthalic acid polymers.
  • Optical brighteners may be added to detergents or cleaning agents to eliminate graying and yellowing of textiles treated with these agents. These substances are absorbed by the fiber and cause a lightening and fake bleaching effect, by converting invisible ultraviolet radiation into visible longer wavelength light, where the ultraviolet light absorbed from the sunlight is emitted as a faint bluish fluorescence and gives a pure white with the yellowness of the grayed or yellowed wash.
  • Suitable compounds are derived, for example, from the substance classes of 4,4'-diamino-2,2'-stilbenedisulfonic acids (flavonic acids), 4,4'-distyrylbiphenyls, methylumbelliferones, coumarins, dihydroquinolinones, 1,3-diarylpyrazolines, naphthalimides, benzoxazole , Benzisoxazole and benzimidazole systems as well as heterocyclic substituted pyrene derivatives.
  • fluoronic acids 4,4'-diamino-2,2'-stilbenedisulfonic acids
  • 4,4'-distyrylbiphenyls 4,4'-distyrylbiphenyls, methylumbelliferones, coumarins, dihydroquinolinones, 1,3-diarylpyrazolines, naphthalimides, benzoxazole , Benzisoxazole and benzimid
  • Graying inhibitors in textile cleaners have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing the dirt from being rebuilt.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether sulfonic acids or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose.
  • soluble starch preparations and other than the above-mentioned starch products can be used, e.g. degraded starch, aldehyde levels, etc. Also polyvinylpyrrolidone is useful.
  • Cellulosic ethers such as carboxymethylcellulose (sodium salt), methylcellulose, hydroxyalkylcellulose and mixed ethers such as methylhydroxyethylcellulose, methylhydroxypropylcellulose, methylcarboxymethylcellulose and mixtures thereof can furthermore be employed as graying inhibitors in the particulate agents.
  • Antimicrobial agents are used to combat microorganisms. Depending on the antimicrobial spectrum and mechanism of action, a distinction is made between bacteriostatic agents and bactericides, fungistatics and fungicides, etc. Important substances from these groups are, for example, benzalkonium chlorides, alkylarylsulfonates, halophenols and phenolmercuric acetate, although the use of these agents can be dispensed with altogether.
  • the formulations may also comprise fabric softening clay minerals which may be selected from a variety of minerals, especially the layered silicates.
  • the group of smectites has proved to be advantageous.
  • the term smectite includes both clays in which alumina is present in a silicate lattice and clays in which magnesium oxide occurs in a silicate lattice.
  • Typical smectites have the following general formula: Al 2 (Si 2 O 5 ) 2 (OH) 2 • nH 2 O and compounds having the following formula Mg 3 (Si 2 O 5 ) 2 (OH) 2 • nH 2 O. Smectites are usually in a broad three-layer structure.
  • suitable smectites include those selected from the class of montmorillonites, hectorites, volkonskites, nontronites, saponites, and sauconites, especially those having alkali or alkaline earth metal ions in the crystal lattice structure.
  • the clay minerals contain cationic counterions such as protons, sodium ions, potassium ions, calcium ion, magnesium ions, and the like. Usually, the clay minerals are distinguished by the cations that are predominantly or exclusively absorbed.
  • a sodium bentonot is such a clay mineral in which there is predominantly sodium as the absorbed cation.
  • Such absorbed cations can undergo exchange reactions with other cations in aqueous solutions.
  • a typical exchange reaction involving a smectite type is as follows: Smectite (Na) + NH 4 OH -----> smectite (NH 4 ) + NaOH
  • cation exchange capacity in milliequivalents / 100g (meq / 100g).
  • the cation exchange capacity of the clays can be determined in a variety of ways, for example, by electrodialysis or by exchange with ammonium ions, followed by titration, as for example in the book by Grimshaw, "The chemistry and physics of clays", pages 264-265, Interscience 1971 , is described.
  • Smectites such as nontonite have an ion exchange capacity of about 70 meq / 100g
  • montmorillonites having an exchange capacity of over 70 meq / 100g have been found to be most preferred in the present invention because they are particularly effective at apply textiles and give them the desired softness.
  • Particularly preferred clay minerals in the present invention are therefore expanded three-layer smectite types having an ion exchange capacity of at least 50 meq / 100 g.
  • Organophilic clay minerals may also be used in the present invention. Such hydrophobically modified clay minerals in which inorganic metal ions are exchanged by organic ions through the above-described exchange process are also preferred.
  • the modified clay minerals are very miscible with organic solvents and have the property of storing organic solvents between the layers.
  • Suitable examples of organophilic clay minerals are Bentone SD-1, SD-2 and SD-3 from Rheox.
  • Bentonites are contaminated clays caused by the weathering of volcanic tuffs. Due to their high content of montmorillonite, bentonites have valuable properties such as swellability, ion exchange capacity and thixotropy. It is possible to modify the properties of the bentonite according to the intended use. Bentonites are a common constituent of clay in tropical soils and are mined as sodium bentonite eg in Wyoming / USA. Sodium bentonite has the most favorable application properties (swelling capacity), so that its use is preferred in the context of the present invention. Naturally occurring calcium bentonites originate, for example, from Mississippi / USA or Texas / USA or from Landshut / D. The naturally obtained Ca-bentonites are artificially converted by exchange of Ca for Na in the more swellable Na-bentonites.
  • montmorillonites which can also be used in their pure form in the context of the present invention.
  • Montmorillonites belong to the phyllosilicates and here to the dioctahedral smectites belonging clay minerals, which crystallize monoclinic pseudohexagonal.
  • Montmorillonites have a three-layer structure consisting of two tetrahedral layers, which are electrostatically crosslinked via the cations of an octahedral intermediate layer.
  • the layers are not rigidly connected, but can swell by reversible incorporation of water (in 2-7 times the amount) and other substances such as alcohols, glycols, pyridine, ammonium compounds, hydroxy-aluminosilicate ions, etc.
  • Al can be exchanged for Mg, Fe 2+ , Fe 3+ , Zn, Cr, Cu and other ions.
  • a negative charge of the layers results, which is balanced by other cations, especially Na + and Ca 2+ .
  • Calcium or magnesium bentonites are usually non-swellable and usually less effective plasticizers. However, it is advantageous to combine non-swellable bentonites with carrier materials, such as polyethylene glycol, to achieve a significantly improved softness of the textiles treated therewith. Also advantageous are calcium or magnesium bentonites, which are used in the presence of a sodium source, such as NaOH or NaCO 3 .
  • the chemical composition of the bentonite to be used as starting material is preferably the following: SiO 2 : 55.0 - 61.0% by weight Al 2 O 3 : 14.5-17.6% by weight Fe 2 O 3 : 1.45-1.7% by weight CaO: 2.8 - 7.0% by weight MgO: 5.0-6.3% by weight K 2 O: 0.5-0.58% by weight Na 2 O: 0.25-0.3% by weight Mn 3 O 4 : 0.04-0.25% by weight
  • the crystalline structure of montmorillonite is more or less resistant to acid treatment.
  • acid treatment in the invention is meant that a sample of the clay (for example 1 g / l) is exposed in a 1N HCl solution for 15 hours at a temperature of 80 ° C. It must be mentioned that most clays can be destroyed by acid treatment with, for example, hydrogen fluoride. In the context of the present invention, however, acid treatment means HCl treatment.
  • Montmorillonites magnesium saturated / air dried
  • acid-sensitive montmorillonites are preferred, for example, montmorillonites whose crystalline structure is destroyed when treated with HCl.
  • the use of such clay minerals has a softness enhancing effect and provides also for a better dispersibility in the aqueous wash liquor or aqueous textile treatment liquid.
  • the destruction of the crystalline structure can be determined by measuring the diffraction distance, so that in the case of the destroyed montmorillonites, the maximum diffraction distance to be expected for crystalline montmorilonites does not appear in the 001 plane of 14-15.
  • the acid sensitivity is related to increased exchange of aluminum by magnesium in the octahedral layer of the montmorillonite clay.
  • Preferred is a ratio of Al 2 O 2 / MgO of less than 4, more preferably of less than 3.
  • the aforementioned acid-sensitive montmorillonites have the advantage that they allow a reduced tendency to gel as well as an improved dispersibility in the wash liquor. In addition, it has been observed that such clay minerals produce improved softness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Detergent Compositions (AREA)

Claims (9)

  1. Produit combiné constitué d'au moins un corps moulé d'agent détergent ou nettoyant et d'au moins un corps creux rempli de liquide, qui est une pièce de moulage par injection et/ou de moulage par soufflage et/ou par emboutissage profond et qui consiste au moins en partie d'un ou de plusieurs polymères solubles dans l'eau ou dispersibles dans l'eau, caractérisé en ce que le(s) corps creux contenant le liquide est/sont relié(s) avec le corps moulé d'agent détergent ou nettoyant par un raccordement par enfichage, par enclenchement élastique, par encliquetage et/ou par adhésion.
  2. Produit combiné selon la revendication 1, caractérisé en ce que le(s) corps moulé(s) d'agent détergent ou nettoyant sont une ou plusieurs tablettes d'agent détergent ou nettoyant monophasés ou multiphasés.
  3. Produit combiné selon la revendication 1, caractérisé en ce que le(s) corps moulé(s) d'agent détergent ou nettoyant est un corps coulé.
  4. Produit combiné selon l'une des revendications 1 à 3, caractérisé en ce que le rapport volumique du ou des corps moulés d'agent détergent ou nettoyant sur le(s) corps creux rempli(s) de liquide est de 8:1 à 1:8, de préférence de 5:1 à 1:5 et en particulier de 3:1 à 1:3.
  5. Produit combiné selon l'une des revendications 1 à 4, caractérisé en ce que le rapport en poids du ou des corps moulés d'agent détergent ou nettoyant sur le(s) corps creux rempli(s) de liquide est de 11:1 à 1:11, de préférence de 5:1 à 1:5 et en particulier de 3:1 à 1:3.
  6. Produit combiné selon l'une des revendications 1 à 5, caractérisé en ce que le corps moulé d'agent détergent ou nettoyant contient du percarbonate de sodium, mais aucun tensioactif anionique et/ou tensioactif cationique et/ou tensioactif non ionique et/ou tensioactif amphotère.
  7. Produit combiné selon l'une des revendications 1 à 6, caractérisé en ce que le(s) corps creux rempli(s) de liquide présente(nt) une épaisseur de paroi allant de 100 à 1 000 µm, de préférence de 110 à 800 µm et en particulier de 120 à 600 µm.
  8. Produit combiné selon l'une des revendications 1 à 7, caractérisé en ce que le produit combiné comprend au moins une autre partie, de préférence une capsule en gélatine et/ou un corps moulé comportant un revêtement.
  9. Procédé de production de produits combinés constitués d'au moins un corps moulé d'agent détergent ou nettoyant et d'au moins un corps creux rempli de liquide, caractérisé par les étapes de
    a) production de corps moulés d'agent détergent ou nettoyant ;
    b) production de corps creux remplis de liquide, par moulage par injection et/ou moulage par soufflage et/ou emboutissage profond ;
    c) raccordement d'au moins un produit de l'étape a) avec au moins un produit de l'étape b) ;
    caractérisé en ce que le raccordement à l'étape c) est réalisé par un raccordement par enfichage, par enclenchement élastique, par encliquetage et/ou par adhésion, de préférence par collage.
EP04764486.9A 2003-09-04 2004-08-26 Detergent ou nettoyant Expired - Fee Related EP1660623B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL04764486T PL1660623T3 (pl) 2003-09-04 2004-08-26 Środki piorące lub czyszczące

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10340683A DE10340683A1 (de) 2003-09-04 2003-09-04 Wasch- oder Reinigungsmittel
PCT/EP2004/009510 WO2005023974A1 (fr) 2003-09-04 2004-08-26 Detergent ou nettoyant

Publications (2)

Publication Number Publication Date
EP1660623A1 EP1660623A1 (fr) 2006-05-31
EP1660623B1 true EP1660623B1 (fr) 2019-03-27

Family

ID=34258388

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04764486.9A Expired - Fee Related EP1660623B1 (fr) 2003-09-04 2004-08-26 Detergent ou nettoyant

Country Status (5)

Country Link
US (1) US20060223738A1 (fr)
EP (1) EP1660623B1 (fr)
DE (1) DE10340683A1 (fr)
PL (1) PL1660623T3 (fr)
WO (1) WO2005023974A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0615861D0 (en) * 2006-08-10 2006-09-20 Mcbride Robert Ltd Detergent tablets
DE102006059271A1 (de) * 2006-12-13 2008-06-19 Henkel Kgaa Wasch- oder Reinigungsmittelportion
CN101675153B (zh) 2007-05-04 2014-09-24 埃科莱布有限公司 含水溶性镁化合物的清洁组合物及其使用方法
DE102007041754A1 (de) * 2007-09-04 2009-03-05 Henkel Ag & Co. Kgaa Polycyclische Verbindungen als Enzymstabilisatoren
EP2358768B1 (fr) 2008-12-03 2019-07-03 ISP Investments LLC Compositions de polyvinylpyrrolidone réticulée
DE102008060470A1 (de) * 2008-12-05 2010-06-10 Henkel Ag & Co. Kgaa Reinigungsmittel
DE102008063801A1 (de) * 2008-12-19 2010-06-24 Henkel Ag & Co. Kgaa Maschinelles Geschirrspülmittel
GB201101595D0 (en) * 2011-01-31 2011-03-16 Reckitt Benckiser Nv A washing capsule for providing a washing composition to a machine
EP2970831B1 (fr) 2013-03-14 2019-03-27 Ecolab USA Inc. Détergent contenant des enzymes et composition de prétrempage et procédés d'utilisation
US20160122690A1 (en) * 2013-05-30 2016-05-05 Novozymes A/S Particulate Enzyme Composition
US9353333B1 (en) 2014-12-18 2016-05-31 AS Innovations LLC Laundry additive and drum treatment
US11434065B2 (en) 2020-06-08 2022-09-06 Robert C. Danville Automatic spray dispenser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19511192A1 (de) * 1995-03-27 1996-10-02 Henkel Kgaa Verfahren zum Waschen von textilen Geweben unter Anwendung eines nichtwäßrigen Flüssigwaschmittels mit Bleiche
DE10107878A1 (de) * 2000-07-14 2002-09-05 Henkel Kgaa "Kompartiment-Hohlkörper IV"

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE605277A (fr) * 1960-06-22
DE69324523T2 (de) * 1992-06-12 1999-09-09 Kao Corp Badezusatzzusammensetzung enthaltend oberflächenaktive Mittel enthaltende nahtlose Kapsel und Verfahren zur Herrstellung der Kapsel
US5783541A (en) * 1994-09-12 1998-07-21 Procter & Gamble Company Unit packaged detergent
GB2346319B (en) * 1999-02-05 2002-12-04 Unilever Plc A machine dishwashing kit
GB2355245A (en) * 1999-10-12 2001-04-18 Mcbride Robert Ltd Detergent packaging system
DE60013165T2 (de) * 1999-11-17 2005-08-11 Reckitt Benckiser (Uk) Limited, Slough Spritzgegossener wasserlöslicher behälter
US6881713B2 (en) * 2000-04-28 2005-04-19 The Procter & Gamble Company Pouched compositions
GB2365018A (en) * 2000-07-24 2002-02-13 Procter & Gamble Water soluble pouches
ES2273912T3 (es) * 2000-11-27 2007-05-16 THE PROCTER & GAMBLE COMPANY Metodo para lavar vajillas.
US20030148914A1 (en) * 2001-10-29 2003-08-07 The Procter & Gamble Company Detergent system
GB2385599A (en) * 2002-02-26 2003-08-27 Reckitt Benckiser Nv Packaged detergent composition
DE60209445T2 (de) * 2002-05-24 2006-10-19 The Procter & Gamble Company, Cincinnati Waschmittelsystem

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19511192A1 (de) * 1995-03-27 1996-10-02 Henkel Kgaa Verfahren zum Waschen von textilen Geweben unter Anwendung eines nichtwäßrigen Flüssigwaschmittels mit Bleiche
DE10107878A1 (de) * 2000-07-14 2002-09-05 Henkel Kgaa "Kompartiment-Hohlkörper IV"

Also Published As

Publication number Publication date
WO2005023974A1 (fr) 2005-03-17
DE10340683A1 (de) 2005-04-07
US20060223738A1 (en) 2006-10-05
PL1660623T3 (pl) 2019-09-30
EP1660623A1 (fr) 2006-05-31

Similar Documents

Publication Publication Date Title
EP1711589B1 (fr) Produits pour lave-vaisselle
DE102004020720A1 (de) Verfahren zur Herstellung von Wasch- oder Reinigungsmitteln
EP1740689A1 (fr) Procedes pour la production de detergents et de nettoyants
EP1735419B1 (fr) Produits de lavage pour lave-vaisselle
WO2006032371A1 (fr) Constituants de produits nettoyants
DE10313457A1 (de) Wasch- oder Reinigungsmittel
EP1606378A1 (fr) Produit de lavage ou de nettoyage
EP1660623B1 (fr) Detergent ou nettoyant
DE10313455A1 (de) Wasch- und Reinigungsmittel
EP1727884B1 (fr) Produits de lavage pour lave-vaisselle
EP1922401B1 (fr) Detergent ou nettoyant
DE102005045440A1 (de) Portionierte Wasch- oder Reinigungsmittelzusammensetzung
WO2004085596A1 (fr) Produit de lavage ou de nettoyage
WO2006066721A1 (fr) Unite de dosage pour detergent ou nettoyant
DE10349388B4 (de) Verfahren zur Verarbeitung von Wasch- oder Reinigungsmittelinhaltsstoffen
DE10338370A1 (de) Verfahren zur Herstellung von Wasch- oder Reinigungsmitteln
DE10338066A1 (de) Wasch- oder Reinigungsmittel
DE10338043A1 (de) Verfahren zur Herstellung von Wasch-oder Reinigungsmitteln
DE10338067A1 (de) Wasch- oder Reinigungsmittel
DE10338368A1 (de) Verfahren zur Herstellung von Wasch- oder Reinigungsmitteln
DE10313456A1 (de) Formstabile Reinigungsmittelportion
DE10338044A1 (de) Verfahren zur Herstellung von Wasch-oder Reinigungsmitteln
DE10338369A1 (de) Verfahren zur Herstellung von Wasch- oder Reinigungsmitteln
EP1859018A1 (fr) Corps moule de lavage ou de nettoyage multiphase

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HENKEL AG & CO. KGAA

17Q First examination report despatched

Effective date: 20100322

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180313

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20180822

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1113081

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015779

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190727

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004015779

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

26N No opposition filed

Effective date: 20200103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190826

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1113081

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040826

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210819

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20210818

Year of fee payment: 18

Ref country code: DE

Payment date: 20210819

Year of fee payment: 18

Ref country code: GB

Payment date: 20210820

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004015779

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220826