EP1733470B1 - Schaltvorrichtung zum betreiben eines motors und entsprechendes verfahren - Google Patents
Schaltvorrichtung zum betreiben eines motors und entsprechendes verfahren Download PDFInfo
- Publication number
- EP1733470B1 EP1733470B1 EP05717083A EP05717083A EP1733470B1 EP 1733470 B1 EP1733470 B1 EP 1733470B1 EP 05717083 A EP05717083 A EP 05717083A EP 05717083 A EP05717083 A EP 05717083A EP 1733470 B1 EP1733470 B1 EP 1733470B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- voltage
- semiconductor device
- switched
- switching
- bypass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 9
- 239000004065 semiconductor Substances 0.000 claims abstract description 63
- 238000012806 monitoring device Methods 0.000 claims description 12
- 238000012544 monitoring process Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 abstract description 3
- 230000007257 malfunction Effects 0.000 abstract 1
- 238000010791 quenching Methods 0.000 abstract 1
- 230000000171 quenching effect Effects 0.000 abstract 1
- 230000002427 irreversible effect Effects 0.000 description 10
- 238000001514 detection method Methods 0.000 description 9
- 230000006378 damage Effects 0.000 description 7
- 230000002441 reversible effect Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 210000002023 somite Anatomy 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/54—Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
- H01H9/541—Contacts shunted by semiconductor devices
- H01H9/542—Contacts shunted by static switch means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/54—Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
- H01H9/541—Contacts shunted by semiconductor devices
- H01H9/542—Contacts shunted by static switch means
- H01H2009/546—Contacts shunted by static switch means the static switching means being triggered by the voltage over the mechanical switch contacts
Definitions
- the present invention relates to a switching device for operating a motor with a mechanical contact device, which is arranged between two terminals and which is switched on in a continuous operation phase of the motor for bridging the terminals, and a semiconductor device which is connected in parallel to the contact device and between the two Connections in a start phase of the motor for conductive connection of the terminals is switched on.
- the present invention relates to a corresponding method for operating a motor with such a switching device.
- bypass contacts In today known electronic motor starters, the parallel connection of semiconductor elements and mechanical contacts is common. In continuous operation, the semiconductor elements are bridged by the mechanical contacts. This results in continuous operation instead of the comparatively high power losses of the semiconductor elements only the low power losses of the mechanical contact system.
- the mechanical contact system (hereinafter referred to as bypass contacts or bypass contact system) is usually equipped today for economic reasons without arc extinguishing device.
- the semiconductor systems and the bypass contact system are controlled by suitable control processes so that there is only a minimal arcing.
- Operational current transfer means the transitions from the semiconductor element to the bypass contact system and vice versa, which occur when switching between operational control states.
- the transition from Hochlauframpenende in the continuous operation also referred to as bypass phase
- bypass phase the transition from Hochlauframpenende in the continuous operation
- Out GB 2 344 936 A shows that during a start-up phase or a shutdown of a load, arcing at a mechanical switch can be avoided by the power supply during the start-up phase or the shutdown of the load is passed through a thyristor.
- US 5,953,189 A1 discloses a circuit for the protected supply of an electrical load with alternating current.
- the circuit comprises an electromechanical switch and an electronic switch connected in series therewith, by means of which a soft start of the downstream load is made possible.
- US 2002/0093774 A1 discloses a multifunctional hybrid contactor which provides a direct start mode and a soft start mode for a downstream load. Both during the direct start mode and during the soft start mode, a semiconductor switching device arranged parallel to relay contacts is actuated for a predetermined time.
- the semiconductor elements are switched off shortly after the arc-low switching of the bypass contacts and turned on again shortly before the low-arc turn off the bypass contacts. This enforces a power supply via the bypass contacts.
- the object of the present invention is therefore to avoid the abovementioned disadvantages, in particular to reliably detect a faulty opening of the bypass contacts when the semiconductor elements are switched off.
- this object is achieved according to claim 1 by a switching device for starting a motor with a mechanical contact device which is arranged between two terminals and which can be switched on in a continuous operation phase of the motor for bridging the terminals, and a semiconductor device which is connected in parallel to the contact device and which is switchable between the two terminals in a start phase of the motor for the conductive connection of the terminals, and a voltage monitoring device for monitoring the voltage at the terminals and the Turning on the semiconductor device, if the voltage exceeds a predetermined value, wherein the switching device comprises a turn-off device for turning off the semiconductor device after a defined period or period number of a voltage waveform following the turning on of the semiconductor device by the voltage monitoring device. In the case of reversible, short-term interruptions, after the semiconductor device has been switched on, it is again switched to the low-loss continuous operation with the mechanical contact device.
- a method of operating a motor having such a switching device wherein the voltage at the terminals is monitored and the semiconductor circuit is turned on if the voltage exceeds a predetermined value.
- an arc can thus be reliably detected in a parallel circuit arrangement of semiconductor elements and bypass contacts without a mechanical arc extinguishing device when the semiconductor elements are switched off.
- a targeted and defined current conduction can be achieved via the semiconductor elements and damage to the device by the arc can be avoided.
- a reliable monitoring and evaluation (for example error message) of the mechanical contact system can be ensured.
- the semiconductor device preferably has two antiparallel-connected thyristors. These can be electronically ignited at defined times and enable a very fast switching on and off. Thus, the effective voltage can be continuously increased, for example, for starting an engine.
- the voltage monitoring device can have an analog converter, a threshold value comparison element and a control unit, so that an analog voltage signal can be compared with a threshold value and a resulting, binary comparison result can be used as input signal for the control unit for switching the semiconductor device.
- the voltage monitoring device may comprise a control unit in which an analog / digital converter and a threshold value comparison element are integrated so that a digitized voltage signal can be compared with a threshold value and a resulting comparison result can be used for switching the semiconductor device by the control unit. This means that all components for digital voltage monitoring are integrated in the control unit, which may lead to mounting advantages.
- the voltage range of the monitored voltage should include the arc voltage occurring at the contactor. Thus, the occurrence of an arc can be detected appropriately.
- the shutdown device outputs a fault message signal if the semiconductor device is turned on several times in a predetermined period of time by the voltage monitoring device.
- This repeated switching on the semiconductor device indicates namely an irreversible error, so that it may be appropriate to operate with the fault message an external, upstream and in series with the switching device switching element to interrupt the flow of current and initiate appropriate repair measures.
- Another preferred embodiment is the integration of a switching element in the switching device. This switching element is connected in series with the parallel connection of the mechanical contact device and the semiconductor device and is actuated by the control unit in the event of an irreversible error in order to interrupt the flow of current.
- the invention aims to recognize the non-operational state of the opening of the bypass contacts (eg due to a fault or mechanical stress) within the bypass phase and to react so that irreversible damage to the contacts due to arcing does not occur with reversible faults , In the case of irreversible errors, there should be no thermal destruction of the device by means of a dental arc and the effects of such an error should be limited to the device itself.
- reversible errors are, for example, a brief interruption or a failure of the control voltage of the coil drive of the bypass contact system, which leads to unintentional opening of the contacts. But reversible errors are also mechanical vibrations, which also lead to unintentional opening of the contacts.
- irreversible errors a breakage of the coil wire of the coil drive, a breakage of the main contact spring of the bypass contact system or a component defect in the control of the coil drive can be designated.
- the voltage across the parallel circuit arrangement is detected according to the invention.
- the bypass contacts are closed, almost no voltage drops across the parallel circuit. If the bypass contacts open, the resulting voltage corresponds to the arc voltage between the bypass contacts.
- the arc voltage can be adjusted accordingly FIG. 1 be detected with a voltage detection circuit.
- the voltage at the parallel circuit arrangement consisting of the mechanical contacts or the bypass contact system 1 and the semiconductor device 2 connected in parallel therewith is monitored.
- the semiconductor device 2 here consists of an anti-parallel connection of two thyristors 3 and 4.
- the voltage applied to the parallel circuit arrangement voltage Up is detected in a voltage monitoring device 5 and used to control the semiconductor device 2 and the thyristors 3 and 4 and the bypass contact system 1.
- the voltage monitoring device consists of an analog converter 6, a threshold value comparison element 7 and a control unit 8 connected thereto.
- the analog converter 6 converts the analog voltage signal Up into an analog voltage Uap of suitable height for the purpose of level adjustment.
- the downstream Schwellwertiqueselement 7 causes a comparison of the analog voltage signal Uap with a predetermined threshold.
- the digital output signal Udp of this threshold value comparison element 7 changes its level as soon as the digital voltage signal exceeds or falls below the threshold or limit value.
- the output signal Udp of the threshold value comparison element 7 is used by the control unit 8 to control the thyristors 3 and 4 as well as the bypass system 1.
- the control cables are in FIG. 1 for the sake of clarity only indicated by an arrow from the control unit 8.
- a fault alarm contact 9 for outputting a fault signal can be provided on the control unit 8. Furthermore, in front of the parallel connection of semiconductor device 2 and mechanical contact device 1, a switching element 10 can be connected in series, with which in case of failure of the semiconductor device 2 or the contact device 1, the current flow can be interrupted or turned off.
- the analog-to-digital converter and the threshold comparison element may be integrated into the control unit.
- the analog voltage signal Up is applied directly to an A / D input of the controller and the voltage limit monitoring is performed within the controller. The above-described behavior of the digital signal Udp with regard to level and edge change is thereby completely monitored and utilized in the control device.
- the control device causes an immediate switching on of the semiconductor elements 3, 4.
- the current flow is thus transferred as quickly as possible from the semiconductor elements and the voltage at the parallel circuit goes back to the low forward voltage of the semiconductor elements. The arc is thus deleted.
- FIG. 2 schematically shows the waveforms of the voltage Up in the parallel circuit arrangement 2 and the derived digital signal Udp, the driving signals for the thyristors and the bypass contacts and the associated current waveforms that arise when an opening of the bypass contacts in connection with the electronic arc detection and extinguishing system.
- Thyristor corresponds to the current through the antiparallel-connected thyristors 3, 4, I bypass the current through the bypass system and I total of the sum of I thyristor and I bypass .
- FIG. 2 The operation of the electronic arc detection and extinguishing system can be based on FIG. 2 describe as follows:
- the control unit 8 switches the thyristors off again or terminates their ignition. Thereafter, the next zero crossing of the thyristor current I thyristor must be awaited at time t 3 , so that the thyristors 3, 4 can go out, so that the switching device is turned off. Accordingly, the voltage Up at the parallel circuit increases to the current voltage value of the switching device. This magnitude increase in voltage is detected by the Schwellwert technicallyselement 7, whereby the digital signal Udp performs a level change. Also following this, if the analogue Voltage signal Up performs a zero crossing, corresponding level changes of the digital signal Udp depending on the selected threshold before and after the zero crossing instead.
- the shutdown of the switching device just described typically does not occur after the detection of a first arc, because this arc could have been triggered by a reversible error. Rather, the bypass system is turned on again after a predetermined time and the thyristors 3 and 4 are turned off, so that the switching device continues to run in normal operation and there has been no interruption of the current I total . If one or more arcs are detected again within a certain period of time, this fact can be used to bring the switching device into a safe state. Namely, the cause of the multiple arcs will be one of the irreversible errors described above.
- a safe state is achieved by permanently switching on the thyristors 3 and 4 upon detection of an irreversible fault, in order to prevent thermal destruction of the switching device as a result of arcs.
- the thyristors must also remain switched on when an OFF signal is given to the switching device, since opening of the mechanical contact device is no longer possible because of the irreversible error.
- this error case corresponds to that of fürleg convinced thyristors and this error case must always be controlled by appropriate upstream hedges / switching elements and secondly, the error referred to as irreversible occur only extremely rarely.
- the transfer of the switching device in the safe state can also take place in that of the control unit 8 a Fault message signal is emitted, which, for example, an external, upstream and switching device in series lying switching element turns off and thus interrupts the flow of current.
- the transfer to the safe state can also take place in that the control unit 8 interrupts a present in the switching device switching element, which is in series with the parallel circuit of semiconductor device and mechanical contact device.
Landscapes
- Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
- Power Conversion In General (AREA)
Abstract
Description
- Die vorliegende Erfindung betrifft eine Schaltvorrichtung zum Betreiben eines Motors mit einer mechanischen Kontakteinrichtung, die zwischen zwei Anschlüssen angeordnet und die in einer Dauerbetriebsphase des Motors zur Überbrückung der Anschlüsse einschaltbar ist, und einer Halbleitereinrichtung, die zu der Kontakteinrichtung parallel geschaltet ist und die zwischen den beiden Anschlüssen in einer Startphase des Motors zur leitenden Verbindung der Anschlüsse einschaltbar ist.
- Darüber hinaus betrifft die vorliegende Erfindung ein entsprechendes Verfahren zum Betreiben eines Motors mit einer derartigen Schaltvorrichtung.
- Bei heute bekannten elektronischen Motorstartern ist die Parallelschaltung von Halbleiterelementen und mechanischen Kontakten üblich. Im Dauerbetrieb werden die Halbleiterelemente durch die mechanischen Kontakte überbrückt. Dadurch entstehen im Dauerbetrieb statt der vergleichsweise hohen Verlustleistungen der Halbleiterelemente nur die geringen Verlustleistungen des mechanischen Kontaktsystems. Das mechanische Kontaktsystem (im Weiteren als Bypasskontakte bzw. Bypasskontaktsystem bezeichnet) ist aus wirtschaftlichen Gründen heute üblicherweise ohne Lichtbogenlöschvorrichtung ausgestattet.
- Um eine Zerstörung des Bypasssystems beim betriebsmäßigen Stromübergang vom Halbleiterelement auf das Bypasskontaktsystem und umgekehrt zu vermeiden, werden die Halbleitersysteme und das Bypasskontaktsystem durch geeignete Steuerabläufe so angesteuert, dass es nur zu einer minimalen Lichtbogenbildung kommt.
- Unter betriebsmäßigem Stromübergang werden die Übergänge vom Halbleiterelement auf das Bypasskontaktsystem und umgekehrt verstanden, die beim Wechsel zwischen betriebsmäßigen Steuerzuständen auftreten. Beispielhaft sei der Übergang vom Hochlauframpenende in den Dauerbetrieb (auch als Bypassphase bezeichnet) genannt.
- Werden die Steuerabläufe durch Fehler des Bypasskontaktsystems gestört, kann sich folgendes Problem ergeben: Wegen der fehlenden Lichtbogenlöschvorrichtung entsteht ein Stehlichtbogen, der zu einer thermischen Zerstörung des kompletten Geräts führen kann. Derartige Fehler des Bypasskontaktsystems sind beispielsweise: Bruch des Spulendrahtes, Bruch der Hauptkontaktfeder, Ausfall der Ansteuerung des Bypasskontaktsystems und Ausfall der Versorgungsspannung des Bypasssystems.
- Zur Vermeidung der Lichtbogenbildung werden nach bekanntem Stand der Technik (z.B.
US-Patent 4,618,906 "Hybrid Solid State/ Mechanical Switch with Failure Protection",EP 0 926 809 B1 bzw.US 6,111,377 "Control Device for a multiphase electric Motor") in einer solchen Parallelschaltungsanordnung die Halbleiterelemente vor dem Einschaltbefehl für die Bypasskontakte eingeschaltet und erst wieder, nachdem die Bypasskontakte per Befehl geöffnet worden sind, ausgeschaltet. Damit wird ein lichtbogenarmes Ein- und Ausschalten der Bypasskontakt erreicht. - Eine weitere Möglichkeit stellt eine hardwaregesteuerte Zwangszündung der Halbleiterelemente dar, wie sie in
DE 200 14 351 U1 genannt ist. - Aus
GB 2 344 936 A -
US 5 953 189 A1 offenbart eine Schaltung zur geschützten Speisung einer elektrischen Last mit Wechselstrom. Die Schaltung umfasst einen elektromechanischen Schalter sowie einen zu diesem in Reihe geschalteten elektronischen Schalter, mittels welchem ein Sanftanlauf der nachgeschalteten Last ermöglicht wird. -
US 2002/0093774 A1 offenbart ein multifunktionales Hybridschütz, welches einen Direktanlaufmodus und einen Sanftanlaufmodus für eine nachgeschaltete Last bietet. Sowohl während des Direktanlaufmodus als auch während des Sanftanlaufmodus wird eine parallel zu Relaiskontakten angeordnete Halbleiterschaltvorrichtung über eine vorbestimmte Zeit angesteuert. - Eine andere Möglichkeit ist das dauerhafte Einschalten der Halbleiterelemente in der gesamten Bypassphase. Dies hat jedoch eine Reihe von Nachteilen:
- Es ist eine größere Dimensionierung der Ansteuerelektronik für die Halbleiterelemente notwendig, woraus sich eine höhere Verlustleistung in der Ansteuerelektronik durch höhere Stromaufnahme und höhere Geräteinnentemperatur ergibt.
- Ferner ist keine Kontrolle der Stromführung (Halbleiterelement oder Bypass) möglich.
- Bei hohen Übergangswiderständen an den Bypasskontakten erfolgt der Stromfluss ausschließlich über die Halbleiterelemente, so dass eine thermische Überlastung der Halbleiterelemente eintreten kann.
- Zur Vermeidung dieser Nachteile können, wie erwähnt, die Halbleiterelemente jeweils kurz nach dem lichtbogenarmen Einschalten der Bypasskontakte ausgeschaltet und kurz vor dem lichtbogenarmen Ausschalten der Bypasskontakte wieder eingeschaltet werden. Damit wird eine Stromführung über die Bypasskontakte erzwungen.
- Die Aufgabe der vorliegenden Erfindung besteht somit darin, die oben genannten Nachteile zu vermeiden, insbesondere ein fehlerhaftes Öffnen der Bypasskontakte bei ausgeschalteten Halbleiterelementen zuverlässig zu erkennen.
- Erfindungsgemäß wird diese Aufgabe nach Anspruch 1 gelöst durch eine Schaltvorrichtung zum Starten eines Motors mit einer mechanischen Kontakteinrichtung, die zwischen zwei Anschlüssen angeordnet und die in einer Dauerbetriebsphase des Motors zur Überbrückung der Anschlüsse einschaltbar ist, und einer Halbleitereinrichtung, die zu der Kontakteinrichtung parallel geschaltet ist und die zwischen den beiden Anschlüssen in einer Startphase des Motors zur leitenden Verbindung der Anschlüsse einschaltbar ist, sowie einer Spannungsüberwachungseinrichtung zum Überwachen der Spannung an den Anschlüssen und zum Einschalten der Halbleitereinrichtung, falls die Spannung einen vorgegebenen wert übersteigt, wobei die Schaltvorrichtung eine Abschalteinrichtung zum Ausschalten der Halbleitereinrichtung nach einer definierten Zeitdauer oder Periodenzahl eines Spannungsverlaufs im Anschluss an das Einschalten der Halbleitereinrichtung durch die Spannungsüberwachungseinrichtung aufweist. Bei reversiblen, kurzzeitigen Unterbrechungen wird nach dem Einschalten der Halbleitereinrichtung wieder in den verlustarmen Dauerbetrieb mit der mechanischen Kontakteinrichtung geschaltet.
- Ferner ist gemäß der vorliegenden Erfindung ein Verfahren nach Anspruch 9 zum Betreiben eines Motors mit einer derartigen Schaltvorrichtung vorgesehen, wobei die Spannung an den Anschlüssen überwacht und die Halbleiterschaltung eingeschaltet wird, falls die Spannung einen vorgegebenen Wert übersteigt.
- In vorteilhafter Weise kann damit ein Lichtbogen in einer Parallelschaltungsanordnung von Halbleiterelementen und Bypasskontakten ohne mechanische Lichtbogenlöschvorrichtung bei ausgeschalteten Halbleiterelementen zuverlässig erkannt werden. Durch entsprechendes Reagieren auf den Lichtbogen, in dem die Halbleiterelemente in geeigneter Weise eingeschaltet werden, kann eine gezielte und definierte Stromführung über die Halbleiterelemente erreicht und Schädigungen am Gerät durch den Lichtbogen vermieden werden. Darüber hinaus kann eine zuverlässige Überwachung und Auswertung (z.B. Fehlermeldung) des mechanischen Kontaktsystems gewährleistet werden.
- Vorzugsweise besitzt die Halbleitereinrichtung zwei antiparallel geschaltete Thyristoren. Diese lassen sich zu definierten Zeitpunkten elektronisch zünden und ermöglichen ein sehr rasches An- und Abschalten. Somit lässt sich die Effektivspannung beispielsweise zum Starten eines Motors kontinuierlich steigern.
- Die erfindungsgemäße Spannungsüberwachungseinrichtung kann einen Analogwandler, ein Schwellwertvergleichselement und eine Steuereinheit aufweisen, so dass ein analoges Spannungssignal mit einem Schwellwert vergleichbar und ein resultierendes, binäres Vergleichsergebnis als Eingangssignal für die Steuereinheit zum Schalten der Halbleitereinrichtung einsetzbar ist. Durch diese analoge Auswertung kann eine einfache und kostengünstige Spannungsüberwachung erreicht werden. Alternativ kann die Spannungsüberwachungseinrichtung eine Steuereinheit umfassen, in die ein Analog/Digitalwandler und ein Schwellwertvergleichselement integriert sind, so dass ein digitalisiertes Spannungssignal mit einem Schwellwert vergleichbar und ein resultierendes Vergleichsergebnis zum Schalten der Halbleitereinrichtung durch die Steuereinheit einsetzbar ist. Damit sind sämtliche Komponenten für die digitale Spannungsüberwachung in die Steuereinheit integriert, was gegebenenfalls zu Montagevorteilen führt.
- Der Spannungsbereich der überwachten Spannung sollte die an der Kontakteinrichtung auftretende Lichtbogenspannung einschließen. Somit lässt sich das Auftreten eines Lichtbogens zielgerecht erfassen.
- Besonders bevorzugt ist, wenn die Abschalteinrichtung ein Störmeldesignal ausgibt, falls die Halbleitereinrichtung durch die Spannungsüberwachungseinrichtung mehrmals in einem vorgegebenen Zeitabschnitt eingeschalte wird. Dieses mehrmalige Einschalten der Halbleitereinrichtung deutet nämlich auf einen irreversiblen Fehler hin, so dass es aus Sicherheitsgründen angebracht sein kann, mit dem Störmeldesignal ein externes, vorgeschaltetes und in Serie zur Schaltvorrichtung liegendes Schaltorgan zu betätigen, um den Stromfluss zu unterbrechen und entsprechende Reparaturmaßnahmen einzuleiten. Eine weitere bevorzugte Ausführungsform ist die Integration eines Schaltorgans in die Schaltvorrichtung. Dieses Schaltorgan liegt in Serie zur Parallelschaltung aus mechanischer Kontakteinrichtung und Halbleitereinrichtung und wird im Falle eines irreversiblen Fehlers von der Steuereinheit betätigt, um den Stromfluss zu unterbrechen.
- Die vorliegende Erfindung wird nun anhand der beigefügten Zeichnungen näher erläutert, in denen zeigen:
- FIG 1
- ein Prinzipschaltbild einer erfindungsgemäßen Schaltvorrichtung; und
- FIG 2
- Signalverlaufsdiagramme der erfindungsgemäßen Schaltvorrichtung.
- Die nachfolgende näher beschriebenen Ausführungsbeispiele stellen bevorzugte Ausführungsformen der vorliegenden Erfindung dar.
- Das Ausschalten der Halbleiterelemente in der Bypassphase stellt eine Grundvoraussetzung für die Arbeitsweise des hier beschriebenen elektronischen Lichtbogenerkennungs- und Löschsystems dar.
- Die Erfindung zielt darauf ab, den nicht betriebsmäßigen Zustand des Öffnens der Bypasskontakte (z.B. durch einen Fehlerfall oder eine mechanische Beanspruchung) innerhalb der Bypassphase zu erkennen und so zu reagieren, dass es bei reversiblen Fehlern nicht zu einer irreparablen Schädigung der Kontakte durch die Lichtbogenbildung kommt. Bei irreversiblen Fehlern soll es nicht zu einer thermischen Zerstörung des Geräts durch einen Stehlichtbogen kommen und die Auswirkungen eines solchen Fehlers sollen auf das Gerät selbst beschränkt bleiben.
- Reversible Fehler sind in diesem Zusammenhang beispielsweise eine kurzzeitige Unterbrechung oder ein Ausfall der Steuerspannung des Spulenantriebs des Bypasskontaktsystems, was zum ungewollten Öffnen der Kontakte führt. Reversible Fehler sind aber auch mechanische Erschütterungen, die ebenfalls zum ungewollten Öffnen der Kontakte führen. Als irreversible Fehler können ein Bruch des Spulendrahts des Spulenantriebs, ein Bruch der Hauptkontaktfeder des Bypasskontaktsystems oder ein Bauteildefekt in der Ansteuerung des Spulenantriebs bezeichnet werden.
- Um das ungewollte Öffnen der Bypasskontakte erkennen zu können, wird erfindungsgemäß die Spannung über der Parallelschaltungsanordnung erfasst. Bei geschlossenen Bypasskontakten fällt nahezu keine Spannung über der Parallelschaltung ab. Öffnen die Bypasskontakte, entspricht die entstehende Spannung der Lichtbogenspannung zwischen den Bypasskontakten.
- Die Lichtbogenspannung kann entsprechend
FIG 1 mit einem Spannungserfassungskreis detektiert werden. Hierbei wird die Spannung an der Parallelschaltungsanordnung bestehend aus den mechanischen Kontakten bzw. dem Bypasskontaktsystem 1 und der hierzu parallel geschalteten Halbleitereinrichtung 2, überwacht. Die Halbleitereinrichtung 2 besteht hier aus einer Antiparallelschaltung von zwei Thyristoren 3 und 4. - Die an der Parallelschaltungsanordnung anliegende Spannung Up wird in einer Spannungsüberwachungseinrichtung 5 erfasst und zur Ansteuerung der Halbleitereinrichtung 2 bzw. der Thyristoren 3 und 4 sowie des Bypasskontaktsystems 1 verwendet. Die Spannungsüberwachungseinrichtung besteht hierzu aus einem Analogwandler 6, einem Schwellwertvergleichselement 7 und einer daran angeschlossenen Steuereinheit 8. Der Analogwandler 6 setzt das analoge Spannungssignal Up in eine analoge Spannung Uap geeigneter Höhe zum Zwecke der Pegelanpassung um. Das nachgeschaltete Schwellwertvergleichselement 7 bewirkt einen Vergleich des analogen Spannungssignals Uap mit einem vorbestimmten Schwellwert. Das digitale Ausgangssignal Udp dieses Schwellwertvergleichselements 7 wechselt seinen Pegel, sobald das digitale Spannungssignal den Schwell- bzw. Grenzwert überschreitet oder unterschreitet. Das Ausgangssignal Udp des Schwellwertvergleichselements 7 wird von der Steuereinheit 8 dazu verwendet, um die Thyristoren 3 und 4 sowie das Bypasssystem 1 anzusteuern. Die Steuerleitungen sind in
FIG 1 der Übersicht halber lediglich durch einen Pfeil aus der Steuereinheit 8 angedeutet. - Optional kann an der Steuereinheit 8 ein Störmeldekontakt 9 zur Ausgabe eines Störmeldesignals vorgesehen sein. Des Weiteren kann vor die Parallelschaltung aus Halbleitereinrichtung 2 und mechanischer Kontakteinrichtung 1 ein Schaltorgan 10 in Reihe geschaltet werden, mit welchem im Falle eines Defekts der Halbleitereinrichtung 2 oder der Kontakteinrichtung 1 der Stromfluss unterbrochen oder abgeschaltet werden kann.
- In einem alternativen Aufbau kann der Analog/Digitalwandler und das Schwellwertvergleichselement in die Steuereinheit integriert sein. In diesem Fall wird das analoge Spannungssignal Up direkt an einen A/D-Eingang der Steuereinrichtung gelegt und die Spannungsgrenzwertüberwachung innerhalb der Steuereinrichtung durchgeführt. Das oben beschriebene Verhalten des digitalen Signals Udp hinsichtlich Pegel- und Flankenwechsel wird dabei vollständig in der Steuereinrichtung überwacht und verwertet.
- Wird eine Lichtbogenspannung detektiert, veranlasst die Steuereinrichtung eine sofortige Einschaltung der Halbleiterelemente 3, 4. Der Stromfluss wird damit schnellstmöglich von den Halbleiterelementen übernommen und die Spannung an der Parallelschaltung geht auf die geringe Durchlassspannung der Halbleiterelemente zurück. Der Lichtbogen wird somit gelöscht.
- Durch den Einsatz eines elektronischen Lichtbogenerkennungs-(bzw. Kontaktüberwachungssystems) und Löschsystems ergeben sich einen Reihe von Vorteilen:
- ein Einsatz von Bypasskontakten ohne mechanische Lichtbogenlöschvorrichtung und somit ein einfacher, kompakter und kostengünstiger Aufbau der Kontakte wird ermöglicht;
- die Überwachung des mechanischen Kontaktsystems (Bypasssystem) wird ermöglicht, insbesondere wird ein Bruch der Kontaktfeder erkannt und der entstehende Lichtbogen gelöscht;
- im fehlerfreien Betrieb erfolgt eine definierte Stromführung über die Bypasskontakte;
- ein Schutz der Bypasskontakte vor irreparabler Lichtbogenschädigung wird gewährleistet; und
- es erfolgt eine zuverlässige Erkennung des fehlerhaften Öffnens der Bypasskontakte bei ausgeschalteten Halbleiterelementen und somit eine sichere Fehlererkennung (Bruch Spulendraht, Bruch Kontaktfeder, etc)
-
FIG 2 zeigt schematisch die Signalverläufe der Spannung Up in der Parallelschaltungsanordnung 2 und das daraus abgeleitete digitale Signal Udp, die Ansteuersignale für die Thyristoren und die Bypasskontakte sowie die zugehörigen Stromverläufe, die bei Auftreten einer Öffnung der Bypasskontakte in Verbindung mit dem elektronischen Lichtbogenerkennungs- und Löschsystem entstehen. Dabei entspricht Thyristor dem Strom durch die antiparallel geschalteten Thyristoren 3, 4, IBypass dem Strom durch das Bypasssystem und IGesamt der Summe aus IThyristor und IBypass. - Die Arbeitsweise des elektronischen Lichtbogenerkennungs- und Löschsystems lässt sich anhand von
FIG 2 wie folgt beschreiben: - Bei geschlossenen Bypasskontakten fällt nahezu keine Spannung Up über der Parallelschaltung ab und der Pegel des digitalen Spannungssignals Udp ist konstant. Öffnet ein Bypasskontakt (z.B. durch einen reversiblen Fehlerfall wie Ausfall der Versorgungsspannung des Bypasssystems oder eine mechanische Beanspruchung oder einen irreversiblen Fehler wie Bruch der Kontaktfeder oder Bruch des Spulendrahts) zum Zeitpunkt t0, so wird sich innerhalb der Parallelschaltung eine Spannung Up aufbauen, die der Lichtbogenspannung UL zwischen den Bypasskontakten entspricht. Überschreitet die Lichtbogenspannung UL einen zulässigen Spannungsgrenzwert, so erfolgt ein Pegelwechsel des digitalen Spannungssignals Udp. Ausgehend von der Flanke, die durch den Pegelwechsel des digitalen Spannungssignals Udp entsteht, veranlasst die Steuereinrichtung 8 zum Zeitpunkt t1 eine sofortige Einschaltung der Halbleiterelemente 3, 4. Der Stromfluss wird damit schnellstmöglich von den Halbleiterelementen 3, 4 (vgl. IThyristor) übernommen und die Spannung Up an der Parallelschaltung geht auf die geringe Durchlassspannung der Halbleiterelemente zurück. Der Lichtbogen wird somit gelöscht.
- Zu einem Zeitpunkt t2, der beispielsweise zwei bis drei Halbwellen der Wechselspannung nach dem Zeitpunkt t1 liegt, schaltet die Steuereinheit 8 die Thyristoren wieder aus bzw. beendet deren Zünden. Daraufhin muss der nächste Nulldurchgang des Thyristorstroms IThyristor zum Zeitpunkt t3 abgewartet werden, damit die Thyristoren 3, 4 erlöschen können, so dass die Schaltvorrichtung abgeschaltet ist. Dementsprechend steigt die Spannung Up an der Parallelschaltung auf den aktuellen Spannungswert der Schaltvorrichtung an. Dieser betragsmäßige Spannungsanstieg wird durch das Schwellwertvergleichselement 7 detektiert, womit das digitale Signal Udp einen Pegelwechsel vollzieht. Auch im Anschluss daran, wenn das analoge Spannungssignal Up einen Nulldurchgang vollzieht, finden entsprechende Pegelwechsel des digitalen Signals Udp in Abhängigkeit des gewählten Schwellwerts vor und nach dem Nulldurchgang statt.
- Das soeben dargestellte Abschalten der Schaltvorrichtung erfolgt jedoch typischerweise nicht nach dem Erkennen eines ersten Lichtbogens, denn dieser Lichtbogen könnte durch einen reversiblen Fehler ausgelöst worden sein. Vielmehr wird das Bypasssystem nach einer vorbestimmten Zeit wieder eingeschaltet und die Thyristoren 3 und 4 ausgeschaltet, so dass die Schaltvorrichtung im Normalbetrieb weiterläuft und es zu keiner Unterbrechung des Stromes IGesamt gekommen ist. Wird innerhalb einer bestimmten Zeitspanne erneut ein oder mehrere Lichtbögen festgestellt, so kann diese Tatsache genutzt werden, um die Schaltvorrichtung in einen sicheren Zustand zu überführen. Die Ursache der mehreren Lichtbögen wird nämlich einer der oben beschriebenen irreversiblen Fehler sein.
- Ein sicherer Zustand wird dadurch erreicht, dass die Thyristoren 3 und 4 beim Erkennen eines irreversiblen Fehlers dauerhaft eingeschaltet werden, um eine thermische Zerstörung der Schaltvorrichtung infolge von Lichtbögen zu verhindern. Die Thyristoren müssen auch eingeschaltet bleiben, wenn ein AUS-Signal an die Schaltvorrichtung gegeben wird, da wegen des irreversiblen Fehlers ein Öffnen der mechanischen Kontakteinrichtung nicht mehr möglich ist.
- Dies stellt insofern keinen schwerwiegenden Nachteil dar, weil erstens dieser Fehlerfall dem von durchlegierten Thyristoren entspricht und dieser Fehlerfall durch entsprechende vorgeordnete Absicherungen/Schaltorgane immer beherrscht werden muss und zweitens die als irreversibel bezeichneten Fehler nur extrem selten auftreten.
- Die Überführung der Schaltvorrichtung in den sicheren Zustand kann auch dadurch erfolgen, dass von der Steuereinheit 8 ein Störmeldesignal abgegeben wird, welches z.B. ein externes, vorgeordnetes und zur Schalteinrichtung in Serie liegendes Schaltorgan ausschaltet und damit den Stromfluss unterbricht. Die Überführung in den sicheren Zustand kann ferner dadurch erfolgen, dass die Steuereinheit 8 ein in der Schaltvorrichtung vorhandenes Schaltorgan unterbricht, welches in Serie zur Parallelschaltung aus Halbleitereinrichtung und mechanischer Kontakteinrichtung liegt.
Claims (11)
- Schaltvorrichtung zum Betreiben eines Motors mit- einer mechanischen Kontakteinrichtung (1), die zwischen zwei Anschlüssen angeordnet und die in einer Dauerbetriebsphase des Motors zur Überbrückung der Anschlüsse einschaltbar ist, und- einer Halbleitereinrichtung (2), die zu der Kontakteinrichtung (1) parallel geschaltet ist und die zwischen den beiden Anschlüssen in einer Startphase des Motors zur leitenden Verbindung der Anschlüsse einschaltbar ist, gekennzeichnet durch- eine Spannungsüberwachungseinrichtung (5) zum Überwachen der Spannung an den Anschlüssen und zum Einschalten der Halbleitereinrichtung (2), falls die Spannung einen vorgegebenen Wert übersteigt,wobei die Schaltvorrichtung eine Abschalteinrichtung zum Ausschalten der Halbleitereinrichtung (2) nach einer definierten Zeitdauer oder Periodenzahl eines Spannungsverlaufs im Anschluss an das Einschalten der Halbleitereinrichtung (2) durch die Spannungsüberwachungseinrichtung (5) aufweist.
- Schaltvorrichtung nach Anspruch 1, wobei die Halbleitereinrichtung (2) zwei antiparallel geschaltete Thyristoren (3, 4)aufweist.
- Schaltvorrichtung nach Anspruch 1 oder 2, wobei die Spannungsüberwachungseinrichtung (5) einen Analogwandler (6), ein Schwellwertvergleichselement (7) und eine Steuereinheit (8) umfasst, so dass ein analoges Spannungssignal mit einem Schwellwert vergleichbar und ein resultierendes, binäres Vergleichsergebnis als Eingangssignal für die Steuereinheit (8) zum Schalten der Halbleitereinrichtung (2) einsetzbar ist.
- Schaltvorrichtung nach Anspruch 1 oder 2, wobei die Spannungsüberwachungseinrichtung (5) eine Steuereinheit (8) umfasst, in die ein Analog/Digitalwandler (6) und ein Schwellwertvergleichselement (7) integriert sind, so dass ein digitalisiertes Spannungssignal mit einem Schwellwert vergleichbar und ein resultierendes Vergleichsergebnis zum Schalten der Halbleitereinrichtung (2) durch die Steuereinheit (8) einsetzbar ist.
- Schaltvorrichtung nach einem der vorhergehenden Ansprüche, wobei der Spannungsbereich der überwachten Spannung die an der Kontakteinrichtung auftretende Lichtbogenspannung einschließt.
- Schaltvorrichtung nach einem der vorhergehenden Ansprüche, wobei zu der Parallelschaltung von Halbleitereinrichtung (2) und Kontakteinrichtung (1) ein Schaltorgan in Serie geschaltet ist.
- Schaltvorrichtung nach Anspruch 1, die mit der Abschalteinrichtung insgesamt abschaltbar ist, falls die Halbleitereinrichtung (2) durch die Spannungsüberwachungseinrichtung (5) mehrmals in einem vorgegebenen Zeitabschnitt eingeschaltet wird.
- Schaltvorrichtung nach einem der Ansprüche 3 bis 7, wobei mit der Steuereinheit (8) ein Störmeldesignal ausgebbar ist.
- Verfahren zum Betreiben eines Motors mit einer Schaltvorrichtung nach Anspruch 1 durch- Überwachen der Spannung an den Anschlüssen und- Einschalten der Halbleitereinrichtung (2), falls die Spannung einen vorgegebenen Wert übersteigt,wobei die Halbleitereirichtung (2) nach einer definierten Zeitdauer oder Periodenzahl eines Spannungsverlaufs im Anschluss an das Einschalten der Halbleitereinrichtung (2) ausgeschaltet wird.
- Verfahren nach Anspruch 9, wobei der Spannungsbereich der überwachten Spannung die an der Kontakteinrichtung (1) auftretende Lichtbogenspannung einschließt.
- Verfahren nach Anspruch 9, wobei die Schaltvorrichtung insgesamt abgeschaltet wird, falls die Halbleitereinrichtung (2) mehrmals in einem vorgegebenen Zeitabschnitt eingeschaltet wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004016739 | 2004-04-05 | ||
PCT/EP2005/051222 WO2005099080A1 (de) | 2004-04-05 | 2005-03-16 | Schaltvorrichtung zum betreiben eines motors und entsprechendes verfahren |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1733470A1 EP1733470A1 (de) | 2006-12-20 |
EP1733470B1 true EP1733470B1 (de) | 2012-08-15 |
Family
ID=34961817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05717083A Active EP1733470B1 (de) | 2004-04-05 | 2005-03-16 | Schaltvorrichtung zum betreiben eines motors und entsprechendes verfahren |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1733470B1 (de) |
DK (1) | DK1733470T3 (de) |
WO (1) | WO2005099080A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104781898A (zh) * | 2012-11-19 | 2015-07-15 | 西门子公司 | 用于控制连接在下游的电机的能量供给的开关设备 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9502881B2 (en) | 2012-08-30 | 2016-11-22 | Siemens Aktiengesellschaft | Switchgear for controlling the energy supply of an electric motor connected thereto |
EP2801994B1 (de) * | 2013-05-07 | 2019-02-20 | ABB S.p.A. | Gleichstromschaltvorrichtung, elektronische Vorrichtung und Verfahren zum Schalten einer zugehörigen Gleichstromschaltung |
CN111988177B (zh) * | 2020-08-20 | 2023-05-12 | 深信服科技股份有限公司 | 一种bypass控制方法、系统、设备及计算机介质 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4618906A (en) | 1984-07-16 | 1986-10-21 | Westinghouse Electric Corp. | Hybrid solid state/mechanical switch with failure protection |
FR2696062B1 (fr) * | 1992-09-23 | 1994-12-09 | Sgs Thomson Microelectronics | Commutateur électrique de puissance commandé et procédé de commutation d'un circuit électrique de puissance. |
FR2748612B1 (fr) | 1996-05-10 | 1998-06-19 | Schneider Electric Sa | Circuit pour l'alimentation protegee d'une charge electrique |
FR2773016A1 (fr) | 1997-12-24 | 1999-06-25 | Schneider Electric Sa | Appareil de commande d'un moteur electrique |
GB2344936A (en) | 1998-12-18 | 2000-06-21 | Zia Shlaimoun | Starter switch |
DE20008036U1 (de) | 2000-05-04 | 2000-08-03 | Sero Schröder Elektronik Rohrbach GmbH, 76865 Rohrbach | Schaltungsanordnung zur Unterdrückung eines Lichtbogens bei einem Schaltkontakt |
US6420848B1 (en) * | 2000-05-19 | 2002-07-16 | Eaton Corporation | Method and controlling the starting of an AC induction motor with closed loop current control |
KR100397565B1 (ko) | 2001-01-16 | 2003-09-13 | 엘지산전 주식회사 | 다기능 하이브리드 개폐기 |
-
2005
- 2005-03-16 DK DK05717083.9T patent/DK1733470T3/da active
- 2005-03-16 WO PCT/EP2005/051222 patent/WO2005099080A1/de not_active Application Discontinuation
- 2005-03-16 EP EP05717083A patent/EP1733470B1/de active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104781898A (zh) * | 2012-11-19 | 2015-07-15 | 西门子公司 | 用于控制连接在下游的电机的能量供给的开关设备 |
US9509132B2 (en) | 2012-11-19 | 2016-11-29 | Siemens Aktiengesellschaft | Switching device for controlling energy supply of a downstream electric motor |
CN104781898B (zh) * | 2012-11-19 | 2017-05-10 | 西门子公司 | 用于控制连接在下游的电机的能量供给的开关设备 |
Also Published As
Publication number | Publication date |
---|---|
WO2005099080A1 (de) | 2005-10-20 |
EP1733470A1 (de) | 2006-12-20 |
DK1733470T3 (da) | 2012-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3381043B1 (de) | Schaltgerät und verfahren zum ansteuern einer schalteinrichtung | |
EP2898521B1 (de) | Schaltgerät zum steuern der energiezufuhr eines nachgeschalteten elektromotors | |
DE102016216331B3 (de) | Trennvorrichtung zur Stromunterbrechung, Schutzschalter mit einem Sensor und einer Trennvorrichtung sowie Verfahren zum Betrieb einer Trennvorrichtung | |
EP2873083A1 (de) | Schaltgerät zum steuern der energiezufuhr eines nachgeschalteten elektromotors | |
WO2014075742A1 (de) | Schaltgerät zum steuern der energiezufuhr eines nachgeschalteten elektromotors | |
EP1667302B1 (de) | Verfahren und Vorrichtung zur Erfassung eines fehlerhaften Stromes oder einer fehlerhaften Spannung und Abschaltung der Versorgungsspannung | |
EP2593949A1 (de) | Überstromschalter, verwendung eines überstromschalters und elektrokraftfahrzeug mit einem überstromschalter | |
EP1733470B1 (de) | Schaltvorrichtung zum betreiben eines motors und entsprechendes verfahren | |
EP2546852B1 (de) | Bistabiles Sicherheitsrelais | |
DE102015000576A1 (de) | Kraftfahrzeug mit Schaltvorrichtung für eine bordnetzbetriebene Komponente | |
EP1364459B1 (de) | Sicherheitsschaltvorrichtung | |
DE19711622C1 (de) | Verfahren und Vorrichtung zum Betreiben einer in einen Stromkreis geschalteten, elektrischen Last | |
DE29809550U1 (de) | Vorrichtung zur sicheren Abschaltung einer elektrischen Last, mit insbesondere hoher Induktivität, von einer elektrischen Gleichspannungsversorgung | |
WO2005008877A1 (de) | Überwachungselektronik für einen elektromotor und verfahren zur überwachung eines elektromotors | |
EP2672595B1 (de) | Schaltungsanordnung und Verfahren zur Gleichstromunterbrechung | |
EP1986203A1 (de) | Verfahren zur Feststellung des Vorhandenseins einer Kontaktisolierschicht bei einem kontaktbehafteten Schaltelement sowie Schaltgerät mit einem derartigen Schaltelement | |
EP2461342B1 (de) | Fehlersicheres Schaltmodul | |
WO2009103584A1 (de) | Verfahren und vorrichtung zum betreiben einer schalteinheit | |
DE2431167A1 (de) | Ueberwachungsschaltung fuer eine ueberlastschutzschaltung | |
EP1968089A1 (de) | Ansteuermodul für einen elektrischen Schutzschalter, Verfahren zu dessen Betreiben und elektrisches Schutzsystem | |
DE4406902C2 (de) | Schaltungsanordnung für eine Meldeeinrichtung in Schutzschaltgeräten | |
EP3268972A2 (de) | Bauteilreduzierte schnellabschaltung eines elektronisch geregelten schützes | |
EP3008743B1 (de) | Gleichstromschalteinrichtung | |
CN118511408A (zh) | 直流断路器 | |
DE10031956B4 (de) | Schaltung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060807 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20091102 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H02P 1/28 20060101ALI20120222BHEP Ipc: H01H 9/54 20060101AFI20120222BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 571202 Country of ref document: AT Kind code of ref document: T Effective date: 20120815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502005013013 Country of ref document: DE Effective date: 20121011 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121215 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121217 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121116 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502005013013 Country of ref document: DE Effective date: 20130516 |
|
BERE | Be: lapsed |
Owner name: SIEMENS A.G. Effective date: 20130331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130331 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130316 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130316 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130316 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130331 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 571202 Country of ref document: AT Kind code of ref document: T Effective date: 20130316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130316 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20050316 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20200324 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20200316 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20220308 Year of fee payment: 18 Ref country code: IT Payment date: 20220322 Year of fee payment: 18 Ref country code: FR Payment date: 20220324 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220620 Year of fee payment: 19 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230510 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230317 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210316 |