EP1732956A1 - Orthoestergeschützte polyole für voc-arme beschichtungen - Google Patents

Orthoestergeschützte polyole für voc-arme beschichtungen

Info

Publication number
EP1732956A1
EP1732956A1 EP05729945A EP05729945A EP1732956A1 EP 1732956 A1 EP1732956 A1 EP 1732956A1 EP 05729945 A EP05729945 A EP 05729945A EP 05729945 A EP05729945 A EP 05729945A EP 1732956 A1 EP1732956 A1 EP 1732956A1
Authority
EP
European Patent Office
Prior art keywords
meth
orthoester
poly
acrylate
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05729945A
Other languages
English (en)
French (fr)
Inventor
Robert Barsotti
Laura Lewin
Alexei A. Gridnev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of EP1732956A1 publication Critical patent/EP1732956A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/485Morphinan derivatives, e.g. morphine, codeine

Definitions

  • VOC low volatile organic compounds
  • These coatings are predominantly solvent based and use hydroxyl/isocyanate curing.
  • One component of the system contains the hydroxyl functional species; the other component contains the isocyanate.
  • These components are mixed just prior to spraying on the vehicle.
  • These two-part coatings need to remain at a low enough viscosity to allow for spraying over an extended firtief ⁇ ame'arid then, after spraying, require rapid curing to a three- dimensional network on the vehicle to maximize productivity and physical properties.
  • the original coating in and around the damaged area is typically sanded or ground out by mechanical means. Sometimes the original coating is stripped off from a portion or off the entire auto body to expose the bare metal underneath.
  • the repaired surface is coated, preferably with low VOC coating compositions, typically in portable or permanent low cost painting enclosures vented to atmosphere to remove the organic solvents from the freshly applied paint coatings in a safe manner from the standpoint of operator health and explosion hazard.
  • low VOC coating compositions typically in portable or permanent low cost painting enclosures vented to atmosphere to remove the organic solvents from the freshly applied paint coatings in a safe manner from the standpoint of operator health and explosion hazard.
  • the drying and curing of the freshly applied paint takes place within these enclosures.
  • the foregoing drying and curing steps take place within the enclosure to prevent the wet paint from collecting dirt in the air or other contaminants.
  • these paint enclosures take up significant floor space of typical small auto body paint repair shops, these shops prefer to dry and cure these paints as fast as possible. More expensive enclosures are frequently provided with heat sources such as conventional heat lamps located inside the enclosure to cure the freshly applied paint at accelerated rates.
  • T g High glass transition temperature
  • MW weight average molecular wei ht
  • JP 2001-163922 describes reacting an oligomer comprising a polyorthoester, either an alpha- or beta-glycol, and an ethylenic unsaturated group with a resin having at least two hydroxyl groups.
  • WO 02/057339 describes protecting hydroxyl groups through the use of spiroorthocarbonate groups.
  • U.S. Patent No. 6,297,329 issued to van den Berg et al. on October 2, 2001 , discloses a coating composition comprising a first compound comprising at least one bicyclo- or spiro- orthoester group and a second compound comprising at least two hydroxyl-reactive groups.
  • U.S. Patent No. 6,045,870 issued to Noura et al. on April 4, 2000, discloses the protection of carboxyl groups through silylation. It is desirable to improve physical dry and long pot life through the use of novel polymers with protected hydroxyls.
  • the coatings disclosed herein are stable under anhydrous conditions but become active, or deblock, after application via the absorption of atmospheric moisture, which will release the initial hydroxyl groups. Once the hydroxyl group is released, it will quickly react with the isocyanate cross-linker to develop a three-dimensional network, and very rapid film formation will occur.
  • the invention relates to a coating composition wherein orthoester groups block the hydroxyl groups of the poly(meth)acrylate. The orthoester groups can be removed through hydrolysis in order to facilitate cross-linking through reaction with polyisocyanate compounds.
  • the invention also relates to a process for curing the aforementioned coating composition.
  • the invention also relates to a process for coating substrates wherein a clear coat comprising the aforementioned coating composition is coated over a base coat.
  • the invention also relates to a process TOT Dio'CKing me ny ⁇ roxyi groups o ⁇ a po ⁇ y metn)acrylate compound through reaction with an orthoester compound.
  • low VOC coating composition means a coating composition that includes the range of from 0.1 kilograms (1.0 pounds per gallon) to 0.72 kilograms (6.0 pounds per gallon), preferably 0.3 kilograms (2.6 pounds per gallon) to 0.6 kilograms (5.0 pounds per gallon), and more preferably 0.34 kilograms (2.8 pounds per gallon) to 0.53 kilograms (4.4 pounds per gallon) of the solvent per liter of the coating composition. All VOCs are determined under the procedure provided in ASTM D3960.
  • the present invention concerns a coating composition comprising a poly(meth)acrylate containing at least two hydroxyl groups blocked by hydrolyzable orthoester groups and at least one polyisocyanate compound.
  • the invention concerns a process for blocking the hydroxyl groups of poly(meth)acrylates comprising thermally reacting a poly(meth)acrylate containing at least two hydroxyl group with at least one orthoester compound.
  • ⁇ By' Oioc ⁇ e' "rs mean ⁇ ⁇ orm ⁇ ng a ny ⁇ roiyzaoie ester through reaction between at least two hydroxyl groups of a poly(meth)acrylate and at least one orthoester compound to form hydrolyzable orthoester groups.
  • from about 30% to 100% of hydroxyl groups are blocked by an orthoester compound.
  • an orthoester compound blocks substantially all of the hydroxyl groups.
  • coating compositions are formulated by first taking a poly(meth)acrylate compound containing at least two hydroxyl groups and protecting the hydroxyl groups through an acid catalysis reaction with at least one orthoester compound. The etherification reaction results in a poly(meth)acrylate compound wherein the hydroxyl groups have been blocked by orthoester groups.
  • the blocked poly(meth)acrylate compound is unblocked by hydrolyzing the orthoester groups with water, optionally in the presence of an acid catalyst, either prior to or simultaneously with the addition of an polyisocyanate compound.
  • the unblocked hydroxyl groups of the poly(meth)acrylate compound can freely react with the polyisocyanate compound to produce coating compositions by any method known to one of ordinary skill in the art.
  • Non-limiting examples of poly(meth)acryIates used in the coating composition are polymerized monomers of acrylic and methacrylic acid esters of straight-chain or branched monoalcohols of 1 to 20 carbon atoms.
  • Preferred esters are alkyl acrylates and methacrylates having 1 to 12 carbons in the alkyl group such as methyl acrylate, ethyl acrylate , propyl acrylate, isopropyl acrylate, butyl acrylate, pentyl acrylate, hexyl acrylate, 2-ethyl hexyl acrylate, nonyl acrylate, lauryl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, butyl methacrylate, pentyl methacrylate, hexyl methacrylate, 2-ethyl hexyl methacrylate, nonyl methacrylate, lauryl methacrylate, and the like.
  • Isobomyl methacrylate and isobornyl acrylate monomers can be used.
  • Cycloaliphatic (meth)acrylates can be used such as trimethylcyclohexyl acrylate, t-butyl cyclohexyl acrylate, cyclohexyl me acryiat ⁇ '; ig ⁇ twnyl methacrylate, -ethylhexyl methacrylate, and the like.
  • Aryl acrylates and methacrylates such as benzyl acrylate and benzyl methacrylate also can be used.
  • Ethylenically unsaturated monomers containing hydroxy functionality including hydroxy alkyl acrylates and hydroxy alkyl methacrylates, wherein the alkyl group has 1 to 4 carbon atoms can be used.
  • Suitable monomers include hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxyisopropyl acrylate, 2,3-dihydroxypropyl acrylate, hydroxybutyl acrylate, dihydroxybutyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxyisopropyl methacrylate, hydroxybutyl methacrylate, dihydroxypropyl methacrylate, dihydroxybutyl methacrylate and the like, and mixtures thereof.
  • Hydroxy functionality may also be obtained from monomer precursors, for example, the epoxy group of a glycidyl methacrylate unit in a polymer. Such an epoxy group may be converted, in a post polymerization reaction with water or a small amount of acid, to a hydroxy group.
  • Suitable other olefinically unsaturated comonomers that can be used include acrylamide and methacrylamide and derivatives such as alkoxy methyl (meth) acrylamide monomers, such as methacrylamide, N- isobutoxymethyl methacrylamide, and N-methylol methacrylamide; maleic, itaconic, and fumaric anhydride and its half and diesters; vinyl aromatics such as styrene, alpha methyl styrene, and vinyl toluene; and polyethylene glycol monoacrylates and monomethacrylates.
  • alkoxy methyl (meth) acrylamide monomers such as methacrylamide, N- isobutoxymethyl methacrylamide, and N-methylol methacrylamide
  • maleic, itaconic, and fumaric anhydride and its half and diesters vinyl aromatics such as styrene, alpha methyl styrene, and vinyl toluene
  • the M n of the poly(meth)acrylate is in the range of from about 200 to about 50,000. More preferably, the M n of the poly(meth)acrylate is in the range of from about 300 to about 20,000. Everrm ⁇ re preferably, the M n of the poly(meth)acrylate is in the range of from about 500 to about 6,000. All molecular weights referred to herein are determined by gel permeation chromatography ("GPC") using a polystyrene standard.
  • the poly(meth)acrylate preferably includes in the range from 2 to 200, more preferably in the range from 2 to 50, and most preferably in the range from 2 to 20 hydroxyl groups per poly(meth)acrylate compound.
  • the poly(meth)acrylate has a polydispersity in the range of from about 1.5 to about 10.0. In a more preferred embodiment, the poly(meth)acrylate has a polydispersity in the range of from about 1.5 to about 5.0. In an even more preferred embodiment, the poly(meth)acrylate has a polydispersity in the range of from about 1.5 to about 3.0.
  • the polyisocyanate compound of the coating composition includes one or more cross-linking agents having at least two isocyanate groups. Any of the conventional aromatic, aliphatic, cycloaliphatic, isocyanates, trifunctional isocyanates, and isocyanate functional adducts of a polyol and a diisocyanate can be used.
  • diisocyanates are 1 ,6- hexamethylene diisocyanate, isophorone diisocyanate, 4,4'-biphenylene diisocyanate, toluene diisocyanate, bis cyclohexyl diisocyanate, tetramethylene xylene diisocyanate, ethyl ethylene diisocyanate, 2,3- dimethyl ethylene diisocyanate, 1-methyltrimethylene diisocyanate, 1 ,3- cyclopentylene diisocyanate, 1 ,4-cyclohexylene diisocyanate, 1 ,3- phenylene diisocyanate, 1 ,5-naphthalene diisocyanate, bis-(4- isocyanatocyclohexyl)-methane, and 4,4'-diisocyanatodiphenyl ether.
  • Typical trifunctional isocyanates include triphenylmethane triisocyanate, 1 ,3,5-benzene triisocyanate, and 2,4,6-toIuene triisocyanate. Trimers of diisocyanates also can be used, such as the trimer of hexamethylene diisocyanate, which is supplied by Bayer Corp., Pittsburgh, Pa., under the trademark Desmodur ® N 3300A. Other suitable polyisocyanates from Bayer Corp. include Desmodur ® N 3390A BA/SN and Z 4470BA polyisocyanates.
  • the relative amount of cross-linking agent used in the coating composition is adjusted to provide a molar equivalent ratio of ⁇ ' NCO/COH+IMH 1 ) ⁇ n the range of from about 0.5 to about 5, preferably in the range of from about 0.7 to about 3, and more preferably in the range of from about 0.85 to about 2.
  • the coating composition is suitable for use as a clear or pigmented composition.
  • the coating composition can be used as a monocoat, as a basecoat, or as a primer.
  • the coating composition can include additional components such as solvents, catalysts, pigments, fillers, and conventional additives.
  • Suitable solvents include aromatic hydrocarbons, such as petroleum naphtha or xylenes; esters, such as, butyl acetate, t-butyl acetate, isobutyl acetate or hexyl acetate; and glycol ether esters, such as propylene glycol monomethyl ether acetate.
  • aromatic hydrocarbons such as petroleum naphtha or xylenes
  • esters such as, butyl acetate, t-butyl acetate, isobutyl acetate or hexyl acetate
  • glycol ether esters such as propylene glycol monomethyl ether acetate.
  • the amount of organic solvent added depends upon the desired solids level as well as the desired amount of VOC of the composition. If desired, the organic solvent may be added to both the components of the coating composition.
  • the coating composition preferably includes a catalytic amount of a catalyst for accelerating the curing process.
  • catalysts can be used, such as tin compounds, including dibutyl tin dilaurate and dibutyl tin diacetate, and tertiary amines such as triethylenediamine. These catalysts can be used alone or in conjunction with carboxylic acids, such as acetic acid.
  • One of the commercially available catalysts sold under the trademark Fastcat ® 4202 dibutyl tin dilaurate (Elf-Atochem North America, Inc., Philadelphia, Pa.), is particularly suitable. Hydrolyzing the protective group leads to the recovery of the original poly(meth)acrylate with hydroxyl groups available for cross- linking. Hydrolysis can occur in water, optionally in the presence of an acid catalyst. Suitable acids, for example, include acetic acids and the like, phosphorous and phosphoric acids and their esters, hydrochloric acid, perchloric acid, hydrobromic acid, sulfuric acid and its half-esters, acid, and compounds that generate acids upon hydrolysis such as, for example, POCI 3 , SOCI 2 , and PCI 5 .
  • the hydrolysis reaction can occur before or concurrently with the addition of cross-linker.
  • the blocked poly(meth)acrylates are unblocked, and the hydroxyl groups thus recovered, concurrently with the addition of cross-linker.
  • the orthoester groups will start to hydrolyze, eventually leading to cross-linking of the composition.
  • the water may be introduced in a variety of ways. For example, especially in the case of a coating, the water may be introduced into the uncross-linked or cross-linking (while the cross-linking is taking place) coating by absorption from the air. Absorption is very convenient for making an uncross-linked coating composition that is stable until exposed to (moist) air.
  • the coating composition can contain one or more coloring or special effect producing pigments.
  • coloring or special effect producing pigments include titanium dioxide, micronized titanium dioxide, iron oxide pigments, carbon black, azo pigments, phthalocyanine pigments, quinacridone pigments, and pyrrolopyrrol pigments.
  • special effect producing pigments include aluminum flake, copper bronze flake, and other metal flakes; interference pigments such as, for example, metal oxide coated metal pigments, for example, titanium dioxide coated or mixed oxide coated aluminum, coated mica such as, for example, titanium dioxide coated mica and graphite special effect pigments.
  • the coating composition may also include conventional additives such as wetting agents; leveling and flow control agents, for example, BYK ® 320 and 325 (high molecular weight polyacrylates; BYK-Chemie USA Inc., Wallingford, Conn.), BYK ® 347 (polyether-modified siloxane), a ' na-BYKr-606 1 ( ⁇ ' etHer-modified dimethylpolysiloxane); rheology control agents such as fumed silica; defoamers; surfactants; and emulsifiers to help stabilize the composition.
  • leveling and flow control agents for example, BYK ® 320 and 325 (high molecular weight polyacrylates; BYK-Chemie USA Inc., Wallingford, Conn.), BYK ® 347 (polyether-modified siloxane), a ' na-BYKr-606 1 ( ⁇ ' etHer-modified dimethylpolys
  • additives that tend to improve mar resistance can be added, such as silsesquioxanes and other silicate-based micro-particles.
  • additional additives will, of course, depend on the intended use of the coating composition. Any additives that would adversely affect the clarity of the cured coating will not be included when the composition is used as a clear coating.
  • the foregoing additives may be added to either component or both depending upon the intended use of the coating composition.
  • ultraviolet light stabilizers screeners, quenchers, and antioxidants can be added to the composition, the percentages being based on the total weight of the binder and cross-linking components solids.
  • Typical ultraviolet light screeners and stabilizers include the following: Benzophenones such as hydroxy dodecycloxy benzophenone, 2,4- dihydroxy benzophenone, and hydroxy benzophenones containing sulfonic acid groups. Benzoates such as dibenzoate of diphenylol propane and tertiary butyl benzoate of diphenylol propane.
  • Triazines such as 3,5-dialkyl-4-hydroxyphenyl derivatives of triazine and sulfur containing derivatives of dialkyl-4-hydroxy phenyl triazine and hydroxy phenyl-1 ,3,5-triazine.
  • Triazoles such as 2-phenyl-4-(2,2'-dihydroxy benzoyl)-triazole and substituted benzotriazoles such as hydroxy-phenyltriazole.
  • Hindered amines such as bis(1 ,2,2,6, 6-entamethyl-4-piperidinyl sebacate) and di[4(2,2,6,6-tetramethyl piperidinyl)]sebacate; and any mixtures of any of the above.
  • the hydrolyzable orthoester group is an orthoformate group. Even more preferably, the hydrolyzable orthoester group has the following chemical structure: wherein Ri and R 2 are, independently, alkyl substituents of 1 to 6 carbon atoms or cyclic substituents of 5 to 7 atoms; and R 3 is H, an alkyl substituent of 1 to 6 carbon atoms, or an aromatic substituent.
  • the invention concerns a process for curing coating composition
  • a process for curing coating composition comprising thermally reacting a poly(meth)acrylate containing at least two hydroxyl groups with at least one orthoester compound, hydrolyzing the product of the thermal reaction step to unblock the poly(meth)acrylate containing at least two hydroxyl groups, and reacting the unblocked poly(meth)acrylate containing at least two hydroxyl groups with at least one polyisocyanate compound.
  • the orthoester compound has the following chemical structure:
  • Ri and R 2 are, independently, alkyl substituents of 1 to 6 carbon atoms or cyclic substituents of 5 to 7 atoms; R 3 is H, an alkyl substituent of 1 to 6 carbon atoms, or an aromatic substituent; and R is an alkyl substituent of 1 to 6 carbon atoms.
  • Preferable orthoester compounds include triethylorthoformate, trimethylorthoformate, triethylorthopropionate, trimethylorthopropionate, and 2-ethoxy-1 ,3- dioxalane.
  • the orthoester compound is triethylorthoformate.
  • the blocking reaction is thermal, which means performed by heat without the need for a catalyst.
  • a catalyst may be used, however, if desired.
  • the poly(meth)acrylate is heated with an excess of an orthoester compound.
  • the thermal reaction preferably occurs in the temperature range of from about 70°C to about 200°C and even more preferably ii occi ⁇ rs"ir.”t ie ' t ⁇ rtip' ra ⁇ e range of from about 110 u ⁇ to about 150°C.
  • the hydroxyl groups are blocked, for example, by the following reaction:
  • Ri and R 2 are, independently, alkyl substituents of 1 to 6 carbon atoms or cyclic substituents of 5 to 7 atoms; R 3 is H, an alkyl substituent of 1 to 6 carbon atoms, or an aromatic substituent; and R is an alkyl substituent of 1 to 6 carbon atoms.
  • "Polyol” represents the poly(meth)acrylate backbone. Blocking the hydroxyl groups of the poly(meth)acrylate compound can reduce the viscosity of the coating composition, thus allowing for the preparation of higher solids, lower VOC coating compositions. If necessary, the viscosity of the blocked poly(meth)acrylate can be adjusted using, for example, ethyl acetate.
  • coatings of the invention can comprise at least one of a spiroorthocarbonate compound and an amide acetal compound.
  • Spiroorthocarbonate compounds are described in co- pending, co-owned application Serial No. 60/261 ,450, and amide acetal compounds are described in co-pending, co-owned application Serial No. 60/509,885.
  • the spiroorthocarbonate compound has the following chemical structure:
  • R 5 and RQ are, independently, hydrocarbylene or substituted hydrocarbylene bridging groups that have at least two bridging carbon atoms. It is preferred that there independently be 2 or 3 atoms in each bridge between oxygen atoms.
  • hydrocarbylene is meant a group containing only carbon and hydrogen that has two free valences to carbon i tbl , ri i s ; ; ;il f ;l b t N i I nces are not to the same carbon atom.
  • substituted hydrocarbylene is meant one or more hydrogen atoms are substituted for by a functional group that does not interfere with the desired reactions of, or the formation of, the compound involved.
  • Suitable functional groups include halo, ether including alkoxy, hydroxyl, etc.
  • Preferred groups for R 5 and Re each independently have the formula -CR 7 R8-CR9R ⁇ o-(CR ⁇ R ⁇ 2 ) n -, wherein n is 0 or 1 , and each of R 7 - R 12 independently is hydrogen, hydrocarbyl, or substituted hydrocarbyl, provided that any two of R 7 -R ⁇ 2 vicinal or geminal to each other taken together may form a ring.
  • R 5 and Re are the same.
  • R7-R12 Independently preferred groups for R7-R12 are hydrogen; alkyl, especially alkyl containing 1 to 10 carbon atoms, more preferably methyl or ethyl; and hydroxyaklyl, especially hydroxymethyl. Substitution patterns for specific preferred compounds are given in Table 1.
  • the amide acetal compound has the following chemical structure:
  • R 1 3-R2 1 are, independently, hydrogen, Ci to C 22 alkyl, Ci to C 20 alkenyl, Ci to C 2 o alkynyl, Ci to C 2 _ aryl, Ci to C 20 alkyl ester, or C 1 to C 2 o "ar ' al'Wyi-y p y lalkenyl, alkynyl, aryl, or aralkyl each optionally having at least one substituent selected from the group consisting of halo, alkoxy, nitro, amino, alkylamino, dialkylamino, cyano, alkoxy silane and amide acetal (difunctional), and carbamoyl.
  • coatings of this invention can comprise at least one of a conventional acrylic polymer, a polyester, a reactive oligomer, a dispersed acrylic polymer, an aldimine or ketimine, and a polyaspartic ester.
  • the conventional acrylic polymer suitable for use in the present invention can have a GPC Mw exceeding 5,000, preferably in the range of from 5,000 to 20,000, more preferably in the range of 6,000 to 20,000, and most preferably in the range of from 8,000 to 12,000.
  • the T g of the acrylic polymer varies in the range of from 0°C to 100°C, preferably in the range of from 30°C to 80°C.
  • the acrylic polymer suitable for use in the present invention can be conventionally polymerized from typical monomers, such as alkyl (meth)acrylates having alkyl carbon atoms in the range of from 1 to 18, preferably in the range of from 1 to 12, and styrene and functional monomers such as hydroxyethyl acrylate and hydroxyethyl methacrylate.
  • the polyester suitable for use in the present invention can have a GPC Mw exceeding 1 ,500, preferably in the range of from 1 ,500 to 100,000, more preferably in the range of 2,000 to 50,000, still more preferably in the range of 2,000 to 8,000, and most preferably in the range of from 2,000 to 5,000.
  • the T g of the polyester varies in the range of from -50°C to 100°C, preferably in the range of from -20°C to 50°C.
  • Suitable polyesters can be conventionally polymerized from suitable polyacids, including cycloaliphatic polycarboxylic acids, and suitable polyols, which include polyhydric alcohols.
  • Suitable cycloaliphatic polycarboxylic acids are tetrahydrophthalic acid, hexahydrophthalic acid, 1 ,2-cyclohexanedicarboxylic acid, 1 ,3- cyclohexanedicarboxylic acid, 1 ,4-cyclohexanedicarboxylic acid, 4- methylhexahydrophthalic acid, endomethylenetetrahydrophthalic acid, tricyclodecanedicarboxylic acid, endoethylenehexahydrophthalic acid, camphoric acid, cyclohexanetetracarboxylic acid, and cy i!l ⁇ gt t e ' r c y c acid.
  • the cycloal p a c polycarboxylic acids can be used not only in their cis but also in their trans form and as a mixture of both forms.
  • suitable polycarboxylic acids which, if desired, can be used together with the cycloaliphatic polycarboxylic acids, are aromatic and aliphatic polycarboxylic acids, such as, for example, phthalic acid, isophthalic acid, terephthalic acid, halogenophthalic acids, such as, tetrachloro- or tetrabromophthalic acid, adipic acid, glutaric acid, azelaic acid, sebacic acid, fumaric acid, maleic acid, trimellitic acid, and pyromellitic acid.
  • Suitable polyhydric alcohols include ethylene glycol, propanediols, butanediols, hexanediols, neopentylglycol, diethylene glycol, cyclohexanediol, cyclohexanedimethanol, trimethylpentanediol, ethylbutylpropanediol, ditrimethylolpropane, trimethylolethane, trimethylolpropane, glycerol, pentaerythritol, dipentaerythritol, tris(hydroxyethyl) isocyanate, polyethylene glycol, and polypropylene glycol.
  • monohydric alcohols such as, for example, butanol, octanol, lauryl alcohol, ethoxylated, or propoxylated phenols may also be included along with polyhydric alcohols.
  • polyester suitable for use in the present invention are further provided in the U.S. Patent No. 5,326,820.
  • One commercially available polyester, which is particularly preferred, is SCD ® -1040 polyester, which is supplied by Etna Products Inc., Chagrin Falls, Ohio.
  • Useful reactive oligomers are covered in U.S. Patent No. 6,221 ,494. Non-alicyclic (linear or aromatic) oligomers can also be used, if desired.
  • non-alicyclic-oligomers can be made by using non-alicyclic anhydrides, such as succinic or phthalic anhydrides, or mixtures thereof.
  • Caprolactone oligomers described in U.S. Patent No. 5,286,782 can also be used.
  • Typical useful dispersed acrylic polymers are prepared by dispersion polymerizing at least one vinyl monomer in the presence of a polymer dispersion stabilizer and an organic solvent.
  • the polymer dispersion stabilizer may be any of the known stabilizers used commonly in the field of dispersed acrylic polymers. These dispersed acrylic polymers are covered in U.S. Patent No. 5,763,528.
  • ® ble l ⁇ ⁇ may be prepared from aldehydes such as acetaldehyde, formaldehyde, propionaldehyde, isobutyraldehyde, n- butyraldehyde, heptaldehyde, and cyclohexyl aldehydes by reaction with amine.
  • aldehydes such as acetaldehyde, formaldehyde, propionaldehyde, isobutyraldehyde, n- butyraldehyde, heptaldehyde, and cyclohexyl aldehydes by reaction with amine.
  • Representative amines that may be used to form the aldimine include ethylene diamine, ethylene triamine, propylene diamine, tetramethylene diamine, 1 ,6-hexamethylene diamine, bis(6- aminohexyl)ether, tricyclodecane diamine, N.N'-dimethyldiethyltriamine, cyclohexyl-1 ,2,4-triamine, cyclohexyl-1 ,2,4,5-tetraamine, 3,4,5- triaminopyran, 3,4-diaminofuran, and cycloaliphatic diamines.
  • Suitable polyaspartic esters are typically prepared by the reaction of diamines such as isophorone diamine with dialkyl maleates such as diethyl maleate.
  • diamines such as isophorone diamine
  • dialkyl maleates such as diethyl maleate.
  • the foregoing polyaspartic ester and selected aldimines are supplied commercially under the trademark Desmophen ® amine co- reactants by Bayer Corp.
  • Suitable ketimines are typically prepared by the reaction of ketones with amines.
  • ketones which may be used to form the ketimine, include acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, diethyl ketone, benzyl methylketone, diisopropyl ketone, cyclopentanone, and cyclohexanone.
  • amines which may be used to form the ketimine include ethylene diamine, ethylene triamine, propylene diamine, tetramethylene diamine, 1 ,6- hexamethylene diamine, bis(6-aminohexyl)ether, tricyclodecane diamine, N,N'-dimethyldiethyltriamine, cyclohexyl-1 ,2,4-triamine, cyclohexyl- 1 ,2,4,5-tetraamine, 3,4,5-triaminopyran, 3,4-diaminofuran, and cycloaliphatic diamines.
  • Preparation and other suitable imines are shown in U.S. Patent No. 6,297,320.
  • the invention concerns a process for coating a substrate comprising applying a base coat to the substrate, applying a clear coat over the base coat wherein the clear coat comprises a poly(meth)acrylate containing at least two hydroxyl groups blocked by hydrolyzable orthoester groups and at least one polyisocyanate compound, hydrolyzing the orthoester groups of the poly(meth)acrylate containing at least two hydroxyl groups, and cross-linking the unblocked • l p ⁇ l ⁇ metH l )ia i bryiyt l f. fim' , the hydrolyzing step through reaction with at least one polyisocyanate compound.
  • the coating composition can be supplied in the form of a two-pack coating composition.
  • the cross-linkable component and the cross-linking component are mixed; typically just prior to application to form a pot mix.
  • the mixing can take place though a conventional mixing nozzle or separately in a container.
  • a layer of the pot mix generally having a thickness in the range of 15 ⁇ m to 200 ⁇ is applied over a substrate, such as an automotive body or an automotive body that has precoated layers, such as electrocoat primer.
  • the foregoing application step can be conventionally accomplished by spraying, electrostatic spraying, roller coating, dipping, or brushing the pot mix over the substrate.
  • the layer after application is typically dried to reduce the solvent content from the layer and then cured at a temperature ranging from ambient to about 204°C.
  • the dried layer of the composition can be typically cured at elevated temperatures ranging from about 60°C to about 160°C in about 10 to 60 minutes.
  • curing can take place at about ambient to about 60°C
  • curing can take place at about 60°C to about 80°C.
  • the cure under ambient conditions occurs in about 30 minutes to 24 hours, generally in about 30 minutes to 4 hours to form a coating on the substrate having the desired coating properties.
  • the actual curing time can depend upon the thickness of the applied layer, the cure temperature, humidity, and on any additional mechanical aids, such as fans, that assist in continuously flowing air over the coated substrate to accelerate the cure rate.
  • the suitable substrates for applying the coating composition include automobile bodies; any and all items manufactured and painted by automobile sub-suppliers; frame rails; commercial trucks and truck bodies, including but not limited to beverage bodies, utility bodies, ready M ., chorus ,.
  • the substrate further includes industrial and commercial new construction and maintenance thereof; cement and wood floors; walls of commercial and residential structures, such office buildings and homes; amusement park equipment; concrete surfaces, such as parking lots and drive ways; asphalt and concrete road surface; wood substrates; marine surfaces; outdoor structures, such as bridges; towers; coil coating; railroad cars; printed circuit boards; machinery; OEM tools; signage; fiberglass structures; sporting goods; and sporting equipment.
  • EXAMPLES The present invention is further defined in the following Examples. It should be understood that these Examples, while indicating preferred embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the preferred features of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various uses and conditions.
  • the flask was flashed with nitrogen gas, and 400 ml of triethyl orthoformate was added.
  • the flask was placed into a 150- 170°C oil bath for 1.5 hr. Then, 15 Torr vacuum was applied at 70°C in the oil bath to remove all volatile components. After 1 hr., the flask was filled with nitrogen, and 30 ml of dry ethyl acetate was added to adjust Visdd's ⁇ ty.”" %'e jpb'fy ⁇ &Ps' ⁇ lution was chilled down to room temperature and dispensed into an airtight container. IR spectrum of the mixture showed no significant signal from hydroxyl groups in the 3,100-3,300 cm "1 region.
  • EXAMPLE 4 Three coating compositions were created. The first, Coating A, contained neither unprotected nor orthoester-protected HEMA/M MA/I BOA. The second, Coating B, contained protected HEMA/MMA/IBOA (in the form of Orthoester Composition B). The third, Coating C, contained unprotected HEMA/MMA/IBOA. To create the coating compositions, the components in Table 2 were mixed. All three coatings contained a spiroorthocarbonate component (3,9-dibutyl-3,9- diethyl-1 ,5,7,11-tetraoxaspiro[5,5]undecane) as described in Experiment 2 of co-pending, co-owned application Serial No. 60/261 ,450, wherein 2- ethyl-1 ,3-hexanediol replaces 2-butyl-2-ethyl-1 ,3-propanediol. Table 2
  • the dry time of a coated layer of the composition was measured as BK3 surface dry time under ASTM test D5895.
  • Water spot rating is a measure of how well the coating composition is cross-linked early in the curing of the coating composition. Water spot damage on the coating composition indicates that the cure is not complete and further curing of the coating composition is needed before an be wet sanded, buffed, or moved from the spray booth.
  • the water spot rating is determined as follows. Panels coated with the test coating compositions were laid on a flat surface and deionized water was applied with a pipette at 1 hr. timed intervals.
  • a drop of about 1.25 cm in diameter was placed on the panel and allowed to evaporate.
  • the spot on the panel was checked for deformation and discoloration.
  • the panel was wiped lightly with cheesecloth wetted with deionized water followed by lightly wiping the panel dry with the cloth. The panel was then rated on a scale of 1 to 10.
  • a rating of 10 is best - no evidence of spotting or distortion of discoloration; rating 9 - barely detectable; rating 8 - slight ring; rating 7 - very slight discoloration or slight distortion; rating 6 - slight loss of gloss or slight discoloration; rating 5 - definite loss of gloss or discoloration; rating 4 - slight etching or definite distortion; rating 3 - light lifting, bad etching, or discoloration; rating 2 - definite lifting; and rating 1 - dissolving of the coating composition.
  • Table 5 shows the cure improvement found in Coating B because of the addition of the orthoester group (Orthoester Composition B) compared with Coating A without substantially harming potlife.
  • Coating C versus Coating B is a comparison of the unprotected material (C) versus protected material (B). Coating B has better potlife at higher solids (75% versus 72% solids) with similar cure.
  • Coatings G and H contained an amide acetal compound as described in Example 4 of co-pending, co-owned application Serial No. 60/509,885.
  • Each of the coating compositions was applied with a doctor blade over a separate phosphated cold roll steel panel primed with a layer of PowerCron ® Primer supplied by PPG, Pittsburgh, Pa., to a dry coating thickness of 50 ⁇ m.
  • Coating compositions D-F were air dried at ambient temperature conditions, and a second set of panels was baked for 20 min. at 60°C.
  • Coating compositions G and H were baked for 20 min. at 60°C. Table 6
  • the swell ratio of a free film was determined by swelling the film in methylene chloride.
  • the free film was placed between two layers of aluminum foil and using a LADD punch, a disc of about 3.5 mm in diameter was punched out of the film and the foil was removed from the film.
  • the diameter of the unswollen film (“D 0 ”) was measured using a microscope with a 10 ⁇ magnification and a filar lens.
  • Four drops of methylene chloride were added to the film and the film was allowed to swell for a few second and then a glass slide was placed over the film and the swollen film diameter ("D s ”) was measured.
  • the change in film hardness (Persoz Hardness) of the coating was measured with respect to time by using a Persoz hardness tester Model No. 5854 (ASTM D4366), supplied by Byk- allinckrodt, Wallingford, Conn. The number of oscillations (referred to as Persoz number) was recorded.
  • Fischer Hardness was measured using a Fischerscope ® hardness tester (the measurement is in N/mm 2 ).
  • the MEK Solvent Resistance Test was performed by rubbing a coated panel (100 times) with an MEK (methyl ethyl ketone) soaked cloth using a rubbing machine, and excess MEK was wiped off. The panel was then rated from 1-10. Rating of 10 means no visible damage to the coating, 9 means 1 to 3 distinct scratches, 8 means 4 to 6 distinct scratches, 7 means 7 to 10 distinct scratches, 6 means 10 to 15 distinct scratches with slight pitting or slight loss of color, 5 means 15 to 20 distinct scratches with slight to moderate pitting or moderate loss of color, . actively consider ., , ., ,.
  • Time to Gel is the time it takes for a liquid coating to gel.
  • the weight solids are measured using pre-weighed aluminum dishes: 1) 2-4 ml of Aromatic 100 solvent from ExxonMobil Chemical Company (Houston, Tex.) are placed in the aluminum dish; 2) 0.2 - 0.4 g of the experimental material is weighed into the dish containing the solvent; 3) the multi-component clear coating is allowed to sit for 60 min. at room temperature; 4) the sample is then placed in an oven at 110 +/- 5 °C for 60 min.; 5) the sample is removed from the oven, allowed to cool at room temperature, and weighed; 6) the weight solids is calculated as:
  • Comparing coatings E and F to coating D shows significant advantages of using polymers with protected hydroxyl groups over the use of more conventional acrylics with hydroxyl groups in coatings.
  • Coatings E and F have significantly improved time to gel and early cure, as indicated by improved BK3 times and higher 4 hr. and 1 d. room temperature hardness, over coating D.
  • te ⁇ ftf ⁇ j ' ⁇ show that coatings using polymers with protected hydroxyls can be made at very high solids (83-85%) and low VOC ( ⁇ 2.1 pounds per gallon) while maintaining good cure and pDt life (>24 hr. in time to gel and up to 6 hr. for the viscosity to double).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Paints Or Removers (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
EP05729945A 2004-03-22 2005-03-16 Orthoestergeschützte polyole für voc-arme beschichtungen Withdrawn EP1732956A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US55516504P 2004-03-22 2004-03-22
PCT/US2005/008887 WO2005092934A1 (en) 2004-03-22 2005-03-16 Orthoester-protected polyols for low voc coatings

Publications (1)

Publication Number Publication Date
EP1732956A1 true EP1732956A1 (de) 2006-12-20

Family

ID=34963911

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05729945A Withdrawn EP1732956A1 (de) 2004-03-22 2005-03-16 Orthoestergeschützte polyole für voc-arme beschichtungen

Country Status (7)

Country Link
EP (1) EP1732956A1 (de)
JP (1) JP2007530734A (de)
CN (1) CN1934141A (de)
AU (1) AU2005227303A1 (de)
BR (1) BRPI0508215A (de)
CA (1) CA2557439A1 (de)
WO (2) WO2005092934A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7740699B2 (en) * 2006-10-05 2010-06-22 E.I. Du Pont De Nemours And Company Orthoformate-protected polyols
US20090018154A1 (en) * 2007-05-17 2009-01-15 Endo Pharmaceuticals, Inc., A Corporation Of Delaware Opioid and methods of making and using the same
US8210452B2 (en) 2007-12-27 2012-07-03 E I Du Pont De Nemours And Company Device for introducing catalyst into atomized coating composition
DE102008000268A1 (de) 2008-02-11 2009-08-13 Evonik Röhm Gmbh Verfahren zur Herstellung von Orthoester geblocktem Poly(meth)acrylat sowie Verwendung als Vernetzer in Lackharzen auf Isocyanatbasis
US8956642B2 (en) 2008-04-18 2015-02-17 Medtronic, Inc. Bupivacaine formulation in a polyorthoester carrier
US8940315B2 (en) 2008-04-18 2015-01-27 Medtronic, Inc. Benzodiazepine formulation in a polyorthoester carrier
DE102008041294A1 (de) 2008-08-18 2010-02-25 Evonik Röhm Gmbh Verfahren zur Herstellung von Orthoester geblocktem Poly(meth)acrylat sowie Verwendung als Vernetzer in Lackharzen auf Isocyanatbasis
MX2011006741A (es) 2008-12-23 2011-07-20 Du Pont Metodo para producir una mezcla atomizable que contiene grupos reticulables protegidos.
MX2011013576A (es) 2009-06-25 2012-01-20 Du Pont Dispositivo rociador para rociar componentes multiples y uso de este.
EP2445648A1 (de) 2009-06-25 2012-05-02 E. I. du Pont de Nemours and Company Sprayvorrichtung und ihre verwendung
WO2010151720A1 (en) 2009-06-25 2010-12-29 E. I. Du Pont De Nemours And Company Spray device for coating and use thereof
WO2010151744A1 (en) 2009-06-25 2010-12-29 E. I. Du Pont De Nemours And Company Method for spraying multiple components
DE102009054071A1 (de) 2009-11-20 2011-05-26 Basf Coatings Gmbh Beschichtungsmittel mit guter Lagerbeständigkeit und daraus hergestellte Beschichtungen mit hoher Kratzfestigkeit bei gleichzeitig guter Witterungsbeständigkeit
EP2336212B1 (de) * 2009-12-12 2012-03-07 Bayer MaterialScience AG Klebstoffverbundsystem zum Abdecken, Verschliessen oder Verkleben von Zellgewebe
US9186688B2 (en) 2010-02-15 2015-11-17 Axalta Coating Systems Ip Co., Llc Method for spraying two-component compositions
US9027858B2 (en) 2010-02-15 2015-05-12 Axalta Coating Systems Ip Co., Llc Two-component spray device and use thereof
US8973522B2 (en) 2011-03-14 2015-03-10 Axalta Coating Systems Ip Co., Llc Dual feeding spray device and use thereof
JP7463821B2 (ja) 2020-04-22 2024-04-09 信越化学工業株式会社 オルガノポリシロキサンを含有する組成物の製造方法、硬化膜の製造方法および被覆物品の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1002427C2 (nl) * 1996-02-23 1997-08-26 Akzo Nobel Nv Bekledingssamenstelling omvattende een bicyclo- of spiroorthoester functionele verbinding.
EP1225172B1 (de) * 1999-09-17 2004-07-21 Kansai Paint Co., Ltd. Polyorthoester und härtbare zusammensetzung, die diese enthalten
EP2311460A1 (de) * 2001-07-06 2011-04-20 Endo Pharmaceuticals Inc. Kontrolliert freisetzende Formulierungen von Oxymorphon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005092934A1 *

Also Published As

Publication number Publication date
AU2005227303A1 (en) 2005-10-06
BRPI0508215A (pt) 2007-07-17
JP2007530734A (ja) 2007-11-01
CA2557439A1 (en) 2005-10-06
WO2005092337A1 (en) 2005-10-06
WO2005092934A1 (en) 2005-10-06
WO2005092934A8 (en) 2007-01-11
CN1934141A (zh) 2007-03-21

Similar Documents

Publication Publication Date Title
EP1521812B1 (de) Zweikomponentige lacke und entsprechende lackierungen
WO2005092934A1 (en) Orthoester-protected polyols for low voc coatings
US20070197727A1 (en) Multi component coating composition
US6984693B2 (en) Two stage cure two component coating composition containing hydroxylbutyl acrylate polymers
WO2003025040A1 (en) Preparation and use of biuret-containing polyisocyanates as cross-linking agents for coatings
WO2006076724A2 (en) Durable coating compositions containing aspartic amine compounds with improved potlife
EP1570012B1 (de) Beschichtungszusammensetzung enthaltend säurefunktionelle acrylpolymere und silica
US20050209433A1 (en) Orthoester-protected polyols for low VOC coatings
US7740699B2 (en) Orthoformate-protected polyols
US7135530B2 (en) Polymeric/oligomeric methacrylate functionalized amide acetals in coatings
CA2527084A1 (en) Two component coating compositions and coatings produced therefrom
US20050209432A1 (en) Ketal-protected polyols for low VOC coatings
US7812173B2 (en) Tetrahydro-1,8-dioxa-4a-aza-naphthalenes in coating applications
US20070190258A1 (en) Process for producing coating from multi component coating composition
MXPA06010732A (de)
EP1873217B1 (de) Beschichtungszusammensetzung aus zwei Komponenten und daraus hergestellte Beschichtungen
EP1794166B1 (de) Polymerische/oligomerische, methacrlyat-funktionalisierte amidacetale in beschichtungen
AU2002327003A1 (en) Preparation and use of biuret-containing polyisocyanates as cross-linking agents for coatings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): BE DE ES FR

17Q First examination report despatched

Effective date: 20071030

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090613