EP1730797A2 - Diode electroluminescente organique et ses utilisations - Google Patents
Diode electroluminescente organique et ses utilisationsInfo
- Publication number
- EP1730797A2 EP1730797A2 EP05747924A EP05747924A EP1730797A2 EP 1730797 A2 EP1730797 A2 EP 1730797A2 EP 05747924 A EP05747924 A EP 05747924A EP 05747924 A EP05747924 A EP 05747924A EP 1730797 A2 EP1730797 A2 EP 1730797A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- organic light
- emitting diode
- units
- organic
- diode according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 150000001639 boron compounds Chemical class 0.000 title 1
- 150000007517 lewis acids Chemical group 0.000 claims abstract description 26
- 239000004065 semiconductor Substances 0.000 claims abstract description 25
- UORVGPXVDQYIDP-BJUDXGSMSA-N borane Chemical group [10BH3] UORVGPXVDQYIDP-BJUDXGSMSA-N 0.000 claims abstract description 7
- 229920000642 polymer Polymers 0.000 claims description 13
- 239000011159 matrix material Substances 0.000 claims description 7
- 125000003118 aryl group Chemical group 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 125000005259 triarylamine group Chemical group 0.000 claims description 6
- 238000000295 emission spectrum Methods 0.000 claims description 4
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical group C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000002841 Lewis acid Substances 0.000 abstract description 10
- 239000002800 charge carrier Substances 0.000 abstract description 9
- 230000009467 reduction Effects 0.000 abstract description 8
- 229920001577 copolymer Polymers 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920000412 polyarylene Polymers 0.000 description 2
- 229920002098 polyfluorene Polymers 0.000 description 2
- -1 polyparaphenylene Polymers 0.000 description 2
- UQRONKZLYKUEMO-UHFFFAOYSA-N 4-methyl-1-(2,4,6-trimethylphenyl)pent-4-en-2-one Chemical group CC(=C)CC(=O)Cc1c(C)cc(C)cc1C UQRONKZLYKUEMO-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 101000863856 Homo sapiens Shiftless antiviral inhibitor of ribosomal frameshifting protein Proteins 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 208000037062 Polyps Diseases 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000001194 electroluminescence spectrum Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002390 heteroarenes Chemical class 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- FXFWLXFJBVILBE-UHFFFAOYSA-N tris(2,4,6-trimethylphenyl)borane Chemical compound CC1=CC(C)=CC(C)=C1B(C=1C(=CC(C)=CC=1C)C)C1=C(C)C=C(C)C=C1C FXFWLXFJBVILBE-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/321—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
- H10K50/165—Electron transporting layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/30—Doping active layers, e.g. electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/114—Poly-phenylenevinylene; Derivatives thereof
Definitions
- the invention relates to an organic light-emitting diode (OLED) with improved service life and improved transport of negative charge carriers.
- OLED organic light-emitting diode
- OLEDs based on semiconducting material with, for example, a backbone of polyarylene vinylene or polyparaphenylene (in particular polyfluorene and / or polyspirofluorene) are known in which, in addition to these constituents, proportions of other chromophores and / or triarylamine derivatives are also polymerized or in the form brought in by blends.
- the chromophores generally produce strong long-wave, that is to say essentially green or red, emission bands in the resulting electroluminescence spectra.
- the triarylamin units typically have a minor influence on the emission spectrum of the organic light-emitting diodes and serve primarily to transport positive charges via the conjugated polymer chain and / or the oxidation stability of the organic semiconducting material.
- Polymer OLEDs represent the reduction stability of the semiconducting, organic material. end because in an organic semiconducting material the charge transport is effected via individual oxidations and reductions, a subunit involved in charge transport typically having to be oxidized or reduced many billions of times during the operating life of the component. An irreversible chemical degradation during such a process leads to a deterioration in the charge transport properties and at the same time a decrease in the luminance.
- the object of the present invention is therefore to create an organic light-emitting diode with an increased redox stability of the semiconducting organic material, so that it has an extended operating life.
- the invention relates to an organic light emitting diode or light display with an organic semiconducting material of an active layer, into which at least partially triaryl-substituted Lewis acid units are polymerized and / or admixed in the form of blends as a polymer component.
- the invention also relates to the use of the organic light-emitting diode for lighting purposes and / or for monochrome, multicolor or full-color organic light-emitting displays based on color filters or structured, RGB-pixelated emitter layers, and for passive matrix displays.
- An organic light-emitting diode comprises at least one substrate, a transparent lower electrode layer, at least one active layer and an upper electrode layer.
- the organic light-emitting diode is advantageously encapsulated against undesirable environmental influences.
- polymerized in and / or admixed in the form of blends as a polymer component means that the triaryl-substituted Lewis acid units are either in a copolymer with other units such as polya- rylene vinylene or polyp raphenylene (especially polyfluorene and / or poly-spiro-fluorene) units are copolymerized or there is a blend in which the triaryl-substituted Lewis acid units are mixed as a polymer with at least one other polymeric organic semiconducting material (blended) has been.
- the two alternatives can also be present together at the same time, so that on the one hand there is a blend of several polymers, including a polymer comprising triaryl-substituted Lewis acid units, and on the other hand there is a copolymer with a repeating unit comprising a triaryl-substituted Lewis acid ,
- the triarylic acid units improve the transport of negative charge carriers and increase the stability of the polymer with respect to electrochemical reduction, which inevitably occurs when the negative charge carriers are transported.
- Lewis acid is an electron pair acceptor, i.e. a molecule or ion with an incomplete electron configuration that can hold a pair of electrons, ie a negative charge.
- Triaryl-leic acid units are particularly suitable for use as electron-transporting components of a copolymeric organic semiconducting material, because this component can not only take up a negative charge, but also stabilize it through the aryl radicals.
- Suitable Lewis acids are, for example, those which have a boron or an aluminum atom as the central atom, the aluminum Lewis acids in question also having a complex backbond to the aromatic system for reasons of stability.
- Tri-aryl Lewis acids with boron as the central atom are particularly suitable because a boranate anion is stable to reduction.
- no irreversible secondary reactions are to be expected here. This concept is supported, for example, by cyclic voltammetry Measurements on trimesitylborane confirmed that show a completely reversible reduction of the triarylborane unit.
- triaryl-Lewis acid units as a stable electron transport unit can be used for negative charges analogously to the already known use of triarylamine derivatives as a stable hole transport unit for positive charges.
- the negative or positive charge carriers on the Lewis acid central or nitrogen atoms are stabilized, charge transport to the next stabilizing subunit is nevertheless possible via the conjugation of the carbon skeleton.
- the triarylated Lewis acid units are advantageously borane units.
- the aryl substituents can be the same or different.
- Aryl substituents are understood to mean (homo) aromatic or heteroaromatic compounds. As a rule, at least two of the three aryl substituents will be part of the main polymer chain, so that the polymer main chain of at least one polymeric component of the organic semiconducting material has a component -Ar-B (Ar) -Ar-.
- the organic semiconducting material comprises at least one active layer of the OLED 50% of the repeating units of arylene vinylene and / or para-phenylene derivative units and between 1 and 50% of the repeating units, preferably 1 to 30% and particularly preferably 1 to 20% triaryl substituted Lewis acid units. It is particularly preferred if the para-phenylene derivative units used are fluorene derivative units and / or poly-spirofluorene units. According to a further embodiment, the organic semiconducting material at least one active layer of the OLED also comprises between 1 and 49% of repeating units of triarylamine de-civat units, in particular from 1 to
- the triarylated Lewis acid units show a blue emission in the organic semiconducting material or they have no noticeable influence on the emission spectrum (shift less than 30 nm).
- the triarylided Lewis acid units are electron donated, so that a chromophore center is formed and the emission is shifted into the long-wave range.
- triarylamine and borane units are combined in an organic semiconducting material trial of at least one active layer in such a way that efficiency and service life are optimized for specific driver conditions, e.g. for passive matrix updates at a given multiplex rate, pulse frequency and / or brightness.
- the proportion of negative charge carriers in the total current and thus the efficiency of the organic light-emitting diode and the position of the recombination zone within the layer can be optimized by using triarylborane electron transporter units.
- the triaryllic acid (for example the tri-arylborane) units do not significantly influence the electroluminescence of the semiconducting copolymer, so that despite these additional electron-transporting components the emission of the Polyarylene vinylene or poly-para-phenylene backbone and the emission of any chromophore components present dominate the spectrum.
- the triaryl ligand on the Lewis acid central atom can also be electron donor-substituted, which means that this unit can then be changed into a chromophore center with long-wavelength shifted emission. Then OLEDs with such a structure emit in a broadband changed emission.
- the organic light emitting diode or light display can be used for monochrome, multicolor or full color organic electroluminescent displays with active or passive matrix control.
- it can be used for full-color organic electroluminescent displays on the basis of white emitters and color filters or on the basis of structured RGB-pixelated emitter layers.
- the OLED according to the invention can be used in such a way that the content of the Lewis acid units is matched to the pulsed driver conditions in a passive matrix display.
- the invention for the first time provides an organic light-emitting diode with a triaryl-Lewis acid component as an electron-transporting unit in an organic semiconducting material of an active layer, in which the problem of the insufficient reduction stability of conjugated carbon-hydrogen polymers is overcome.
- the perarylated Lewis acid units ensure that the entire organic semiconducting material than the active layer and thus an extended life of the LED during operation.
- an improved efficiency and / or a control of the position of the emission zone within the active layer made of organic semiconducting material is possible through targeted variation of the proportion of, for example, tri-arylborane units as triaryl-Lewis acid units.
- the invention relates to an organic light-emitting diode (OLED) with improved service life and improved transport of negative charge carriers.
- OLED organic light-emitting diode
- the organic light-emitting diode based on an organic semiconducting material in which the transport of negative charge carriers and the stability with regard to reduction are determined by triarylated Lewis acid units, in particular by perarylated borane units.
- triarylated Lewis acid units in particular by perarylated borane units.
- the invention relates to organic light-emitting diodes in which the position of the emission zone in the emitter layer and the color of the emission can be influenced in a targeted manner by triarylated Lewis acids such as perarylated borane units.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004015845A DE102004015845B4 (de) | 2004-03-31 | 2004-03-31 | Organische Leuchtdiode, sowie Verwendungen davon |
PCT/EP2005/051349 WO2005096402A2 (fr) | 2004-03-31 | 2005-03-23 | Diode electroluminescente organique et ses utilisations |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1730797A2 true EP1730797A2 (fr) | 2006-12-13 |
Family
ID=34965766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05747924A Withdrawn EP1730797A2 (fr) | 2004-03-31 | 2005-03-23 | Diode electroluminescente organique et ses utilisations |
Country Status (7)
Country | Link |
---|---|
US (1) | US8580392B2 (fr) |
EP (1) | EP1730797A2 (fr) |
JP (1) | JP2007531993A (fr) |
KR (1) | KR101282049B1 (fr) |
CN (1) | CN1938877B (fr) |
DE (1) | DE102004015845B4 (fr) |
WO (1) | WO2005096402A2 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004036496A1 (de) | 2004-07-28 | 2006-03-23 | Siemens Ag | Organische Leuchtdiode mit erhöhter Radikalanionenstabilität, sowie Verwendungen davon |
US20070215864A1 (en) | 2006-03-17 | 2007-09-20 | Luebben Silvia D | Use of pi-conjugated organoboron polymers in thin-film organic polymer electronic devices |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001284052A (ja) * | 2000-04-04 | 2001-10-12 | Matsushita Electric Ind Co Ltd | 有機発光素子 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4055363B2 (ja) * | 1999-01-08 | 2008-03-05 | チッソ株式会社 | ボラン誘導体および有機電界発光素子 |
JP4023204B2 (ja) * | 2001-05-02 | 2007-12-19 | 淳二 城戸 | 有機電界発光素子 |
US6597012B2 (en) * | 2001-05-02 | 2003-07-22 | Junji Kido | Organic electroluminescent device |
GB0111549D0 (en) * | 2001-05-11 | 2001-07-04 | Cambridge Display Tech Ltd | Polymers, their preparation and uses |
GB0125622D0 (en) * | 2001-10-25 | 2001-12-19 | Cambridge Display Tech Ltd | Method of polymerisation |
JP4196747B2 (ja) | 2002-06-26 | 2008-12-17 | 住友化学株式会社 | 高分子化合物およびそれを用いた高分子発光素子 |
WO2004003053A1 (fr) * | 2002-06-26 | 2004-01-08 | Sumitomo Chemical Company, Limited | Polymere et element luminescent polymere comprenant ce polymere |
US7951874B2 (en) * | 2003-05-08 | 2011-05-31 | Osram Opto Semiconductors Gmbh | Non-conjugated polymeric perarylated boranes, use thereof as organically semiconductor transmitters and/or transport materials, methods for producing same and uses thereof |
DE102004001865A1 (de) * | 2003-05-08 | 2004-12-16 | Siemens Ag | Nicht konjugierte polymere perarylierte Borane, deren Verwendung als organisch halbleitende Emitter und/oder Transportmaterialien, Verfahren zu deren Herstellung und Anwendungen davon |
JP2005093428A (ja) * | 2003-08-14 | 2005-04-07 | Mitsubishi Chemicals Corp | 有機電界発光素子用組成物及び有機電界発光素子 |
JP2005093427A (ja) | 2003-08-14 | 2005-04-07 | Mitsubishi Chemicals Corp | 有機電界発光素子用組成物及び有機電界発光素子の製造方法 |
US20060182993A1 (en) * | 2004-08-10 | 2006-08-17 | Mitsubishi Chemical Corporation | Compositions for organic electroluminescent device and organic electroluminescent device |
-
2004
- 2004-03-31 DE DE102004015845A patent/DE102004015845B4/de not_active Expired - Fee Related
-
2005
- 2005-03-23 EP EP05747924A patent/EP1730797A2/fr not_active Withdrawn
- 2005-03-23 KR KR1020067022677A patent/KR101282049B1/ko not_active IP Right Cessation
- 2005-03-23 WO PCT/EP2005/051349 patent/WO2005096402A2/fr active Application Filing
- 2005-03-23 JP JP2007505547A patent/JP2007531993A/ja active Pending
- 2005-03-23 CN CN2005800107953A patent/CN1938877B/zh active Active
- 2005-03-23 US US11/547,205 patent/US8580392B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001284052A (ja) * | 2000-04-04 | 2001-10-12 | Matsushita Electric Ind Co Ltd | 有機発光素子 |
Also Published As
Publication number | Publication date |
---|---|
WO2005096402A2 (fr) | 2005-10-13 |
US20090289544A1 (en) | 2009-11-26 |
JP2007531993A (ja) | 2007-11-08 |
WO2005096402A3 (fr) | 2005-11-24 |
CN1938877B (zh) | 2012-11-14 |
KR101282049B1 (ko) | 2013-07-04 |
CN1938877A (zh) | 2007-03-28 |
US8580392B2 (en) | 2013-11-12 |
DE102004015845A1 (de) | 2005-11-03 |
KR20060135050A (ko) | 2006-12-28 |
DE102004015845B4 (de) | 2012-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1705727B1 (fr) | Elément émetteur de lumière | |
DE102006059509B4 (de) | Organisches Leuchtbauelement | |
DE102006000770B4 (de) | OLEDs mit Leuchtstoffen | |
EP1670844B2 (fr) | Copolymeres a emission blanche, representation et utilisation de ceux-ci | |
DE112008001738B4 (de) | Licht emittierendes Bauelement | |
DE112006000495B4 (de) | Mehrschichtige Licht emittierende Polymer-Diode für Festkörper Beleuchtungs-Anwendungen | |
EP1656706B1 (fr) | Element electroluminescent organique | |
DE102007058005B4 (de) | Strahlungsemittierende Vorrichtung und Verfahren zu deren Herstellung | |
DE112005002479T5 (de) | Lichtemissionsvorrichtung | |
DE112009000181B4 (de) | Verfahren zur Herstellung Weißlicht emittierenden Materials | |
DE102005040285A1 (de) | Weiße organische Leuchtdioden (OLEDs) auf der Basis von Exciplexen zweier blau fluoreszierender Verbindungen | |
DE112004001880T5 (de) | Weisse Elektrophosphoreszenz aus halbleitenden Polymermischungen | |
EP3235020B1 (fr) | Matériaux hôtes ambipolaires pour des composants optoélectroniques | |
WO2010046788A2 (fr) | Dispositif émetteur de rayonnement | |
EP3022782A1 (fr) | Procédé de fonctionnement d'un composant photoémetteur organique | |
DE69911303T2 (de) | Organische elektrolumineszente Vorrichtung | |
DE102007020644A1 (de) | Lichtemittierendes Bauelement | |
EP1730797A2 (fr) | Diode electroluminescente organique et ses utilisations | |
EP2340578B1 (fr) | Composant rayonnant organique et procédé de fabrication d'un composant rayonnant organique | |
WO2008040318A1 (fr) | Composant organique électroluminescent, dispositif doté d'un tel composant, dispositif d'éclairage et dispositif d'affichage | |
DE102008023035B4 (de) | Lichtemittierendes organisches Bauelement und Verfahren zum Herstellen | |
WO2006010757A1 (fr) | Diode electroluminescente organique presentant une meilleure stabilite aux anions radicaux et utilisations | |
DE19726472A1 (de) | Organisches elektrolumineszentes Bauteil mit europiumhaltigem Emitter | |
DE102007061755A1 (de) | Bauelement zur phosphoreszenten Lichtemission aus Triplett-Zuständen und Verfahren zur Herstellung solcher Bauelemente | |
DE202004021141U1 (de) | Organische Lichtemittervorrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060818 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE |
|
17Q | First examination report despatched |
Effective date: 20070124 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KANITZ, ANDREAS Inventor name: HUNZE, ARVID Inventor name: HENSELER, DEBORA Inventor name: HEUSER, KARSTEN Inventor name: ROGLER, WOLFGANG |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OSRAM OPTO SEMICONDUCTORS GMBH |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OSRAM OPTO SEMICONDUCTORS GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20090817 |